Merge tag 'v4.18-rc6' into for-4.19/block2
[linux-2.6-microblaze.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36
37 #include "zram_drv.h"
38
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42
43 static int zram_major;
44 static const char *default_compressor = "lzo";
45
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53
54 static void zram_free_page(struct zram *zram, size_t index);
55
56 static void zram_slot_lock(struct zram *zram, u32 index)
57 {
58         bit_spin_lock(ZRAM_LOCK, &zram->table[index].value);
59 }
60
61 static void zram_slot_unlock(struct zram *zram, u32 index)
62 {
63         bit_spin_unlock(ZRAM_LOCK, &zram->table[index].value);
64 }
65
66 static inline bool init_done(struct zram *zram)
67 {
68         return zram->disksize;
69 }
70
71 static inline bool zram_allocated(struct zram *zram, u32 index)
72 {
73
74         return (zram->table[index].value >> (ZRAM_FLAG_SHIFT + 1)) ||
75                                         zram->table[index].handle;
76 }
77
78 static inline struct zram *dev_to_zram(struct device *dev)
79 {
80         return (struct zram *)dev_to_disk(dev)->private_data;
81 }
82
83 static unsigned long zram_get_handle(struct zram *zram, u32 index)
84 {
85         return zram->table[index].handle;
86 }
87
88 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
89 {
90         zram->table[index].handle = handle;
91 }
92
93 /* flag operations require table entry bit_spin_lock() being held */
94 static bool zram_test_flag(struct zram *zram, u32 index,
95                         enum zram_pageflags flag)
96 {
97         return zram->table[index].value & BIT(flag);
98 }
99
100 static void zram_set_flag(struct zram *zram, u32 index,
101                         enum zram_pageflags flag)
102 {
103         zram->table[index].value |= BIT(flag);
104 }
105
106 static void zram_clear_flag(struct zram *zram, u32 index,
107                         enum zram_pageflags flag)
108 {
109         zram->table[index].value &= ~BIT(flag);
110 }
111
112 static inline void zram_set_element(struct zram *zram, u32 index,
113                         unsigned long element)
114 {
115         zram->table[index].element = element;
116 }
117
118 static unsigned long zram_get_element(struct zram *zram, u32 index)
119 {
120         return zram->table[index].element;
121 }
122
123 static size_t zram_get_obj_size(struct zram *zram, u32 index)
124 {
125         return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
126 }
127
128 static void zram_set_obj_size(struct zram *zram,
129                                         u32 index, size_t size)
130 {
131         unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
132
133         zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
134 }
135
136 #if PAGE_SIZE != 4096
137 static inline bool is_partial_io(struct bio_vec *bvec)
138 {
139         return bvec->bv_len != PAGE_SIZE;
140 }
141 #else
142 static inline bool is_partial_io(struct bio_vec *bvec)
143 {
144         return false;
145 }
146 #endif
147
148 /*
149  * Check if request is within bounds and aligned on zram logical blocks.
