Merge tag '5.7-rc-smb3-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / drivers / bluetooth / hci_intel.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24
25 #include "hci_uart.h"
26 #include "btintel.h"
27
28 #define STATE_BOOTLOADER        0
29 #define STATE_DOWNLOADING       1
30 #define STATE_FIRMWARE_LOADED   2
31 #define STATE_FIRMWARE_FAILED   3
32 #define STATE_BOOTING           4
33 #define STATE_LPM_ENABLED       5
34 #define STATE_TX_ACTIVE         6
35 #define STATE_SUSPENDED         7
36 #define STATE_LPM_TRANSACTION   8
37
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46
47 #define LPM_SUSPEND_DELAY_MS 1000
48
49 struct hci_lpm_pkt {
50         __u8 opcode;
51         __u8 dlen;
52         __u8 data[];
53 } __packed;
54
55 struct intel_device {
56         struct list_head list;
57         struct platform_device *pdev;
58         struct gpio_desc *reset;
59         struct hci_uart *hu;
60         struct mutex hu_lock;
61         int irq;
62 };
63
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66
67 struct intel_data {
68         struct sk_buff *rx_skb;
69         struct sk_buff_head txq;
70         struct work_struct busy_work;
71         struct hci_uart *hu;
72         unsigned long flags;
73 };
74
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77         switch (speed) {
78         case 9600:
79                 return 0x00;
80         case 19200:
81                 return 0x01;
82         case 38400:
83                 return 0x02;
84         case 57600:
85                 return 0x03;
86         case 115200:
87                 return 0x04;
88         case 230400:
89                 return 0x05;
90         case 460800:
91                 return 0x06;
92         case 921600:
93                 return 0x07;
94         case 1843200:
95                 return 0x08;
96         case 3250000:
97                 return 0x09;
98         case 2000000:
99                 return 0x0a;
100         case 3000000:
101                 return 0x0b;
102         default:
103                 return 0xff;
104         }
105 }
106
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109         struct intel_data *intel = hu->priv;
110         int err;
111
112         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113                                   TASK_INTERRUPTIBLE,
114                                   msecs_to_jiffies(1000));
115
116         if (err == -EINTR) {
117                 bt_dev_err(hu->hdev, "Device boot interrupted");
118                 return -EINTR;
119         }
120
121         if (err) {
122                 bt_dev_err(hu->hdev, "Device boot timeout");
123                 return -ETIMEDOUT;
124         }
125
126         return err;
127 }
128
129 #ifdef CONFIG_PM
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132         struct intel_data *intel = hu->priv;
133         int err;
134
135         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136                                   TASK_INTERRUPTIBLE,
137                                   msecs_to_jiffies(1000));
138
139         if (err == -EINTR) {
140                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
141                 return -EINTR;
142         }
143
144         if (err) {
145                 bt_dev_err(hu->hdev, "LPM transaction timeout");
146                 return -ETIMEDOUT;
147         }
148
149         return err;
150 }
151
152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155         struct intel_data *intel = hu->priv;
156         struct sk_buff *skb;
157
158         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159             test_bit(STATE_SUSPENDED, &intel->flags))
160                 return 0;
161
162         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163                 return -EAGAIN;
164
165         bt_dev_dbg(hu->hdev, "Suspending");
166
167         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168         if (!skb) {
169                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170                 return -ENOMEM;
171         }
172
173         skb_put_data(skb, suspend, sizeof(suspend));
174         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175
176         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177
178         /* LPM flow is a priority, enqueue packet at list head */
179         skb_queue_head(&intel->txq, skb);
180         hci_uart_tx_wakeup(hu);
181
182         intel_wait_lpm_transaction(hu);
183         /* Even in case of failure, continue and test the suspended flag */
184
185         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186
187         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188                 bt_dev_err(hu->hdev, "Device suspend error");
189                 return -EINVAL;
190         }
191
192         bt_dev_dbg(hu->hdev, "Suspended");
193
194         hci_uart_set_flow_control(hu, true);
195
196         return 0;
197 }
198
