Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / clk / mvebu / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell EBU SoC common clock handling
4  *
5  * Copyright (C) 2012 Marvell
6  *
7  * Gregory CLEMENT <gregory.clement@free-electrons.com>
8  * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
9  * Andrew Lunn <andrew@lunn.ch>
10  *
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/io.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/syscore_ops.h>
21
22 #include "common.h"
23
24 /*
25  * Core Clocks
26  */
27
28 #define SSCG_CONF_MODE(reg)     (((reg) >> 16) & 0x3)
29 #define SSCG_SPREAD_DOWN        0x0
30 #define SSCG_SPREAD_UP          0x1
31 #define SSCG_SPREAD_CENTRAL     0x2
32 #define SSCG_CONF_LOW(reg)      (((reg) >> 8) & 0xFF)
33 #define SSCG_CONF_HIGH(reg)     ((reg) & 0xFF)
34
35 static struct clk_onecell_data clk_data;
36
37 /*
38  * This function can be used by the Kirkwood, the Armada 370, the
39  * Armada XP and the Armada 375 SoC. The name of the function was
40  * chosen following the dt convention: using the first known SoC
41  * compatible with it.
42  */
43 u32 kirkwood_fix_sscg_deviation(u32 system_clk)
44 {
45         struct device_node *sscg_np = NULL;
46         void __iomem *sscg_map;
47         u32 sscg_reg;
48         s32 low_bound, high_bound;
49         u64 freq_swing_half;
50
51         sscg_np = of_find_node_by_name(NULL, "sscg");
52         if (sscg_np == NULL) {
53                 pr_err("cannot get SSCG register node\n");
54                 return system_clk;
55         }
56
57         sscg_map = of_iomap(sscg_np, 0);
58         if (sscg_map == NULL) {
59                 pr_err("cannot map SSCG register\n");
60                 goto out;
61         }
62
63         sscg_reg = readl(sscg_map);
64         high_bound = SSCG_CONF_HIGH(sscg_reg);
65         low_bound = SSCG_CONF_LOW(sscg_reg);
66
67         if ((high_bound - low_bound) <= 0)
68                 goto out;
69         /*
70          * From Marvell engineer we got the following formula (when
71          * this code was written, the datasheet was erroneous)
72          * Spread percentage = 1/96 * (H - L) / H
73          * H = SSCG_High_Boundary
74          * L = SSCG_Low_Boundary
75          *
76          * As the deviation is half of spread then it lead to the
77          * following formula in the code.
78          *
79          * To avoid an overflow and not lose any significant digit in
80          * the same time we have to use a 64 bit integer.
81          */
82
83         freq_swing_half = (((u64)high_bound - (u64)low_bound)
84                         * (u64)system_clk);
85         do_div(freq_swing_half, (2 * 96 * high_bound));
86
87         switch (SSCG_CONF_MODE(sscg_reg)) {
88         case SSCG_SPREAD_DOWN:
89                 system_clk -= freq_swing_half;
90                 break;
91         case SSCG_SPREAD_UP:
92                 system_clk += freq_swing_half;
93                 break;
94         case SSCG_SPREAD_CENTRAL:
95         default:
96                 break;
97         }
98
99         iounmap(sscg_map);
100
101 out:
102         of_node_put(sscg_np);
103
104         return system_clk;
105 }
106
107 void __init mvebu_coreclk_setup(struct device_node *np,
108                                 const struct coreclk_soc_desc *desc)
109 {
110         const char *tclk_name = "tclk";
111         const char *cpuclk_name = "cpuclk";
112         void __iomem *base;
113         unsigned long rate;
114         int n;
115
116         base = of_iomap(np, 0);
117         if (WARN_ON(!base))
118                 return;
119
120         /* Allocate struct for TCLK, cpu clk, and core ratio clocks */
121         clk_data.clk_num = 2 + desc->num_ratios;
122
123         /* One more clock for the optional refclk */
124         if (desc->get_refclk_freq)
125                 clk_data.clk_num += 1;
126
127         clk_data.clks = kcalloc(clk_data.clk_num, sizeof(*clk_data.clks),
128                                 GFP_KERNEL);
129         if (WARN_ON(!clk_data.clks)) {
130                 iounmap(base);
131                 return;
132         }
133
134         /* Register TCLK */
135         of_property_read_string_index(np, "clock-output-names", 0,
136                                       &tclk_name);
137         rate = desc->get_tclk_freq(base);
138         clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL, 0,
139                                                    rate);
140         WARN_ON(IS_ERR(clk_data.clks[0]));
141
142         /* Register CPU clock */
143         of_property_read_string_index(np, "clock-output-names", 1,
144                                       &cpuclk_name);
145         rate = desc->get_cpu_freq(base);
146
147         if (desc->is_sscg_enabled && desc->fix_sscg_deviation
148                 && desc->is_sscg_enabled(base))
149                 rate = desc->fix_sscg_deviation(rate);
150
