2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Standard functionality for the common clock API. See Documentation/clk.txt
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 #include <linux/stringify.h>
31 static DEFINE_SPINLOCK(enable_lock);
32 static DEFINE_MUTEX(prepare_lock);
34 static struct task_struct *prepare_owner;
35 static struct task_struct *enable_owner;
37 static int prepare_refcnt;
38 static int enable_refcnt;
40 static HLIST_HEAD(clk_root_list);
41 static HLIST_HEAD(clk_orphan_list);
42 static LIST_HEAD(clk_notifier_list);
44 /*** private data structures ***/
48 const struct clk_ops *ops;
52 struct clk_core *parent;
53 const char **parent_names;
54 struct clk_core **parents;
58 unsigned long req_rate;
59 unsigned long new_rate;
60 struct clk_core *new_parent;
61 struct clk_core *new_child;
64 unsigned int enable_count;
65 unsigned int prepare_count;
66 unsigned int protect_count;
67 unsigned long min_rate;
68 unsigned long max_rate;
69 unsigned long accuracy;
71 struct hlist_head children;
72 struct hlist_node child_node;
73 struct hlist_head clks;
74 unsigned int notifier_count;
75 #ifdef CONFIG_DEBUG_FS
76 struct dentry *dentry;
77 struct hlist_node debug_node;
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/clk.h>
86 struct clk_core *core;
89 unsigned long min_rate;
90 unsigned long max_rate;
91 unsigned int exclusive_count;
92 struct hlist_node clks_node;
96 static int clk_pm_runtime_get(struct clk_core *core)
103 ret = pm_runtime_get_sync(core->dev);
104 return ret < 0 ? ret : 0;
107 static void clk_pm_runtime_put(struct clk_core *core)
112 pm_runtime_put_sync(core->dev);
116 static void clk_prepare_lock(void)
118 if (!mutex_trylock(&prepare_lock)) {
119 if (prepare_owner == current) {
123 mutex_lock(&prepare_lock);
125 WARN_ON_ONCE(prepare_owner != NULL);
126 WARN_ON_ONCE(prepare_refcnt != 0);
127 prepare_owner = current;
131 static void clk_prepare_unlock(void)
133 WARN_ON_ONCE(prepare_owner != current);
134 WARN_ON_ONCE(prepare_refcnt == 0);
136 if (--prepare_refcnt)
138 prepare_owner = NULL;
139 mutex_unlock(&prepare_lock);
142 static unsigned long clk_enable_lock(void)
143 __acquires(enable_lock)
148 * On UP systems, spin_trylock_irqsave() always returns true, even if
149 * we already hold the lock. So, in that case, we rely only on
150 * reference counting.
152 if (!IS_ENABLED(CONFIG_SMP) ||
153 !spin_trylock_irqsave(&enable_lock, flags)) {
154 if (enable_owner == current) {
156 __acquire(enable_lock);
157 if (!IS_ENABLED(CONFIG_SMP))
158 local_save_flags(flags);
161 spin_lock_irqsave(&enable_lock, flags);
163 WARN_ON_ONCE(enable_owner != NULL);
164 WARN_ON_ONCE(enable_refcnt != 0);
165 enable_owner = current;
170 static void clk_enable_unlock(unsigned long flags)
171 __releases(enable_lock)
173 WARN_ON_ONCE(enable_owner != current);
174 WARN_ON_ONCE(enable_refcnt == 0);
176 if (--enable_refcnt) {
177 __release(enable_lock);
181 spin_unlock_irqrestore(&enable_lock, flags);
184 static bool clk_core_rate_is_protected(struct clk_core *core)
186 return core->protect_count;
189 static bool clk_core_is_prepared(struct clk_core *core)
194 * .is_prepared is optional for clocks that can prepare
195 * fall back to software usage counter if it is missing
197 if (!core->ops->is_prepared)
198 return core->prepare_count;
200 if (!clk_pm_runtime_get(core)) {
201 ret = core->ops->is_prepared(core->hw);
202 clk_pm_runtime_put(core);
208 static bool clk_core_is_enabled(struct clk_core *core)
213 * .is_enabled is only mandatory for clocks that gate
214 * fall back to software usage counter if .is_enabled is missing
216 if (!core->ops->is_enabled)
217 return core->enable_count;
220 * Check if clock controller's device is runtime active before
221 * calling .is_enabled callback. If not, assume that clock is
222 * disabled, because we might be called from atomic context, from
223 * which pm_runtime_get() is not allowed.
224 * This function is called mainly from clk_disable_unused_subtree,
225 * which ensures proper runtime pm activation of controller before
226 * taking enable spinlock, but the below check is needed if one tries
227 * to call it from other places.
230 pm_runtime_get_noresume(core->dev);
231 if (!pm_runtime_active(core->dev)) {
237 ret = core->ops->is_enabled(core->hw);
240 pm_runtime_put(core->dev);
245 /*** helper functions ***/
247 const char *__clk_get_name(const struct clk *clk)
249 return !clk ? NULL : clk->core->name;
251 EXPORT_SYMBOL_GPL(__clk_get_name);
253 const char *clk_hw_get_name(const struct clk_hw *hw)
255 return hw->core->name;
257 EXPORT_SYMBOL_GPL(clk_hw_get_name);
259 struct clk_hw *__clk_get_hw(struct clk *clk)
261 return !clk ? NULL : clk->core->hw;
263 EXPORT_SYMBOL_GPL(__clk_get_hw);
265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
267 return hw->core->num_parents;
269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
273 return hw->core->parent ? hw->core->parent->hw : NULL;
275 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
277 static struct clk_core *__clk_lookup_subtree(const char *name,
278 struct clk_core *core)
280 struct clk_core *child;
281 struct clk_core *ret;
283 if (!strcmp(core->name, name))
286 hlist_for_each_entry(child, &core->children, child_node) {
287 ret = __clk_lookup_subtree(name, child);
295 static struct clk_core *clk_core_lookup(const char *name)
297 struct clk_core *root_clk;
298 struct clk_core *ret;
303 /* search the 'proper' clk tree first */
304 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
305 ret = __clk_lookup_subtree(name, root_clk);
310 /* if not found, then search the orphan tree */
311 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
312 ret = __clk_lookup_subtree(name, root_clk);
320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
323 if (!core || index >= core->num_parents)
326 if (!core->parents[index])
327 core->parents[index] =
328 clk_core_lookup(core->parent_names[index]);
330 return core->parents[index];
334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
336 struct clk_core *parent;
338 parent = clk_core_get_parent_by_index(hw->core, index);
340 return !parent ? NULL : parent->hw;
342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
344 unsigned int __clk_get_enable_count(struct clk *clk)
346 return !clk ? 0 : clk->core->enable_count;
349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
360 if (!core->num_parents)
370 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
372 return clk_core_get_rate_nolock(hw->core);
374 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
376 static unsigned long __clk_get_accuracy(struct clk_core *core)
381 return core->accuracy;
384 unsigned long __clk_get_flags(struct clk *clk)
386 return !clk ? 0 : clk->core->flags;
388 EXPORT_SYMBOL_GPL(__clk_get_flags);
390 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
392 return hw->core->flags;
394 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
396 bool clk_hw_is_prepared(const struct clk_hw *hw)
398 return clk_core_is_prepared(hw->core);
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
403 return clk_core_rate_is_protected(hw->core);
406 bool clk_hw_is_enabled(const struct clk_hw *hw)
408 return clk_core_is_enabled(hw->core);
411 bool __clk_is_enabled(struct clk *clk)
416 return clk_core_is_enabled(clk->core);
418 EXPORT_SYMBOL_GPL(__clk_is_enabled);
420 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
421 unsigned long best, unsigned long flags)
423 if (flags & CLK_MUX_ROUND_CLOSEST)
424 return abs(now - rate) < abs(best - rate);
426 return now <= rate && now > best;
430 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
433 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
434 int i, num_parents, ret;
435 unsigned long best = 0;
436 struct clk_rate_request parent_req = *req;
438 /* if NO_REPARENT flag set, pass through to current parent */
439 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
440 parent = core->parent;
441 if (core->flags & CLK_SET_RATE_PARENT) {
442 ret = __clk_determine_rate(parent ? parent->hw : NULL,
447 best = parent_req.rate;
449 best = clk_core_get_rate_nolock(parent);
451 best = clk_core_get_rate_nolock(core);
457 /* find the parent that can provide the fastest rate <= rate */
458 num_parents = core->num_parents;
459 for (i = 0; i < num_parents; i++) {
460 parent = clk_core_get_parent_by_index(core, i);
464 if (core->flags & CLK_SET_RATE_PARENT) {
466 ret = __clk_determine_rate(parent->hw, &parent_req);
470 parent_req.rate = clk_core_get_rate_nolock(parent);
473 if (mux_is_better_rate(req->rate, parent_req.rate,
475 best_parent = parent;
476 best = parent_req.rate;
485 req->best_parent_hw = best_parent->hw;
486 req->best_parent_rate = best;
492 struct clk *__clk_lookup(const char *name)
494 struct clk_core *core = clk_core_lookup(name);
496 return !core ? NULL : core->hw->clk;
499 static void clk_core_get_boundaries(struct clk_core *core,
500 unsigned long *min_rate,
501 unsigned long *max_rate)
503 struct clk *clk_user;
505 *min_rate = core->min_rate;
506 *max_rate = core->max_rate;
508 hlist_for_each_entry(clk_user, &core->clks, clks_node)
509 *min_rate = max(*min_rate, clk_user->min_rate);
511 hlist_for_each_entry(clk_user, &core->clks, clks_node)
512 *max_rate = min(*max_rate, clk_user->max_rate);
515 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
516 unsigned long max_rate)
518 hw->core->min_rate = min_rate;
519 hw->core->max_rate = max_rate;
521 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
524 * Helper for finding best parent to provide a given frequency. This can be used
525 * directly as a determine_rate callback (e.g. for a mux), or from a more
526 * complex clock that may combine a mux with other operations.
528 int __clk_mux_determine_rate(struct clk_hw *hw,
529 struct clk_rate_request *req)
531 return clk_mux_determine_rate_flags(hw, req, 0);
533 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
535 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
536 struct clk_rate_request *req)
538 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
540 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
544 static void clk_core_rate_unprotect(struct clk_core *core)
546 lockdep_assert_held(&prepare_lock);
551 if (WARN_ON(core->protect_count == 0))
554 if (--core->protect_count > 0)
557 clk_core_rate_unprotect(core->parent);
560 static int clk_core_rate_nuke_protect(struct clk_core *core)
564 lockdep_assert_held(&prepare_lock);
569 if (core->protect_count == 0)
572 ret = core->protect_count;
573 core->protect_count = 1;
574 clk_core_rate_unprotect(core);
580 * clk_rate_exclusive_put - release exclusivity over clock rate control
581 * @clk: the clk over which the exclusivity is released
583 * clk_rate_exclusive_put() completes a critical section during which a clock
584 * consumer cannot tolerate any other consumer making any operation on the
585 * clock which could result in a rate change or rate glitch. Exclusive clocks
586 * cannot have their rate changed, either directly or indirectly due to changes
587 * further up the parent chain of clocks. As a result, clocks up parent chain
588 * also get under exclusive control of the calling consumer.