199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201         struct intel_data *intel = hu->priv;
202         struct sk_buff *skb;
203
204         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205             !test_bit(STATE_SUSPENDED, &intel->flags))
206                 return 0;
207
208         bt_dev_dbg(hu->hdev, "Resuming");
209
210         hci_uart_set_flow_control(hu, false);
211
212         skb = bt_skb_alloc(0, GFP_KERNEL);
213         if (!skb) {
214                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215                 return -ENOMEM;
216         }
217
218         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219
220         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221
222         /* LPM flow is a priority, enqueue packet at list head */
223         skb_queue_head(&intel->txq, skb);
224         hci_uart_tx_wakeup(hu);
225
226         intel_wait_lpm_transaction(hu);
227         /* Even in case of failure, continue and test the suspended flag */
228
229         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230
231         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232                 bt_dev_err(hu->hdev, "Device resume error");
233                 return -EINVAL;
234         }
235
236         bt_dev_dbg(hu->hdev, "Resumed");
237
238         return 0;
239 }
240 #endif /* CONFIG_PM */
241
242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245         struct intel_data *intel = hu->priv;
246         struct sk_buff *skb;
247
248         hci_uart_set_flow_control(hu, false);
249
250         clear_bit(STATE_SUSPENDED, &intel->flags);
251
252         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253         if (!skb) {
254                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255                 return -ENOMEM;
256         }
257
258         skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260
261         /* LPM flow is a priority, enqueue packet at list head */
262         skb_queue_head(&intel->txq, skb);
263         hci_uart_tx_wakeup(hu);
264
265         bt_dev_dbg(hu->hdev, "Resumed by controller");
266
267         return 0;
268 }
269
270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272         struct intel_device *idev = dev_id;
273
274         dev_info(&idev->pdev->dev, "hci_intel irq\n");
275
276         mutex_lock(&idev->hu_lock);
277         if (idev->hu)
278                 intel_lpm_host_wake(idev->hu);
279         mutex_unlock(&idev->hu_lock);
280
281         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282         pm_runtime_get(&idev->pdev->dev);
283         pm_runtime_mark_last_busy(&idev->pdev->dev);
284         pm_runtime_put_autosuspend(&idev->pdev->dev);
285
286         return IRQ_HANDLED;
287 }
288
289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291         struct list_head *p;
292         int err = -ENODEV;
293
294         if (!hu->tty->dev)
295                 return err;
296
297         mutex_lock(&intel_device_list_lock);
298
299         list_for_each(p, &intel_device_list) {
300                 struct intel_device *idev = list_entry(p, struct intel_device,
301                                                        list);
302
303                 /* tty device and pdev device should share the same parent
304                  * which is the UART port.
305                  */
306                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
307                         continue;
308
309                 if (!idev->reset) {
310                         err = -ENOTSUPP;
311                         break;
312                 }
313
314                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
315                         hu, dev_name(&idev->pdev->dev), powered);
316
317                 gpiod_set_value(idev->reset, powered);
318
319                 /* Provide to idev a hu reference which is used to run LPM
320                  * transactions (lpm suspend/resume) from PM callbacks.
321                  * hu needs to be protected against concurrent removing during
322                  * these PM ops.
323                  */
324                 mutex_lock(&idev->hu_lock);
325                 idev->hu = powered ? hu : NULL;
326                 mutex_unlock(&idev->hu_lock);
327
328                 if (idev->irq < 0)
329                         break;
330
331                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
332                         err = devm_request_threaded_irq(&idev->pdev->dev,
333                                                         idev->irq, NULL,
334                                                         intel_irq,
335                                                         IRQF_ONESHOT,
336                                                         "bt-host-wake", idev);
337                         if (err) {
338                                 BT_ERR("hu %p, unable to allocate irq-%d",
339                                        hu, idev->irq);
340                                 break;
