Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / drivers / bluetooth / hci_intel.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24
25 #include "hci_uart.h"
26 #include "btintel.h"
27
28 #define STATE_BOOTLOADER        0
29 #define STATE_DOWNLOADING       1
30 #define STATE_FIRMWARE_LOADED   2
31 #define STATE_FIRMWARE_FAILED   3
32 #define STATE_BOOTING           4
33 #define STATE_LPM_ENABLED       5
34 #define STATE_TX_ACTIVE         6
35 #define STATE_SUSPENDED         7
36 #define STATE_LPM_TRANSACTION   8
37
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46
47 #define LPM_SUSPEND_DELAY_MS 1000
48
49 struct hci_lpm_pkt {
50         __u8 opcode;
51         __u8 dlen;
52         __u8 data[0];
53 } __packed;
54
55 struct intel_device {
56         struct list_head list;
57         struct platform_device *pdev;
58         struct gpio_desc *reset;
59         struct hci_uart *hu;
60         struct mutex hu_lock;
61         int irq;
62 };
63
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66
67 struct intel_data {
68         struct sk_buff *rx_skb;
69         struct sk_buff_head txq;
70         struct work_struct busy_work;
71         struct hci_uart *hu;
72         unsigned long flags;
73 };
74
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77         switch (speed) {
78         case 9600:
79                 return 0x00;
80         case 19200:
81                 return 0x01;
82         case 38400:
83                 return 0x02;
84         case 57600:
85                 return 0x03;
86         case 115200:
87                 return 0x04;
88         case 230400:
89                 return 0x05;
90         case 460800:
91                 return 0x06;
92         case 921600:
93                 return 0x07;
94         case 1843200:
95                 return 0x08;
96         case 3250000:
97                 return 0x09;
98         case 2000000:
99                 return 0x0a;
100         case 3000000:
101                 return 0x0b;
102         default:
103                 return 0xff;
104         }
105 }
106
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109         struct intel_data *intel = hu->priv;
110         int err;
111
112         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113                                   TASK_INTERRUPTIBLE,
114                                   msecs_to_jiffies(1000));
115
116         if (err == -EINTR) {
117                 bt_dev_err(hu->hdev, "Device boot interrupted");
118                 return -EINTR;
119         }
120
121         if (err) {
122                 bt_dev_err(hu->hdev, "Device boot timeout");
123                 return -ETIMEDOUT;
124         }
125
126         return err;
127 }
128
129 #ifdef CONFIG_PM
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132         struct intel_data *intel = hu->priv;
133         int err;
134
135         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136                                   TASK_INTERRUPTIBLE,
137                                   msecs_to_jiffies(1000));
138
139         if (err == -EINTR) {
140                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
141                 return -EINTR;
142         }
143
144         if (err) {
145                 bt_dev_err(hu->hdev, "LPM transaction timeout");
146                 return -ETIMEDOUT;
147         }
148
149         return err;
150 }
151
152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155         struct intel_data *intel = hu->priv;
156         struct sk_buff *skb;
157
158         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159             test_bit(STATE_SUSPENDED, &intel->flags))
160                 return 0;
161
162         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163                 return -EAGAIN;
164
165         bt_dev_dbg(hu->hdev, "Suspending");
166
167         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168         if (!skb) {
169                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170                 return -ENOMEM;
171         }
172
173         skb_put_data(skb, suspend, sizeof(suspend));
174         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175
176         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177
178         /* LPM flow is a priority, enqueue packet at list head */
179         skb_queue_head(&intel->txq, skb);
180         hci_uart_tx_wakeup(hu);
181
182         intel_wait_lpm_transaction(hu);
183         /* Even in case of failure, continue and test the suspended flag */
184
185         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186
187         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188                 bt_dev_err(hu->hdev, "Device suspend error");
189                 return -EINVAL;
190         }
191
192         bt_dev_dbg(hu->hdev, "Suspended");
193
194         hci_uart_set_flow_control(hu, true);
195
196         return 0;
197 }
198
