clk: Drop the rate range on clk_put()
[linux-2.6-microblaze.git] / drivers / clk / mvebu / armada-37xx-periph.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Marvell Armada 37xx SoC Peripheral clocks
4  *
5  * Copyright (C) 2016 Marvell
6  *
7  * Gregory CLEMENT <gregory.clement@free-electrons.com>
8  *
9  * Most of the peripheral clocks can be modelled like this:
10  *             _____    _______    _______
11  * TBG-A-P  --|     |  |       |  |       |   ______
12  * TBG-B-P  --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
13  * TBG-A-S  --|     |  |       |  |       |  |______|
14  * TBG-B-S  --|_____|  |_______|  |_______|
15  *
16  * However some clocks may use only one or two block or and use the
17  * xtal clock as parent.
18  */
19
20 #include <linux/clk-provider.h>
21 #include <linux/io.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28
29 #define TBG_SEL         0x0
30 #define DIV_SEL0        0x4
31 #define DIV_SEL1        0x8
32 #define DIV_SEL2        0xC
33 #define CLK_SEL         0x10
34 #define CLK_DIS         0x14
35
36 #define  ARMADA_37XX_DVFS_LOAD_1 1
37 #define LOAD_LEVEL_NR   4
38
39 #define ARMADA_37XX_NB_L0L1     0x18
40 #define ARMADA_37XX_NB_L2L3     0x1C
41 #define         ARMADA_37XX_NB_TBG_DIV_OFF      13
42 #define         ARMADA_37XX_NB_TBG_DIV_MASK     0x7
43 #define         ARMADA_37XX_NB_CLK_SEL_OFF      11
44 #define         ARMADA_37XX_NB_CLK_SEL_MASK     0x1
45 #define         ARMADA_37XX_NB_TBG_SEL_OFF      9
46 #define         ARMADA_37XX_NB_TBG_SEL_MASK     0x3
47 #define         ARMADA_37XX_NB_CONFIG_SHIFT     16
48 #define ARMADA_37XX_NB_DYN_MOD  0x24
49 #define         ARMADA_37XX_NB_DFS_EN   31
50 #define ARMADA_37XX_NB_CPU_LOAD 0x30
51 #define         ARMADA_37XX_NB_CPU_LOAD_MASK    0x3
52 #define         ARMADA_37XX_DVFS_LOAD_0         0
53 #define         ARMADA_37XX_DVFS_LOAD_1         1
54 #define         ARMADA_37XX_DVFS_LOAD_2         2
55 #define         ARMADA_37XX_DVFS_LOAD_3         3
56
57 struct clk_periph_driver_data {
58         struct clk_hw_onecell_data *hw_data;
59         spinlock_t lock;
60         void __iomem *reg;
61
62         /* Storage registers for suspend/resume operations */
63         u32 tbg_sel;
64         u32 div_sel0;
65         u32 div_sel1;
66         u32 div_sel2;
67         u32 clk_sel;
68         u32 clk_dis;
69 };
70
71 struct clk_double_div {
72         struct clk_hw hw;
73         void __iomem *reg1;
74         u8 shift1;
75         void __iomem *reg2;
76         u8 shift2;
77 };
78
79 struct clk_pm_cpu {
80         struct clk_hw hw;
81         void __iomem *reg_mux;
82         u8 shift_mux;
83         u32 mask_mux;
84         void __iomem *reg_div;
85         u8 shift_div;
86         struct regmap *nb_pm_base;
87         unsigned long l1_expiration;
88 };
89
90 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
91 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
92
93 struct clk_periph_data {
94         const char *name;
95         const char * const *parent_names;
96         int num_parents;
97         struct clk_hw *mux_hw;
98         struct clk_hw *rate_hw;
99         struct clk_hw *gate_hw;
100         struct clk_hw *muxrate_hw;
101         bool is_double_div;
102 };
103
104 static const struct clk_div_table clk_table6[] = {
105         { .val = 1, .div = 1, },
106         { .val = 2, .div = 2, },
107         { .val = 3, .div = 3, },
108         { .val = 4, .div = 4, },
109         { .val = 5, .div = 5, },
110         { .val = 6, .div = 6, },
111         { .val = 0, .div = 0, }, /* last entry */
112 };
113
114 static const struct clk_div_table clk_table1[] = {
115         { .val = 0, .div = 1, },
116         { .val = 1, .div = 2, },
117         { .val = 0, .div = 0, }, /* last entry */
118 };
119
120 static const struct clk_div_table clk_table2[] = {
121         { .val = 0, .div = 2, },
122         { .val = 1, .div = 4, },
123         { .val = 0, .div = 0, }, /* last entry */
124 };
125
126 static const struct clk_ops clk_double_div_ops;
127 static const struct clk_ops clk_pm_cpu_ops;
128
129 #define PERIPH_GATE(_name, _bit)                \
130 struct clk_gate gate_##_name = {                \
131         .reg = (void *)CLK_DIS,                 \
132         .bit_idx = _bit,                        \
133         .hw.init = &(struct clk_init_data){     \
134                 .ops =  &clk_gate_ops,          \
135         }                                       \
136 };
137
138 #define PERIPH_MUX(_name, _shift)               \
139 struct clk_mux mux_##_name = {                  \
140         .reg = (void *)TBG_SEL,                 \
141         .shift = _shift,                        \
142         .mask = 3,                              \
143         .hw.init = &(struct clk_init_data){     \