590 * If exlusivity is claimed more than once on clock, even by the same consumer,
591 * the rate effectively gets locked as exclusivity can't be preempted.
593 * Calls to clk_rate_exclusive_put() must be balanced with calls to
594 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
597 void clk_rate_exclusive_put(struct clk *clk)
605 * if there is something wrong with this consumer protect count, stop
606 * here before messing with the provider
608 if (WARN_ON(clk->exclusive_count <= 0))
611 clk_core_rate_unprotect(clk->core);
612 clk->exclusive_count--;
614 clk_prepare_unlock();
616 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
618 static void clk_core_rate_protect(struct clk_core *core)
620 lockdep_assert_held(&prepare_lock);
625 if (core->protect_count == 0)
626 clk_core_rate_protect(core->parent);
628 core->protect_count++;
631 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
633 lockdep_assert_held(&prepare_lock);
641 clk_core_rate_protect(core);
642 core->protect_count = count;
646 * clk_rate_exclusive_get - get exclusivity over the clk rate control
647 * @clk: the clk over which the exclusity of rate control is requested
649 * clk_rate_exlusive_get() begins a critical section during which a clock
650 * consumer cannot tolerate any other consumer making any operation on the
651 * clock which could result in a rate change or rate glitch. Exclusive clocks
652 * cannot have their rate changed, either directly or indirectly due to changes
653 * further up the parent chain of clocks. As a result, clocks up parent chain
654 * also get under exclusive control of the calling consumer.
656 * If exlusivity is claimed more than once on clock, even by the same consumer,
657 * the rate effectively gets locked as exclusivity can't be preempted.
659 * Calls to clk_rate_exclusive_get() should be balanced with calls to
660 * clk_rate_exclusive_put(). Calls to this function may sleep.
661 * Returns 0 on success, -EERROR otherwise
663 int clk_rate_exclusive_get(struct clk *clk)
669 clk_core_rate_protect(clk->core);
670 clk->exclusive_count++;
671 clk_prepare_unlock();
675 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
677 static void clk_core_unprepare(struct clk_core *core)
679 lockdep_assert_held(&prepare_lock);
684 if (WARN_ON(core->prepare_count == 0))
687 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
690 if (--core->prepare_count > 0)
693 WARN_ON(core->enable_count > 0);
695 trace_clk_unprepare(core);
697 if (core->ops->unprepare)
698 core->ops->unprepare(core->hw);
700 clk_pm_runtime_put(core);
702 trace_clk_unprepare_complete(core);
703 clk_core_unprepare(core->parent);
706 static void clk_core_unprepare_lock(struct clk_core *core)
709 clk_core_unprepare(core);
710 clk_prepare_unlock();
714 * clk_unprepare - undo preparation of a clock source
715 * @clk: the clk being unprepared
717 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
718 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
719 * if the operation may sleep. One example is a clk which is accessed over
720 * I2c. In the complex case a clk gate operation may require a fast and a slow
721 * part. It is this reason that clk_unprepare and clk_disable are not mutually
722 * exclusive. In fact clk_disable must be called before clk_unprepare.
724 void clk_unprepare(struct clk *clk)
726 if (IS_ERR_OR_NULL(clk))
729 clk_core_unprepare_lock(clk->core);
731 EXPORT_SYMBOL_GPL(clk_unprepare);
733 static int clk_core_prepare(struct clk_core *core)
737 lockdep_assert_held(&prepare_lock);
742 if (core->prepare_count == 0) {
743 ret = clk_pm_runtime_get(core);
747 ret = clk_core_prepare(core->parent);
751 trace_clk_prepare(core);
753 if (core->ops->prepare)
754 ret = core->ops->prepare(core->hw);
756 trace_clk_prepare_complete(core);
762 core->prepare_count++;
766 clk_core_unprepare(core->parent);
768 clk_pm_runtime_put(core);
772 static int clk_core_prepare_lock(struct clk_core *core)
777 ret = clk_core_prepare(core);
778 clk_prepare_unlock();
784 * clk_prepare - prepare a clock source
785 * @clk: the clk being prepared
787 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
788 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
789 * operation may sleep. One example is a clk which is accessed over I2c. In
790 * the complex case a clk ungate operation may require a fast and a slow part.
791 * It is this reason that clk_prepare and clk_enable are not mutually
792 * exclusive. In fact clk_prepare must be called before clk_enable.
793 * Returns 0 on success, -EERROR otherwise.
795 int clk_prepare(struct clk *clk)
800 return clk_core_prepare_lock(clk->core);
802 EXPORT_SYMBOL_GPL(clk_prepare);
804 static void clk_core_disable(struct clk_core *core)
806 lockdep_assert_held(&enable_lock);
811 if (WARN_ON(core->enable_count == 0))
814 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
817 if (--core->enable_count > 0)
820 trace_clk_disable_rcuidle(core);
822 if (core->ops->disable)
823 core->ops->disable(core->hw);
825 trace_clk_disable_complete_rcuidle(core);
827 clk_core_disable(core->parent);
830 static void clk_core_disable_lock(struct clk_core *core)
834 flags = clk_enable_lock();
835 clk_core_disable(core);
836 clk_enable_unlock(flags);
840 * clk_disable - gate a clock
841 * @clk: the clk being gated
843 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
844 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
845 * clk if the operation is fast and will never sleep. One example is a
846 * SoC-internal clk which is controlled via simple register writes. In the
847 * complex case a clk gate operation may require a fast and a slow part. It is
848 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
849 * In fact clk_disable must be called before clk_unprepare.
851 void clk_disable(struct clk *clk)
853 if (IS_ERR_OR_NULL(clk))
856 clk_core_disable_lock(clk->core);
858 EXPORT_SYMBOL_GPL(clk_disable);
860 static int clk_core_enable(struct clk_core *core)
864 lockdep_assert_held(&enable_lock);
869 if (WARN_ON(core->prepare_count == 0))
872 if (core->enable_count == 0) {
873 ret = clk_core_enable(core->parent);
878 trace_clk_enable_rcuidle(core);
880 if (core->ops->enable)
881 ret = core->ops->enable(core->hw);
883 trace_clk_enable_complete_rcuidle(core);
886 clk_core_disable(core->parent);
891 core->enable_count++;
895 static int clk_core_enable_lock(struct clk_core *core)
900 flags = clk_enable_lock();
901 ret = clk_core_enable(core);
902 clk_enable_unlock(flags);
908 * clk_enable - ungate a clock
909 * @clk: the clk being ungated
911 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
912 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
913 * if the operation will never sleep. One example is a SoC-internal clk which
914 * is controlled via simple register writes. In the complex case a clk ungate
915 * operation may require a fast and a slow part. It is this reason that
916 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
917 * must be called before clk_enable. Returns 0 on success, -EERROR
920 int clk_enable(struct clk *clk)
925 return clk_core_enable_lock(clk->core);
927 EXPORT_SYMBOL_GPL(clk_enable);
929 static int clk_core_prepare_enable(struct clk_core *core)
933 ret = clk_core_prepare_lock(core);
937 ret = clk_core_enable_lock(core);
939 clk_core_unprepare_lock(core);
944 static void clk_core_disable_unprepare(struct clk_core *core)
946 clk_core_disable_lock(core);
947 clk_core_unprepare_lock(core);
950 static void clk_unprepare_unused_subtree(struct clk_core *core)
952 struct clk_core *child;
954 lockdep_assert_held(&prepare_lock);
956 hlist_for_each_entry(child, &core->children, child_node)
957 clk_unprepare_unused_subtree(child);
959 if (core->prepare_count)
962 if (core->flags & CLK_IGNORE_UNUSED)
965 if (clk_pm_runtime_get(core))
968 if (clk_core_is_prepared(core)) {
969 trace_clk_unprepare(core);
970 if (core->ops->unprepare_unused)
971 core->ops->unprepare_unused(core->hw);
972 else if (core->ops->unprepare)
973 core->ops->unprepare(core->hw);
974 trace_clk_unprepare_complete(core);
977 clk_pm_runtime_put(core);
980 static void clk_disable_unused_subtree(struct clk_core *core)
982 struct clk_core *child;
985 lockdep_assert_held(&prepare_lock);
987 hlist_for_each_entry(child, &core->children, child_node)
988 clk_disable_unused_subtree(child);
990 if (core->flags & CLK_OPS_PARENT_ENABLE)
991 clk_core_prepare_enable(core->parent);
993 if (clk_pm_runtime_get(core))
996 flags = clk_enable_lock();
998 if (core->enable_count)
1001 if (core->flags & CLK_IGNORE_UNUSED)
1005 * some gate clocks have special needs during the disable-unused
1006 * sequence. call .disable_unused if available, otherwise fall
1009 if (clk_core_is_enabled(core)) {
1010 trace_clk_disable(core);
1011 if (core->ops->disable_unused)
1012 core->ops->disable_unused(core->hw);
1013 else if (core->ops->disable)
1014 core->ops->disable(core->hw);
1015 trace_clk_disable_complete(core);
1019 clk_enable_unlock(flags);
1020 clk_pm_runtime_put(core);
1022 if (core->flags & CLK_OPS_PARENT_ENABLE)
1023 clk_core_disable_unprepare(core->parent);
1026 static bool clk_ignore_unused;
1027 static int __init clk_ignore_unused_setup(char *__unused)
1029 clk_ignore_unused = true;
1032 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1034 static int clk_disable_unused(void)
1036 struct clk_core *core;
1038 if (clk_ignore_unused) {
1039 pr_warn("clk: Not disabling unused clocks\n");
1045 hlist_for_each_entry(core, &clk_root_list, child_node)
1046 clk_disable_unused_subtree(core);
1048 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1049 clk_disable_unused_subtree(core);
1051 hlist_for_each_entry(core, &clk_root_list, child_node)
1052 clk_unprepare_unused_subtree(core);
1054 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1055 clk_unprepare_unused_subtree(core);
1057 clk_prepare_unlock();
1061 late_initcall_sync(clk_disable_unused);
1063 static int clk_core_determine_round_nolock(struct clk_core *core,
1064 struct clk_rate_request *req)
1068 lockdep_assert_held(&prepare_lock);
1074 * At this point, core protection will be disabled if
1075 * - if the provider is not protected at all
1076 * - if the calling consumer is the only one which has exclusivity
1079 if (clk_core_rate_is_protected(core)) {
1080 req->rate = core->rate;
1081 } else if (core->ops->determine_rate) {
1082 return core->ops->determine_rate(core->hw, req);
1083 } else if (core->ops->round_rate) {
1084 rate = core->ops->round_rate(core->hw, req->rate,
1085 &req->best_parent_rate);
1097 static void clk_core_init_rate_req(struct clk_core * const core,
1098 struct clk_rate_request *req)
1100 struct clk_core *parent;
1102 if (WARN_ON(!core || !req))
1105 parent = core->parent;
1107 req->best_parent_hw = parent->hw;
1108 req->best_parent_rate = parent->rate;
1110 req->best_parent_hw = NULL;
1111 req->best_parent_rate = 0;
1115 static bool clk_core_can_round(struct clk_core * const core)
1117 if (core->ops->determine_rate || core->ops->round_rate)
1123 static int clk_core_round_rate_nolock(struct clk_core *core,
1124 struct clk_rate_request *req)
1126 lockdep_assert_held(&prepare_lock);
1133 clk_core_init_rate_req(core, req);
1135 if (clk_core_can_round(core))
1136 return clk_core_determine_round_nolock(core, req);
1137 else if (core->flags & CLK_SET_RATE_PARENT)
1138 return clk_core_round_rate_nolock(core->parent, req);
1140 req->rate = core->rate;
1145 * __clk_determine_rate - get the closest rate actually supported by a clock
1146 * @hw: determine the rate of this clock
1147 * @req: target rate request
1149 * Useful for clk_ops such as .set_rate and .determine_rate.