199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201         struct intel_data *intel = hu->priv;
202         struct sk_buff *skb;
203
204         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205             !test_bit(STATE_SUSPENDED, &intel->flags))
206                 return 0;
207
208         bt_dev_dbg(hu->hdev, "Resuming");
209
210         hci_uart_set_flow_control(hu, false);
211
212         skb = bt_skb_alloc(0, GFP_KERNEL);
213         if (!skb) {
214                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215                 return -ENOMEM;
216         }
217
218         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219
220         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221
222         /* LPM flow is a priority, enqueue packet at list head */
223         skb_queue_head(&intel->txq, skb);
224         hci_uart_tx_wakeup(hu);
225
226         intel_wait_lpm_transaction(hu);
227         /* Even in case of failure, continue and test the suspended flag */
228
229         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230
231         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232                 bt_dev_err(hu->hdev, "Device resume error");
233                 return -EINVAL;
234         }
235
236         bt_dev_dbg(hu->hdev, "Resumed");
237
238         return 0;
239 }
240 #endif /* CONFIG_PM */
241
242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245         struct intel_data *intel = hu->priv;
246         struct sk_buff *skb;
247
248         hci_uart_set_flow_control(hu, false);
249
250         clear_bit(STATE_SUSPENDED, &intel->flags);
251
252         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253         if (!skb) {
254                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255                 return -ENOMEM;
256         }
257
258         skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260
261         /* LPM flow is a priority, enqueue packet at list head */
262         skb_queue_head(&intel->txq, skb);
263         hci_uart_tx_wakeup(hu);
264
265         bt_dev_dbg(hu->hdev, "Resumed by controller");
266
267         return 0;
268 }
269
270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272         struct intel_device *idev = dev_id;
273
274         dev_info(&idev->pdev->dev, "hci_intel irq\n");
275
276         mutex_lock(&idev->hu_lock);
277         if (idev->hu)
278                 intel_lpm_host_wake(idev->hu);
279         mutex_unlock(&idev->hu_lock);
280
281         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282         pm_runtime_get(&idev->pdev->dev);
283         pm_runtime_mark_last_busy(&idev->pdev->dev);
284         pm_runtime_put_autosuspend(&idev->pdev->dev);
285
286         return IRQ_HANDLED;
287 }
288
289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291         struct list_head *p;
292         int err = -ENODEV;
293
294         if (!hu->tty->dev)
295                 return err;
296
297         mutex_lock(&intel_device_list_lock);
298
299         list_for_each(p, &intel_device_list) {
300                 struct intel_device *idev = list_entry(p, struct intel_device,
301                                                        list);
302
303                 /* tty device and pdev device should share the same parent
304                  * which is the UART port.
305                  */
306                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
307                         continue;
308
309                 if (!idev->reset) {
310                         err = -ENOTSUPP;
311                         break;
312                 }
313
314                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
315                         hu, dev_name(&idev->pdev->dev), powered);
316
317                 gpiod_set_value(idev->reset, powered);
318
319                 /* Provide to idev a hu reference which is used to run LPM
320                  * transactions (lpm suspend/resume) from PM callbacks.
321                  * hu needs to be protected against concurrent removing during
322                  * these PM ops.
323                  */
324                 mutex_lock(&idev->hu_lock);
325                 idev->hu = powered ? hu : NULL;
326                 mutex_unlock(&idev->hu_lock);
327
328                 if (idev->irq < 0)
329                         break;
330
331                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
332                         err = devm_request_threaded_irq(&idev->pdev->dev,
333                                                         idev->irq, NULL,
334                                                         intel_irq,
335                                                         IRQF_ONESHOT,
336                                                         "bt-host-wake", idev);
337                         if (err) {
338                                 BT_ERR("hu %p, unable to allocate irq-%d",
339                                        hu, idev->irq);