144                 .ops =  &clk_mux_ro_ops,        \
145         }                                       \
146 };
147
148 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
149 struct clk_double_div rate_##_name = {          \
150         .reg1 = (void *)_reg1,                  \
151         .reg2 = (void *)_reg2,                  \
152         .shift1 = _shift1,                      \
153         .shift2 = _shift2,                      \
154         .hw.init = &(struct clk_init_data){     \
155                 .ops =  &clk_double_div_ops,    \
156         }                                       \
157 };
158
159 #define PERIPH_DIV(_name, _reg, _shift, _table) \
160 struct clk_divider rate_##_name = {             \
161         .reg = (void *)_reg,                    \
162         .table = _table,                        \
163         .shift = _shift,                        \
164         .hw.init = &(struct clk_init_data){     \
165                 .ops =  &clk_divider_ro_ops,    \
166         }                                       \
167 };
168
169 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2)    \
170 struct clk_pm_cpu muxrate_##_name = {           \
171         .reg_mux = (void *)TBG_SEL,             \
172         .mask_mux = 3,                          \
173         .shift_mux = _shift1,                   \
174         .reg_div = (void *)_reg,                \
175         .shift_div = _shift2,                   \
176         .hw.init = &(struct clk_init_data){     \
177                 .ops =  &clk_pm_cpu_ops,        \
178         }                                       \
179 };
180
181 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
182 static PERIPH_GATE(_name, _bit);                            \
183 static PERIPH_MUX(_name, _shift);                           \
184 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
185
186 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table)     \
187 static PERIPH_GATE(_name, _bit);                            \
188 static PERIPH_MUX(_name, _shift);                           \
189 static PERIPH_DIV(_name, _reg, _shift1, _table);
190
191 #define PERIPH_CLK_GATE_DIV(_name, _bit,  _reg, _shift, _table) \
192 static PERIPH_GATE(_name, _bit);                        \
193 static PERIPH_DIV(_name, _reg, _shift, _table);
194
195 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
196 static PERIPH_MUX(_name, _shift);                           \
197 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
198
199 #define REF_CLK_FULL(_name)                             \
200         { .name = #_name,                               \
201           .parent_names = (const char *[]){ "TBG-A-P",  \
202               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
203           .num_parents = 4,                             \
204           .mux_hw = &mux_##_name.hw,                    \
205           .gate_hw = &gate_##_name.hw,                  \
206           .rate_hw = &rate_##_name.hw,                  \
207         }
208
209 #define REF_CLK_FULL_DD(_name)                          \
210         { .name = #_name,                               \
211           .parent_names = (const char *[]){ "TBG-A-P",  \
212               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
213           .num_parents = 4,                             \
214           .mux_hw = &mux_##_name.hw,                    \
215           .gate_hw = &gate_##_name.hw,                  \
216           .rate_hw = &rate_##_name.hw,                  \
217           .is_double_div = true,                        \
218         }
219
220 #define REF_CLK_GATE(_name, _parent_name)                       \
221         { .name = #_name,                                       \
222           .parent_names = (const char *[]){ _parent_name},      \
223           .num_parents = 1,                                     \
224           .gate_hw = &gate_##_name.hw,                          \
225         }
226
227 #define REF_CLK_GATE_DIV(_name, _parent_name)                   \
228         { .name = #_name,                                       \
229           .parent_names = (const char *[]){ _parent_name},      \
230           .num_parents = 1,                                     \
231           .gate_hw = &gate_##_name.hw,                          \
232           .rate_hw = &rate_##_name.hw,                          \
233         }
234
235 #define REF_CLK_PM_CPU(_name)                           \
236         { .name = #_name,                               \
237           .parent_names = (const char *[]){ "TBG-A-P",  \
238               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
239           .num_parents = 4,                             \
240           .muxrate_hw = &muxrate_##_name.hw,            \
