Merge tag 'jfs-5.11' of git://github.com/kleikamp/linux-shaggy
[linux-2.6-microblaze.git] / drivers / bluetooth / hci_ll.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Texas Instruments' Bluetooth HCILL UART protocol
4  *
5  *  HCILL (HCI Low Level) is a Texas Instruments' power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *
10  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
11  *
12  *  Acknowledgements:
13  *  This file is based on hci_h4.c, which was written
14  *  by Maxim Krasnyansky and Marcel Holtmann.
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19
20 #include <linux/init.h>
21 #include <linux/sched.h>
22 #include <linux/types.h>
23 #include <linux/fcntl.h>
24 #include <linux/firmware.h>
25 #include <linux/interrupt.h>
26 #include <linux/ptrace.h>
27 #include <linux/poll.h>
28
29 #include <linux/slab.h>
30 #include <linux/errno.h>
31 #include <linux/string.h>
32 #include <linux/signal.h>
33 #include <linux/ioctl.h>
34 #include <linux/of.h>
35 #include <linux/serdev.h>
36 #include <linux/skbuff.h>
37 #include <linux/ti_wilink_st.h>
38 #include <linux/clk.h>
39
40 #include <net/bluetooth/bluetooth.h>
41 #include <net/bluetooth/hci_core.h>
42 #include <linux/gpio/consumer.h>
43 #include <linux/nvmem-consumer.h>
44
45 #include "hci_uart.h"
46
47 /* Vendor-specific HCI commands */
48 #define HCI_VS_WRITE_BD_ADDR                    0xfc06
49 #define HCI_VS_UPDATE_UART_HCI_BAUDRATE         0xff36
50
51 /* HCILL commands */
52 #define HCILL_GO_TO_SLEEP_IND   0x30
53 #define HCILL_GO_TO_SLEEP_ACK   0x31
54 #define HCILL_WAKE_UP_IND       0x32
55 #define HCILL_WAKE_UP_ACK       0x33
56
57 /* HCILL states */
58 enum hcill_states_e {
59         HCILL_ASLEEP,
60         HCILL_ASLEEP_TO_AWAKE,
61         HCILL_AWAKE,
62         HCILL_AWAKE_TO_ASLEEP
63 };
64
65 struct ll_device {
66         struct hci_uart hu;
67         struct serdev_device *serdev;
68         struct gpio_desc *enable_gpio;
69         struct clk *ext_clk;
70         bdaddr_t bdaddr;
71 };
72
73 struct ll_struct {
74         struct sk_buff *rx_skb;
75         struct sk_buff_head txq;
76         spinlock_t hcill_lock;          /* HCILL state lock     */
77         unsigned long hcill_state;      /* HCILL power state    */
78         struct sk_buff_head tx_wait_q;  /* HCILL wait queue     */
79 };
80
81 /*
82  * Builds and sends an HCILL command packet.
83  * These are very simple packets with only 1 cmd byte
84  */
85 static int send_hcill_cmd(u8 cmd, struct hci_uart *hu)
86 {
87         int err = 0;
88         struct sk_buff *skb = NULL;
89         struct ll_struct *ll = hu->priv;
90
91         BT_DBG("hu %p cmd 0x%x", hu, cmd);
92
93         /* allocate packet */
94         skb = bt_skb_alloc(1, GFP_ATOMIC);
95         if (!skb) {
96                 BT_ERR("cannot allocate memory for HCILL packet");
97                 err = -ENOMEM;
98                 goto out;
99         }
100
101         /* prepare packet */
102         skb_put_u8(skb, cmd);
103
104         /* send packet */
105         skb_queue_tail(&ll->txq, skb);
106 out:
107         return err;
108 }
109
110 /* Initialize protocol */
111 static int ll_open(struct hci_uart *hu)
112 {
113         struct ll_struct *ll;
114
