scsi: megaraid_sas: Print FW fault information
[linux-2.6-microblaze.git] / drivers / clk / clk-cdce925.c
1 /*
2  * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5  * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/gcd.h>
21
22 /* Each chip has different number of PLLs and outputs, for example:
23  * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
24  * Model this as 2 PLL clocks which are parents to the outputs.
25  */
26
27 enum {
28         CDCE913,
29         CDCE925,
30         CDCE937,
31         CDCE949,
32 };
33
34 struct clk_cdce925_chip_info {
35         int num_plls;
36         int num_outputs;
37 };
38
39 static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
40         [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
41         [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
42         [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
43         [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
44 };
45
46 #define MAX_NUMBER_OF_PLLS      4
47 #define MAX_NUMBER_OF_OUTPUTS   9
48
49 #define CDCE925_REG_GLOBAL1     0x01
50 #define CDCE925_REG_Y1SPIPDIVH  0x02
51 #define CDCE925_REG_PDIVL       0x03
52 #define CDCE925_REG_XCSEL       0x05
53 /* PLL parameters start at 0x10, steps of 0x10 */
54 #define CDCE925_OFFSET_PLL      0x10
55 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
56 #define CDCE925_PLL_MUX_OUTPUTS 0x14
57 #define CDCE925_PLL_MULDIV      0x18
58
59 #define CDCE925_PLL_FREQUENCY_MIN        80000000ul
60 #define CDCE925_PLL_FREQUENCY_MAX       230000000ul
61 struct clk_cdce925_chip;
62
63 struct clk_cdce925_output {
64         struct clk_hw hw;
65         struct clk_cdce925_chip *chip;
66         u8 index;
67         u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
68 };
69 #define to_clk_cdce925_output(_hw) \
70         container_of(_hw, struct clk_cdce925_output, hw)
71
72 struct clk_cdce925_pll {
73         struct clk_hw hw;
74         struct clk_cdce925_chip *chip;
75         u8 index;
76         u16 m;   /* 1..511 */
77         u16 n;   /* 1..4095 */
78 };
79 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
80
81 struct clk_cdce925_chip {
82         struct regmap *regmap;
83         struct i2c_client *i2c_client;
84         const struct clk_cdce925_chip_info *chip_info;
85         struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
86         struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
87 };
88
89 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
90
91 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
92         u16 n, u16 m)
93 {
94         if ((!m || !n) || (m == n))
95                 return parent_rate; /* In bypass mode runs at same frequency */
96         return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
97 }
98
99 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
100                 unsigned long parent_rate)
101 {
102         /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
103         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
104
105         return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
106 }
107
108 static void cdce925_pll_find_rate(unsigned long rate,
109                 unsigned long parent_rate, u16 *n, u16 *m)
110 {
111         unsigned long un;
112         unsigned long um;
113         unsigned long g;
114
115         if (rate <= parent_rate) {
116                 /* Can always deliver parent_rate in bypass mode */
117                 rate = parent_rate;
118                 *n = 0;
119                 *m = 0;
120         } else {
121                 /* In PLL mode, need to apply min/max range */
122                 if (rate < CDCE925_PLL_FREQUENCY_MIN)
123                         rate = CDCE925_PLL_FREQUENCY_MIN;
124                 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
125                         rate = CDCE925_PLL_FREQUENCY_MAX;
126
127                 g = gcd(rate, parent_rate);
128                 um = parent_rate / g;
129                 un = rate / g;
130                 /* When outside hw range, reduce to fit (rounding errors) */
131                 while ((un > 4095) || (um > 511)) {
132                         un >>= 1;
133                         um >>= 1;
134                 }
135                 if (un == 0)
136                         un = 1;
137                 if (um == 0)
138                         um = 1;
139
140                 *n = un;
141                 *m = um;
142         }
143 }
144
145 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
146                 unsigned long *parent_rate)
147 {
148         u16 n, m;
149
150         cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
151         return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
152 }
153
154 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
155                 unsigned long parent_rate)