241         }
242
243 #define REF_CLK_MUX_DD(_name)                           \
244         { .name = #_name,                               \
245           .parent_names = (const char *[]){ "TBG-A-P",  \
246               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
247           .num_parents = 4,                             \
248           .mux_hw = &mux_##_name.hw,                    \
249           .rate_hw = &rate_##_name.hw,                  \
250           .is_double_div = true,                        \
251         }
252
253 /* NB periph clocks */
254 PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13);
255 PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7);
256 PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0);
257 PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6);
258 PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12);
259 PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6);
260 static PERIPH_GATE(avs, 11);
261 PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0);
262 PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24);
263 static PERIPH_GATE(i2c_2, 16);
264 static PERIPH_GATE(i2c_1, 17);
265 PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2);
266 PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12);
267 PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6);
268 PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6);
269 PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19);
270 static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28);
271
272 static struct clk_periph_data data_nb[] = {
273         REF_CLK_FULL_DD(mmc),
274         REF_CLK_FULL_DD(sata_host),
275         REF_CLK_FULL_DD(sec_at),
276         REF_CLK_FULL_DD(sec_dap),
277         REF_CLK_FULL_DD(tscem),
278         REF_CLK_FULL(tscem_tmx),
279         REF_CLK_GATE(avs, "xtal"),
280         REF_CLK_FULL_DD(sqf),
281         REF_CLK_FULL_DD(pwm),
282         REF_CLK_GATE(i2c_2, "xtal"),
283         REF_CLK_GATE(i2c_1, "xtal"),
284         REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"),
285         REF_CLK_FULL_DD(ddr_fclk),
286         REF_CLK_FULL(trace),
287         REF_CLK_FULL(counter),
288         REF_CLK_FULL_DD(eip97),
289         REF_CLK_PM_CPU(cpu),
290         { },
291 };
292
293 /* SB periph clocks */
294 PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9);
295 PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21);
296 PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9);
297 static PERIPH_GATE(gbe1_50, 0);
298 static PERIPH_GATE(gbe0_50, 1);
299 static PERIPH_GATE(gbe1_125, 2);
300 static PERIPH_GATE(gbe0_125, 3);
301 PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1);
302 PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1);
303 PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1);
304 PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6);
305 PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12);
306 PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18);
307 static PERIPH_GATE(pcie, 14);
308
309 static struct clk_periph_data data_sb[] = {
310         REF_CLK_MUX_DD(gbe_50),
311         REF_CLK_MUX_DD(gbe_core),
312         REF_CLK_MUX_DD(gbe_125),
313         REF_CLK_GATE(gbe1_50, "gbe_50"),
314         REF_CLK_GATE(gbe0_50, "gbe_50"),
315         REF_CLK_GATE(gbe1_125, "gbe_125"),
316         REF_CLK_GATE(gbe0_125, "gbe_125"),
317         REF_CLK_GATE_DIV(gbe1_core, "gbe_core"),
318         REF_CLK_GATE_DIV(gbe0_core, "gbe_core"),
319         REF_CLK_GATE_DIV(gbe_bm, "gbe_core"),
320         REF_CLK_FULL_DD(sdio),
321         REF_CLK_FULL_DD(usb32_usb2_sys),
322         REF_CLK_FULL_DD(usb32_ss_sys),
323         REF_CLK_GATE(pcie, "gbe_core"),
324         { },
325 };
326
327 static unsigned int get_div(void __iomem *reg, int shift)
328 {
329         u32 val;
330
331         val = (readl(reg) >> shift) & 0x7;
332         if (val > 6)
333                 return 0;
334         return val;
335 }
336
337 static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw,
338                                                 unsigned long parent_rate)
339 {
340         struct clk_double_div *double_div = to_clk_double_div(hw);
341         unsigned int div;
342
343         div = get_div(double_div->reg1, double_div->shift1);
344         div *= get_div(double_div->reg2, double_div->shift2);
345
346         return DIV_ROUND_UP_ULL((u64)parent_rate, div);
347 }
348
349 static const struct clk_ops clk_double_div_ops = {
350         .recalc_rate = clk_double_div_recalc_rate,
351 };
352
353 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level,
354                                             unsigned int *reg,
355                                             unsigned int *offset)