340                                 break;
341                         }
342
343                         device_wakeup_enable(&idev->pdev->dev);
344
345                         pm_runtime_set_active(&idev->pdev->dev);
346                         pm_runtime_use_autosuspend(&idev->pdev->dev);
347                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
348                                                          LPM_SUSPEND_DELAY_MS);
349                         pm_runtime_enable(&idev->pdev->dev);
350                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
351                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
352                         device_wakeup_disable(&idev->pdev->dev);
353
354                         pm_runtime_disable(&idev->pdev->dev);
355                 }
356         }
357
358         mutex_unlock(&intel_device_list_lock);
359
360         return err;
361 }
362
363 static void intel_busy_work(struct work_struct *work)
364 {
365         struct list_head *p;
366         struct intel_data *intel = container_of(work, struct intel_data,
367                                                 busy_work);
368
369         if (!intel->hu->tty->dev)
370                 return;
371
372         /* Link is busy, delay the suspend */
373         mutex_lock(&intel_device_list_lock);
374         list_for_each(p, &intel_device_list) {
375                 struct intel_device *idev = list_entry(p, struct intel_device,
376                                                        list);
377
378                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
379                         pm_runtime_get(&idev->pdev->dev);
380                         pm_runtime_mark_last_busy(&idev->pdev->dev);
381                         pm_runtime_put_autosuspend(&idev->pdev->dev);
382                         break;
383                 }
384         }
385         mutex_unlock(&intel_device_list_lock);
386 }
387
388 static int intel_open(struct hci_uart *hu)
389 {
390         struct intel_data *intel;
391
392         BT_DBG("hu %p", hu);
393
394         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
395         if (!intel)
396                 return -ENOMEM;
397
398         skb_queue_head_init(&intel->txq);
399         INIT_WORK(&intel->busy_work, intel_busy_work);
400
401         intel->hu = hu;
402
403         hu->priv = intel;
404
405         if (!intel_set_power(hu, true))
406                 set_bit(STATE_BOOTING, &intel->flags);
407
408         return 0;
409 }
410
411 static int intel_close(struct hci_uart *hu)
412 {
413         struct intel_data *intel = hu->priv;
414
415         BT_DBG("hu %p", hu);
416
417         cancel_work_sync(&intel->busy_work);
418
419         intel_set_power(hu, false);
420
421         skb_queue_purge(&intel->txq);
422         kfree_skb(intel->rx_skb);
423         kfree(intel);
424
425         hu->priv = NULL;
426         return 0;
427 }
428
429 static int intel_flush(struct hci_uart *hu)
430 {
431         struct intel_data *intel = hu->priv;
432
433         BT_DBG("hu %p", hu);
434
435         skb_queue_purge(&intel->txq);
436
437         return 0;
438 }
439
440 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
441 {
442         struct sk_buff *skb;
443         struct hci_event_hdr *hdr;
444         struct hci_ev_cmd_complete *evt;
445
446         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
447         if (!skb)
448                 return -ENOMEM;
449
450         hdr = skb_put(skb, sizeof(*hdr));
451         hdr->evt = HCI_EV_CMD_COMPLETE;
452         hdr->plen = sizeof(*evt) + 1;
453
454         evt = skb_put(skb, sizeof(*evt));
455         evt->ncmd = 0x01;
456         evt->opcode = cpu_to_le16(opcode);
457
458         skb_put_u8(skb, 0x00);
459
460         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
461
462         return hci_recv_frame(hdev, skb);
463 }
464
465 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
466 {
467         struct intel_data *intel = hu->priv;
468         struct hci_dev *hdev = hu->hdev;
469         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
470         struct sk_buff *skb;
471         int err;
472
473         /* This can be the first command sent to the chip, check
474          * that the controller is ready.
475          */
476         err = intel_wait_booting(hu);
477
478         clear_bit(STATE_BOOTING, &intel->flags);
479
480         /* In case of timeout, try to continue anyway */
481         if (err && err != -ETIMEDOUT)
482                 return err;
483
484         bt_dev_info(hdev, "Change controller speed to %d", speed);
485
486         speed_cmd[3] = intel_convert_speed(speed);
487         if (speed_cmd[3] == 0xff) {
488                 bt_dev_err(hdev, "Unsupported speed");
489                 return -EINVAL;
490         }
491
492         /* Device will not accept speed change if Intel version has not been
493          * previously requested.