115         BT_DBG("hu %p", hu);
116
117         ll = kzalloc(sizeof(*ll), GFP_KERNEL);
118         if (!ll)
119                 return -ENOMEM;
120
121         skb_queue_head_init(&ll->txq);
122         skb_queue_head_init(&ll->tx_wait_q);
123         spin_lock_init(&ll->hcill_lock);
124
125         ll->hcill_state = HCILL_AWAKE;
126
127         hu->priv = ll;
128
129         if (hu->serdev) {
130                 struct ll_device *lldev = serdev_device_get_drvdata(hu->serdev);
131
132                 if (!IS_ERR(lldev->ext_clk))
133                         clk_prepare_enable(lldev->ext_clk);
134         }
135
136         return 0;
137 }
138
139 /* Flush protocol data */
140 static int ll_flush(struct hci_uart *hu)
141 {
142         struct ll_struct *ll = hu->priv;
143
144         BT_DBG("hu %p", hu);
145
146         skb_queue_purge(&ll->tx_wait_q);
147         skb_queue_purge(&ll->txq);
148
149         return 0;
150 }
151
152 /* Close protocol */
153 static int ll_close(struct hci_uart *hu)
154 {
155         struct ll_struct *ll = hu->priv;
156
157         BT_DBG("hu %p", hu);
158
159         skb_queue_purge(&ll->tx_wait_q);
160         skb_queue_purge(&ll->txq);
161
162         kfree_skb(ll->rx_skb);
163
164         if (hu->serdev) {
165                 struct ll_device *lldev = serdev_device_get_drvdata(hu->serdev);
166
167                 gpiod_set_value_cansleep(lldev->enable_gpio, 0);
168
169                 clk_disable_unprepare(lldev->ext_clk);
170         }
171
172         hu->priv = NULL;
173
174         kfree(ll);
175
176         return 0;
177 }
178
179 /*
180  * internal function, which does common work of the device wake up process:
181  * 1. places all pending packets (waiting in tx_wait_q list) in txq list.
182  * 2. changes internal state to HCILL_AWAKE.
183  * Note: assumes that hcill_lock spinlock is taken,
184  * shouldn't be called otherwise!
185  */
186 static void __ll_do_awake(struct ll_struct *ll)
187 {
188         struct sk_buff *skb = NULL;
189
190         while ((skb = skb_dequeue(&ll->tx_wait_q)))
191                 skb_queue_tail(&ll->txq, skb);
192
193         ll->hcill_state = HCILL_AWAKE;
194 }
195
196 /*
197  * Called upon a wake-up-indication from the device
198  */
199 static void ll_device_want_to_wakeup(struct hci_uart *hu)
200 {
201         unsigned long flags;
202         struct ll_struct *ll = hu->priv;
203
204         BT_DBG("hu %p", hu);
205
206         /* lock hcill state */
207         spin_lock_irqsave(&ll->hcill_lock, flags);
208
209         switch (ll->hcill_state) {
210         case HCILL_ASLEEP_TO_AWAKE:
211                 /*
212                  * This state means that both the host and the BRF chip
213                  * have simultaneously sent a wake-up-indication packet.
214                  * Traditionally, in this case, receiving a wake-up-indication
215                  * was enough and an additional wake-up-ack wasn't needed.
216                  * This has changed with the BRF6350, which does require an
217                  * explicit wake-up-ack. Other BRF versions, which do not
218                  * require an explicit ack here, do accept it, thus it is
219                  * perfectly safe to always send one.