150  */
151 static inline bool valid_io_request(struct zram *zram,
152                 sector_t start, unsigned int size)
153 {
154         u64 end, bound;
155
156         /* unaligned request */
157         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
158                 return false;
159         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
160                 return false;
161
162         end = start + (size >> SECTOR_SHIFT);
163         bound = zram->disksize >> SECTOR_SHIFT;
164         /* out of range range */
165         if (unlikely(start >= bound || end > bound || start > end))
166                 return false;
167
168         /* I/O request is valid */
169         return true;
170 }
171
172 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
173 {
174         *index  += (*offset + bvec->bv_len) / PAGE_SIZE;
175         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
176 }
177
178 static inline void update_used_max(struct zram *zram,
179                                         const unsigned long pages)
180 {
181         unsigned long old_max, cur_max;
182
183         old_max = atomic_long_read(&zram->stats.max_used_pages);
184
185         do {
186                 cur_max = old_max;
187                 if (pages > cur_max)
188                         old_max = atomic_long_cmpxchg(
189                                 &zram->stats.max_used_pages, cur_max, pages);
190         } while (old_max != cur_max);
191 }
192
193 static inline void zram_fill_page(void *ptr, unsigned long len,
194                                         unsigned long value)
195 {
196         WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
197         memset_l(ptr, value, len / sizeof(unsigned long));
198 }
199
200 static bool page_same_filled(void *ptr, unsigned long *element)
201 {
202         unsigned int pos;
203         unsigned long *page;
204         unsigned long val;
205
206         page = (unsigned long *)ptr;
207         val = page[0];
208
209         for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
210                 if (val != page[pos])
211                         return false;
212         }
213
214         *element = val;
215
216         return true;
217 }
218
219 static ssize_t initstate_show(struct device *dev,
220                 struct device_attribute *attr, char *buf)
221 {
222         u32 val;
223         struct zram *zram = dev_to_zram(dev);
224
225         down_read(&zram->init_lock);
226         val = init_done(zram);
227         up_read(&zram->init_lock);
228
229         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
230 }
231
232 static ssize_t disksize_show(struct device *dev,
233                 struct device_attribute *attr, char *buf)
234 {
235         struct zram *zram = dev_to_zram(dev);
236
237         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
238 }
239
240 static ssize_t mem_limit_store(struct device *dev,
241                 struct device_attribute *attr, const char *buf, size_t len)
242 {
243         u64 limit;
244         char *tmp;
245         struct zram *zram = dev_to_zram(dev);
246
247         limit = memparse(buf, &tmp);
248         if (buf == tmp) /* no chars parsed, invalid input */
249                 return -EINVAL;
250
251         down_write(&zram->init_lock);
252         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
253         up_write(&zram->init_lock);
254
255         return len;
256 }
257
258 static ssize_t mem_used_max_store(struct device *dev,
259                 struct device_attribute *attr, const char *buf, size_t len)
260 {
261         int err;
262         unsigned long val;
263         struct zram *zram = dev_to_zram(dev);
264
265         err = kstrtoul(buf, 10, &val);
266         if (err || val != 0)
267                 return -EINVAL;
268
269         down_read(&zram->init_lock);
270         if (init_done(zram)) {
271                 atomic_long_set(&zram->stats.max_used_pages,
272                                 zs_get_total_pages(zram->mem_pool));
273         }
274         up_read(&zram->init_lock);
275
276         return len;
277 }
278
279 #ifdef CONFIG_ZRAM_WRITEBACK
280 static bool zram_wb_enabled(struct zram *zram)
281 {
282         return zram->backing_dev;
283 }
284
285 static void reset_bdev(struct zram *zram)
286 {
287         struct block_device *bdev;
288
289         if (!zram_wb_enabled(zram))
290                 return;
291
292         bdev = zram->bdev;
293         if (zram->old_block_size)
294                 set_blocksize(bdev, zram->old_block_size);
295         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
296         /* hope filp_close flush all of IO */
297         filp_close(zram->backing_dev, NULL);
298         zram->backing_dev = NULL;
299         zram->old_block_size = 0;
300         zram->bdev = NULL;
301
302         kvfree(zram->bitmap);
303         zram->bitmap = NULL;
304 }
305