341                         }
342
343                         device_wakeup_enable(&idev->pdev->dev);
344
345                         pm_runtime_set_active(&idev->pdev->dev);
346                         pm_runtime_use_autosuspend(&idev->pdev->dev);
347                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
348                                                          LPM_SUSPEND_DELAY_MS);
349                         pm_runtime_enable(&idev->pdev->dev);
350                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
351                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
352                         device_wakeup_disable(&idev->pdev->dev);
353
354                         pm_runtime_disable(&idev->pdev->dev);
355                 }
356         }
357
358         mutex_unlock(&intel_device_list_lock);
359
360         return err;
361 }
362
363 static void intel_busy_work(struct work_struct *work)
364 {
365         struct list_head *p;
366         struct intel_data *intel = container_of(work, struct intel_data,
367                                                 busy_work);
368
369         if (!intel->hu->tty->dev)
370                 return;
371
372         /* Link is busy, delay the suspend */
373         mutex_lock(&intel_device_list_lock);
374         list_for_each(p, &intel_device_list) {
375                 struct intel_device *idev = list_entry(p, struct intel_device,
376                                                        list);
377
378                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
379                         pm_runtime_get(&idev->pdev->dev);
380                         pm_runtime_mark_last_busy(&idev->pdev->dev);
381                         pm_runtime_put_autosuspend(&idev->pdev->dev);
382                         break;
383                 }
384         }
385         mutex_unlock(&intel_device_list_lock);
386 }
387
388 static int intel_open(struct hci_uart *hu)
389 {
390         struct intel_data *intel;
391
392         BT_DBG("hu %p", hu);
393
394         if (!hci_uart_has_flow_control(hu))
395                 return -EOPNOTSUPP;
396
397         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
398         if (!intel)
399                 return -ENOMEM;
400
401         skb_queue_head_init(&intel->txq);
402         INIT_WORK(&intel->busy_work, intel_busy_work);
403
404         intel->hu = hu;
405
406         hu->priv = intel;
407
408         if (!intel_set_power(hu, true))
409                 set_bit(STATE_BOOTING, &intel->flags);
410
411         return 0;
412 }
413
414 static int intel_close(struct hci_uart *hu)
415 {
416         struct intel_data *intel = hu->priv;
417
418         BT_DBG("hu %p", hu);
419
420         cancel_work_sync(&intel->busy_work);
421
422         intel_set_power(hu, false);
423
424         skb_queue_purge(&intel->txq);
425         kfree_skb(intel->rx_skb);
426         kfree(intel);
427
428         hu->priv = NULL;
429         return 0;
430 }
431
432 static int intel_flush(struct hci_uart *hu)
433 {
434         struct intel_data *intel = hu->priv;
435
436         BT_DBG("hu %p", hu);
437
438         skb_queue_purge(&intel->txq);
439
440         return 0;
441 }
442
443 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
444 {
445         struct sk_buff *skb;
446         struct hci_event_hdr *hdr;
447         struct hci_ev_cmd_complete *evt;
448
449         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
450         if (!skb)
451                 return -ENOMEM;
452
453         hdr = skb_put(skb, sizeof(*hdr));
454         hdr->evt = HCI_EV_CMD_COMPLETE;
455         hdr->plen = sizeof(*evt) + 1;
456
457         evt = skb_put(skb, sizeof(*evt));
458         evt->ncmd = 0x01;
459         evt->opcode = cpu_to_le16(opcode);
460
461         skb_put_u8(skb, 0x00);
462
463         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
464
465         return hci_recv_frame(hdev, skb);
466 }
467
468 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
469 {
470         struct intel_data *intel = hu->priv;
471         struct hci_dev *hdev = hu->hdev;
472         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
473         struct sk_buff *skb;
474         int err;
475
476         /* This can be the first command sent to the chip, check
477          * that the controller is ready.
478          */
479         err = intel_wait_booting(hu);
480
481         clear_bit(STATE_BOOTING, &intel->flags);
482
483         /* In case of timeout, try to continue anyway */
484         if (err && err != -ETIMEDOUT)
485                 return err;
486
487         bt_dev_info(hdev, "Change controller speed to %d", speed);
488
489         speed_cmd[3] = intel_convert_speed(speed);
490         if (speed_cmd[3] == 0xff) {
491                 bt_dev_err(hdev, "Unsupported speed");
492                 return -EINVAL;
493         }
494
495         /* Device will not accept speed change if Intel version has not been
496          * previously requested.