151         clk_data.clks[1] = clk_register_fixed_rate(NULL, cpuclk_name, NULL, 0,
152                                                    rate);
153         WARN_ON(IS_ERR(clk_data.clks[1]));
154
155         /* Register fixed-factor clocks derived from CPU clock */
156         for (n = 0; n < desc->num_ratios; n++) {
157                 const char *rclk_name = desc->ratios[n].name;
158                 int mult, div;
159
160                 of_property_read_string_index(np, "clock-output-names",
161                                               2+n, &rclk_name);
162                 desc->get_clk_ratio(base, desc->ratios[n].id, &mult, &div);
163                 clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name,
164                                        cpuclk_name, 0, mult, div);
165                 WARN_ON(IS_ERR(clk_data.clks[2+n]));
166         }
167
168         /* Register optional refclk */
169         if (desc->get_refclk_freq) {
170                 const char *name = "refclk";
171                 of_property_read_string_index(np, "clock-output-names",
172                                               2 + desc->num_ratios, &name);
173                 rate = desc->get_refclk_freq(base);
174                 clk_data.clks[2 + desc->num_ratios] =
175                         clk_register_fixed_rate(NULL, name, NULL, 0, rate);
176                 WARN_ON(IS_ERR(clk_data.clks[2 + desc->num_ratios]));
177         }
178
179         /* SAR register isn't needed anymore */
180         iounmap(base);
181
182         of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
183 }
184
185 /*
186  * Clock Gating Control
187  */
188
189 DEFINE_SPINLOCK(ctrl_gating_lock);
190
191 struct clk_gating_ctrl {
192         spinlock_t *lock;
193         struct clk **gates;
194         int num_gates;
195         void __iomem *base;
196         u32 saved_reg;
197 };
198
199 static struct clk_gating_ctrl *ctrl;
200
201 static struct clk *clk_gating_get_src(
202         struct of_phandle_args *clkspec, void *data)
203 {
204         int n;
205
206         if (clkspec->args_count < 1)
207                 return ERR_PTR(-EINVAL);
208
209         for (n = 0; n < ctrl->num_gates; n++) {
210                 struct clk_gate *gate =
211                         to_clk_gate(__clk_get_hw(ctrl->gates[n]));
212                 if (clkspec->args[0] == gate->bit_idx)
213                         return ctrl->gates[n];
214         }
215         return ERR_PTR(-ENODEV);
216 }
217
218 static int mvebu_clk_gating_suspend(void)
219 {
220         ctrl->saved_reg = readl(ctrl->base);
221         return 0;
222 }
223
224 static void mvebu_clk_gating_resume(void)
225 {
226         writel(ctrl->saved_reg, ctrl->base);
227 }
228
229 static struct syscore_ops clk_gate_syscore_ops = {
230         .suspend = mvebu_clk_gating_suspend,
231         .resume = mvebu_clk_gating_resume,
232 };
233
234 void __init mvebu_clk_gating_setup(struct device_node *np,
235                                    const struct clk_gating_soc_desc *desc)
236 {
237         struct clk *clk;
238         void __iomem *base;
239         const char *default_parent = NULL;
240         int n;
241
242         if (ctrl) {
243                 pr_err("mvebu-clk-gating: cannot instantiate more than one gateable clock device\n");
244                 return;
245         }
246
247         base = of_iomap(np, 0);
248         if (WARN_ON(!base))
249                 return;
250
251         clk = of_clk_get(np, 0);
252         if (!IS_ERR(clk)) {
253                 default_parent = __clk_get_name(clk);
254                 clk_put(clk);
255         }
256
257         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
258         if (WARN_ON(!ctrl))
259                 goto ctrl_out;
260
261         /* lock must already be initialized */
262         ctrl->lock = &ctrl_gating_lock;
263
264         ctrl->base = base;
265
266         /* Count, allocate, and register clock gates */
267         for (n = 0; desc[n].name;)
268                 n++;
269
270         ctrl->num_gates = n;
271         ctrl->gates = kcalloc(ctrl->num_gates, sizeof(*ctrl->gates),
272                               GFP_KERNEL);
273         if (WARN_ON(!ctrl->gates))
274                 goto gates_out;
275
276         for (n = 0; n < ctrl->num_gates; n++) {
277                 const char *parent =
278                         (desc[n].parent) ? desc[n].parent : default_parent;
279                 ctrl->gates[n] = clk_register_gate(NULL, desc[n].name, parent,
280                                         desc[n].flags, base, desc[n].bit_idx,
281                                         0, ctrl->lock);
282                 WARN_ON(IS_ERR(ctrl->gates[n]));
283         }
284
285         of_clk_add_provider(np, clk_gating_get_src, ctrl);
286
287         register_syscore_ops(&clk_gate_syscore_ops);
288
289         return;
290 gates_out:
291         kfree(ctrl);
292 ctrl_out:
293         iounmap(base);
294 }