494          */
495         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
496         if (IS_ERR(skb)) {
497                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
498                            PTR_ERR(skb));
499                 return PTR_ERR(skb);
500         }
501         kfree_skb(skb);
502
503         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
504         if (!skb) {
505                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
506                 return -ENOMEM;
507         }
508
509         skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
510         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
511
512         hci_uart_set_flow_control(hu, true);
513
514         skb_queue_tail(&intel->txq, skb);
515         hci_uart_tx_wakeup(hu);
516
517         /* wait 100ms to change baudrate on controller side */
518         msleep(100);
519
520         hci_uart_set_baudrate(hu, speed);
521         hci_uart_set_flow_control(hu, false);
522
523         return 0;
524 }
525
526 static int intel_setup(struct hci_uart *hu)
527 {
528         struct intel_data *intel = hu->priv;
529         struct hci_dev *hdev = hu->hdev;
530         struct sk_buff *skb;
531         struct intel_version ver;
532         struct intel_boot_params params;
533         struct list_head *p;
534         const struct firmware *fw;
535         char fwname[64];
536         u32 boot_param;
537         ktime_t calltime, delta, rettime;
538         unsigned long long duration;
539         unsigned int init_speed, oper_speed;
540         int speed_change = 0;
541         int err;
542
543         bt_dev_dbg(hdev, "start intel_setup");
544
545         hu->hdev->set_diag = btintel_set_diag;
546         hu->hdev->set_bdaddr = btintel_set_bdaddr;
547
548         /* Set the default boot parameter to 0x0 and it is updated to
549          * SKU specific boot parameter after reading Intel_Write_Boot_Params
550          * command while downloading the firmware.
551          */
552         boot_param = 0x00000000;
553
554         calltime = ktime_get();
555
556         if (hu->init_speed)
557                 init_speed = hu->init_speed;
558         else
559                 init_speed = hu->proto->init_speed;
560
561         if (hu->oper_speed)
562                 oper_speed = hu->oper_speed;
563         else
564                 oper_speed = hu->proto->oper_speed;
565
566         if (oper_speed && init_speed && oper_speed != init_speed)
567                 speed_change = 1;
568
569         /* Check that the controller is ready */
570         err = intel_wait_booting(hu);
571
572         clear_bit(STATE_BOOTING, &intel->flags);
573
574         /* In case of timeout, try to continue anyway */
575         if (err && err != -ETIMEDOUT)
576                 return err;
577
578         set_bit(STATE_BOOTLOADER, &intel->flags);
579
580         /* Read the Intel version information to determine if the device
581          * is in bootloader mode or if it already has operational firmware
582          * loaded.
583          */
584         err = btintel_read_version(hdev, &ver);
585         if (err)
586                 return err;
587
588         /* The hardware platform number has a fixed value of 0x37 and
589          * for now only accept this single value.
590          */
591         if (ver.hw_platform != 0x37) {
592                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
593                            ver.hw_platform);
594                 return -EINVAL;
595         }
596
597         /* Check for supported iBT hardware variants of this firmware
598          * loading method.
599          *
600          * This check has been put in place to ensure correct forward
601          * compatibility options when newer hardware variants come along.
602          */
603         switch (ver.hw_variant) {
604         case 0x0b:      /* LnP */
605         case 0x0c:      /* WsP */
606         case 0x12:      /* ThP */
607                 break;
608         default:
609                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
610                            ver.hw_variant);
611                 return -EINVAL;
612         }
613
614         btintel_version_info(hdev, &ver);
615
616         /* The firmware variant determines if the device is in bootloader
617          * mode or is running operational firmware. The value 0x06 identifies
618          * the bootloader and the value 0x23 identifies the operational
619          * firmware.
620          *
621          * When the operational firmware is already present, then only
622          * the check for valid Bluetooth device address is needed. This
623          * determines if the device will be added as configured or
624          * unconfigured controller.
625          *
626          * It is not possible to use the Secure Boot Parameters in this
627          * case since that command is only available in bootloader mode.
628          */
629         if (ver.fw_variant == 0x23) {
630                 clear_bit(STATE_BOOTLOADER, &intel->flags);
631                 btintel_check_bdaddr(hdev);
632                 return 0;
633         }
634
635         /* If the device is not in bootloader mode, then the only possible
636          * choice is to return an error and abort the device initialization.
637          */
638         if (ver.fw_variant != 0x06) {
639                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
640                            ver.fw_variant);
641                 return -ENODEV;
642         }
643
644         /* Read the secure boot parameters to identify the operating
645          * details of the bootloader.
646          */
647         err = btintel_read_boot_params(hdev, &params);
648         if (err)
649                 return err;
650
651         /* It is required that every single firmware fragment is acknowledged
652          * with a command complete event. If the boot parameters indicate
653          * that this bootloader does not send them, then abort the setup.