1151 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1158 return clk_core_round_rate_nolock(hw->core, req);
1160 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1162 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1165 struct clk_rate_request req;
1167 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1170 ret = clk_core_round_rate_nolock(hw->core, &req);
1176 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1179 * clk_round_rate - round the given rate for a clk
1180 * @clk: the clk for which we are rounding a rate
1181 * @rate: the rate which is to be rounded
1183 * Takes in a rate as input and rounds it to a rate that the clk can actually
1184 * use which is then returned. If clk doesn't support round_rate operation
1185 * then the parent rate is returned.
1187 long clk_round_rate(struct clk *clk, unsigned long rate)
1189 struct clk_rate_request req;
1197 if (clk->exclusive_count)
1198 clk_core_rate_unprotect(clk->core);
1200 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1203 ret = clk_core_round_rate_nolock(clk->core, &req);
1205 if (clk->exclusive_count)
1206 clk_core_rate_protect(clk->core);
1208 clk_prepare_unlock();
1215 EXPORT_SYMBOL_GPL(clk_round_rate);
1218 * __clk_notify - call clk notifier chain
1219 * @core: clk that is changing rate
1220 * @msg: clk notifier type (see include/linux/clk.h)
1221 * @old_rate: old clk rate
1222 * @new_rate: new clk rate
1224 * Triggers a notifier call chain on the clk rate-change notification
1225 * for 'clk'. Passes a pointer to the struct clk and the previous
1226 * and current rates to the notifier callback. Intended to be called by
1227 * internal clock code only. Returns NOTIFY_DONE from the last driver
1228 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1229 * a driver returns that.
1231 static int __clk_notify(struct clk_core *core, unsigned long msg,
1232 unsigned long old_rate, unsigned long new_rate)
1234 struct clk_notifier *cn;
1235 struct clk_notifier_data cnd;
1236 int ret = NOTIFY_DONE;
1238 cnd.old_rate = old_rate;
1239 cnd.new_rate = new_rate;
1241 list_for_each_entry(cn, &clk_notifier_list, node) {
1242 if (cn->clk->core == core) {
1244 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1246 if (ret & NOTIFY_STOP_MASK)
1255 * __clk_recalc_accuracies
1256 * @core: first clk in the subtree
1258 * Walks the subtree of clks starting with clk and recalculates accuracies as
1259 * it goes. Note that if a clk does not implement the .recalc_accuracy
1260 * callback then it is assumed that the clock will take on the accuracy of its
1263 static void __clk_recalc_accuracies(struct clk_core *core)
1265 unsigned long parent_accuracy = 0;
1266 struct clk_core *child;
1268 lockdep_assert_held(&prepare_lock);
1271 parent_accuracy = core->parent->accuracy;
1273 if (core->ops->recalc_accuracy)
1274 core->accuracy = core->ops->recalc_accuracy(core->hw,
1277 core->accuracy = parent_accuracy;
1279 hlist_for_each_entry(child, &core->children, child_node)
1280 __clk_recalc_accuracies(child);
1283 static long clk_core_get_accuracy(struct clk_core *core)
1285 unsigned long accuracy;
1288 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1289 __clk_recalc_accuracies(core);
1291 accuracy = __clk_get_accuracy(core);
1292 clk_prepare_unlock();
1298 * clk_get_accuracy - return the accuracy of clk
1299 * @clk: the clk whose accuracy is being returned
1301 * Simply returns the cached accuracy of the clk, unless
1302 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1304 * If clk is NULL then returns 0.
1306 long clk_get_accuracy(struct clk *clk)
1311 return clk_core_get_accuracy(clk->core);
1313 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1315 static unsigned long clk_recalc(struct clk_core *core,
1316 unsigned long parent_rate)
1318 unsigned long rate = parent_rate;
1320 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1321 rate = core->ops->recalc_rate(core->hw, parent_rate);
1322 clk_pm_runtime_put(core);
1328 * __clk_recalc_rates
1329 * @core: first clk in the subtree
1330 * @msg: notification type (see include/linux/clk.h)
1332 * Walks the subtree of clks starting with clk and recalculates rates as it
1333 * goes. Note that if a clk does not implement the .recalc_rate callback then
1334 * it is assumed that the clock will take on the rate of its parent.
1336 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1339 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1341 unsigned long old_rate;
1342 unsigned long parent_rate = 0;
1343 struct clk_core *child;
1345 lockdep_assert_held(&prepare_lock);
1347 old_rate = core->rate;
1350 parent_rate = core->parent->rate;
1352 core->rate = clk_recalc(core, parent_rate);
1355 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1356 * & ABORT_RATE_CHANGE notifiers
1358 if (core->notifier_count && msg)
1359 __clk_notify(core, msg, old_rate, core->rate);
1361 hlist_for_each_entry(child, &core->children, child_node)
1362 __clk_recalc_rates(child, msg);
1365 static unsigned long clk_core_get_rate(struct clk_core *core)
1371 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1372 __clk_recalc_rates(core, 0);
1374 rate = clk_core_get_rate_nolock(core);
1375 clk_prepare_unlock();
1381 * clk_get_rate - return the rate of clk
1382 * @clk: the clk whose rate is being returned
1384 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1385 * is set, which means a recalc_rate will be issued.
1386 * If clk is NULL then returns 0.
1388 unsigned long clk_get_rate(struct clk *clk)
1393 return clk_core_get_rate(clk->core);
1395 EXPORT_SYMBOL_GPL(clk_get_rate);
1397 static int clk_fetch_parent_index(struct clk_core *core,
1398 struct clk_core *parent)
1405 for (i = 0; i < core->num_parents; i++)
1406 if (clk_core_get_parent_by_index(core, i) == parent)
1413 * Update the orphan status of @core and all its children.
1415 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1417 struct clk_core *child;
1419 core->orphan = is_orphan;
1421 hlist_for_each_entry(child, &core->children, child_node)
1422 clk_core_update_orphan_status(child, is_orphan);
1425 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1427 bool was_orphan = core->orphan;
1429 hlist_del(&core->child_node);
1432 bool becomes_orphan = new_parent->orphan;
1434 /* avoid duplicate POST_RATE_CHANGE notifications */
1435 if (new_parent->new_child == core)
1436 new_parent->new_child = NULL;
1438 hlist_add_head(&core->child_node, &new_parent->children);
1440 if (was_orphan != becomes_orphan)
1441 clk_core_update_orphan_status(core, becomes_orphan);
1443 hlist_add_head(&core->child_node, &clk_orphan_list);
1445 clk_core_update_orphan_status(core, true);
1448 core->parent = new_parent;
1451 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1452 struct clk_core *parent)
1454 unsigned long flags;
1455 struct clk_core *old_parent = core->parent;
1458 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1460 * 2. Migrate prepare state between parents and prevent race with
1463 * If the clock is not prepared, then a race with
1464 * clk_enable/disable() is impossible since we already have the
1465 * prepare lock (future calls to clk_enable() need to be preceded by
1468 * If the clock is prepared, migrate the prepared state to the new
1469 * parent and also protect against a race with clk_enable() by
1470 * forcing the clock and the new parent on. This ensures that all
1471 * future calls to clk_enable() are practically NOPs with respect to
1472 * hardware and software states.
1474 * See also: Comment for clk_set_parent() below.
1477 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1478 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1479 clk_core_prepare_enable(old_parent);
1480 clk_core_prepare_enable(parent);
1483 /* migrate prepare count if > 0 */
1484 if (core->prepare_count) {
1485 clk_core_prepare_enable(parent);
1486 clk_core_enable_lock(core);
1489 /* update the clk tree topology */
1490 flags = clk_enable_lock();
1491 clk_reparent(core, parent);
1492 clk_enable_unlock(flags);
1497 static void __clk_set_parent_after(struct clk_core *core,
1498 struct clk_core *parent,
1499 struct clk_core *old_parent)
1502 * Finish the migration of prepare state and undo the changes done
1503 * for preventing a race with clk_enable().
1505 if (core->prepare_count) {
1506 clk_core_disable_lock(core);
1507 clk_core_disable_unprepare(old_parent);
1510 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1511 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1512 clk_core_disable_unprepare(parent);
1513 clk_core_disable_unprepare(old_parent);
1517 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1520 unsigned long flags;
1522 struct clk_core *old_parent;
1524 old_parent = __clk_set_parent_before(core, parent);
1526 trace_clk_set_parent(core, parent);
1528 /* change clock input source */
1529 if (parent && core->ops->set_parent)
1530 ret = core->ops->set_parent(core->hw, p_index);
1532 trace_clk_set_parent_complete(core, parent);
1535 flags = clk_enable_lock();
1536 clk_reparent(core, old_parent);
1537 clk_enable_unlock(flags);
1538 __clk_set_parent_after(core, old_parent, parent);
1543 __clk_set_parent_after(core, parent, old_parent);
1549 * __clk_speculate_rates
1550 * @core: first clk in the subtree
1551 * @parent_rate: the "future" rate of clk's parent
1553 * Walks the subtree of clks starting with clk, speculating rates as it
1554 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1556 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1557 * pre-rate change notifications and returns early if no clks in the
1558 * subtree have subscribed to the notifications. Note that if a clk does not
1559 * implement the .recalc_rate callback then it is assumed that the clock will
1560 * take on the rate of its parent.