356 {
357         if (load_level <= ARMADA_37XX_DVFS_LOAD_1)
358                 *reg = ARMADA_37XX_NB_L0L1;
359         else
360                 *reg = ARMADA_37XX_NB_L2L3;
361
362         if (load_level == ARMADA_37XX_DVFS_LOAD_0 ||
363             load_level ==  ARMADA_37XX_DVFS_LOAD_2)
364                 *offset += ARMADA_37XX_NB_CONFIG_SHIFT;
365 }
366
367 static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base)
368 {
369         unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD;
370
371         if (IS_ERR(base))
372                 return false;
373
374         regmap_read(base, reg, &val);
375
376         return !!(val & BIT(ARMADA_37XX_NB_DFS_EN));
377 }
378
379 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base)
380 {
381         unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
382         unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF;
383         unsigned int load_level, div;
384
385         /*
386          * This function is always called after the function
387          * armada_3700_pm_dvfs_is_enabled, so no need to check again
388          * if the base is valid.
389          */
390         regmap_read(base, reg, &load_level);
391
392         /*
393          * The register and the offset inside this register accessed to
394          * read the current divider depend on the load level
395          */
396         load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
397         armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
398
399         regmap_read(base, reg, &div);
400
401         return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK;
402 }
403
404 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base)
405 {
406         unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
407         unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF;
408         unsigned int load_level, sel;
409
410         /*
411          * This function is always called after the function
412          * armada_3700_pm_dvfs_is_enabled, so no need to check again
413          * if the base is valid
414          */
415         regmap_read(base, reg, &load_level);
416
417         /*
418          * The register and the offset inside this register accessed to
419          * read the current divider depend on the load level
420          */
421         load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
422         armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
423
424         regmap_read(base, reg, &sel);
425
426         return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK;
427 }
428
429 static u8 clk_pm_cpu_get_parent(struct clk_hw *hw)
430 {
431         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
432         u32 val;
433
434         if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) {
435                 val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base);
436         } else {
437                 val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux;
438                 val &= pm_cpu->mask_mux;
439         }
440
441         return val;
442 }
443
444 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw,
445                                             unsigned long parent_rate)
446 {
447         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
448         unsigned int div;
449
450         if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base))
451                 div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base);
452         else
453                 div = get_div(pm_cpu->reg_div, pm_cpu->shift_div);
454         return DIV_ROUND_UP_ULL((u64)parent_rate, div);
455 }
456
457 static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate,
458                                   unsigned long *parent_rate)
459 {
460         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
461         struct regmap *base = pm_cpu->nb_pm_base;
462         unsigned int div = *parent_rate / rate;
463         unsigned int load_level;
464         /* only available when DVFS is enabled */
465         if (!armada_3700_pm_dvfs_is_enabled(base))
466                 return -EINVAL;
467
468         for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
469                 unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF;
470
471                 armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
472
473                 regmap_read(base, reg, &val);
474
475                 val >>= offset;
476                 val &= ARMADA_37XX_NB_TBG_DIV_MASK;
477                 if (val == div)
478                         /*
479                          * We found a load level matching the target
480                          * divider, switch to this load level and
481                          * return.