654          */
655         if (params.limited_cce != 0x00) {
656                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
657                            params.limited_cce);
658                 return -EINVAL;
659         }
660
661         /* If the OTP has no valid Bluetooth device address, then there will
662          * also be no valid address for the operational firmware.
663          */
664         if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
665                 bt_dev_info(hdev, "No device address configured");
666                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
667         }
668
669         /* With this Intel bootloader only the hardware variant and device
670          * revision information are used to select the right firmware for SfP
671          * and WsP.
672          *
673          * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
674          *
675          * Currently the supported hardware variants are:
676          *   11 (0x0b) for iBT 3.0 (LnP/SfP)
677          *   12 (0x0c) for iBT 3.5 (WsP)
678          *
679          * For ThP/JfP and for future SKU's, the FW name varies based on HW
680          * variant, HW revision and FW revision, as these are dependent on CNVi
681          * and RF Combination.
682          *
683          *   18 (0x12) for iBT3.5 (ThP/JfP)
684          *
685          * The firmware file name for these will be
686          * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
687          *
688          */
689         switch (ver.hw_variant) {
690         case 0x0b:      /* SfP */
691         case 0x0c:      /* WsP */
692                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
693                          le16_to_cpu(ver.hw_variant),
694                          le16_to_cpu(params.dev_revid));
695                 break;
696         case 0x12:      /* ThP */
697                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
698                          le16_to_cpu(ver.hw_variant),
699                          le16_to_cpu(ver.hw_revision),
700                          le16_to_cpu(ver.fw_revision));
701                 break;
702         default:
703                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
704                            ver.hw_variant);
705                 return -EINVAL;
706         }
707
708         err = request_firmware(&fw, fwname, &hdev->dev);
709         if (err < 0) {
710                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
711                            err);
712                 return err;
713         }
714
715         bt_dev_info(hdev, "Found device firmware: %s", fwname);
716
717         /* Save the DDC file name for later */
718         switch (ver.hw_variant) {
719         case 0x0b:      /* SfP */
720         case 0x0c:      /* WsP */
721                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
722                          le16_to_cpu(ver.hw_variant),
723                          le16_to_cpu(params.dev_revid));
724                 break;
725         case 0x12:      /* ThP */
726                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
727                          le16_to_cpu(ver.hw_variant),
728                          le16_to_cpu(ver.hw_revision),
729                          le16_to_cpu(ver.fw_revision));
730                 break;
731         default:
732                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
733                            ver.hw_variant);
734                 return -EINVAL;
735         }
736
737         if (fw->size < 644) {
738                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
739                            fw->size);
740                 err = -EBADF;
741                 goto done;
742         }
743
744         set_bit(STATE_DOWNLOADING, &intel->flags);
745
746         /* Start firmware downloading and get boot parameter */
747         err = btintel_download_firmware(hdev, fw, &boot_param);
748         if (err < 0)
749                 goto done;
750
751         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
752
753         bt_dev_info(hdev, "Waiting for firmware download to complete");
754
755         /* Before switching the device into operational mode and with that
756          * booting the loaded firmware, wait for the bootloader notification
757          * that all fragments have been successfully received.
758          *
759          * When the event processing receives the notification, then the
760          * STATE_DOWNLOADING flag will be cleared.
761          *
762          * The firmware loading should not take longer than 5 seconds
763          * and thus just timeout if that happens and fail the setup
764          * of this device.
765          */
766         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
767                                   TASK_INTERRUPTIBLE,
768                                   msecs_to_jiffies(5000));
769         if (err == -EINTR) {
770                 bt_dev_err(hdev, "Firmware loading interrupted");
771                 err = -EINTR;
772                 goto done;
773         }
774
775         if (err) {
776                 bt_dev_err(hdev, "Firmware loading timeout");
777                 err = -ETIMEDOUT;
778                 goto done;
779         }
780
781         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
782                 bt_dev_err(hdev, "Firmware loading failed");
783                 err = -ENOEXEC;
784                 goto done;
785         }
786
787         rettime = ktime_get();
788         delta = ktime_sub(rettime, calltime);
789         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
790
791         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
792
793 done:
794         release_firmware(fw);
795
796         if (err < 0)
797                 return err;
798
799         /* We need to restore the default speed before Intel reset */
800         if (speed_change) {
801                 err = intel_set_baudrate(hu, init_speed);
802                 if (err)
803                         return err;
804         }
805
806         calltime = ktime_get();
807
808         set_bit(STATE_BOOTING, &intel->flags);
809
810         err = btintel_send_intel_reset(hdev, boot_param);
811         if (err)
812                 return err;
813
814         /* The bootloader will not indicate when the device is ready. This
815          * is done by the operational firmware sending bootup notification.