497          */
498         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
499         if (IS_ERR(skb)) {
500                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
501                            PTR_ERR(skb));
502                 return PTR_ERR(skb);
503         }
504         kfree_skb(skb);
505
506         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
507         if (!skb) {
508                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
509                 return -ENOMEM;
510         }
511
512         skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
513         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
514
515         hci_uart_set_flow_control(hu, true);
516
517         skb_queue_tail(&intel->txq, skb);
518         hci_uart_tx_wakeup(hu);
519
520         /* wait 100ms to change baudrate on controller side */
521         msleep(100);
522
523         hci_uart_set_baudrate(hu, speed);
524         hci_uart_set_flow_control(hu, false);
525
526         return 0;
527 }
528
529 static int intel_setup(struct hci_uart *hu)
530 {
531         struct intel_data *intel = hu->priv;
532         struct hci_dev *hdev = hu->hdev;
533         struct sk_buff *skb;
534         struct intel_version ver;
535         struct intel_boot_params params;
536         struct list_head *p;
537         const struct firmware *fw;
538         char fwname[64];
539         u32 boot_param;
540         ktime_t calltime, delta, rettime;
541         unsigned long long duration;
542         unsigned int init_speed, oper_speed;
543         int speed_change = 0;
544         int err;
545
546         bt_dev_dbg(hdev, "start intel_setup");
547
548         hu->hdev->set_diag = btintel_set_diag;
549         hu->hdev->set_bdaddr = btintel_set_bdaddr;
550
551         /* Set the default boot parameter to 0x0 and it is updated to
552          * SKU specific boot parameter after reading Intel_Write_Boot_Params
553          * command while downloading the firmware.
554          */
555         boot_param = 0x00000000;
556
557         calltime = ktime_get();
558
559         if (hu->init_speed)
560                 init_speed = hu->init_speed;
561         else
562                 init_speed = hu->proto->init_speed;
563
564         if (hu->oper_speed)
565                 oper_speed = hu->oper_speed;
566         else
567                 oper_speed = hu->proto->oper_speed;
568
569         if (oper_speed && init_speed && oper_speed != init_speed)
570                 speed_change = 1;
571
572         /* Check that the controller is ready */
573         err = intel_wait_booting(hu);
574
575         clear_bit(STATE_BOOTING, &intel->flags);
576
577         /* In case of timeout, try to continue anyway */
578         if (err && err != -ETIMEDOUT)
579                 return err;
580
581         set_bit(STATE_BOOTLOADER, &intel->flags);
582
583         /* Read the Intel version information to determine if the device
584          * is in bootloader mode or if it already has operational firmware
585          * loaded.
586          */
587         err = btintel_read_version(hdev, &ver);
588         if (err)
589                 return err;
590
591         /* The hardware platform number has a fixed value of 0x37 and
592          * for now only accept this single value.
593          */
594         if (ver.hw_platform != 0x37) {
595                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
596                            ver.hw_platform);
597                 return -EINVAL;
598         }
599
600         /* Check for supported iBT hardware variants of this firmware
601          * loading method.
602          *
603          * This check has been put in place to ensure correct forward
604          * compatibility options when newer hardware variants come along.
605          */
606         switch (ver.hw_variant) {
607         case 0x0b:      /* LnP */
608         case 0x0c:      /* WsP */
609         case 0x12:      /* ThP */
610                 break;
611         default:
612                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
613                            ver.hw_variant);
614                 return -EINVAL;
615         }
616
617         btintel_version_info(hdev, &ver);
618
619         /* The firmware variant determines if the device is in bootloader
620          * mode or is running operational firmware. The value 0x06 identifies
621          * the bootloader and the value 0x23 identifies the operational
622          * firmware.
623          *
624          * When the operational firmware is already present, then only
625          * the check for valid Bluetooth device address is needed. This
626          * determines if the device will be added as configured or
627          * unconfigured controller.
628          *
629          * It is not possible to use the Secure Boot Parameters in this
630          * case since that command is only available in bootloader mode.
631          */
632         if (ver.fw_variant == 0x23) {
633                 clear_bit(STATE_BOOTLOADER, &intel->flags);
634                 btintel_check_bdaddr(hdev);
635                 return 0;
636         }
637
638         /* If the device is not in bootloader mode, then the only possible
639          * choice is to return an error and abort the device initialization.
640          */
641         if (ver.fw_variant != 0x06) {
642                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
643                            ver.fw_variant);
644                 return -ENODEV;
645         }
646
647         /* Read the secure boot parameters to identify the operating
648          * details of the bootloader.
649          */
650         err = btintel_read_boot_params(hdev, &params);
651         if (err)
652                 return err;
653
654         /* It is required that every single firmware fragment is acknowledged
655          * with a command complete event. If the boot parameters indicate
656          * that this bootloader does not send them, then abort the setup.