482                          */
483                         return *parent_rate / div;
484         }
485
486         /* We didn't find any valid divider */
487         return -EINVAL;
488 }
489
490 /*
491  * Workaround when base CPU frequnecy is 1000 or 1200 MHz
492  *
493  * Switching the CPU from the L2 or L3 frequencies (250/300 or 200 MHz
494  * respectively) to L0 frequency (1/1.2 GHz) requires a significant
495  * amount of time to let VDD stabilize to the appropriate
496  * voltage. This amount of time is large enough that it cannot be
497  * covered by the hardware countdown register. Due to this, the CPU
498  * might start operating at L0 before the voltage is stabilized,
499  * leading to CPU stalls.
500  *
501  * To work around this problem, we prevent switching directly from the
502  * L2/L3 frequencies to the L0 frequency, and instead switch to the L1
503  * frequency in-between. The sequence therefore becomes:
504  * 1. First switch from L2/L3 (200/250/300 MHz) to L1 (500/600 MHz)
505  * 2. Sleep 20ms for stabling VDD voltage
506  * 3. Then switch from L1 (500/600 MHz) to L0 (1000/1200 MHz).
507  */
508 static void clk_pm_cpu_set_rate_wa(struct clk_pm_cpu *pm_cpu,
509                                    unsigned int new_level, unsigned long rate,
510                                    struct regmap *base)
511 {
512         unsigned int cur_level;
513
514         regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level);
515         cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
516
517         if (cur_level == new_level)
518                 return;
519
520         /*
521          * System wants to go to L1 on its own. If we are going from L2/L3,
522          * remember when 20ms will expire. If from L0, set the value so that
523          * next switch to L0 won't have to wait.
524          */
525         if (new_level == ARMADA_37XX_DVFS_LOAD_1) {
526                 if (cur_level == ARMADA_37XX_DVFS_LOAD_0)
527                         pm_cpu->l1_expiration = jiffies;
528                 else
529                         pm_cpu->l1_expiration = jiffies + msecs_to_jiffies(20);
530                 return;
531         }
532
533         /*
534          * If we are setting to L2/L3, just invalidate L1 expiration time,
535          * sleeping is not needed.
536          */
537         if (rate < 1000*1000*1000)
538                 goto invalidate_l1_exp;
539
540         /*
541          * We are going to L0 with rate >= 1GHz. Check whether we have been at
542          * L1 for long enough time. If not, go to L1 for 20ms.
543          */
544         if (pm_cpu->l1_expiration && jiffies >= pm_cpu->l1_expiration)
545                 goto invalidate_l1_exp;
546
547         regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD,
548                            ARMADA_37XX_NB_CPU_LOAD_MASK,
549                            ARMADA_37XX_DVFS_LOAD_1);
550         msleep(20);
551
552 invalidate_l1_exp:
553         pm_cpu->l1_expiration = 0;
554 }
555
556 static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate,
557                                unsigned long parent_rate)
558 {
559         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
560         struct regmap *base = pm_cpu->nb_pm_base;
561         unsigned int div = parent_rate / rate;
562         unsigned int load_level;
563
564         /* only available when DVFS is enabled */
565         if (!armada_3700_pm_dvfs_is_enabled(base))
566                 return -EINVAL;
567
568         for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
569                 unsigned int reg, mask, val,
570                         offset = ARMADA_37XX_NB_TBG_DIV_OFF;
571
572                 armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
573
574                 regmap_read(base, reg, &val);
575                 val >>= offset;
576                 val &= ARMADA_37XX_NB_TBG_DIV_MASK;
577
578                 if (val == div) {
579                         /*
580                          * We found a load level matching the target
581                          * divider, switch to this load level and
582                          * return.