816          *
817          * Booting into operational firmware should not take longer than
818          * 1 second. However if that happens, then just fail the setup
819          * since something went wrong.
820          */
821         bt_dev_info(hdev, "Waiting for device to boot");
822
823         err = intel_wait_booting(hu);
824         if (err)
825                 return err;
826
827         clear_bit(STATE_BOOTING, &intel->flags);
828
829         rettime = ktime_get();
830         delta = ktime_sub(rettime, calltime);
831         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
832
833         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
834
835         /* Enable LPM if matching pdev with wakeup enabled, set TX active
836          * until further LPM TX notification.
837          */
838         mutex_lock(&intel_device_list_lock);
839         list_for_each(p, &intel_device_list) {
840                 struct intel_device *dev = list_entry(p, struct intel_device,
841                                                       list);
842                 if (!hu->tty->dev)
843                         break;
844                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
845                         if (device_may_wakeup(&dev->pdev->dev)) {
846                                 set_bit(STATE_LPM_ENABLED, &intel->flags);
847                                 set_bit(STATE_TX_ACTIVE, &intel->flags);
848                         }
849                         break;
850                 }
851         }
852         mutex_unlock(&intel_device_list_lock);
853
854         /* Ignore errors, device can work without DDC parameters */
855         btintel_load_ddc_config(hdev, fwname);
856
857         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
858         if (IS_ERR(skb))
859                 return PTR_ERR(skb);
860         kfree_skb(skb);
861
862         if (speed_change) {
863                 err = intel_set_baudrate(hu, oper_speed);
864                 if (err)
865                         return err;
866         }
867
868         bt_dev_info(hdev, "Setup complete");
869
870         clear_bit(STATE_BOOTLOADER, &intel->flags);
871
872         return 0;
873 }
874
875 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
876 {
877         struct hci_uart *hu = hci_get_drvdata(hdev);
878         struct intel_data *intel = hu->priv;
879         struct hci_event_hdr *hdr;
880
881         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
882             !test_bit(STATE_BOOTING, &intel->flags))
883                 goto recv;
884
885         hdr = (void *)skb->data;
886
887         /* When the firmware loading completes the device sends
888          * out a vendor specific event indicating the result of
889          * the firmware loading.
890          */
891         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
892             skb->data[2] == 0x06) {
893                 if (skb->data[3] != 0x00)
894                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
895
896                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
897                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
898                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
899
900         /* When switching to the operational firmware the device
901          * sends a vendor specific event indicating that the bootup
902          * completed.
903          */
904         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
905                    skb->data[2] == 0x02) {
906                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
907                         wake_up_bit(&intel->flags, STATE_BOOTING);
908         }
909 recv:
910         return hci_recv_frame(hdev, skb);
911 }
912
913 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
914 {
915         struct hci_uart *hu = hci_get_drvdata(hdev);
916         struct intel_data *intel = hu->priv;
917
918         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
919
920         if (value) {
921                 set_bit(STATE_TX_ACTIVE, &intel->flags);
922                 schedule_work(&intel->busy_work);
923         } else {
924                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
925         }
926 }
927
928 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
929 {
930         struct hci_lpm_pkt *lpm = (void *)skb->data;
931         struct hci_uart *hu = hci_get_drvdata(hdev);
932         struct intel_data *intel = hu->priv;
933
934         switch (lpm->opcode) {
935         case LPM_OP_TX_NOTIFY:
936                 if (lpm->dlen < 1) {
937                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
938                         break;
939                 }
940                 intel_recv_lpm_notify(hdev, lpm->data[0]);
941                 break;
942         case LPM_OP_SUSPEND_ACK:
943                 set_bit(STATE_SUSPENDED, &intel->flags);
944                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