306 static ssize_t backing_dev_show(struct device *dev,
307                 struct device_attribute *attr, char *buf)
308 {
309         struct zram *zram = dev_to_zram(dev);
310         struct file *file = zram->backing_dev;
311         char *p;
312         ssize_t ret;
313
314         down_read(&zram->init_lock);
315         if (!zram_wb_enabled(zram)) {
316                 memcpy(buf, "none\n", 5);
317                 up_read(&zram->init_lock);
318                 return 5;
319         }
320
321         p = file_path(file, buf, PAGE_SIZE - 1);
322         if (IS_ERR(p)) {
323                 ret = PTR_ERR(p);
324                 goto out;
325         }
326
327         ret = strlen(p);
328         memmove(buf, p, ret);
329         buf[ret++] = '\n';
330 out:
331         up_read(&zram->init_lock);
332         return ret;
333 }
334
335 static ssize_t backing_dev_store(struct device *dev,
336                 struct device_attribute *attr, const char *buf, size_t len)
337 {
338         char *file_name;
339         struct file *backing_dev = NULL;
340         struct inode *inode;
341         struct address_space *mapping;
342         unsigned int bitmap_sz, old_block_size = 0;
343         unsigned long nr_pages, *bitmap = NULL;
344         struct block_device *bdev = NULL;
345         int err;
346         struct zram *zram = dev_to_zram(dev);
347
348         file_name = kmalloc(PATH_MAX, GFP_KERNEL);
349         if (!file_name)
350                 return -ENOMEM;
351
352         down_write(&zram->init_lock);
353         if (init_done(zram)) {
354                 pr_info("Can't setup backing device for initialized device\n");
355                 err = -EBUSY;
356                 goto out;
357         }
358
359         strlcpy(file_name, buf, len);
360
361         backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
362         if (IS_ERR(backing_dev)) {
363                 err = PTR_ERR(backing_dev);
364                 backing_dev = NULL;
365                 goto out;
366         }
367
368         mapping = backing_dev->f_mapping;
369         inode = mapping->host;
370
371         /* Support only block device in this moment */
372         if (!S_ISBLK(inode->i_mode)) {
373                 err = -ENOTBLK;
374                 goto out;
375         }
376
377         bdev = bdgrab(I_BDEV(inode));
378         err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
379         if (err < 0)
380                 goto out;
381
382         nr_pages = i_size_read(inode) >> PAGE_SHIFT;
383         bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
384         bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
385         if (!bitmap) {
386                 err = -ENOMEM;
387                 goto out;
388         }
389
390         old_block_size = block_size(bdev);
391         err = set_blocksize(bdev, PAGE_SIZE);
392         if (err)
393                 goto out;
394
395         reset_bdev(zram);
396         spin_lock_init(&zram->bitmap_lock);
397
398         zram->old_block_size = old_block_size;
399         zram->bdev = bdev;
400         zram->backing_dev = backing_dev;
401         zram->bitmap = bitmap;
402         zram->nr_pages = nr_pages;
403         up_write(&zram->init_lock);
404
405         pr_info("setup backing device %s\n", file_name);
406         kfree(file_name);
407
408         return len;
409 out:
410         if (bitmap)
411                 kvfree(bitmap);
412
413         if (bdev)
414                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
415
416         if (backing_dev)
417                 filp_close(backing_dev, NULL);
418
419         up_write(&zram->init_lock);
420
421         kfree(file_name);
422
423         return err;
424 }
425
426 static unsigned long get_entry_bdev(struct zram *zram)
427 {
428         unsigned long entry;
429
430         spin_lock(&zram->bitmap_lock);
431         /* skip 0 bit to confuse zram.handle = 0 */
432         entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
433         if (entry == zram->nr_pages) {
434                 spin_unlock(&zram->bitmap_lock);
435                 return 0;
436         }
437
438         set_bit(entry, zram->bitmap);
439         spin_unlock(&zram->bitmap_lock);
440
441         return entry;
442 }
443
444 static void put_entry_bdev(struct zram *zram, unsigned long entry)
445 {
446         int was_set;
447
448         spin_lock(&zram->bitmap_lock);
449         was_set = test_and_clear_bit(entry, zram->bitmap);
450         spin_unlock(&zram->bitmap_lock);
451         WARN_ON_ONCE(!was_set);
452 }
453
454 static void zram_page_end_io(struct bio *bio)
455 {
456         struct page *page = bio_first_page_all(bio);
457
458         page_endio(page, op_is_write(bio_op(bio)),
459                         blk_status_to_errno(bio->bi_status));
460         bio_put(bio);
461 }
462
463 /*
464  * Returns 1 if the submission is successful.