583                          */
584                         reg = ARMADA_37XX_NB_CPU_LOAD;
585                         mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
586
587                         /* Apply workaround when base CPU frequency is 1000 or 1200 MHz */
588                         if (parent_rate >= 1000*1000*1000)
589                                 clk_pm_cpu_set_rate_wa(pm_cpu, load_level, rate, base);
590
591                         regmap_update_bits(base, reg, mask, load_level);
592
593                         return rate;
594                 }
595         }
596
597         /* We didn't find any valid divider */
598         return -EINVAL;
599 }
600
601 static const struct clk_ops clk_pm_cpu_ops = {
602         .get_parent = clk_pm_cpu_get_parent,
603         .round_rate = clk_pm_cpu_round_rate,
604         .set_rate = clk_pm_cpu_set_rate,
605         .recalc_rate = clk_pm_cpu_recalc_rate,
606 };
607
608 static const struct of_device_id armada_3700_periph_clock_of_match[] = {
609         { .compatible = "marvell,armada-3700-periph-clock-nb",
610           .data = data_nb, },
611         { .compatible = "marvell,armada-3700-periph-clock-sb",
612         .data = data_sb, },
613         { }
614 };
615
616 static int armada_3700_add_composite_clk(const struct clk_periph_data *data,
617                                          void __iomem *reg, spinlock_t *lock,
618                                          struct device *dev, struct clk_hw **hw)
619 {
620         const struct clk_ops *mux_ops = NULL, *gate_ops = NULL,
621                 *rate_ops = NULL;
622         struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL;
623
624         if (data->mux_hw) {
625                 struct clk_mux *mux;
626
627                 mux_hw = data->mux_hw;
628                 mux = to_clk_mux(mux_hw);
629                 mux->lock = lock;
630                 mux_ops = mux_hw->init->ops;
631                 mux->reg = reg + (u64)mux->reg;
632         }
633
634         if (data->gate_hw) {
635                 struct clk_gate *gate;
636
637                 gate_hw = data->gate_hw;
638                 gate = to_clk_gate(gate_hw);
639                 gate->lock = lock;
640                 gate_ops = gate_hw->init->ops;
641                 gate->reg = reg + (u64)gate->reg;
642                 gate->flags = CLK_GATE_SET_TO_DISABLE;
643         }
644
645         if (data->rate_hw) {
646                 rate_hw = data->rate_hw;
647                 rate_ops = rate_hw->init->ops;
648                 if (data->is_double_div) {
649                         struct clk_double_div *rate;
650
651                         rate =  to_clk_double_div(rate_hw);
652                         rate->reg1 = reg + (u64)rate->reg1;
653                         rate->reg2 = reg + (u64)rate->reg2;
654                 } else {
655                         struct clk_divider *rate = to_clk_divider(rate_hw);
656                         const struct clk_div_table *clkt;
657                         int table_size = 0;
658
659                         rate->reg = reg + (u64)rate->reg;
660                         for (clkt = rate->table; clkt->div; clkt++)
661                                 table_size++;
662                         rate->width = order_base_2(table_size);
663                         rate->lock = lock;
664                 }
665         }
666
667         if (data->muxrate_hw) {
668                 struct clk_pm_cpu *pmcpu_clk;
669                 struct clk_hw *muxrate_hw = data->muxrate_hw;
670                 struct regmap *map;
671
672                 pmcpu_clk =  to_clk_pm_cpu(muxrate_hw);
673                 pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux;
674                 pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div;
675
676                 mux_hw = muxrate_hw;
677                 rate_hw = muxrate_hw;
678                 mux_ops = muxrate_hw->init->ops;
679                 rate_ops = muxrate_hw->init->ops;
680
681                 map = syscon_regmap_lookup_by_compatible(
682                                 "marvell,armada-3700-nb-pm");
683                 pmcpu_clk->nb_pm_base = map;
684         }
685
686         *hw = clk_hw_register_composite(dev, data->name, data->parent_names,
687                                         data->num_parents, mux_hw,
688                                         mux_ops, rate_hw, rate_ops,
689                                         gate_hw, gate_ops, CLK_IGNORE_UNUSED);
690
691         return PTR_ERR_OR_ZERO(*hw);
692 }
693