657          */
658         if (params.limited_cce != 0x00) {
659                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
660                            params.limited_cce);
661                 return -EINVAL;
662         }
663
664         /* If the OTP has no valid Bluetooth device address, then there will
665          * also be no valid address for the operational firmware.
666          */
667         if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
668                 bt_dev_info(hdev, "No device address configured");
669                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
670         }
671
672         /* With this Intel bootloader only the hardware variant and device
673          * revision information are used to select the right firmware for SfP
674          * and WsP.
675          *
676          * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
677          *
678          * Currently the supported hardware variants are:
679          *   11 (0x0b) for iBT 3.0 (LnP/SfP)
680          *   12 (0x0c) for iBT 3.5 (WsP)
681          *
682          * For ThP/JfP and for future SKU's, the FW name varies based on HW
683          * variant, HW revision and FW revision, as these are dependent on CNVi
684          * and RF Combination.
685          *
686          *   18 (0x12) for iBT3.5 (ThP/JfP)
687          *
688          * The firmware file name for these will be
689          * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
690          *
691          */
692         switch (ver.hw_variant) {
693         case 0x0b:      /* SfP */
694         case 0x0c:      /* WsP */
695                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
696                          le16_to_cpu(ver.hw_variant),
697                          le16_to_cpu(params.dev_revid));
698                 break;
699         case 0x12:      /* ThP */
700                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
701                          le16_to_cpu(ver.hw_variant),
702                          le16_to_cpu(ver.hw_revision),
703                          le16_to_cpu(ver.fw_revision));
704                 break;
705         default:
706                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
707                            ver.hw_variant);
708                 return -EINVAL;
709         }
710
711         err = request_firmware(&fw, fwname, &hdev->dev);
712         if (err < 0) {
713                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
714                            err);
715                 return err;
716         }
717
718         bt_dev_info(hdev, "Found device firmware: %s", fwname);
719
720         /* Save the DDC file name for later */
721         switch (ver.hw_variant) {
722         case 0x0b:      /* SfP */
723         case 0x0c:      /* WsP */
724                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
725                          le16_to_cpu(ver.hw_variant),
726                          le16_to_cpu(params.dev_revid));
727                 break;
728         case 0x12:      /* ThP */
729                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
730                          le16_to_cpu(ver.hw_variant),
731                          le16_to_cpu(ver.hw_revision),
732                          le16_to_cpu(ver.fw_revision));
733                 break;
734         default:
735                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
736                            ver.hw_variant);
737                 return -EINVAL;
738         }
739
740         if (fw->size < 644) {
741                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
742                            fw->size);
743                 err = -EBADF;
744                 goto done;
745         }
746
747         set_bit(STATE_DOWNLOADING, &intel->flags);
748
749         /* Start firmware downloading and get boot parameter */
750         err = btintel_download_firmware(hdev, fw, &boot_param);
751         if (err < 0)
752                 goto done;
753
754         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
755
756         bt_dev_info(hdev, "Waiting for firmware download to complete");
757
758         /* Before switching the device into operational mode and with that
759          * booting the loaded firmware, wait for the bootloader notification
760          * that all fragments have been successfully received.
761          *
762          * When the event processing receives the notification, then the
763          * STATE_DOWNLOADING flag will be cleared.
764          *
765          * The firmware loading should not take longer than 5 seconds
766          * and thus just timeout if that happens and fail the setup
767          * of this device.
768          */
769         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
770                                   TASK_INTERRUPTIBLE,
771                                   msecs_to_jiffies(5000));
772         if (err == -EINTR) {
773                 bt_dev_err(hdev, "Firmware loading interrupted");
774                 err = -EINTR;
775                 goto done;
776         }
777
778         if (err) {
779                 bt_dev_err(hdev, "Firmware loading timeout");
780                 err = -ETIMEDOUT;
781                 goto done;
782         }
783
784         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
785                 bt_dev_err(hdev, "Firmware loading failed");
786                 err = -ENOEXEC;
787                 goto done;
788         }
789
790         rettime = ktime_get();
791         delta = ktime_sub(rettime, calltime);
792         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
793
794         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
795
796 done:
797         release_firmware(fw);
798
799         if (err < 0)
800                 return err;
801
802         /* We need to restore the default speed before Intel reset */
803         if (speed_change) {
804                 err = intel_set_baudrate(hu, init_speed);
805                 if (err)
806                         return err;
807         }
808
809         calltime = ktime_get();
810
811         set_bit(STATE_BOOTING, &intel->flags);
812
813         err = btintel_send_intel_reset(hdev, boot_param);
814         if (err)
815                 return err;
816
817         /* The bootloader will not indicate when the device is ready. This
818          * is done by the operational firmware sending bootup notification.