156 {
157         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
158
159         if (!rate || (rate == parent_rate)) {
160                 data->m = 0; /* Bypass mode */
161                 data->n = 0;
162                 return 0;
163         }
164
165         if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
166                 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
167                 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
168                 return -EINVAL;
169         }
170
171         if (rate < parent_rate) {
172                 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
173                         rate, parent_rate);
174                 return -EINVAL;
175         }
176
177         cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
178         return 0;
179 }
180
181
182 /* calculate p = max(0, 4 - int(log2 (n/m))) */
183 static u8 cdce925_pll_calc_p(u16 n, u16 m)
184 {
185         u8 p;
186         u16 r = n / m;
187
188         if (r >= 16)
189                 return 0;
190         p = 4;
191         while (r > 1) {
192                 r >>= 1;
193                 --p;
194         }
195         return p;
196 }
197
198 /* Returns VCO range bits for VCO1_0_RANGE */
199 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
200 {
201         struct clk *parent = clk_get_parent(hw->clk);
202         unsigned long rate = clk_get_rate(parent);
203
204         rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
205         if (rate >= 175000000)
206                 return 0x3;
207         if (rate >= 150000000)
208                 return 0x02;
209         if (rate >= 125000000)
210                 return 0x01;
211         return 0x00;
212 }
213
214 /* I2C clock, hence everything must happen in (un)prepare because this
215  * may sleep */
216 static int cdce925_pll_prepare(struct clk_hw *hw)
217 {
218         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
219         u16 n = data->n;
220         u16 m = data->m;
221         u16 r;
222         u8 q;
223         u8 p;
224         u16 nn;
225         u8 pll[4]; /* Bits are spread out over 4 byte registers */
226         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
227         unsigned i;
228
229         if ((!m || !n) || (m == n)) {
230                 /* Set PLL mux to bypass mode, leave the rest as is */
231                 regmap_update_bits(data->chip->regmap,
232                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
233         } else {
234                 /* According to data sheet: */
235                 /* p = max(0, 4 - int(log2 (n/m))) */
236                 p = cdce925_pll_calc_p(n, m);
237                 /* nn = n * 2^p */
238                 nn = n * BIT(p);
239                 /* q = int(nn/m) */
240                 q = nn / m;
241                 if ((q < 16) || (q > 63)) {
242                         pr_debug("%s invalid q=%d\n", __func__, q);
243                         return -EINVAL;
244                 }
245                 r = nn - (m*q);
246                 if (r > 511) {
247                         pr_debug("%s invalid r=%d\n", __func__, r);
248                         return -EINVAL;
249                 }
250                 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
251                         n, m, p, q, r);
252                 /* encode into register bits */
253                 pll[0] = n >> 4;
254                 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
255                 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
256                 pll[3] = ((q & 0x07) << 5) | (p << 2) |
257                                 cdce925_pll_calc_range_bits(hw, n, m);
258                 /* Write to registers */
259                 for (i = 0; i < ARRAY_SIZE(pll); ++i)
260                         regmap_write(data->chip->regmap,
261                                 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
262                 /* Enable PLL */
263                 regmap_update_bits(data->chip->regmap,
264                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
265         }
266
267         return 0;
268 }
269
270 static void cdce925_pll_unprepare(struct clk_hw *hw)
271 {
272         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
273         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
274
275         regmap_update_bits(data->chip->regmap,
276                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
277 }
278
279 static const struct clk_ops cdce925_pll_ops = {
280         .prepare = cdce925_pll_prepare,
281         .unprepare = cdce925_pll_unprepare,
282         .recalc_rate = cdce925_pll_recalc_rate,
283         .round_rate = cdce925_pll_round_rate,
284         .set_rate = cdce925_pll_set_rate,
285 };
286
287
288 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