694 static int __maybe_unused armada_3700_periph_clock_suspend(struct device *dev)
695 {
696         struct clk_periph_driver_data *data = dev_get_drvdata(dev);
697
698         data->tbg_sel = readl(data->reg + TBG_SEL);
699         data->div_sel0 = readl(data->reg + DIV_SEL0);
700         data->div_sel1 = readl(data->reg + DIV_SEL1);
701         data->div_sel2 = readl(data->reg + DIV_SEL2);
702         data->clk_sel = readl(data->reg + CLK_SEL);
703         data->clk_dis = readl(data->reg + CLK_DIS);
704
705         return 0;
706 }
707
708 static int __maybe_unused armada_3700_periph_clock_resume(struct device *dev)
709 {
710         struct clk_periph_driver_data *data = dev_get_drvdata(dev);
711
712         /* Follow the same order than what the Cortex-M3 does (ATF code) */
713         writel(data->clk_dis, data->reg + CLK_DIS);
714         writel(data->div_sel0, data->reg + DIV_SEL0);
715         writel(data->div_sel1, data->reg + DIV_SEL1);
716         writel(data->div_sel2, data->reg + DIV_SEL2);
717         writel(data->tbg_sel, data->reg + TBG_SEL);
718         writel(data->clk_sel, data->reg + CLK_SEL);
719
720         return 0;
721 }
722
723 static const struct dev_pm_ops armada_3700_periph_clock_pm_ops = {
724         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend,
725                                       armada_3700_periph_clock_resume)
726 };
727
728 static int armada_3700_periph_clock_probe(struct platform_device *pdev)
729 {
730         struct clk_periph_driver_data *driver_data;
731         struct device_node *np = pdev->dev.of_node;
732         const struct clk_periph_data *data;
733         struct device *dev = &pdev->dev;
734         int num_periph = 0, i, ret;
735         struct resource *res;
736
737         data = of_device_get_match_data(dev);
738         if (!data)
739                 return -ENODEV;
740
741         while (data[num_periph].name)
742                 num_periph++;
743
744         driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL);
745         if (!driver_data)
746                 return -ENOMEM;
747
748         driver_data->hw_data = devm_kzalloc(dev,
749                                             struct_size(driver_data->hw_data,
750                                                         hws, num_periph),
751                                             GFP_KERNEL);
752         if (!driver_data->hw_data)
753                 return -ENOMEM;
754         driver_data->hw_data->num = num_periph;
755
756         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
757         driver_data->reg = devm_ioremap_resource(dev, res);
758         if (IS_ERR(driver_data->reg))
759                 return PTR_ERR(driver_data->reg);
760
761         spin_lock_init(&driver_data->lock);
762
763         for (i = 0; i < num_periph; i++) {
764                 struct clk_hw **hw = &driver_data->hw_data->hws[i];
765                 if (armada_3700_add_composite_clk(&data[i], driver_data->reg,
766                                                   &driver_data->lock, dev, hw))
767                         dev_err(dev, "Can't register periph clock %s\n",
768                                 data[i].name);
769         }
770
771         ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get,
772                                      driver_data->hw_data);
773         if (ret) {
774                 for (i = 0; i < num_periph; i++)
775                         clk_hw_unregister(driver_data->hw_data->hws[i]);
776                 return ret;
777         }
778
779         platform_set_drvdata(pdev, driver_data);
780         return 0;
781 }
782
783 static int armada_3700_periph_clock_remove(struct platform_device *pdev)
784 {
785         struct clk_periph_driver_data *data = platform_get_drvdata(pdev);
786         struct clk_hw_onecell_data *hw_data = data->hw_data;
787         int i;
788
789         of_clk_del_provider(pdev->dev.of_node);
790
791         for (i = 0; i < hw_data->num; i++)
792                 clk_hw_unregister(hw_data->hws[i]);
793
794         return 0;
795 }
796
797 static struct platform_driver armada_3700_periph_clock_driver = {
798         .probe = armada_3700_periph_clock_probe,
799         .remove = armada_3700_periph_clock_remove,
800         .driver         = {
801                 .name   = "marvell-armada-3700-periph-clock",
802                 .of_match_table = armada_3700_periph_clock_of_match,
803                 .pm     = &armada_3700_periph_clock_pm_ops,
804         },
805 };
806
807 builtin_platform_driver(armada_3700_periph_clock_driver);