220                  */
221                 BT_DBG("dual wake-up-indication");
222                 fallthrough;
223         case HCILL_ASLEEP:
224                 /* acknowledge device wake up */
225                 if (send_hcill_cmd(HCILL_WAKE_UP_ACK, hu) < 0) {
226                         BT_ERR("cannot acknowledge device wake up");
227                         goto out;
228                 }
229                 break;
230         default:
231                 /* any other state is illegal */
232                 BT_ERR("received HCILL_WAKE_UP_IND in state %ld",
233                        ll->hcill_state);
234                 break;
235         }
236
237         /* send pending packets and change state to HCILL_AWAKE */
238         __ll_do_awake(ll);
239
240 out:
241         spin_unlock_irqrestore(&ll->hcill_lock, flags);
242
243         /* actually send the packets */
244         hci_uart_tx_wakeup(hu);
245 }
246
247 /*
248  * Called upon a sleep-indication from the device
249  */
250 static void ll_device_want_to_sleep(struct hci_uart *hu)
251 {
252         unsigned long flags;
253         struct ll_struct *ll = hu->priv;
254
255         BT_DBG("hu %p", hu);
256
257         /* lock hcill state */
258         spin_lock_irqsave(&ll->hcill_lock, flags);
259
260         /* sanity check */
261         if (ll->hcill_state != HCILL_AWAKE)
262                 BT_ERR("ERR: HCILL_GO_TO_SLEEP_IND in state %ld",
263                        ll->hcill_state);
264
265         /* acknowledge device sleep */
266         if (send_hcill_cmd(HCILL_GO_TO_SLEEP_ACK, hu) < 0) {
267                 BT_ERR("cannot acknowledge device sleep");
268                 goto out;
269         }
270
271         /* update state */
272         ll->hcill_state = HCILL_ASLEEP;
273
274 out:
275         spin_unlock_irqrestore(&ll->hcill_lock, flags);
276
277         /* actually send the sleep ack packet */
278         hci_uart_tx_wakeup(hu);
279 }
280
281 /*
282  * Called upon wake-up-acknowledgement from the device
283  */
284 static void ll_device_woke_up(struct hci_uart *hu)
285 {
286         unsigned long flags;
287         struct ll_struct *ll = hu->priv;
288
289         BT_DBG("hu %p", hu);
290
291         /* lock hcill state */
292         spin_lock_irqsave(&ll->hcill_lock, flags);
293
294         /* sanity check */
295         if (ll->hcill_state != HCILL_ASLEEP_TO_AWAKE)
296                 BT_ERR("received HCILL_WAKE_UP_ACK in state %ld",
297                        ll->hcill_state);
298
299         /* send pending packets and change state to HCILL_AWAKE */
300         __ll_do_awake(ll);
301
302         spin_unlock_irqrestore(&ll->hcill_lock, flags);
303
304         /* actually send the packets */
305         hci_uart_tx_wakeup(hu);
306 }
307
308 /* Enqueue frame for transmittion (padding, crc, etc) */
309 /* may be called from two simultaneous tasklets */
310 static int ll_enqueue(struct hci_uart *hu, struct sk_buff *skb)
311 {
312         unsigned long flags = 0;
313         struct ll_struct *ll = hu->priv;
314
315         BT_DBG("hu %p skb %p", hu, skb);
316
317         /* Prepend skb with frame type */
318         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
319
320         /* lock hcill state */
321         spin_lock_irqsave(&ll->hcill_lock, flags);
322
323         /* act according to current state */
324         switch (ll->hcill_state) {
325         case HCILL_AWAKE:
326                 BT_DBG("device awake, sending normally");
327                 skb_queue_tail(&ll->txq, skb);
328                 break;
329         case HCILL_ASLEEP:
330                 BT_DBG("device asleep, waking up and queueing packet");
331                 /* save packet for later */
332                 skb_queue_tail(&ll->tx_wait_q, skb);
333                 /* awake device */
334                 if (send_hcill_cmd(HCILL_WAKE_UP_IND, hu) < 0) {
335                         BT_ERR("cannot wake up device");
336                         break;
337                 }
338                 ll->hcill_state = HCILL_ASLEEP_TO_AWAKE;
339                 break;
340         case HCILL_ASLEEP_TO_AWAKE:
341                 BT_DBG("device waking up, queueing packet");
342                 /* transient state; just keep packet for later */
343                 skb_queue_tail(&ll->tx_wait_q, skb);
344                 break;
345         default:
346                 BT_ERR("illegal hcill state: %ld (losing packet)",
347                        ll->hcill_state);
348                 kfree_skb(skb);