289 {
290         switch (data->index) {
291         case 0:
292                 regmap_update_bits(data->chip->regmap,
293                         CDCE925_REG_Y1SPIPDIVH,
294                         0x03, (pdiv >> 8) & 0x03);
295                 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
296                 break;
297         case 1:
298                 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
299                 break;
300         case 2:
301                 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
302                 break;
303         case 3:
304                 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
305                 break;
306         case 4:
307                 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
308                 break;
309         case 5:
310                 regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
311                 break;
312         case 6:
313                 regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
314                 break;
315         case 7:
316                 regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
317                 break;
318         case 8:
319                 regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
320                 break;
321         }
322 }
323
324 static void cdce925_clk_activate(struct clk_cdce925_output *data)
325 {
326         switch (data->index) {
327         case 0:
328                 regmap_update_bits(data->chip->regmap,
329                         CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
330                 break;
331         case 1:
332         case 2:
333                 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
334                 break;
335         case 3:
336         case 4:
337                 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
338                 break;
339         case 5:
340         case 6:
341                 regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
342                 break;
343         case 7:
344         case 8:
345                 regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
346                 break;
347         }
348 }
349
350 static int cdce925_clk_prepare(struct clk_hw *hw)
351 {
352         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
353
354         cdce925_clk_set_pdiv(data, data->pdiv);
355         cdce925_clk_activate(data);
356         return 0;
357 }
358
359 static void cdce925_clk_unprepare(struct clk_hw *hw)
360 {
361         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
362
363         /* Disable clock by setting divider to "0" */
364         cdce925_clk_set_pdiv(data, 0);
365 }
366
367 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
368                 unsigned long parent_rate)
369 {
370         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
371
372         if (data->pdiv)
373                 return parent_rate / data->pdiv;
374         return 0;
375 }
376
377 static u16 cdce925_calc_divider(unsigned long rate,
378                 unsigned long parent_rate)
379 {
380         unsigned long divider;
381
382         if (!rate)
383                 return 0;
384         if (rate >= parent_rate)
385                 return 1;
386
387         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
388         if (divider > 0x7F)
389                 divider = 0x7F;
390
391         return (u16)divider;
392 }
393
394 static unsigned long cdce925_clk_best_parent_rate(
395         struct clk_hw *hw, unsigned long rate)
396 {
397         struct clk *pll = clk_get_parent(hw->clk);
398         struct clk *root = clk_get_parent(pll);
399         unsigned long root_rate = clk_get_rate(root);
400         unsigned long best_rate_error = rate;
401         u16 pdiv_min;
402         u16 pdiv_max;
403         u16 pdiv_best;
404         u16 pdiv_now;
405
406         if (root_rate % rate == 0)
407                 return root_rate; /* Don't need the PLL, use bypass */
408
409         pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
410         pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
411
412         if (pdiv_min > pdiv_max)
413                 return 0; /* No can do? */
414
415         pdiv_best = pdiv_min;
416         for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
417                 unsigned long target_rate = rate * pdiv_now;
418                 long pll_rate = clk_round_rate(pll, target_rate);
419                 unsigned long actual_rate;
420                 unsigned long rate_error;
421
422                 if (pll_rate <= 0)
423                         continue;
424                 actual_rate = pll_rate / pdiv_now;
425                 rate_error = abs((long)actual_rate - (long)rate);
426                 if (rate_error < best_rate_error) {