1562 static int __clk_speculate_rates(struct clk_core *core,
1563 unsigned long parent_rate)
1565 struct clk_core *child;
1566 unsigned long new_rate;
1567 int ret = NOTIFY_DONE;
1569 lockdep_assert_held(&prepare_lock);
1571 new_rate = clk_recalc(core, parent_rate);
1573 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1574 if (core->notifier_count)
1575 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1577 if (ret & NOTIFY_STOP_MASK) {
1578 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1579 __func__, core->name, ret);
1583 hlist_for_each_entry(child, &core->children, child_node) {
1584 ret = __clk_speculate_rates(child, new_rate);
1585 if (ret & NOTIFY_STOP_MASK)
1593 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1594 struct clk_core *new_parent, u8 p_index)
1596 struct clk_core *child;
1598 core->new_rate = new_rate;
1599 core->new_parent = new_parent;
1600 core->new_parent_index = p_index;
1601 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1602 core->new_child = NULL;
1603 if (new_parent && new_parent != core->parent)
1604 new_parent->new_child = core;
1606 hlist_for_each_entry(child, &core->children, child_node) {
1607 child->new_rate = clk_recalc(child, new_rate);
1608 clk_calc_subtree(child, child->new_rate, NULL, 0);
1613 * calculate the new rates returning the topmost clock that has to be
1616 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1619 struct clk_core *top = core;
1620 struct clk_core *old_parent, *parent;
1621 unsigned long best_parent_rate = 0;
1622 unsigned long new_rate;
1623 unsigned long min_rate;
1624 unsigned long max_rate;
1629 if (IS_ERR_OR_NULL(core))
1632 /* save parent rate, if it exists */
1633 parent = old_parent = core->parent;
1635 best_parent_rate = parent->rate;
1637 clk_core_get_boundaries(core, &min_rate, &max_rate);
1639 /* find the closest rate and parent clk/rate */
1640 if (clk_core_can_round(core)) {
1641 struct clk_rate_request req;
1644 req.min_rate = min_rate;
1645 req.max_rate = max_rate;
1647 clk_core_init_rate_req(core, &req);
1649 ret = clk_core_determine_round_nolock(core, &req);
1653 best_parent_rate = req.best_parent_rate;
1654 new_rate = req.rate;
1655 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1657 if (new_rate < min_rate || new_rate > max_rate)
1659 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1660 /* pass-through clock without adjustable parent */
1661 core->new_rate = core->rate;
1664 /* pass-through clock with adjustable parent */
1665 top = clk_calc_new_rates(parent, rate);
1666 new_rate = parent->new_rate;
1670 /* some clocks must be gated to change parent */
1671 if (parent != old_parent &&
1672 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1673 pr_debug("%s: %s not gated but wants to reparent\n",
1674 __func__, core->name);
1678 /* try finding the new parent index */
1679 if (parent && core->num_parents > 1) {
1680 p_index = clk_fetch_parent_index(core, parent);
1682 pr_debug("%s: clk %s can not be parent of clk %s\n",
1683 __func__, parent->name, core->name);
1688 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1689 best_parent_rate != parent->rate)
1690 top = clk_calc_new_rates(parent, best_parent_rate);
1693 clk_calc_subtree(core, new_rate, parent, p_index);
1699 * Notify about rate changes in a subtree. Always walk down the whole tree
1700 * so that in case of an error we can walk down the whole tree again and
1703 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1704 unsigned long event)
1706 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1707 int ret = NOTIFY_DONE;
1709 if (core->rate == core->new_rate)
1712 if (core->notifier_count) {
1713 ret = __clk_notify(core, event, core->rate, core->new_rate);
1714 if (ret & NOTIFY_STOP_MASK)
1718 hlist_for_each_entry(child, &core->children, child_node) {
1719 /* Skip children who will be reparented to another clock */
1720 if (child->new_parent && child->new_parent != core)
1722 tmp_clk = clk_propagate_rate_change(child, event);
1727 /* handle the new child who might not be in core->children yet */
1728 if (core->new_child) {
1729 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1738 * walk down a subtree and set the new rates notifying the rate
1741 static void clk_change_rate(struct clk_core *core)
1743 struct clk_core *child;
1744 struct hlist_node *tmp;
1745 unsigned long old_rate;
1746 unsigned long best_parent_rate = 0;
1747 bool skip_set_rate = false;
1748 struct clk_core *old_parent;
1749 struct clk_core *parent = NULL;
1751 old_rate = core->rate;
1753 if (core->new_parent) {
1754 parent = core->new_parent;
1755 best_parent_rate = core->new_parent->rate;
1756 } else if (core->parent) {
1757 parent = core->parent;
1758 best_parent_rate = core->parent->rate;
1761 if (clk_pm_runtime_get(core))
1764 if (core->flags & CLK_SET_RATE_UNGATE) {
1765 unsigned long flags;
1767 clk_core_prepare(core);
1768 flags = clk_enable_lock();
1769 clk_core_enable(core);
1770 clk_enable_unlock(flags);
1773 if (core->new_parent && core->new_parent != core->parent) {
1774 old_parent = __clk_set_parent_before(core, core->new_parent);
1775 trace_clk_set_parent(core, core->new_parent);
1777 if (core->ops->set_rate_and_parent) {
1778 skip_set_rate = true;
1779 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1781 core->new_parent_index);
1782 } else if (core->ops->set_parent) {
1783 core->ops->set_parent(core->hw, core->new_parent_index);
1786 trace_clk_set_parent_complete(core, core->new_parent);
1787 __clk_set_parent_after(core, core->new_parent, old_parent);
1790 if (core->flags & CLK_OPS_PARENT_ENABLE)
1791 clk_core_prepare_enable(parent);
1793 trace_clk_set_rate(core, core->new_rate);
1795 if (!skip_set_rate && core->ops->set_rate)
1796 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1798 trace_clk_set_rate_complete(core, core->new_rate);
1800 core->rate = clk_recalc(core, best_parent_rate);
1802 if (core->flags & CLK_SET_RATE_UNGATE) {
1803 unsigned long flags;
1805 flags = clk_enable_lock();
1806 clk_core_disable(core);
1807 clk_enable_unlock(flags);
1808 clk_core_unprepare(core);
1811 if (core->flags & CLK_OPS_PARENT_ENABLE)
1812 clk_core_disable_unprepare(parent);
1814 if (core->notifier_count && old_rate != core->rate)
1815 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1817 if (core->flags & CLK_RECALC_NEW_RATES)
1818 (void)clk_calc_new_rates(core, core->new_rate);
1821 * Use safe iteration, as change_rate can actually swap parents
1822 * for certain clock types.
1824 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1825 /* Skip children who will be reparented to another clock */
1826 if (child->new_parent && child->new_parent != core)
1828 clk_change_rate(child);
1831 /* handle the new child who might not be in core->children yet */
1832 if (core->new_child)
1833 clk_change_rate(core->new_child);
1835 clk_pm_runtime_put(core);
1838 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1839 unsigned long req_rate)
1842 struct clk_rate_request req;
1844 lockdep_assert_held(&prepare_lock);
1849 /* simulate what the rate would be if it could be freely set */
1850 cnt = clk_core_rate_nuke_protect(core);
1854 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1855 req.rate = req_rate;
1857 ret = clk_core_round_rate_nolock(core, &req);
1859 /* restore the protection */
1860 clk_core_rate_restore_protect(core, cnt);
1862 return ret ? 0 : req.rate;
1865 static int clk_core_set_rate_nolock(struct clk_core *core,
1866 unsigned long req_rate)
1868 struct clk_core *top, *fail_clk;
1875 rate = clk_core_req_round_rate_nolock(core, req_rate);
1877 /* bail early if nothing to do */
1878 if (rate == clk_core_get_rate_nolock(core))
1881 /* fail on a direct rate set of a protected provider */
1882 if (clk_core_rate_is_protected(core))
1885 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1888 /* calculate new rates and get the topmost changed clock */
1889 top = clk_calc_new_rates(core, req_rate);
1893 ret = clk_pm_runtime_get(core);
1897 /* notify that we are about to change rates */
1898 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1900 pr_debug("%s: failed to set %s rate\n", __func__,
1902 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1907 /* change the rates */
1908 clk_change_rate(top);
1910 core->req_rate = req_rate;
1912 clk_pm_runtime_put(core);
1918 * clk_set_rate - specify a new rate for clk
1919 * @clk: the clk whose rate is being changed
1920 * @rate: the new rate for clk
1922 * In the simplest case clk_set_rate will only adjust the rate of clk.
1924 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1925 * propagate up to clk's parent; whether or not this happens depends on the
1926 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1927 * after calling .round_rate then upstream parent propagation is ignored. If
1928 * *parent_rate comes back with a new rate for clk's parent then we propagate
1929 * up to clk's parent and set its rate. Upward propagation will continue
1930 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1931 * .round_rate stops requesting changes to clk's parent_rate.
1933 * Rate changes are accomplished via tree traversal that also recalculates the
1934 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1936 * Returns 0 on success, -EERROR otherwise.
1938 int clk_set_rate(struct clk *clk, unsigned long rate)
1945 /* prevent racing with updates to the clock topology */
1948 if (clk->exclusive_count)
1949 clk_core_rate_unprotect(clk->core);
1951 ret = clk_core_set_rate_nolock(clk->core, rate);
1953 if (clk->exclusive_count)
1954 clk_core_rate_protect(clk->core);
1956 clk_prepare_unlock();
1960 EXPORT_SYMBOL_GPL(clk_set_rate);
1963 * clk_set_rate_exclusive - specify a new rate get exclusive control
1964 * @clk: the clk whose rate is being changed
1965 * @rate: the new rate for clk
1967 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1968 * within a critical section
1970 * This can be used initially to ensure that at least 1 consumer is
1971 * statisfied when several consumers are competing for exclusivity over the
1972 * same clock provider.
1974 * The exclusivity is not applied if setting the rate failed.
1976 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1977 * clk_rate_exclusive_put().
1979 * Returns 0 on success, -EERROR otherwise.
1981 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1988 /* prevent racing with updates to the clock topology */
1992 * The temporary protection removal is not here, on purpose
1993 * This function is meant to be used instead of clk_rate_protect,
1994 * so before the consumer code path protect the clock provider
1997 ret = clk_core_set_rate_nolock(clk->core, rate);
1999 clk_core_rate_protect(clk->core);
2000 clk->exclusive_count++;
2003 clk_prepare_unlock();
2007 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2010 * clk_set_rate_range - set a rate range for a clock source
2011 * @clk: clock source
2012 * @min: desired minimum clock rate in Hz, inclusive
2013 * @max: desired maximum clock rate in Hz, inclusive
2015 * Returns success (0) or negative errno.