349                 break;
350         }
351
352         spin_unlock_irqrestore(&ll->hcill_lock, flags);
353
354         return 0;
355 }
356
357 static int ll_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
358 {
359         struct hci_uart *hu = hci_get_drvdata(hdev);
360         struct ll_struct *ll = hu->priv;
361
362         switch (hci_skb_pkt_type(skb)) {
363         case HCILL_GO_TO_SLEEP_IND:
364                 BT_DBG("HCILL_GO_TO_SLEEP_IND packet");
365                 ll_device_want_to_sleep(hu);
366                 break;
367         case HCILL_GO_TO_SLEEP_ACK:
368                 /* shouldn't happen */
369                 bt_dev_err(hdev, "received HCILL_GO_TO_SLEEP_ACK in state %ld",
370                            ll->hcill_state);
371                 break;
372         case HCILL_WAKE_UP_IND:
373                 BT_DBG("HCILL_WAKE_UP_IND packet");
374                 ll_device_want_to_wakeup(hu);
375                 break;
376         case HCILL_WAKE_UP_ACK:
377                 BT_DBG("HCILL_WAKE_UP_ACK packet");
378                 ll_device_woke_up(hu);
379                 break;
380         }
381
382         kfree_skb(skb);
383         return 0;
384 }
385
386 #define LL_RECV_SLEEP_IND \
387         .type = HCILL_GO_TO_SLEEP_IND, \
388         .hlen = 0, \
389         .loff = 0, \
390         .lsize = 0, \
391         .maxlen = 0
392
393 #define LL_RECV_SLEEP_ACK \
394         .type = HCILL_GO_TO_SLEEP_ACK, \
395         .hlen = 0, \
396         .loff = 0, \
397         .lsize = 0, \
398         .maxlen = 0
399
400 #define LL_RECV_WAKE_IND \
401         .type = HCILL_WAKE_UP_IND, \
402         .hlen = 0, \
403         .loff = 0, \
404         .lsize = 0, \
405         .maxlen = 0
406
407 #define LL_RECV_WAKE_ACK \
408         .type = HCILL_WAKE_UP_ACK, \
409         .hlen = 0, \
410         .loff = 0, \
411         .lsize = 0, \
412         .maxlen = 0
413
414 static const struct h4_recv_pkt ll_recv_pkts[] = {
415         { H4_RECV_ACL,       .recv = hci_recv_frame },
416         { H4_RECV_SCO,       .recv = hci_recv_frame },
417         { H4_RECV_EVENT,     .recv = hci_recv_frame },
418         { LL_RECV_SLEEP_IND, .recv = ll_recv_frame  },
419         { LL_RECV_SLEEP_ACK, .recv = ll_recv_frame  },
420         { LL_RECV_WAKE_IND,  .recv = ll_recv_frame  },
421         { LL_RECV_WAKE_ACK,  .recv = ll_recv_frame  },
422 };
423
424 /* Recv data */
425 static int ll_recv(struct hci_uart *hu, const void *data, int count)
426 {
427         struct ll_struct *ll = hu->priv;
428
429         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
430                 return -EUNATCH;
431
432         ll->rx_skb = h4_recv_buf(hu->hdev, ll->rx_skb, data, count,
433                                  ll_recv_pkts, ARRAY_SIZE(ll_recv_pkts));
434         if (IS_ERR(ll->rx_skb)) {
435                 int err = PTR_ERR(ll->rx_skb);
436                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
437                 ll->rx_skb = NULL;
438                 return err;
439         }
440
441         return count;
442 }
443
444 static struct sk_buff *ll_dequeue(struct hci_uart *hu)
445 {
446         struct ll_struct *ll = hu->priv;
447
448         return skb_dequeue(&ll->txq);
449 }
450
451 #if IS_ENABLED(CONFIG_SERIAL_DEV_BUS)
452 static int read_local_version(struct hci_dev *hdev)
453 {
454         int err = 0;
455         unsigned short version = 0;
456         struct sk_buff *skb;
457         struct hci_rp_read_local_version *ver;
458
459         skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
460                              HCI_INIT_TIMEOUT);
461         if (IS_ERR(skb)) {
462                 bt_dev_err(hdev, "Reading TI version information failed (%ld)",
463                            PTR_ERR(skb));
464                 return PTR_ERR(skb);
465         }
466         if (skb->len != sizeof(*ver)) {
467                 err = -EILSEQ;
468                 goto out;
469         }
470
471         ver = (struct hci_rp_read_local_version *)skb->data;
472         if (le16_to_cpu(ver->manufacturer) != 13) {
473                 err = -ENODEV;
474                 goto out;
475         }
476
477         version = le16_to_cpu(ver->lmp_subver);
478
479 out:
480         if (err)
481                 bt_dev_err(hdev, "Failed to read TI version info: %d", err);
482         kfree_skb(skb);
483         return err ? err : version;
484 }
485
486 static int send_command_from_firmware(struct ll_device *lldev,
487                                       struct hci_command *cmd)