427                         pdiv_best = pdiv_now;
428                         best_rate_error = rate_error;
429                 }
430                 /* TODO: Consider PLL frequency based on smaller n/m values
431                  * and pick the better one if the error is equal */
432         }
433
434         return rate * pdiv_best;
435 }
436
437 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
438                 unsigned long *parent_rate)
439 {
440         unsigned long l_parent_rate = *parent_rate;
441         u16 divider = cdce925_calc_divider(rate, l_parent_rate);
442
443         if (l_parent_rate / divider != rate) {
444                 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
445                 divider = cdce925_calc_divider(rate, l_parent_rate);
446                 *parent_rate = l_parent_rate;
447         }
448
449         if (divider)
450                 return (long)(l_parent_rate / divider);
451         return 0;
452 }
453
454 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
455                 unsigned long parent_rate)
456 {
457         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
458
459         data->pdiv = cdce925_calc_divider(rate, parent_rate);
460
461         return 0;
462 }
463
464 static const struct clk_ops cdce925_clk_ops = {
465         .prepare = cdce925_clk_prepare,
466         .unprepare = cdce925_clk_unprepare,
467         .recalc_rate = cdce925_clk_recalc_rate,
468         .round_rate = cdce925_clk_round_rate,
469         .set_rate = cdce925_clk_set_rate,
470 };
471
472
473 static u16 cdce925_y1_calc_divider(unsigned long rate,
474                 unsigned long parent_rate)
475 {
476         unsigned long divider;
477
478         if (!rate)
479                 return 0;
480         if (rate >= parent_rate)
481                 return 1;
482
483         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
484         if (divider > 0x3FF) /* Y1 has 10-bit divider */
485                 divider = 0x3FF;
486
487         return (u16)divider;
488 }
489
490 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
491                 unsigned long *parent_rate)
492 {
493         unsigned long l_parent_rate = *parent_rate;
494         u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
495
496         if (divider)
497                 return (long)(l_parent_rate / divider);
498         return 0;
499 }
500
501 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
502                 unsigned long parent_rate)
503 {
504         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
505
506         data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
507
508         return 0;
509 }
510
511 static const struct clk_ops cdce925_clk_y1_ops = {
512         .prepare = cdce925_clk_prepare,
513         .unprepare = cdce925_clk_unprepare,
514         .recalc_rate = cdce925_clk_recalc_rate,
515         .round_rate = cdce925_clk_y1_round_rate,
516         .set_rate = cdce925_clk_y1_set_rate,
517 };
518
519 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER      0x00
520 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER       0x80
521
522 static int cdce925_regmap_i2c_write(
523         void *context, const void *data, size_t count)
524 {
525         struct device *dev = context;
526         struct i2c_client *i2c = to_i2c_client(dev);
527         int ret;
528         u8 reg_data[2];
529
530         if (count != 2)
531                 return -ENOTSUPP;
532
533         /* First byte is command code */
534         reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
535         reg_data[1] = ((u8 *)data)[1];
536
537         dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
538                         reg_data[0], reg_data[1]);
539
540         ret = i2c_master_send(i2c, reg_data, count);
541         if (likely(ret == count))
542                 return 0;
543         else if (ret < 0)
544                 return ret;
545         else
546                 return -EIO;
547 }
548
549 static int cdce925_regmap_i2c_read(void *context,
550            const void *reg, size_t reg_size, void *val, size_t val_size)
551 {
552         struct device *dev = context;
553         struct i2c_client *i2c = to_i2c_client(dev);
554         struct i2c_msg xfer[2];
555         int ret;
556         u8 reg_data[2];
557
558         if (reg_size != 1)
559                 return -ENOTSUPP;
560
561         xfer[0].addr = i2c->addr;
562         xfer[0].flags = 0;
563         xfer[0].buf = reg_data;
564         if (val_size == 1) {
565                 reg_data[0] =
566                         CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
567                 xfer[0].len = 1;
568         } else {
569                 reg_data[0] =
570                         CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
571                 reg_data[1] = val_size;