819          *
820          * Booting into operational firmware should not take longer than
821          * 1 second. However if that happens, then just fail the setup
822          * since something went wrong.
823          */
824         bt_dev_info(hdev, "Waiting for device to boot");
825
826         err = intel_wait_booting(hu);
827         if (err)
828                 return err;
829
830         clear_bit(STATE_BOOTING, &intel->flags);
831
832         rettime = ktime_get();
833         delta = ktime_sub(rettime, calltime);
834         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
835
836         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
837
838         /* Enable LPM if matching pdev with wakeup enabled, set TX active
839          * until further LPM TX notification.
840          */
841         mutex_lock(&intel_device_list_lock);
842         list_for_each(p, &intel_device_list) {
843                 struct intel_device *dev = list_entry(p, struct intel_device,
844                                                       list);
845                 if (!hu->tty->dev)
846                         break;
847                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
848                         if (device_may_wakeup(&dev->pdev->dev)) {
849                                 set_bit(STATE_LPM_ENABLED, &intel->flags);
850                                 set_bit(STATE_TX_ACTIVE, &intel->flags);
851                         }
852                         break;
853                 }
854         }
855         mutex_unlock(&intel_device_list_lock);
856
857         /* Ignore errors, device can work without DDC parameters */
858         btintel_load_ddc_config(hdev, fwname);
859
860         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
861         if (IS_ERR(skb))
862                 return PTR_ERR(skb);
863         kfree_skb(skb);
864
865         if (speed_change) {
866                 err = intel_set_baudrate(hu, oper_speed);
867                 if (err)
868                         return err;
869         }
870
871         bt_dev_info(hdev, "Setup complete");
872
873         clear_bit(STATE_BOOTLOADER, &intel->flags);
874
875         return 0;
876 }
877
878 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
879 {
880         struct hci_uart *hu = hci_get_drvdata(hdev);
881         struct intel_data *intel = hu->priv;
882         struct hci_event_hdr *hdr;
883
884         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
885             !test_bit(STATE_BOOTING, &intel->flags))
886                 goto recv;
887
888         hdr = (void *)skb->data;
889
890         /* When the firmware loading completes the device sends
891          * out a vendor specific event indicating the result of
892          * the firmware loading.
893          */
894         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
895             skb->data[2] == 0x06) {
896                 if (skb->data[3] != 0x00)
897                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
898
899                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
900                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
901                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
902
903         /* When switching to the operational firmware the device
904          * sends a vendor specific event indicating that the bootup
905          * completed.