465  */
466 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
467                         unsigned long entry, struct bio *parent)
468 {
469         struct bio *bio;
470
471         bio = bio_alloc(GFP_ATOMIC, 1);
472         if (!bio)
473                 return -ENOMEM;
474
475         bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
476         bio_set_dev(bio, zram->bdev);
477         if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
478                 bio_put(bio);
479                 return -EIO;
480         }
481
482         if (!parent) {
483                 bio->bi_opf = REQ_OP_READ;
484                 bio->bi_end_io = zram_page_end_io;
485         } else {
486                 bio->bi_opf = parent->bi_opf;
487                 bio_chain(bio, parent);
488         }
489
490         submit_bio(bio);
491         return 1;
492 }
493
494 struct zram_work {
495         struct work_struct work;
496         struct zram *zram;
497         unsigned long entry;
498         struct bio *bio;
499 };
500
501 #if PAGE_SIZE != 4096
502 static void zram_sync_read(struct work_struct *work)
503 {
504         struct bio_vec bvec;
505         struct zram_work *zw = container_of(work, struct zram_work, work);
506         struct zram *zram = zw->zram;
507         unsigned long entry = zw->entry;
508         struct bio *bio = zw->bio;
509
510         read_from_bdev_async(zram, &bvec, entry, bio);
511 }
512
513 /*
514  * Block layer want one ->make_request_fn to be active at a time
515  * so if we use chained IO with parent IO in same context,
516  * it's a deadlock. To avoid, it, it uses worker thread context.
517  */
518 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
519                                 unsigned long entry, struct bio *bio)
520 {
521         struct zram_work work;
522
523         work.zram = zram;
524         work.entry = entry;
525         work.bio = bio;
526
527         INIT_WORK_ONSTACK(&work.work, zram_sync_read);
528         queue_work(system_unbound_wq, &work.work);
529         flush_work(&work.work);
530         destroy_work_on_stack(&work.work);
531
532         return 1;
533 }
534 #else
535 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
536                                 unsigned long entry, struct bio *bio)
537 {
538         WARN_ON(1);
539         return -EIO;
540 }
541 #endif
542
543 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
544                         unsigned long entry, struct bio *parent, bool sync)
545 {
546         if (sync)
547                 return read_from_bdev_sync(zram, bvec, entry, parent);
548         else
549                 return read_from_bdev_async(zram, bvec, entry, parent);
550 }
551
552 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
553                                         u32 index, struct bio *parent,
554                                         unsigned long *pentry)
555 {
556         struct bio *bio;
557         unsigned long entry;
558
559         bio = bio_alloc(GFP_ATOMIC, 1);
560         if (!bio)
561                 return -ENOMEM;
562
563         entry = get_entry_bdev(zram);
564         if (!entry) {
565                 bio_put(bio);
566                 return -ENOSPC;
567         }
568
569         bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
570         bio_set_dev(bio, zram->bdev);
571         if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
572                                         bvec->bv_offset)) {
573                 bio_put(bio);
574                 put_entry_bdev(zram, entry);
575                 return -EIO;
576         }
577
578         if (!parent) {
579                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
580                 bio->bi_end_io = zram_page_end_io;
581         } else {
582                 bio->bi_opf = parent->bi_opf;
583                 bio_chain(bio, parent);
584         }
585
586         submit_bio(bio);
587         *pentry = entry;
588
589         return 0;
590 }
591
592 static void zram_wb_clear(struct zram *zram, u32 index)
593 {
594         unsigned long entry;
595
596         zram_clear_flag(zram, index, ZRAM_WB);
597         entry = zram_get_element(zram, index);
598         zram_set_element(zram, index, 0);
599         put_entry_bdev(zram, entry);
600 }
601
602 #else
603 static bool zram_wb_enabled(struct zram *zram) { return false; }
604 static inline void reset_bdev(struct zram *zram) {};
605 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
606                                         u32 index, struct bio *parent,