572                 xfer[0].len = 2;
573         }
574
575         xfer[1].addr = i2c->addr;
576         xfer[1].flags = I2C_M_RD;
577         xfer[1].len = val_size;
578         xfer[1].buf = val;
579
580         ret = i2c_transfer(i2c->adapter, xfer, 2);
581         if (likely(ret == 2)) {
582                 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
583                                 reg_size, val_size, reg_data[0], *((u8 *)val));
584                 return 0;
585         } else if (ret < 0)
586                 return ret;
587         else
588                 return -EIO;
589 }
590
591 static struct clk_hw *
592 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
593 {
594         struct clk_cdce925_chip *data = _data;
595         unsigned int idx = clkspec->args[0];
596
597         if (idx >= ARRAY_SIZE(data->clk)) {
598                 pr_err("%s: invalid index %u\n", __func__, idx);
599                 return ERR_PTR(-EINVAL);
600         }
601
602         return &data->clk[idx].hw;
603 }
604
605 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
606  * just weird, so just use the single byte mode exclusively. */
607 static struct regmap_bus regmap_cdce925_bus = {
608         .write = cdce925_regmap_i2c_write,
609         .read = cdce925_regmap_i2c_read,
610 };
611
612 static int cdce925_probe(struct i2c_client *client,
613                 const struct i2c_device_id *id)
614 {
615         struct clk_cdce925_chip *data;
616         struct device_node *node = client->dev.of_node;
617         const char *parent_name;
618         const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
619         struct clk_init_data init;
620         u32 value;
621         int i;
622         int err;
623         struct device_node *np_output;
624         char child_name[6];
625         struct regmap_config config = {
626                 .name = "configuration0",
627                 .reg_bits = 8,
628                 .val_bits = 8,
629                 .cache_type = REGCACHE_RBTREE,
630         };
631
632         dev_dbg(&client->dev, "%s\n", __func__);
633         data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
634         if (!data)
635                 return -ENOMEM;
636
637         data->i2c_client = client;
638         data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
639         config.max_register = CDCE925_OFFSET_PLL +
640                 data->chip_info->num_plls * 0x10 - 1;
641         data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
642                         &client->dev, &config);
643         if (IS_ERR(data->regmap)) {
644                 dev_err(&client->dev, "failed to allocate register map\n");
645                 return PTR_ERR(data->regmap);
646         }
647         i2c_set_clientdata(client, data);
648
649         parent_name = of_clk_get_parent_name(node, 0);
650         if (!parent_name) {
651                 dev_err(&client->dev, "missing parent clock\n");
652                 return -ENODEV;
653         }
654         dev_dbg(&client->dev, "parent is: %s\n", parent_name);
655
656         if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
657                 regmap_write(data->regmap,
658                         CDCE925_REG_XCSEL, (value << 3) & 0xF8);
659         /* PWDN bit */
660         regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
661
662         /* Set input source for Y1 to be the XTAL */
663         regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
664
665         init.ops = &cdce925_pll_ops;
666         init.flags = 0;
667         init.parent_names = &parent_name;
668         init.num_parents = 1;
669
670         /* Register PLL clocks */
671         for (i = 0; i < data->chip_info->num_plls; ++i) {
672                 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
673                         client->dev.of_node, i);
674                 init.name = pll_clk_name[i];
675                 data->pll[i].chip = data;
676                 data->pll[i].hw.init = &init;
677                 data->pll[i].index = i;
678                 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
679                 if (err) {
680                         dev_err(&client->dev, "Failed register PLL %d\n", i);
681                         goto error;
682                 }
683                 sprintf(child_name, "PLL%d", i+1);
684                 np_output = of_get_child_by_name(node, child_name);
685                 if (!np_output)
686                         continue;
687                 if (!of_property_read_u32(np_output,
688                         "clock-frequency", &value)) {
689                         err = clk_set_rate(data->pll[i].hw.clk, value);
690                         if (err)
691                                 dev_err(&client->dev,
692                                         "unable to set PLL frequency %ud\n",