906          */
907         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
908                    skb->data[2] == 0x02) {
909                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
910                         wake_up_bit(&intel->flags, STATE_BOOTING);
911         }
912 recv:
913         return hci_recv_frame(hdev, skb);
914 }
915
916 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
917 {
918         struct hci_uart *hu = hci_get_drvdata(hdev);
919         struct intel_data *intel = hu->priv;
920
921         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
922
923         if (value) {
924                 set_bit(STATE_TX_ACTIVE, &intel->flags);
925                 schedule_work(&intel->busy_work);
926         } else {
927                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
928         }
929 }
930
931 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
932 {
933         struct hci_lpm_pkt *lpm = (void *)skb->data;
934         struct hci_uart *hu = hci_get_drvdata(hdev);
935         struct intel_data *intel = hu->priv;
936
937         switch (lpm->opcode) {
938         case LPM_OP_TX_NOTIFY:
939                 if (lpm->dlen < 1) {
940                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
941                         break;
942                 }
943                 intel_recv_lpm_notify(hdev, lpm->data[0]);
944                 break;
945         case LPM_OP_SUSPEND_ACK:
946                 set_bit(STATE_SUSPENDED, &intel->flags);
947                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
948                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
949                 break;
950         case LPM_OP_RESUME_ACK:
951                 clear_bit(STATE_SUSPENDED, &intel->flags);
952                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
953                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
954                 break;
955         default:
956                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
957                 break;
958         }
959
960         kfree_skb(skb);
961
962         return 0;
963 }
964
965 #define INTEL_RECV_LPM \
966         .type = HCI_LPM_PKT, \
967         .hlen = HCI_LPM_HDR_SIZE, \
968         .loff = 1, \
969         .lsize = 1, \
970         .maxlen = HCI_LPM_MAX_SIZE
971
972 static const struct h4_recv_pkt intel_recv_pkts[] = {
973         { H4_RECV_ACL,    .recv = hci_recv_frame   },
974         { H4_RECV_SCO,    .recv = hci_recv_frame   },
975         { H4_RECV_EVENT,  .recv = intel_recv_event },
976         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
977 };
978
979 static int intel_recv(struct hci_uart *hu, const void *data, int count)
980 {
981         struct intel_data *intel = hu->priv;
982
983         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
984                 return -EUNATCH;
985
986         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
987                                     intel_recv_pkts,
988                                     ARRAY_SIZE(intel_recv_pkts));
989         if (IS_ERR(intel->rx_skb)) {
990                 int err = PTR_ERR(intel->rx_skb);
991                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
992                 intel->rx_skb = NULL;
993                 return err;
994         }
995
996         return count;
997 }
998
999 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1000 {
1001         struct intel_data *intel = hu->priv;
1002         struct list_head *p;
1003
1004         BT_DBG("hu %p skb %p", hu, skb);
1005
1006         if (!hu->tty->dev)
1007                 goto out_enqueue;
1008
1009         /* Be sure our controller is resumed and potential LPM transaction
1010          * completed before enqueuing any packet.
1011          */
1012         mutex_lock(&intel_device_list_lock);
1013         list_for_each(p, &intel_device_list) {
1014                 struct intel_device *idev = list_entry(p, struct intel_device,
1015                                                        list);
1016
1017                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1018                         pm_runtime_get_sync(&idev->pdev->dev);
1019                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1020                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1021                         break;
1022                 }
1023         }
1024         mutex_unlock(&intel_device_list_lock);
1025 out_enqueue:
1026         skb_queue_tail(&intel->txq, skb);
1027
1028         return 0;
1029 }
1030
1031 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1032 {
1033         struct intel_data *intel = hu->priv;
1034         struct sk_buff *skb;
1035
1036         skb = skb_dequeue(&intel->txq);
1037         if (!skb)
1038                 return skb;
1039
1040         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1041             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1042                 struct hci_command_hdr *cmd = (void *)skb->data;
1043                 __u16 opcode = le16_to_cpu(cmd->opcode);
1044
1045                 /* When the 0xfc01 command is issued to boot into
1046                  * the operational firmware, it will actually not
1047                  * send a command complete event. To keep the flow
1048                  * control working inject that event here.
1049                  */
1050                 if (opcode == 0xfc01)
1051                         inject_cmd_complete(hu->hdev, opcode);
1052         }
1053
1054         /* Prepend skb with frame type */
1055         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1056
1057         return skb;
1058 }
1059
1060 static const struct hci_uart_proto intel_proto = {
1061         .id             = HCI_UART_INTEL,