607                                         unsigned long *pentry)
608
609 {
610         return -EIO;
611 }
612
613 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
614                         unsigned long entry, struct bio *parent, bool sync)
615 {
616         return -EIO;
617 }
618 static void zram_wb_clear(struct zram *zram, u32 index) {}
619 #endif
620
621 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
622
623 static struct dentry *zram_debugfs_root;
624
625 static void zram_debugfs_create(void)
626 {
627         zram_debugfs_root = debugfs_create_dir("zram", NULL);
628 }
629
630 static void zram_debugfs_destroy(void)
631 {
632         debugfs_remove_recursive(zram_debugfs_root);
633 }
634
635 static void zram_accessed(struct zram *zram, u32 index)
636 {
637         zram->table[index].ac_time = ktime_get_boottime();
638 }
639
640 static void zram_reset_access(struct zram *zram, u32 index)
641 {
642         zram->table[index].ac_time = 0;
643 }
644
645 static ssize_t read_block_state(struct file *file, char __user *buf,
646                                 size_t count, loff_t *ppos)
647 {
648         char *kbuf;
649         ssize_t index, written = 0;
650         struct zram *zram = file->private_data;
651         unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
652         struct timespec64 ts;
653
654         kbuf = kvmalloc(count, GFP_KERNEL);
655         if (!kbuf)
656                 return -ENOMEM;
657
658         down_read(&zram->init_lock);
659         if (!init_done(zram)) {
660                 up_read(&zram->init_lock);
661                 kvfree(kbuf);
662                 return -EINVAL;
663         }
664
665         for (index = *ppos; index < nr_pages; index++) {
666                 int copied;
667
668                 zram_slot_lock(zram, index);
669                 if (!zram_allocated(zram, index))
670                         goto next;
671
672                 ts = ktime_to_timespec64(zram->table[index].ac_time);
673                 copied = snprintf(kbuf + written, count,
674                         "%12zd %12lld.%06lu %c%c%c\n",
675                         index, (s64)ts.tv_sec,
676                         ts.tv_nsec / NSEC_PER_USEC,
677                         zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
678                         zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
679                         zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.');
680
681                 if (count < copied) {
682                         zram_slot_unlock(zram, index);
683                         break;
684                 }
685                 written += copied;
686                 count -= copied;
687 next:
688                 zram_slot_unlock(zram, index);
689                 *ppos += 1;
690         }
691
692         up_read(&zram->init_lock);
693         if (copy_to_user(buf, kbuf, written))
694                 written = -EFAULT;
695         kvfree(kbuf);
696
697         return written;
698 }
699
700 static const struct file_operations proc_zram_block_state_op = {
701         .open = simple_open,
702         .read = read_block_state,
703         .llseek = default_llseek,
704 };
705
706 static void zram_debugfs_register(struct zram *zram)
707 {
708         if (!zram_debugfs_root)
709                 return;
710
711         zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
712                                                 zram_debugfs_root);
713         debugfs_create_file("block_state", 0400, zram->debugfs_dir,
714                                 zram, &proc_zram_block_state_op);
715 }
716
717 static void zram_debugfs_unregister(struct zram *zram)
718 {
719         debugfs_remove_recursive(zram->debugfs_dir);
720 }
721 #else
722 static void zram_debugfs_create(void) {};
723 static void zram_debugfs_destroy(void) {};
724 static void zram_accessed(struct zram *zram, u32 index) {};
725 static void zram_reset_access(struct zram *zram, u32 index) {};
726 static void zram_debugfs_register(struct zram *zram) {};
727 static void zram_debugfs_unregister(struct zram *zram) {};
728 #endif
729
730 /*
731  * We switched to per-cpu streams and this attr is not needed anymore.
732  * However, we will keep it around for some time, because:
733  * a) we may revert per-cpu streams in the future
734  * b) it's visible to user space and we need to follow our 2 years
735  *    retirement rule; but we already have a number of 'soon to be
736  *    altered' attrs, so max_comp_streams need to wait for the next
737  *    layoff cycle.