2017 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2020 unsigned long old_min, old_max, rate;
2026 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2027 __func__, clk->core->name, clk->dev_id, clk->con_id,
2034 if (clk->exclusive_count)
2035 clk_core_rate_unprotect(clk->core);
2037 /* Save the current values in case we need to rollback the change */
2038 old_min = clk->min_rate;
2039 old_max = clk->max_rate;
2040 clk->min_rate = min;
2041 clk->max_rate = max;
2043 rate = clk_core_get_rate_nolock(clk->core);
2044 if (rate < min || rate > max) {
2047 * We are in bit of trouble here, current rate is outside the
2048 * the requested range. We are going try to request appropriate
2049 * range boundary but there is a catch. It may fail for the
2050 * usual reason (clock broken, clock protected, etc) but also
2052 * - round_rate() was not favorable and fell on the wrong
2053 * side of the boundary
2054 * - the determine_rate() callback does not really check for
2055 * this corner case when determining the rate
2063 ret = clk_core_set_rate_nolock(clk->core, rate);
2065 /* rollback the changes */
2066 clk->min_rate = old_min;
2067 clk->max_rate = old_max;
2071 if (clk->exclusive_count)
2072 clk_core_rate_protect(clk->core);
2074 clk_prepare_unlock();
2078 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2081 * clk_set_min_rate - set a minimum clock rate for a clock source
2082 * @clk: clock source
2083 * @rate: desired minimum clock rate in Hz, inclusive
2085 * Returns success (0) or negative errno.
2087 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2092 return clk_set_rate_range(clk, rate, clk->max_rate);
2094 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2097 * clk_set_max_rate - set a maximum clock rate for a clock source
2098 * @clk: clock source
2099 * @rate: desired maximum clock rate in Hz, inclusive
2101 * Returns success (0) or negative errno.
2103 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2108 return clk_set_rate_range(clk, clk->min_rate, rate);
2110 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2113 * clk_get_parent - return the parent of a clk
2114 * @clk: the clk whose parent gets returned
2116 * Simply returns clk->parent. Returns NULL if clk is NULL.
2118 struct clk *clk_get_parent(struct clk *clk)
2126 /* TODO: Create a per-user clk and change callers to call clk_put */
2127 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2128 clk_prepare_unlock();
2132 EXPORT_SYMBOL_GPL(clk_get_parent);
2134 static struct clk_core *__clk_init_parent(struct clk_core *core)
2138 if (core->num_parents > 1 && core->ops->get_parent)
2139 index = core->ops->get_parent(core->hw);
2141 return clk_core_get_parent_by_index(core, index);
2144 static void clk_core_reparent(struct clk_core *core,
2145 struct clk_core *new_parent)
2147 clk_reparent(core, new_parent);
2148 __clk_recalc_accuracies(core);
2149 __clk_recalc_rates(core, POST_RATE_CHANGE);
2152 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2157 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2161 * clk_has_parent - check if a clock is a possible parent for another
2162 * @clk: clock source
2163 * @parent: parent clock source
2165 * This function can be used in drivers that need to check that a clock can be
2166 * the parent of another without actually changing the parent.
2168 * Returns true if @parent is a possible parent for @clk, false otherwise.
2170 bool clk_has_parent(struct clk *clk, struct clk *parent)
2172 struct clk_core *core, *parent_core;
2175 /* NULL clocks should be nops, so return success if either is NULL. */
2176 if (!clk || !parent)
2180 parent_core = parent->core;
2182 /* Optimize for the case where the parent is already the parent. */
2183 if (core->parent == parent_core)
2186 for (i = 0; i < core->num_parents; i++)
2187 if (strcmp(core->parent_names[i], parent_core->name) == 0)
2192 EXPORT_SYMBOL_GPL(clk_has_parent);
2194 static int clk_core_set_parent_nolock(struct clk_core *core,
2195 struct clk_core *parent)
2199 unsigned long p_rate = 0;
2201 lockdep_assert_held(&prepare_lock);
2206 if (core->parent == parent)
2209 /* verify ops for for multi-parent clks */
2210 if (core->num_parents > 1 && !core->ops->set_parent)
2213 /* check that we are allowed to re-parent if the clock is in use */
2214 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2217 if (clk_core_rate_is_protected(core))
2220 /* try finding the new parent index */
2222 p_index = clk_fetch_parent_index(core, parent);
2224 pr_debug("%s: clk %s can not be parent of clk %s\n",
2225 __func__, parent->name, core->name);
2228 p_rate = parent->rate;
2231 ret = clk_pm_runtime_get(core);
2235 /* propagate PRE_RATE_CHANGE notifications */
2236 ret = __clk_speculate_rates(core, p_rate);
2238 /* abort if a driver objects */
2239 if (ret & NOTIFY_STOP_MASK)
2242 /* do the re-parent */
2243 ret = __clk_set_parent(core, parent, p_index);
2245 /* propagate rate an accuracy recalculation accordingly */
2247 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2249 __clk_recalc_rates(core, POST_RATE_CHANGE);
2250 __clk_recalc_accuracies(core);
2254 clk_pm_runtime_put(core);
2260 * clk_set_parent - switch the parent of a mux clk
2261 * @clk: the mux clk whose input we are switching
2262 * @parent: the new input to clk
2264 * Re-parent clk to use parent as its new input source. If clk is in
2265 * prepared state, the clk will get enabled for the duration of this call. If
2266 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2267 * that, the reparenting is glitchy in hardware, etc), use the
2268 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2270 * After successfully changing clk's parent clk_set_parent will update the
2271 * clk topology, sysfs topology and propagate rate recalculation via
2272 * __clk_recalc_rates.
2274 * Returns 0 on success, -EERROR otherwise.
2276 int clk_set_parent(struct clk *clk, struct clk *parent)
2285 if (clk->exclusive_count)
2286 clk_core_rate_unprotect(clk->core);
2288 ret = clk_core_set_parent_nolock(clk->core,
2289 parent ? parent->core : NULL);
2291 if (clk->exclusive_count)
2292 clk_core_rate_protect(clk->core);
2294 clk_prepare_unlock();
2298 EXPORT_SYMBOL_GPL(clk_set_parent);
2300 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2304 lockdep_assert_held(&prepare_lock);
2309 if (clk_core_rate_is_protected(core))
2312 trace_clk_set_phase(core, degrees);
2314 if (core->ops->set_phase) {
2315 ret = core->ops->set_phase(core->hw, degrees);
2317 core->phase = degrees;
2320 trace_clk_set_phase_complete(core, degrees);
2326 * clk_set_phase - adjust the phase shift of a clock signal
2327 * @clk: clock signal source
2328 * @degrees: number of degrees the signal is shifted
2330 * Shifts the phase of a clock signal by the specified
2331 * degrees. Returns 0 on success, -EERROR otherwise.
2333 * This function makes no distinction about the input or reference
2334 * signal that we adjust the clock signal phase against. For example
2335 * phase locked-loop clock signal generators we may shift phase with
2336 * respect to feedback clock signal input, but for other cases the
2337 * clock phase may be shifted with respect to some other, unspecified
2340 * Additionally the concept of phase shift does not propagate through
2341 * the clock tree hierarchy, which sets it apart from clock rates and
2342 * clock accuracy. A parent clock phase attribute does not have an
2343 * impact on the phase attribute of a child clock.
2345 int clk_set_phase(struct clk *clk, int degrees)
2352 /* sanity check degrees */
2359 if (clk->exclusive_count)
2360 clk_core_rate_unprotect(clk->core);
2362 ret = clk_core_set_phase_nolock(clk->core, degrees);
2364 if (clk->exclusive_count)
2365 clk_core_rate_protect(clk->core);
2367 clk_prepare_unlock();
2371 EXPORT_SYMBOL_GPL(clk_set_phase);
2373 static int clk_core_get_phase(struct clk_core *core)
2378 /* Always try to update cached phase if possible */
2379 if (core->ops->get_phase)
2380 core->phase = core->ops->get_phase(core->hw);
2382 clk_prepare_unlock();
2388 * clk_get_phase - return the phase shift of a clock signal
2389 * @clk: clock signal source
2391 * Returns the phase shift of a clock node in degrees, otherwise returns
2394 int clk_get_phase(struct clk *clk)
2399 return clk_core_get_phase(clk->core);
2401 EXPORT_SYMBOL_GPL(clk_get_phase);
2404 * clk_is_match - check if two clk's point to the same hardware clock
2405 * @p: clk compared against q
2406 * @q: clk compared against p
2408 * Returns true if the two struct clk pointers both point to the same hardware
2409 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2410 * share the same struct clk_core object.
2412 * Returns false otherwise. Note that two NULL clks are treated as matching.