488 {
489         struct sk_buff *skb;
490
491         if (cmd->opcode == HCI_VS_UPDATE_UART_HCI_BAUDRATE) {
492                 /* ignore remote change
493                  * baud rate HCI VS command
494                  */
495                 bt_dev_warn(lldev->hu.hdev,
496                             "change remote baud rate command in firmware");
497                 return 0;
498         }
499         if (cmd->prefix != 1)
500                 bt_dev_dbg(lldev->hu.hdev, "command type %d", cmd->prefix);
501
502         skb = __hci_cmd_sync(lldev->hu.hdev, cmd->opcode, cmd->plen,
503                              &cmd->speed, HCI_INIT_TIMEOUT);
504         if (IS_ERR(skb)) {
505                 bt_dev_err(lldev->hu.hdev, "send command failed");
506                 return PTR_ERR(skb);
507         }
508         kfree_skb(skb);
509         return 0;
510 }
511
512 /**
513  * download_firmware -
514  *      internal function which parses through the .bts firmware
515  *      script file intreprets SEND, DELAY actions only as of now
516  */
517 static int download_firmware(struct ll_device *lldev)
518 {
519         unsigned short chip, min_ver, maj_ver;
520         int version, err, len;
521         unsigned char *ptr, *action_ptr;
522         unsigned char bts_scr_name[40]; /* 40 char long bts scr name? */
523         const struct firmware *fw;
524         struct hci_command *cmd;
525
526         version = read_local_version(lldev->hu.hdev);
527         if (version < 0)
528                 return version;
529
530         chip = (version & 0x7C00) >> 10;
531         min_ver = (version & 0x007F);
532         maj_ver = (version & 0x0380) >> 7;
533         if (version & 0x8000)
534                 maj_ver |= 0x0008;
535
536         snprintf(bts_scr_name, sizeof(bts_scr_name),
537                  "ti-connectivity/TIInit_%d.%d.%d.bts",
538                  chip, maj_ver, min_ver);
539
540         err = request_firmware(&fw, bts_scr_name, &lldev->serdev->dev);
541         if (err || !fw->data || !fw->size) {
542                 bt_dev_err(lldev->hu.hdev, "request_firmware failed(errno %d) for %s",
543                            err, bts_scr_name);
544                 return -EINVAL;
545         }
546         ptr = (void *)fw->data;
547         len = fw->size;
548         /* bts_header to remove out magic number and
549          * version
550          */
551         ptr += sizeof(struct bts_header);
552         len -= sizeof(struct bts_header);
553
554         while (len > 0 && ptr) {
555                 bt_dev_dbg(lldev->hu.hdev, " action size %d, type %d ",
556                            ((struct bts_action *)ptr)->size,
557                            ((struct bts_action *)ptr)->type);
558
559                 action_ptr = &(((struct bts_action *)ptr)->data[0]);
560
561                 switch (((struct bts_action *)ptr)->type) {
562                 case ACTION_SEND_COMMAND:       /* action send */
563                         bt_dev_dbg(lldev->hu.hdev, "S");
564                         cmd = (struct hci_command *)action_ptr;
565                         err = send_command_from_firmware(lldev, cmd);
566                         if (err)
567                                 goto out_rel_fw;
568                         break;
569                 case ACTION_WAIT_EVENT:  /* wait */
570                         /* no need to wait as command was synchronous */
571                         bt_dev_dbg(lldev->hu.hdev, "W");
572                         break;
573                 case ACTION_DELAY:      /* sleep */
574                         bt_dev_info(lldev->hu.hdev, "sleep command in scr");
575                         msleep(((struct bts_action_delay *)action_ptr)->msec);
576                         break;
577                 }
578                 len -= (sizeof(struct bts_action) +
579                         ((struct bts_action *)ptr)->size);
580                 ptr += sizeof(struct bts_action) +
581                         ((struct bts_action *)ptr)->size;
582         }
583
584 out_rel_fw:
585         /* fw download complete */
586         release_firmware(fw);
587         return err;
588 }
589
590 static int ll_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
591 {
592         bdaddr_t bdaddr_swapped;
593         struct sk_buff *skb;
594
595         /* HCI_VS_WRITE_BD_ADDR (at least on a CC2560A chip) expects the BD
596          * address to be MSB first, but bdaddr_t has the convention of being
597          * LSB first.