945                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
946                 break;
947         case LPM_OP_RESUME_ACK:
948                 clear_bit(STATE_SUSPENDED, &intel->flags);
949                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
950                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
951                 break;
952         default:
953                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
954                 break;
955         }
956
957         kfree_skb(skb);
958
959         return 0;
960 }
961
962 #define INTEL_RECV_LPM \
963         .type = HCI_LPM_PKT, \
964         .hlen = HCI_LPM_HDR_SIZE, \
965         .loff = 1, \
966         .lsize = 1, \
967         .maxlen = HCI_LPM_MAX_SIZE
968
969 static const struct h4_recv_pkt intel_recv_pkts[] = {
970         { H4_RECV_ACL,    .recv = hci_recv_frame   },
971         { H4_RECV_SCO,    .recv = hci_recv_frame   },
972         { H4_RECV_EVENT,  .recv = intel_recv_event },
973         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
974 };
975
976 static int intel_recv(struct hci_uart *hu, const void *data, int count)
977 {
978         struct intel_data *intel = hu->priv;
979
980         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
981                 return -EUNATCH;
982
983         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
984                                     intel_recv_pkts,
985                                     ARRAY_SIZE(intel_recv_pkts));
986         if (IS_ERR(intel->rx_skb)) {
987                 int err = PTR_ERR(intel->rx_skb);
988                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
989                 intel->rx_skb = NULL;
990                 return err;
991         }
992
993         return count;
994 }
995
996 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
997 {
998         struct intel_data *intel = hu->priv;
999         struct list_head *p;
1000
1001         BT_DBG("hu %p skb %p", hu, skb);
1002
1003         if (!hu->tty->dev)
1004                 goto out_enqueue;
1005
1006         /* Be sure our controller is resumed and potential LPM transaction
1007          * completed before enqueuing any packet.
1008          */
1009         mutex_lock(&intel_device_list_lock);
1010         list_for_each(p, &intel_device_list) {
1011                 struct intel_device *idev = list_entry(p, struct intel_device,
1012                                                        list);
1013
1014                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1015                         pm_runtime_get_sync(&idev->pdev->dev);
1016                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1017                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1018                         break;
1019                 }
1020         }
1021         mutex_unlock(&intel_device_list_lock);
1022 out_enqueue:
1023         skb_queue_tail(&intel->txq, skb);
1024
1025         return 0;
1026 }
1027
1028 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1029 {
1030         struct intel_data *intel = hu->priv;
1031         struct sk_buff *skb;
1032
1033         skb = skb_dequeue(&intel->txq);
1034         if (!skb)
1035                 return skb;
1036
1037         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1038             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1039                 struct hci_command_hdr *cmd = (void *)skb->data;
1040                 __u16 opcode = le16_to_cpu(cmd->opcode);
1041
1042                 /* When the 0xfc01 command is issued to boot into
1043                  * the operational firmware, it will actually not
1044                  * send a command complete event. To keep the flow
1045                  * control working inject that event here.
1046                  */
1047                 if (opcode == 0xfc01)
1048                         inject_cmd_complete(hu->hdev, opcode);
1049         }
1050
1051         /* Prepend skb with frame type */
1052         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1053
1054         return skb;
1055 }
1056
1057 static const struct hci_uart_proto intel_proto = {
1058         .id             = HCI_UART_INTEL,
1059         .name           = "Intel",
1060         .manufacturer   = 2,
1061         .init_speed     = 115200,
1062         .oper_speed     = 3000000,
1063         .open           = intel_open,
1064         .close          = intel_close,
1065         .flush          = intel_flush,
1066         .setup          = intel_setup,
1067         .set_baudrate   = intel_set_baudrate,
1068         .recv           = intel_recv,
1069         .enqueue        = intel_enqueue,
1070         .dequeue        = intel_dequeue,
1071 };
1072
1073 #ifdef CONFIG_ACPI
1074 static const struct acpi_device_id intel_acpi_match[] = {
1075         { "INT33E1", 0 },
1076         { },
1077 };
1078 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1079 #endif
1080
1081 #ifdef CONFIG_PM