738  */
739 static ssize_t max_comp_streams_show(struct device *dev,
740                 struct device_attribute *attr, char *buf)
741 {
742         return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
743 }
744
745 static ssize_t max_comp_streams_store(struct device *dev,
746                 struct device_attribute *attr, const char *buf, size_t len)
747 {
748         return len;
749 }
750
751 static ssize_t comp_algorithm_show(struct device *dev,
752                 struct device_attribute *attr, char *buf)
753 {
754         size_t sz;
755         struct zram *zram = dev_to_zram(dev);
756
757         down_read(&zram->init_lock);
758         sz = zcomp_available_show(zram->compressor, buf);
759         up_read(&zram->init_lock);
760
761         return sz;
762 }
763
764 static ssize_t comp_algorithm_store(struct device *dev,
765                 struct device_attribute *attr, const char *buf, size_t len)
766 {
767         struct zram *zram = dev_to_zram(dev);
768         char compressor[ARRAY_SIZE(zram->compressor)];
769         size_t sz;
770
771         strlcpy(compressor, buf, sizeof(compressor));
772         /* ignore trailing newline */
773         sz = strlen(compressor);
774         if (sz > 0 && compressor[sz - 1] == '\n')
775                 compressor[sz - 1] = 0x00;
776
777         if (!zcomp_available_algorithm(compressor))
778                 return -EINVAL;
779
780         down_write(&zram->init_lock);
781         if (init_done(zram)) {
782                 up_write(&zram->init_lock);
783                 pr_info("Can't change algorithm for initialized device\n");
784                 return -EBUSY;
785         }
786
787         strcpy(zram->compressor, compressor);
788         up_write(&zram->init_lock);
789         return len;
790 }
791
792 static ssize_t compact_store(struct device *dev,
793                 struct device_attribute *attr, const char *buf, size_t len)
794 {
795         struct zram *zram = dev_to_zram(dev);
796
797         down_read(&zram->init_lock);
798         if (!init_done(zram)) {
799                 up_read(&zram->init_lock);
800                 return -EINVAL;
801         }
802
803         zs_compact(zram->mem_pool);
804         up_read(&zram->init_lock);
805
806         return len;
807 }
808
809 static ssize_t io_stat_show(struct device *dev,
810                 struct device_attribute *attr, char *buf)
811 {
812         struct zram *zram = dev_to_zram(dev);
813         ssize_t ret;
814
815         down_read(&zram->init_lock);
816         ret = scnprintf(buf, PAGE_SIZE,
817                         "%8llu %8llu %8llu %8llu\n",
818                         (u64)atomic64_read(&zram->stats.failed_reads),
819                         (u64)atomic64_read(&zram->stats.failed_writes),
820                         (u64)atomic64_read(&zram->stats.invalid_io),
821                         (u64)atomic64_read(&zram->stats.notify_free));
822         up_read(&zram->init_lock);
823
824         return ret;
825 }
826
827 static ssize_t mm_stat_show(struct device *dev,
828                 struct device_attribute *attr, char *buf)
829 {
830         struct zram *zram = dev_to_zram(dev);
831         struct zs_pool_stats pool_stats;
832         u64 orig_size, mem_used = 0;
833         long max_used;
834         ssize_t ret;
835
836         memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
837
838         down_read(&zram->init_lock);
839         if (init_done(zram)) {
840                 mem_used = zs_get_total_pages(zram->mem_pool);
841                 zs_pool_stats(zram->mem_pool, &pool_stats);
842         }
843
844         orig_size = atomic64_read(&zram->stats.pages_stored);
845         max_used = atomic_long_read(&zram->stats.max_used_pages);
846
847         ret = scnprintf(buf, PAGE_SIZE,
848                         "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
849                         orig_size << PAGE_SHIFT,
850                         (u64)atomic64_read(&zram->stats.compr_data_size),
851                         mem_used << PAGE_SHIFT,
852                         zram->limit_pages << PAGE_SHIFT,
853                         max_used << PAGE_SHIFT,
854                         (u64)atomic64_read(&zram->stats.same_pages),
855                         pool_stats.pages_compacted,
856                         (u64)atomic64_read(&zram->stats.huge_pages));
857         up_read(&zram->init_lock);
858
859         return ret;
860 }
861
862 static ssize_t debug_stat_show(struct device *dev,
863                 struct device_attribute *attr, char *buf)
864 {
865         int version = 1;
866         struct zram *zram = dev_to_zram(dev);
867         ssize_t ret;