1062         .name           = "Intel",
1063         .manufacturer   = 2,
1064         .init_speed     = 115200,
1065         .oper_speed     = 3000000,
1066         .open           = intel_open,
1067         .close          = intel_close,
1068         .flush          = intel_flush,
1069         .setup          = intel_setup,
1070         .set_baudrate   = intel_set_baudrate,
1071         .recv           = intel_recv,
1072         .enqueue        = intel_enqueue,
1073         .dequeue        = intel_dequeue,
1074 };
1075
1076 #ifdef CONFIG_ACPI
1077 static const struct acpi_device_id intel_acpi_match[] = {
1078         { "INT33E1", 0 },
1079         { },
1080 };
1081 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1082 #endif
1083
1084 #ifdef CONFIG_PM
1085 static int intel_suspend_device(struct device *dev)
1086 {
1087         struct intel_device *idev = dev_get_drvdata(dev);
1088
1089         mutex_lock(&idev->hu_lock);
1090         if (idev->hu)
1091                 intel_lpm_suspend(idev->hu);
1092         mutex_unlock(&idev->hu_lock);
1093
1094         return 0;
1095 }
1096
1097 static int intel_resume_device(struct device *dev)
1098 {
1099         struct intel_device *idev = dev_get_drvdata(dev);
1100
1101         mutex_lock(&idev->hu_lock);
1102         if (idev->hu)
1103                 intel_lpm_resume(idev->hu);
1104         mutex_unlock(&idev->hu_lock);
1105
1106         return 0;
1107 }
1108 #endif
1109
1110 #ifdef CONFIG_PM_SLEEP
1111 static int intel_suspend(struct device *dev)
1112 {
1113         struct intel_device *idev = dev_get_drvdata(dev);
1114
1115         if (device_may_wakeup(dev))
1116                 enable_irq_wake(idev->irq);
1117
1118         return intel_suspend_device(dev);
1119 }
1120
1121 static int intel_resume(struct device *dev)
1122 {
1123         struct intel_device *idev = dev_get_drvdata(dev);
1124
1125         if (device_may_wakeup(dev))
1126                 disable_irq_wake(idev->irq);
1127
1128         return intel_resume_device(dev);
1129 }
1130 #endif
1131
1132 static const struct dev_pm_ops intel_pm_ops = {
1133         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1134         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1135 };
1136
1137 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1138 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1139
1140 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1141         { "reset-gpios", &reset_gpios, 1 },
1142         { "host-wake-gpios", &host_wake_gpios, 1 },
1143         { },
1144 };
1145
1146 static int intel_probe(struct platform_device *pdev)
1147 {
1148         struct intel_device *idev;
1149         int ret;
1150
1151         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1152         if (!idev)
1153                 return -ENOMEM;
1154
1155         mutex_init(&idev->hu_lock);
1156
1157         idev->pdev = pdev;
1158
1159         ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1160         if (ret)
1161                 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1162
1163         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1164         if (IS_ERR(idev->reset)) {
1165                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1166                 return PTR_ERR(idev->reset);
1167         }
1168
1169         idev->irq = platform_get_irq(pdev, 0);
1170         if (idev->irq < 0) {
1171                 struct gpio_desc *host_wake;
1172
1173                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1174
1175                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1176                 if (IS_ERR(host_wake)) {
1177                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1178                         goto no_irq;
1179                 }
1180
1181                 idev->irq = gpiod_to_irq(host_wake);
1182                 if (idev->irq < 0) {
1183                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1184                         goto no_irq;
1185                 }
1186         }
1187
1188         /* Only enable wake-up/irq when controller is powered */
1189         device_set_wakeup_capable(&pdev->dev, true);
1190         device_wakeup_disable(&pdev->dev);
1191
1192 no_irq:
1193         platform_set_drvdata(pdev, idev);
1194
1195         /* Place this instance on the device list */
1196         mutex_lock(&intel_device_list_lock);
1197         list_add_tail(&idev->list, &intel_device_list);
1198         mutex_unlock(&intel_device_list_lock);
1199
1200         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1201                  desc_to_gpio(idev->reset), idev->irq);
1202
1203         return 0;
1204 }
1205
1206 static int intel_remove(struct platform_device *pdev)
1207 {
1208         struct intel_device *idev = platform_get_drvdata(pdev);
1209
1210         device_wakeup_disable(&pdev->dev);
1211
1212         mutex_lock(&intel_device_list_lock);
1213         list_del(&idev->list);
1214         mutex_unlock(&intel_device_list_lock);
1215
1216         dev_info(&pdev->dev, "unregistered.\n");
1217
1218         return 0;
1219 }
1220
1221 static struct platform_driver intel_driver = {
1222         .probe = intel_probe,
1223         .remove = intel_remove,
1224         .driver = {
1225                 .name = "hci_intel",
1226                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1227                 .pm = &intel_pm_ops,
1228         },
1229 };
1230
1231 int __init intel_init(void)
1232 {
1233         platform_driver_register(&intel_driver);
1234
1235         return hci_uart_register_proto(&intel_proto);
1236 }
1237
1238 int __exit intel_deinit(void)
1239 {
1240         platform_driver_unregister(&intel_driver);
1241
1242         return hci_uart_unregister_proto(&intel_proto);
1243 }