2414 bool clk_is_match(const struct clk *p, const struct clk *q)
2416 /* trivial case: identical struct clk's or both NULL */
2420 /* true if clk->core pointers match. Avoid dereferencing garbage */
2421 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2422 if (p->core == q->core)
2427 EXPORT_SYMBOL_GPL(clk_is_match);
2429 /*** debugfs support ***/
2431 #ifdef CONFIG_DEBUG_FS
2432 #include <linux/debugfs.h>
2434 static struct dentry *rootdir;
2435 static int inited = 0;
2436 static DEFINE_MUTEX(clk_debug_lock);
2437 static HLIST_HEAD(clk_debug_list);
2439 static struct hlist_head *all_lists[] = {
2445 static struct hlist_head *orphan_list[] = {
2450 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2456 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2458 30 - level * 3, c->name,
2459 c->enable_count, c->prepare_count, c->protect_count,
2460 clk_core_get_rate(c), clk_core_get_accuracy(c),
2461 clk_core_get_phase(c));
2464 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2467 struct clk_core *child;
2472 clk_summary_show_one(s, c, level);
2474 hlist_for_each_entry(child, &c->children, child_node)
2475 clk_summary_show_subtree(s, child, level + 1);
2478 static int clk_summary_show(struct seq_file *s, void *data)
2481 struct hlist_head **lists = (struct hlist_head **)s->private;
2483 seq_puts(s, " enable prepare protect \n");
2484 seq_puts(s, " clock count count count rate accuracy phase\n");
2485 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2489 for (; *lists; lists++)
2490 hlist_for_each_entry(c, *lists, child_node)
2491 clk_summary_show_subtree(s, c, 0);
2493 clk_prepare_unlock();
2497 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2499 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2504 /* This should be JSON format, i.e. elements separated with a comma */
2505 seq_printf(s, "\"%s\": { ", c->name);
2506 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2507 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2508 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2509 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2510 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2511 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2514 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2516 struct clk_core *child;
2521 clk_dump_one(s, c, level);
2523 hlist_for_each_entry(child, &c->children, child_node) {
2525 clk_dump_subtree(s, child, level + 1);
2531 static int clk_dump_show(struct seq_file *s, void *data)
2534 bool first_node = true;
2535 struct hlist_head **lists = (struct hlist_head **)s->private;
2540 for (; *lists; lists++) {
2541 hlist_for_each_entry(c, *lists, child_node) {
2545 clk_dump_subtree(s, c, 0);
2549 clk_prepare_unlock();
2554 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2556 static const struct {
2560 #define ENTRY(f) { f, __stringify(f) }
2561 ENTRY(CLK_SET_RATE_GATE),
2562 ENTRY(CLK_SET_PARENT_GATE),
2563 ENTRY(CLK_SET_RATE_PARENT),
2564 ENTRY(CLK_IGNORE_UNUSED),
2565 ENTRY(CLK_IS_BASIC),
2566 ENTRY(CLK_GET_RATE_NOCACHE),
2567 ENTRY(CLK_SET_RATE_NO_REPARENT),
2568 ENTRY(CLK_GET_ACCURACY_NOCACHE),
2569 ENTRY(CLK_RECALC_NEW_RATES),
2570 ENTRY(CLK_SET_RATE_UNGATE),
2571 ENTRY(CLK_IS_CRITICAL),
2572 ENTRY(CLK_OPS_PARENT_ENABLE),
2576 static int clk_flags_show(struct seq_file *s, void *data)
2578 struct clk_core *core = s->private;
2579 unsigned long flags = core->flags;
2582 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2583 if (flags & clk_flags[i].flag) {
2584 seq_printf(s, "%s\n", clk_flags[i].name);
2585 flags &= ~clk_flags[i].flag;
2590 seq_printf(s, "0x%lx\n", flags);
2595 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2597 static int possible_parents_show(struct seq_file *s, void *data)
2599 struct clk_core *core = s->private;
2602 for (i = 0; i < core->num_parents - 1; i++)
2603 seq_printf(s, "%s ", core->parent_names[i]);
2605 seq_printf(s, "%s\n", core->parent_names[i]);
2609 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2611 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2616 if (!core || !pdentry) {
2621 d = debugfs_create_dir(core->name, pdentry);
2627 d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate);
2631 d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry,
2636 d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase);
2640 d = debugfs_create_file("clk_flags", 0444, core->dentry, core,
2645 d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry,
2646 &core->prepare_count);
2650 d = debugfs_create_u32("clk_enable_count", 0444, core->dentry,
2651 &core->enable_count);
2655 d = debugfs_create_u32("clk_protect_count", 0444, core->dentry,
2656 &core->protect_count);
2660 d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry,
2661 &core->notifier_count);
2665 if (core->num_parents > 1) {
2666 d = debugfs_create_file("clk_possible_parents", 0444,
2667 core->dentry, core, &possible_parents_fops);
2672 if (core->ops->debug_init) {
2673 ret = core->ops->debug_init(core->hw, core->dentry);
2682 debugfs_remove_recursive(core->dentry);
2683 core->dentry = NULL;
2689 * clk_debug_register - add a clk node to the debugfs clk directory
2690 * @core: the clk being added to the debugfs clk directory
2692 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2693 * initialized. Otherwise it bails out early since the debugfs clk directory
2694 * will be created lazily by clk_debug_init as part of a late_initcall.
2696 static int clk_debug_register(struct clk_core *core)
2700 mutex_lock(&clk_debug_lock);
2701 hlist_add_head(&core->debug_node, &clk_debug_list);
2703 ret = clk_debug_create_one(core, rootdir);
2704 mutex_unlock(&clk_debug_lock);
2710 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2711 * @core: the clk being removed from the debugfs clk directory
2713 * Dynamically removes a clk and all its child nodes from the
2714 * debugfs clk directory if clk->dentry points to debugfs created by
2715 * clk_debug_register in __clk_core_init.
2717 static void clk_debug_unregister(struct clk_core *core)
2719 mutex_lock(&clk_debug_lock);
2720 hlist_del_init(&core->debug_node);
2721 debugfs_remove_recursive(core->dentry);
2722 core->dentry = NULL;
2723 mutex_unlock(&clk_debug_lock);
2726 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2727 void *data, const struct file_operations *fops)
2729 struct dentry *d = NULL;
2731 if (hw->core->dentry)
2732 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2737 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2740 * clk_debug_init - lazily populate the debugfs clk directory
2742 * clks are often initialized very early during boot before memory can be
2743 * dynamically allocated and well before debugfs is setup. This function
2744 * populates the debugfs clk directory once at boot-time when we know that
2745 * debugfs is setup. It should only be called once at boot-time, all other clks
2746 * added dynamically will be done so with clk_debug_register.
2748 static int __init clk_debug_init(void)
2750 struct clk_core *core;
2753 rootdir = debugfs_create_dir("clk", NULL);
2758 d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2763 d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2768 d = debugfs_create_file("clk_orphan_summary", 0444, rootdir,
2769 &orphan_list, &clk_summary_fops);
2773 d = debugfs_create_file("clk_orphan_dump", 0444, rootdir,
2774 &orphan_list, &clk_dump_fops);
2778 mutex_lock(&clk_debug_lock);
2779 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2780 clk_debug_create_one(core, rootdir);
2783 mutex_unlock(&clk_debug_lock);
2787 late_initcall(clk_debug_init);
2789 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2790 static inline void clk_debug_reparent(struct clk_core *core,
2791 struct clk_core *new_parent)
2794 static inline void clk_debug_unregister(struct clk_core *core)
2800 * __clk_core_init - initialize the data structures in a struct clk_core
2801 * @core: clk_core being initialized
2803 * Initializes the lists in struct clk_core, queries the hardware for the
2804 * parent and rate and sets them both.
2806 static int __clk_core_init(struct clk_core *core)
2809 struct clk_core *orphan;
2810 struct hlist_node *tmp2;
2818 ret = clk_pm_runtime_get(core);
2822 /* check to see if a clock with this name is already registered */
2823 if (clk_core_lookup(core->name)) {
2824 pr_debug("%s: clk %s already initialized\n",
2825 __func__, core->name);
2830 /* check that clk_ops are sane. See Documentation/clk.txt */
2831 if (core->ops->set_rate &&
2832 !((core->ops->round_rate || core->ops->determine_rate) &&
2833 core->ops->recalc_rate)) {
2834 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2835 __func__, core->name);
2840 if (core->ops->set_parent && !core->ops->get_parent) {
2841 pr_err("%s: %s must implement .get_parent & .set_parent\n",
2842 __func__, core->name);
2847 if (core->num_parents > 1 && !core->ops->get_parent) {
2848 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2849 __func__, core->name);
2854 if (core->ops->set_rate_and_parent &&
2855 !(core->ops->set_parent && core->ops->set_rate)) {
2856 pr_err("%s: %s must implement .set_parent & .set_rate\n",
2857 __func__, core->name);
2862 /* throw a WARN if any entries in parent_names are NULL */
2863 for (i = 0; i < core->num_parents; i++)
2864 WARN(!core->parent_names[i],
2865 "%s: invalid NULL in %s's .parent_names\n",
2866 __func__, core->name);
2868 core->parent = __clk_init_parent(core);
2871 * Populate core->parent if parent has already been clk_core_init'd. If
2872 * parent has not yet been clk_core_init'd then place clk in the orphan
2873 * list. If clk doesn't have any parents then place it in the root
2876 * Every time a new clk is clk_init'd then we walk the list of orphan
2877 * clocks and re-parent any that are children of the clock currently
2881 hlist_add_head(&core->child_node,
2882 &core->parent->children);
2883 core->orphan = core->parent->orphan;
2884 } else if (!core->num_parents) {
2885 hlist_add_head(&core->child_node, &clk_root_list);
2886 core->orphan = false;
2888 hlist_add_head(&core->child_node, &clk_orphan_list);
2889 core->orphan = true;
2893 * optional platform-specific magic
2895 * The .init callback is not used by any of the basic clock types, but
2896 * exists for weird hardware that must perform initialization magic.
2897 * Please consider other ways of solving initialization problems before
2898 * using this callback, as its use is discouraged.
2900 if (core->ops->init)
2901 core->ops->init(core->hw);
2904 * Set clk's accuracy. The preferred method is to use
2905 * .recalc_accuracy. For simple clocks and lazy developers the default
2906 * fallback is to use the parent's accuracy. If a clock doesn't have a
2907 * parent (or is orphaned) then accuracy is set to zero (perfect
2910 if (core->ops->recalc_accuracy)
2911 core->accuracy = core->ops->recalc_accuracy(core->hw,
2912 __clk_get_accuracy(core->parent));
2913 else if (core->parent)
2914 core->accuracy = core->parent->accuracy;
2920 * Since a phase is by definition relative to its parent, just
2921 * query the current clock phase, or just assume it's in phase.
2923 if (core->ops->get_phase)
2924 core->phase = core->ops->get_phase(core->hw);
2929 * Set clk's rate. The preferred method is to use .recalc_rate. For
2930 * simple clocks and lazy developers the default fallback is to use the
2931 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2932 * then rate is set to zero.
2934 if (core->ops->recalc_rate)
2935 rate = core->ops->recalc_rate(core->hw,
2936 clk_core_get_rate_nolock(core->parent));
2937 else if (core->parent)
2938 rate = core->parent->rate;
2941 core->rate = core->req_rate = rate;
2944 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2945 * don't get accidentally disabled when walking the orphan tree and
2946 * reparenting clocks
2948 if (core->flags & CLK_IS_CRITICAL) {
2949 unsigned long flags;
2951 clk_core_prepare(core);
2953 flags = clk_enable_lock();
2954 clk_core_enable(core);
2955 clk_enable_unlock(flags);
2959 * walk the list of orphan clocks and reparent any that newly finds a
2962 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2963 struct clk_core *parent = __clk_init_parent(orphan);
2966 * We need to use __clk_set_parent_before() and _after() to
2967 * to properly migrate any prepare/enable count of the orphan
2968 * clock. This is important for CLK_IS_CRITICAL clocks, which
2969 * are enabled during init but might not have a parent yet.