598          */
599         baswap(&bdaddr_swapped, bdaddr);
600         skb = __hci_cmd_sync(hdev, HCI_VS_WRITE_BD_ADDR, sizeof(bdaddr_t),
601                              &bdaddr_swapped, HCI_INIT_TIMEOUT);
602         if (!IS_ERR(skb))
603                 kfree_skb(skb);
604
605         return PTR_ERR_OR_ZERO(skb);
606 }
607
608 static int ll_setup(struct hci_uart *hu)
609 {
610         int err, retry = 3;
611         struct ll_device *lldev;
612         struct serdev_device *serdev = hu->serdev;
613         u32 speed;
614
615         if (!serdev)
616                 return 0;
617
618         lldev = serdev_device_get_drvdata(serdev);
619
620         hu->hdev->set_bdaddr = ll_set_bdaddr;
621
622         serdev_device_set_flow_control(serdev, true);
623
624         do {
625                 /* Reset the Bluetooth device */
626                 gpiod_set_value_cansleep(lldev->enable_gpio, 0);
627                 msleep(5);
628                 gpiod_set_value_cansleep(lldev->enable_gpio, 1);
629                 mdelay(100);
630                 err = serdev_device_wait_for_cts(serdev, true, 200);
631                 if (err) {
632                         bt_dev_err(hu->hdev, "Failed to get CTS");
633                         return err;
634                 }
635
636                 err = download_firmware(lldev);
637                 if (!err)
638                         break;
639
640                 /* Toggle BT_EN and retry */
641                 bt_dev_err(hu->hdev, "download firmware failed, retrying...");
642         } while (retry--);
643
644         if (err)
645                 return err;
646
647         /* Set BD address if one was specified at probe */
648         if (!bacmp(&lldev->bdaddr, BDADDR_NONE)) {
649                 /* This means that there was an error getting the BD address
650                  * during probe, so mark the device as having a bad address.
651                  */
652                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hu->hdev->quirks);
653         } else if (bacmp(&lldev->bdaddr, BDADDR_ANY)) {
654                 err = ll_set_bdaddr(hu->hdev, &lldev->bdaddr);
655                 if (err)
656                         set_bit(HCI_QUIRK_INVALID_BDADDR, &hu->hdev->quirks);
657         }
658
659         /* Operational speed if any */
660         if (hu->oper_speed)
661                 speed = hu->oper_speed;
662         else if (hu->proto->oper_speed)
663                 speed = hu->proto->oper_speed;
664         else
665                 speed = 0;
666
667         if (speed) {
668                 __le32 speed_le = cpu_to_le32(speed);
669                 struct sk_buff *skb;
670
671                 skb = __hci_cmd_sync(hu->hdev, HCI_VS_UPDATE_UART_HCI_BAUDRATE,
672                                      sizeof(speed_le), &speed_le,
673                                      HCI_INIT_TIMEOUT);
674                 if (!IS_ERR(skb)) {
675                         kfree_skb(skb);
676                         serdev_device_set_baudrate(serdev, speed);
677                 }
678         }
679
680         return 0;
681 }
682
683 static const struct hci_uart_proto llp;
684
685 static int hci_ti_probe(struct serdev_device *serdev)
686 {
687         struct hci_uart *hu;
688         struct ll_device *lldev;
689         struct nvmem_cell *bdaddr_cell;
690         u32 max_speed = 3000000;
691
692         lldev = devm_kzalloc(&serdev->dev, sizeof(struct ll_device), GFP_KERNEL);
693         if (!lldev)
694                 return -ENOMEM;
695         hu = &lldev->hu;
696
697         serdev_device_set_drvdata(serdev, lldev);
698         lldev->serdev = hu->serdev = serdev;
699
700         lldev->enable_gpio = devm_gpiod_get_optional(&serdev->dev,
701                                                      "enable",
702                                                      GPIOD_OUT_LOW);
703         if (IS_ERR(lldev->enable_gpio))
704                 return PTR_ERR(lldev->enable_gpio);
705
706         lldev->ext_clk = devm_clk_get(&serdev->dev, "ext_clock");
707         if (IS_ERR(lldev->ext_clk) && PTR_ERR(lldev->ext_clk) != -ENOENT)
708                 return PTR_ERR(lldev->ext_clk);
709
710         of_property_read_u32(serdev->dev.of_node, "max-speed", &max_speed);
711         hci_uart_set_speeds(hu, 115200, max_speed);
712
713         /* optional BD address from nvram */
714         bdaddr_cell = nvmem_cell_get(&serdev->dev, "bd-address");
715         if (IS_ERR(bdaddr_cell)) {
716                 int err = PTR_ERR(bdaddr_cell);
717
718                 if (err == -EPROBE_DEFER)
719                         return err;
720
721                 /* ENOENT means there is no matching nvmem cell and ENOSYS
722                  * means that nvmem is not enabled in the kernel configuration.