1082 static int intel_suspend_device(struct device *dev)
1083 {
1084         struct intel_device *idev = dev_get_drvdata(dev);
1085
1086         mutex_lock(&idev->hu_lock);
1087         if (idev->hu)
1088                 intel_lpm_suspend(idev->hu);
1089         mutex_unlock(&idev->hu_lock);
1090
1091         return 0;
1092 }
1093
1094 static int intel_resume_device(struct device *dev)
1095 {
1096         struct intel_device *idev = dev_get_drvdata(dev);
1097
1098         mutex_lock(&idev->hu_lock);
1099         if (idev->hu)
1100                 intel_lpm_resume(idev->hu);
1101         mutex_unlock(&idev->hu_lock);
1102
1103         return 0;
1104 }
1105 #endif
1106
1107 #ifdef CONFIG_PM_SLEEP
1108 static int intel_suspend(struct device *dev)
1109 {
1110         struct intel_device *idev = dev_get_drvdata(dev);
1111
1112         if (device_may_wakeup(dev))
1113                 enable_irq_wake(idev->irq);
1114
1115         return intel_suspend_device(dev);
1116 }
1117
1118 static int intel_resume(struct device *dev)
1119 {
1120         struct intel_device *idev = dev_get_drvdata(dev);
1121
1122         if (device_may_wakeup(dev))
1123                 disable_irq_wake(idev->irq);
1124
1125         return intel_resume_device(dev);
1126 }
1127 #endif
1128
1129 static const struct dev_pm_ops intel_pm_ops = {
1130         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1131         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1132 };
1133
1134 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1135 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1136
1137 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1138         { "reset-gpios", &reset_gpios, 1 },
1139         { "host-wake-gpios", &host_wake_gpios, 1 },
1140         { },
1141 };
1142
1143 static int intel_probe(struct platform_device *pdev)
1144 {
1145         struct intel_device *idev;
1146         int ret;
1147
1148         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1149         if (!idev)
1150                 return -ENOMEM;
1151
1152         mutex_init(&idev->hu_lock);
1153
1154         idev->pdev = pdev;
1155
1156         ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1157         if (ret)
1158                 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1159
1160         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1161         if (IS_ERR(idev->reset)) {
1162                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1163                 return PTR_ERR(idev->reset);
1164         }
1165
1166         idev->irq = platform_get_irq(pdev, 0);
1167         if (idev->irq < 0) {
1168                 struct gpio_desc *host_wake;
1169
1170                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1171
1172                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1173                 if (IS_ERR(host_wake)) {
1174                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1175                         goto no_irq;
1176                 }
1177
1178                 idev->irq = gpiod_to_irq(host_wake);
1179                 if (idev->irq < 0) {
1180                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1181                         goto no_irq;
1182                 }
1183         }
1184
1185         /* Only enable wake-up/irq when controller is powered */
1186         device_set_wakeup_capable(&pdev->dev, true);
1187         device_wakeup_disable(&pdev->dev);
1188
1189 no_irq:
1190         platform_set_drvdata(pdev, idev);
1191
1192         /* Place this instance on the device list */
1193         mutex_lock(&intel_device_list_lock);
1194         list_add_tail(&idev->list, &intel_device_list);
1195         mutex_unlock(&intel_device_list_lock);
1196
1197         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1198                  desc_to_gpio(idev->reset), idev->irq);
1199
1200         return 0;
1201 }
1202
1203 static int intel_remove(struct platform_device *pdev)
1204 {
1205         struct intel_device *idev = platform_get_drvdata(pdev);
1206
1207         device_wakeup_disable(&pdev->dev);
1208
1209         mutex_lock(&intel_device_list_lock);
1210         list_del(&idev->list);
1211         mutex_unlock(&intel_device_list_lock);
1212
1213         dev_info(&pdev->dev, "unregistered.\n");
1214
1215         return 0;
1216 }
1217
1218 static struct platform_driver intel_driver = {
1219         .probe = intel_probe,
1220         .remove = intel_remove,
1221         .driver = {
1222                 .name = "hci_intel",
1223                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1224                 .pm = &intel_pm_ops,
1225         },
1226 };
1227
1228 int __init intel_init(void)
1229 {
1230         platform_driver_register(&intel_driver);
1231
1232         return hci_uart_register_proto(&intel_proto);
1233 }
1234
1235 int __exit intel_deinit(void)
1236 {
1237         platform_driver_unregister(&intel_driver);
1238
1239         return hci_uart_unregister_proto(&intel_proto);
1240 }