868
869         down_read(&zram->init_lock);
870         ret = scnprintf(buf, PAGE_SIZE,
871                         "version: %d\n%8llu\n",
872                         version,
873                         (u64)atomic64_read(&zram->stats.writestall));
874         up_read(&zram->init_lock);
875
876         return ret;
877 }
878
879 static DEVICE_ATTR_RO(io_stat);
880 static DEVICE_ATTR_RO(mm_stat);
881 static DEVICE_ATTR_RO(debug_stat);
882
883 static void zram_meta_free(struct zram *zram, u64 disksize)
884 {
885         size_t num_pages = disksize >> PAGE_SHIFT;
886         size_t index;
887
888         /* Free all pages that are still in this zram device */
889         for (index = 0; index < num_pages; index++)
890                 zram_free_page(zram, index);
891
892         zs_destroy_pool(zram->mem_pool);
893         vfree(zram->table);
894 }
895
896 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
897 {
898         size_t num_pages;
899
900         num_pages = disksize >> PAGE_SHIFT;
901         zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
902         if (!zram->table)
903                 return false;
904
905         zram->mem_pool = zs_create_pool(zram->disk->disk_name);
906         if (!zram->mem_pool) {
907                 vfree(zram->table);
908                 return false;
909         }
910
911         if (!huge_class_size)
912                 huge_class_size = zs_huge_class_size(zram->mem_pool);
913         return true;
914 }
915
916 /*
917  * To protect concurrent access to the same index entry,
918  * caller should hold this table index entry's bit_spinlock to
919  * indicate this index entry is accessing.
920  */
921 static void zram_free_page(struct zram *zram, size_t index)
922 {
923         unsigned long handle;
924
925         zram_reset_access(zram, index);
926
927         if (zram_test_flag(zram, index, ZRAM_HUGE)) {
928                 zram_clear_flag(zram, index, ZRAM_HUGE);
929                 atomic64_dec(&zram->stats.huge_pages);
930         }
931
932         if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
933                 zram_wb_clear(zram, index);
934                 atomic64_dec(&zram->stats.pages_stored);
935                 return;
936         }
937
938         /*
939          * No memory is allocated for same element filled pages.
940          * Simply clear same page flag.
941          */
942         if (zram_test_flag(zram, index, ZRAM_SAME)) {
943                 zram_clear_flag(zram, index, ZRAM_SAME);
944                 zram_set_element(zram, index, 0);
945                 atomic64_dec(&zram->stats.same_pages);
946                 atomic64_dec(&zram->stats.pages_stored);
947                 return;
948         }
949
950         handle = zram_get_handle(zram, index);
951         if (!handle)
952                 return;
953
954         zs_free(zram->mem_pool, handle);
955
956         atomic64_sub(zram_get_obj_size(zram, index),
957                         &zram->stats.compr_data_size);
958         atomic64_dec(&zram->stats.pages_stored);
959
960         zram_set_handle(zram, index, 0);
961         zram_set_obj_size(zram, index, 0);
962 }
963
964 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
965                                 struct bio *bio, bool partial_io)
966 {
967         int ret;
968         unsigned long handle;
969         unsigned int size;
970         void *src, *dst;
971
972         if (zram_wb_enabled(zram)) {
973                 zram_slot_lock(zram, index);
974                 if (zram_test_flag(zram, index, ZRAM_WB)) {
975                         struct bio_vec bvec;
976
977                         zram_slot_unlock(zram, index);
978
979                         bvec.bv_page = page;
980                         bvec.bv_len = PAGE_SIZE;
981                         bvec.bv_offset = 0;
982                         return read_from_bdev(zram, &bvec,
983                                         zram_get_element(zram, index),
984                                         bio, partial_io);
985                 }
986                 zram_slot_unlock(zram, index);
987         }
988
989         zram_slot_lock(zram, index);
990         handle = zram_get_handle(zram, index);
991         if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
992                 unsigned long value;
993                 void *mem;
994
995                 value = handle ? zram_get_element(zram, index) : 0;
996                 mem = kmap_atomic(page);
997                 zram_fill_page(mem, PAGE_SIZE, value);
998                 kunmap_atomic(mem);
999                 zram_slot_unlock(zram, index);
1000                 return 0;