693                                         value);
694                 }
695                 if (!of_property_read_u32(np_output,
696                         "spread-spectrum", &value)) {
697                         u8 flag = of_property_read_bool(np_output,
698                                 "spread-spectrum-center") ? 0x80 : 0x00;
699                         regmap_update_bits(data->regmap,
700                                 0x16 + (i*CDCE925_OFFSET_PLL),
701                                 0x80, flag);
702                         regmap_update_bits(data->regmap,
703                                 0x12 + (i*CDCE925_OFFSET_PLL),
704                                 0x07, value & 0x07);
705                 }
706                 of_node_put(np_output);
707         }
708
709         /* Register output clock Y1 */
710         init.ops = &cdce925_clk_y1_ops;
711         init.flags = 0;
712         init.num_parents = 1;
713         init.parent_names = &parent_name; /* Mux Y1 to input */
714         init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
715         data->clk[0].chip = data;
716         data->clk[0].hw.init = &init;
717         data->clk[0].index = 0;
718         data->clk[0].pdiv = 1;
719         err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
720         kfree(init.name); /* clock framework made a copy of the name */
721         if (err) {
722                 dev_err(&client->dev, "clock registration Y1 failed\n");
723                 goto error;
724         }
725
726         /* Register output clocks Y2 .. Y5*/
727         init.ops = &cdce925_clk_ops;
728         init.flags = CLK_SET_RATE_PARENT;
729         init.num_parents = 1;
730         for (i = 1; i < data->chip_info->num_outputs; ++i) {
731                 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
732                         client->dev.of_node, i+1);
733                 data->clk[i].chip = data;
734                 data->clk[i].hw.init = &init;
735                 data->clk[i].index = i;
736                 data->clk[i].pdiv = 1;
737                 switch (i) {
738                 case 1:
739                 case 2:
740                         /* Mux Y2/3 to PLL1 */
741                         init.parent_names = &pll_clk_name[0];
742                         break;
743                 case 3:
744                 case 4:
745                         /* Mux Y4/5 to PLL2 */
746                         init.parent_names = &pll_clk_name[1];
747                         break;
748                 case 5:
749                 case 6:
750                         /* Mux Y6/7 to PLL3 */
751                         init.parent_names = &pll_clk_name[2];
752                         break;
753                 case 7:
754                 case 8:
755                         /* Mux Y8/9 to PLL4 */
756                         init.parent_names = &pll_clk_name[3];
757                         break;
758                 }
759                 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
760                 kfree(init.name); /* clock framework made a copy of the name */
761                 if (err) {
762                         dev_err(&client->dev, "clock registration failed\n");
763                         goto error;
764                 }
765         }
766
767         /* Register the output clocks */
768         err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
769                                   data);
770         if (err)
771                 dev_err(&client->dev, "unable to add OF clock provider\n");
772
773         err = 0;
774
775 error:
776         for (i = 0; i < data->chip_info->num_plls; ++i)
777                 /* clock framework made a copy of the name */
778                 kfree(pll_clk_name[i]);
779
780         return err;
781 }
782
783 static const struct i2c_device_id cdce925_id[] = {
784         { "cdce913", CDCE913 },
785         { "cdce925", CDCE925 },
786         { "cdce937", CDCE937 },
787         { "cdce949", CDCE949 },
788         { }
789 };
790 MODULE_DEVICE_TABLE(i2c, cdce925_id);
791
792 static const struct of_device_id clk_cdce925_of_match[] = {
793         { .compatible = "ti,cdce913" },
794         { .compatible = "ti,cdce925" },
795         { .compatible = "ti,cdce937" },
796         { .compatible = "ti,cdce949" },
797         { },
798 };
799 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
800
801 static struct i2c_driver cdce925_driver = {
802         .driver = {
803                 .name = "cdce925",
804                 .of_match_table = of_match_ptr(clk_cdce925_of_match),
805         },
806         .probe          = cdce925_probe,
807         .id_table       = cdce925_id,
808 };
809 module_i2c_driver(cdce925_driver);
810
811 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
812 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
813 MODULE_LICENSE("GPL");