2972 /* update the clk tree topology */
2973 __clk_set_parent_before(orphan, parent);
2974 __clk_set_parent_after(orphan, parent, NULL);
2975 __clk_recalc_accuracies(orphan);
2976 __clk_recalc_rates(orphan, 0);
2980 kref_init(&core->ref);
2982 clk_pm_runtime_put(core);
2984 clk_prepare_unlock();
2987 clk_debug_register(core);
2992 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2997 /* This is to allow this function to be chained to others */
2998 if (IS_ERR_OR_NULL(hw))
2999 return ERR_CAST(hw);
3001 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3003 return ERR_PTR(-ENOMEM);
3005 clk->core = hw->core;
3006 clk->dev_id = dev_id;
3007 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3008 clk->max_rate = ULONG_MAX;
3011 hlist_add_head(&clk->clks_node, &hw->core->clks);
3012 clk_prepare_unlock();
3017 void __clk_free_clk(struct clk *clk)
3020 hlist_del(&clk->clks_node);
3021 clk_prepare_unlock();
3023 kfree_const(clk->con_id);
3028 * clk_register - allocate a new clock, register it and return an opaque cookie
3029 * @dev: device that is registering this clock
3030 * @hw: link to hardware-specific clock data
3032 * clk_register is the primary interface for populating the clock tree with new
3033 * clock nodes. It returns a pointer to the newly allocated struct clk which
3034 * cannot be dereferenced by driver code but may be used in conjunction with the
3035 * rest of the clock API. In the event of an error clk_register will return an
3036 * error code; drivers must test for an error code after calling clk_register.
3038 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3041 struct clk_core *core;
3043 core = kzalloc(sizeof(*core), GFP_KERNEL);
3049 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3055 if (WARN_ON(!hw->init->ops)) {
3059 core->ops = hw->init->ops;
3061 if (dev && pm_runtime_enabled(dev))
3063 if (dev && dev->driver)
3064 core->owner = dev->driver->owner;
3066 core->flags = hw->init->flags;
3067 core->num_parents = hw->init->num_parents;
3069 core->max_rate = ULONG_MAX;
3072 /* allocate local copy in case parent_names is __initdata */
3073 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3076 if (!core->parent_names) {
3078 goto fail_parent_names;
3082 /* copy each string name in case parent_names is __initdata */
3083 for (i = 0; i < core->num_parents; i++) {
3084 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3086 if (!core->parent_names[i]) {
3088 goto fail_parent_names_copy;
3092 /* avoid unnecessary string look-ups of clk_core's possible parents. */
3093 core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3095 if (!core->parents) {
3100 INIT_HLIST_HEAD(&core->clks);
3102 hw->clk = __clk_create_clk(hw, NULL, NULL);
3103 if (IS_ERR(hw->clk)) {
3104 ret = PTR_ERR(hw->clk);
3108 ret = __clk_core_init(core);
3112 __clk_free_clk(hw->clk);
3116 kfree(core->parents);
3117 fail_parent_names_copy:
3119 kfree_const(core->parent_names[i]);
3120 kfree(core->parent_names);
3123 kfree_const(core->name);
3127 return ERR_PTR(ret);
3129 EXPORT_SYMBOL_GPL(clk_register);
3132 * clk_hw_register - register a clk_hw and return an error code
3133 * @dev: device that is registering this clock
3134 * @hw: link to hardware-specific clock data
3136 * clk_hw_register is the primary interface for populating the clock tree with
3137 * new clock nodes. It returns an integer equal to zero indicating success or
3138 * less than zero indicating failure. Drivers must test for an error code after
3139 * calling clk_hw_register().
3141 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3143 return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3145 EXPORT_SYMBOL_GPL(clk_hw_register);
3147 /* Free memory allocated for a clock. */
3148 static void __clk_release(struct kref *ref)
3150 struct clk_core *core = container_of(ref, struct clk_core, ref);
3151 int i = core->num_parents;
3153 lockdep_assert_held(&prepare_lock);
3155 kfree(core->parents);
3157 kfree_const(core->parent_names[i]);
3159 kfree(core->parent_names);
3160 kfree_const(core->name);
3165 * Empty clk_ops for unregistered clocks. These are used temporarily
3166 * after clk_unregister() was called on a clock and until last clock
3167 * consumer calls clk_put() and the struct clk object is freed.
3169 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3174 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3179 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3180 unsigned long parent_rate)
3185 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3190 static const struct clk_ops clk_nodrv_ops = {
3191 .enable = clk_nodrv_prepare_enable,
3192 .disable = clk_nodrv_disable_unprepare,
3193 .prepare = clk_nodrv_prepare_enable,
3194 .unprepare = clk_nodrv_disable_unprepare,
3195 .set_rate = clk_nodrv_set_rate,
3196 .set_parent = clk_nodrv_set_parent,
3200 * clk_unregister - unregister a currently registered clock
3201 * @clk: clock to unregister
3203 void clk_unregister(struct clk *clk)
3205 unsigned long flags;
3207 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3210 clk_debug_unregister(clk->core);
3214 if (clk->core->ops == &clk_nodrv_ops) {
3215 pr_err("%s: unregistered clock: %s\n", __func__,
3220 * Assign empty clock ops for consumers that might still hold
3221 * a reference to this clock.
3223 flags = clk_enable_lock();
3224 clk->core->ops = &clk_nodrv_ops;
3225 clk_enable_unlock(flags);
3227 if (!hlist_empty(&clk->core->children)) {
3228 struct clk_core *child;
3229 struct hlist_node *t;
3231 /* Reparent all children to the orphan list. */
3232 hlist_for_each_entry_safe(child, t, &clk->core->children,
3234 clk_core_set_parent_nolock(child, NULL);
3237 hlist_del_init(&clk->core->child_node);
3239 if (clk->core->prepare_count)
3240 pr_warn("%s: unregistering prepared clock: %s\n",
3241 __func__, clk->core->name);
3243 if (clk->core->protect_count)
3244 pr_warn("%s: unregistering protected clock: %s\n",
3245 __func__, clk->core->name);
3247 kref_put(&clk->core->ref, __clk_release);
3249 clk_prepare_unlock();
3251 EXPORT_SYMBOL_GPL(clk_unregister);
3254 * clk_hw_unregister - unregister a currently registered clk_hw
3255 * @hw: hardware-specific clock data to unregister
3257 void clk_hw_unregister(struct clk_hw *hw)
3259 clk_unregister(hw->clk);
3261 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3263 static void devm_clk_release(struct device *dev, void *res)
3265 clk_unregister(*(struct clk **)res);
3268 static void devm_clk_hw_release(struct device *dev, void *res)
3270 clk_hw_unregister(*(struct clk_hw **)res);
3274 * devm_clk_register - resource managed clk_register()
3275 * @dev: device that is registering this clock
3276 * @hw: link to hardware-specific clock data
3278 * Managed clk_register(). Clocks returned from this function are
3279 * automatically clk_unregister()ed on driver detach. See clk_register() for
3282 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3287 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3289 return ERR_PTR(-ENOMEM);
3291 clk = clk_register(dev, hw);
3294 devres_add(dev, clkp);
3301 EXPORT_SYMBOL_GPL(devm_clk_register);
3304 * devm_clk_hw_register - resource managed clk_hw_register()
3305 * @dev: device that is registering this clock
3306 * @hw: link to hardware-specific clock data
3308 * Managed clk_hw_register(). Clocks registered by this function are
3309 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3310 * for more information.
3312 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3314 struct clk_hw **hwp;
3317 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3321 ret = clk_hw_register(dev, hw);
3324 devres_add(dev, hwp);
3331 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3333 static int devm_clk_match(struct device *dev, void *res, void *data)
3335 struct clk *c = res;
3341 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3343 struct clk_hw *hw = res;
3351 * devm_clk_unregister - resource managed clk_unregister()
3352 * @clk: clock to unregister
3354 * Deallocate a clock allocated with devm_clk_register(). Normally
3355 * this function will not need to be called and the resource management
3356 * code will ensure that the resource is freed.
3358 void devm_clk_unregister(struct device *dev, struct clk *clk)
3360 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3362 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3365 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3366 * @dev: device that is unregistering the hardware-specific clock data
3367 * @hw: link to hardware-specific clock data
3369 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3370 * this function will not need to be called and the resource management
3371 * code will ensure that the resource is freed.
3373 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3375 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3378 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3383 int __clk_get(struct clk *clk)
3385 struct clk_core *core = !clk ? NULL : clk->core;
3388 if (!try_module_get(core->owner))
3391 kref_get(&core->ref);
3396 void __clk_put(struct clk *clk)
3398 struct module *owner;
3400 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3406 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3407 * given user should be balanced with calls to clk_rate_exclusive_put()
3408 * and by that same consumer
3410 if (WARN_ON(clk->exclusive_count)) {
3411 /* We voiced our concern, let's sanitize the situation */
3412 clk->core->protect_count -= (clk->exclusive_count - 1);
3413 clk_core_rate_unprotect(clk->core);
3414 clk->exclusive_count = 0;
3417 hlist_del(&clk->clks_node);
3418 if (clk->min_rate > clk->core->req_rate ||
3419 clk->max_rate < clk->core->req_rate)
3420 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3422 owner = clk->core->owner;
3423 kref_put(&clk->core->ref, __clk_release);
3425 clk_prepare_unlock();
3432 /*** clk rate change notifiers ***/
3435 * clk_notifier_register - add a clk rate change notifier
3436 * @clk: struct clk * to watch
3437 * @nb: struct notifier_block * with callback info
3439 * Request notification when clk's rate changes. This uses an SRCU
3440 * notifier because we want it to block and notifier unregistrations are
3441 * uncommon. The callbacks associated with the notifier must not
3442 * re-enter into the clk framework by calling any top-level clk APIs;
3443 * this will cause a nested prepare_lock mutex.
3445 * In all notification cases (pre, post and abort rate change) the original
3446 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3447 * and the new frequency is passed via struct clk_notifier_data.new_rate.
3449 * clk_notifier_register() must be called from non-atomic context.
3450 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3451 * allocation failure; otherwise, passes along the return value of
3452 * srcu_notifier_chain_register().
3454 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3456 struct clk_notifier *cn;
3464 /* search the list of notifiers for this clk */
3465 list_for_each_entry(cn, &clk_notifier_list, node)
3469 /* if clk wasn't in the notifier list, allocate new clk_notifier */
3470 if (cn->clk != clk) {
3471 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3476 srcu_init_notifier_head(&cn->notifier_head);
3478 list_add(&cn->node, &clk_notifier_list);
3481 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3483 clk->core->notifier_count++;
3486 clk_prepare_unlock();
3490 EXPORT_SYMBOL_GPL(clk_notifier_register);
3493 * clk_notifier_unregister - remove a clk rate change notifier
3494 * @clk: struct clk *
3495 * @nb: struct notifier_block * with callback info
3497 * Request no further notification for changes to 'clk' and frees memory
3498 * allocated in clk_notifier_register.
3500 * Returns -EINVAL if called with null arguments; otherwise, passes
3501 * along the return value of srcu_notifier_chain_unregister().