723                  */
724                 if (err != -ENOENT && err != -ENOSYS) {
725                         /* If there was some other error, give userspace a
726                          * chance to fix the problem instead of failing to load
727                          * the driver. Using BDADDR_NONE as a flag that is
728                          * tested later in the setup function.
729                          */
730                         dev_warn(&serdev->dev,
731                                  "Failed to get \"bd-address\" nvmem cell (%d)\n",
732                                  err);
733                         bacpy(&lldev->bdaddr, BDADDR_NONE);
734                 }
735         } else {
736                 bdaddr_t *bdaddr;
737                 size_t len;
738
739                 bdaddr = nvmem_cell_read(bdaddr_cell, &len);
740                 nvmem_cell_put(bdaddr_cell);
741                 if (IS_ERR(bdaddr)) {
742                         dev_err(&serdev->dev, "Failed to read nvmem bd-address\n");
743                         return PTR_ERR(bdaddr);
744                 }
745                 if (len != sizeof(bdaddr_t)) {
746                         dev_err(&serdev->dev, "Invalid nvmem bd-address length\n");
747                         kfree(bdaddr);
748                         return -EINVAL;
749                 }
750
751                 /* As per the device tree bindings, the value from nvmem is
752                  * expected to be MSB first, but in the kernel it is expected
753                  * that bdaddr_t is LSB first.
754                  */
755                 baswap(&lldev->bdaddr, bdaddr);
756                 kfree(bdaddr);
757         }
758
759         return hci_uart_register_device(hu, &llp);
760 }
761
762 static void hci_ti_remove(struct serdev_device *serdev)
763 {
764         struct ll_device *lldev = serdev_device_get_drvdata(serdev);
765
766         hci_uart_unregister_device(&lldev->hu);
767 }
768
769 static const struct of_device_id hci_ti_of_match[] = {
770         { .compatible = "ti,cc2560" },
771         { .compatible = "ti,wl1271-st" },
772         { .compatible = "ti,wl1273-st" },
773         { .compatible = "ti,wl1281-st" },
774         { .compatible = "ti,wl1283-st" },
775         { .compatible = "ti,wl1285-st" },
776         { .compatible = "ti,wl1801-st" },
777         { .compatible = "ti,wl1805-st" },
778         { .compatible = "ti,wl1807-st" },
779         { .compatible = "ti,wl1831-st" },
780         { .compatible = "ti,wl1835-st" },
781         { .compatible = "ti,wl1837-st" },
782         {},
783 };
784 MODULE_DEVICE_TABLE(of, hci_ti_of_match);
785
786 static struct serdev_device_driver hci_ti_drv = {
787         .driver         = {
788                 .name   = "hci-ti",
789                 .of_match_table = of_match_ptr(hci_ti_of_match),
790         },
791         .probe  = hci_ti_probe,
792         .remove = hci_ti_remove,
793 };
794 #else
795 #define ll_setup NULL
796 #endif
797
798 static const struct hci_uart_proto llp = {
799         .id             = HCI_UART_LL,
800         .name           = "LL",
801         .setup          = ll_setup,
802         .open           = ll_open,
803         .close          = ll_close,
804         .recv           = ll_recv,
805         .enqueue        = ll_enqueue,
806         .dequeue        = ll_dequeue,
807         .flush          = ll_flush,
808 };
809
810 int __init ll_init(void)
811 {
812         serdev_device_driver_register(&hci_ti_drv);
813
814         return hci_uart_register_proto(&llp);
815 }
816
817 int __exit ll_deinit(void)
818 {
819         serdev_device_driver_unregister(&hci_ti_drv);
820
821         return hci_uart_unregister_proto(&llp);
822 }