3503 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3505 struct clk_notifier *cn = NULL;
3513 list_for_each_entry(cn, &clk_notifier_list, node)
3517 if (cn->clk == clk) {
3518 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3520 clk->core->notifier_count--;
3522 /* XXX the notifier code should handle this better */
3523 if (!cn->notifier_head.head) {
3524 srcu_cleanup_notifier_head(&cn->notifier_head);
3525 list_del(&cn->node);
3533 clk_prepare_unlock();
3537 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3541 * struct of_clk_provider - Clock provider registration structure
3542 * @link: Entry in global list of clock providers
3543 * @node: Pointer to device tree node of clock provider
3544 * @get: Get clock callback. Returns NULL or a struct clk for the
3545 * given clock specifier
3546 * @data: context pointer to be passed into @get callback
3548 struct of_clk_provider {
3549 struct list_head link;
3551 struct device_node *node;
3552 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3553 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3557 static const struct of_device_id __clk_of_table_sentinel
3558 __used __section(__clk_of_table_end);
3560 static LIST_HEAD(of_clk_providers);
3561 static DEFINE_MUTEX(of_clk_mutex);
3563 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3568 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3570 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3574 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3576 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3578 struct clk_onecell_data *clk_data = data;
3579 unsigned int idx = clkspec->args[0];
3581 if (idx >= clk_data->clk_num) {
3582 pr_err("%s: invalid clock index %u\n", __func__, idx);
3583 return ERR_PTR(-EINVAL);
3586 return clk_data->clks[idx];
3588 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3591 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3593 struct clk_hw_onecell_data *hw_data = data;
3594 unsigned int idx = clkspec->args[0];
3596 if (idx >= hw_data->num) {
3597 pr_err("%s: invalid index %u\n", __func__, idx);
3598 return ERR_PTR(-EINVAL);
3601 return hw_data->hws[idx];
3603 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3606 * of_clk_add_provider() - Register a clock provider for a node
3607 * @np: Device node pointer associated with clock provider
3608 * @clk_src_get: callback for decoding clock
3609 * @data: context pointer for @clk_src_get callback.
3611 int of_clk_add_provider(struct device_node *np,
3612 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3616 struct of_clk_provider *cp;
3619 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3623 cp->node = of_node_get(np);
3625 cp->get = clk_src_get;
3627 mutex_lock(&of_clk_mutex);
3628 list_add(&cp->link, &of_clk_providers);
3629 mutex_unlock(&of_clk_mutex);
3630 pr_debug("Added clock from %pOF\n", np);
3632 ret = of_clk_set_defaults(np, true);
3634 of_clk_del_provider(np);
3638 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3641 * of_clk_add_hw_provider() - Register a clock provider for a node
3642 * @np: Device node pointer associated with clock provider
3643 * @get: callback for decoding clk_hw
3644 * @data: context pointer for @get callback.
3646 int of_clk_add_hw_provider(struct device_node *np,
3647 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3651 struct of_clk_provider *cp;
3654 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3658 cp->node = of_node_get(np);
3662 mutex_lock(&of_clk_mutex);
3663 list_add(&cp->link, &of_clk_providers);
3664 mutex_unlock(&of_clk_mutex);
3665 pr_debug("Added clk_hw provider from %pOF\n", np);
3667 ret = of_clk_set_defaults(np, true);
3669 of_clk_del_provider(np);
3673 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3675 static void devm_of_clk_release_provider(struct device *dev, void *res)
3677 of_clk_del_provider(*(struct device_node **)res);
3680 int devm_of_clk_add_hw_provider(struct device *dev,
3681 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3685 struct device_node **ptr, *np;
3688 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3694 ret = of_clk_add_hw_provider(np, get, data);
3697 devres_add(dev, ptr);
3704 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3707 * of_clk_del_provider() - Remove a previously registered clock provider
3708 * @np: Device node pointer associated with clock provider
3710 void of_clk_del_provider(struct device_node *np)
3712 struct of_clk_provider *cp;
3714 mutex_lock(&of_clk_mutex);
3715 list_for_each_entry(cp, &of_clk_providers, link) {
3716 if (cp->node == np) {
3717 list_del(&cp->link);
3718 of_node_put(cp->node);
3723 mutex_unlock(&of_clk_mutex);
3725 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3727 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3729 struct device_node **np = res;
3731 if (WARN_ON(!np || !*np))
3737 void devm_of_clk_del_provider(struct device *dev)
3741 ret = devres_release(dev, devm_of_clk_release_provider,
3742 devm_clk_provider_match, dev->of_node);
3746 EXPORT_SYMBOL(devm_of_clk_del_provider);
3748 static struct clk_hw *
3749 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3750 struct of_phandle_args *clkspec)
3754 if (provider->get_hw)
3755 return provider->get_hw(clkspec, provider->data);
3757 clk = provider->get(clkspec, provider->data);
3759 return ERR_CAST(clk);
3760 return __clk_get_hw(clk);
3763 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3764 const char *dev_id, const char *con_id)
3766 struct of_clk_provider *provider;
3767 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3771 return ERR_PTR(-EINVAL);
3773 /* Check if we have such a provider in our array */
3774 mutex_lock(&of_clk_mutex);
3775 list_for_each_entry(provider, &of_clk_providers, link) {
3776 if (provider->node == clkspec->np) {
3777 hw = __of_clk_get_hw_from_provider(provider, clkspec);
3778 clk = __clk_create_clk(hw, dev_id, con_id);
3782 if (!__clk_get(clk)) {
3783 __clk_free_clk(clk);
3784 clk = ERR_PTR(-ENOENT);
3790 mutex_unlock(&of_clk_mutex);
3796 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3797 * @clkspec: pointer to a clock specifier data structure
3799 * This function looks up a struct clk from the registered list of clock
3800 * providers, an input is a clock specifier data structure as returned
3801 * from the of_parse_phandle_with_args() function call.
3803 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3805 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3807 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3810 * of_clk_get_parent_count() - Count the number of clocks a device node has
3811 * @np: device node to count
3813 * Returns: The number of clocks that are possible parents of this node
3815 unsigned int of_clk_get_parent_count(struct device_node *np)
3819 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3825 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3827 const char *of_clk_get_parent_name(struct device_node *np, int index)
3829 struct of_phandle_args clkspec;
3830 struct property *prop;
3831 const char *clk_name;
3838 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3843 index = clkspec.args_count ? clkspec.args[0] : 0;
3846 /* if there is an indices property, use it to transfer the index
3847 * specified into an array offset for the clock-output-names property.
3849 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3856 /* We went off the end of 'clock-indices' without finding it */
3860 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3864 * Best effort to get the name if the clock has been
3865 * registered with the framework. If the clock isn't
3866 * registered, we return the node name as the name of
3867 * the clock as long as #clock-cells = 0.
3869 clk = of_clk_get_from_provider(&clkspec);
3871 if (clkspec.args_count == 0)
3872 clk_name = clkspec.np->name;
3876 clk_name = __clk_get_name(clk);
3882 of_node_put(clkspec.np);
3885 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3888 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3890 * @np: Device node pointer associated with clock provider
3891 * @parents: pointer to char array that hold the parents' names
3892 * @size: size of the @parents array
3894 * Return: number of parents for the clock node.
3896 int of_clk_parent_fill(struct device_node *np, const char **parents,
3901 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3906 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3908 struct clock_provider {
3909 of_clk_init_cb_t clk_init_cb;
3910 struct device_node *np;
3911 struct list_head node;
3915 * This function looks for a parent clock. If there is one, then it
3916 * checks that the provider for this parent clock was initialized, in
3917 * this case the parent clock will be ready.
3919 static int parent_ready(struct device_node *np)
3924 struct clk *clk = of_clk_get(np, i);
3926 /* this parent is ready we can check the next one */
3933 /* at least one parent is not ready, we exit now */
3934 if (PTR_ERR(clk) == -EPROBE_DEFER)
3938 * Here we make assumption that the device tree is
3939 * written correctly. So an error means that there is
3940 * no more parent. As we didn't exit yet, then the
3941 * previous parent are ready. If there is no clock
3942 * parent, no need to wait for them, then we can
3943 * consider their absence as being ready
3950 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3951 * @np: Device node pointer associated with clock provider
3952 * @index: clock index
3953 * @flags: pointer to top-level framework flags
3955 * Detects if the clock-critical property exists and, if so, sets the
3956 * corresponding CLK_IS_CRITICAL flag.
3958 * Do not use this function. It exists only for legacy Device Tree
3959 * bindings, such as the one-clock-per-node style that are outdated.
3960 * Those bindings typically put all clock data into .dts and the Linux
3961 * driver has no clock data, thus making it impossible to set this flag
3962 * correctly from the driver. Only those drivers may call
3963 * of_clk_detect_critical from their setup functions.
3965 * Return: error code or zero on success
3967 int of_clk_detect_critical(struct device_node *np,
3968 int index, unsigned long *flags)
3970 struct property *prop;
3977 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3979 *flags |= CLK_IS_CRITICAL;
3985 * of_clk_init() - Scan and init clock providers from the DT
3986 * @matches: array of compatible values and init functions for providers.
3988 * This function scans the device tree for matching clock providers
3989 * and calls their initialization functions. It also does it by trying
3990 * to follow the dependencies.
3992 void __init of_clk_init(const struct of_device_id *matches)
3994 const struct of_device_id *match;
3995 struct device_node *np;
3996 struct clock_provider *clk_provider, *next;
3999 LIST_HEAD(clk_provider_list);
4002 matches = &__clk_of_table;
4004 /* First prepare the list of the clocks providers */
4005 for_each_matching_node_and_match(np, matches, &match) {
4006 struct clock_provider *parent;
4008 if (!of_device_is_available(np))
4011 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4013 list_for_each_entry_safe(clk_provider, next,
4014 &clk_provider_list, node) {
4015 list_del(&clk_provider->node);
4016 of_node_put(clk_provider->np);
4017 kfree(clk_provider);
4023 parent->clk_init_cb = match->data;
4024 parent->np = of_node_get(np);
4025 list_add_tail(&parent->node, &clk_provider_list);
4028 while (!list_empty(&clk_provider_list)) {
4029 is_init_done = false;
4030 list_for_each_entry_safe(clk_provider, next,
4031 &clk_provider_list, node) {
4032 if (force || parent_ready(clk_provider->np)) {
4034 /* Don't populate platform devices */
4035 of_node_set_flag(clk_provider->np,
4038 clk_provider->clk_init_cb(clk_provider->np);
4039 of_clk_set_defaults(clk_provider->np, true);
4041 list_del(&clk_provider->node);
4042 of_node_put(clk_provider->np);
4043 kfree(clk_provider);
4044 is_init_done = true;
4049 * We didn't manage to initialize any of the
4050 * remaining providers during the last loop, so now we
4051 * initialize all the remaining ones unconditionally
4052 * in case the clock parent was not mandatory