1001         }
1002
1003         size = zram_get_obj_size(zram, index);
1004
1005         src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1006         if (size == PAGE_SIZE) {
1007                 dst = kmap_atomic(page);
1008                 memcpy(dst, src, PAGE_SIZE);
1009                 kunmap_atomic(dst);
1010                 ret = 0;
1011         } else {
1012                 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1013
1014                 dst = kmap_atomic(page);
1015                 ret = zcomp_decompress(zstrm, src, size, dst);
1016                 kunmap_atomic(dst);
1017                 zcomp_stream_put(zram->comp);
1018         }
1019         zs_unmap_object(zram->mem_pool, handle);
1020         zram_slot_unlock(zram, index);
1021
1022         /* Should NEVER happen. Return bio error if it does. */
1023         if (unlikely(ret))
1024                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1025
1026         return ret;
1027 }
1028
1029 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1030                                 u32 index, int offset, struct bio *bio)
1031 {
1032         int ret;
1033         struct page *page;
1034
1035         page = bvec->bv_page;
1036         if (is_partial_io(bvec)) {
1037                 /* Use a temporary buffer to decompress the page */
1038                 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1039                 if (!page)
1040                         return -ENOMEM;
1041         }
1042
1043         ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1044         if (unlikely(ret))
1045                 goto out;
1046
1047         if (is_partial_io(bvec)) {
1048                 void *dst = kmap_atomic(bvec->bv_page);
1049                 void *src = kmap_atomic(page);
1050
1051                 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1052                 kunmap_atomic(src);
1053                 kunmap_atomic(dst);
1054         }
1055 out:
1056         if (is_partial_io(bvec))
1057                 __free_page(page);
1058
1059         return ret;
1060 }
1061
1062 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1063                                 u32 index, struct bio *bio)
1064 {
1065         int ret = 0;
1066         unsigned long alloced_pages;
1067         unsigned long handle = 0;
1068         unsigned int comp_len = 0;
1069         void *src, *dst, *mem;
1070         struct zcomp_strm *zstrm;
1071         struct page *page = bvec->bv_page;
1072         unsigned long element = 0;
1073         enum zram_pageflags flags = 0;
1074         bool allow_wb = true;
1075
1076         mem = kmap_atomic(page);
1077         if (page_same_filled(mem, &element)) {
1078                 kunmap_atomic(mem);
1079                 /* Free memory associated with this sector now. */
1080                 flags = ZRAM_SAME;
1081                 atomic64_inc(&zram->stats.same_pages);
1082                 goto out;
1083         }
1084         kunmap_atomic(mem);
1085
1086 compress_again:
1087         zstrm = zcomp_stream_get(zram->comp);
1088         src = kmap_atomic(page);
1089         ret = zcomp_compress(zstrm, src, &comp_len);
1090         kunmap_atomic(src);
1091
1092         if (unlikely(ret)) {
1093                 zcomp_stream_put(zram->comp);
1094                 pr_err("Compression failed! err=%d\n", ret);
1095                 zs_free(zram->mem_pool, handle);
1096                 return ret;
1097         }
1098
1099         if (unlikely(comp_len >= huge_class_size)) {
1100                 comp_len = PAGE_SIZE;
1101                 if (zram_wb_enabled(zram) && allow_wb) {
1102                         zcomp_stream_put(zram->comp);
1103                         ret = write_to_bdev(zram, bvec, index, bio, &element);
1104                         if (!ret) {
1105                                 flags = ZRAM_WB;
1106                                 ret = 1;
1107                                 goto out;
1108                         }
1109                         allow_wb = false;
1110                         goto compress_again;
1111                 }
1112         }
1113
1114         /*
1115          * handle allocation has 2 paths:
1116          * a) fast path is executed with preemption disabled (for
1117          *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1118          *  since we can't sleep;
1119          * b) slow path enables preemption and attempts to allocate
1120          *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1121          *  put per-cpu compression stream and, thus, to re-do
1122          *  the compression once handle is allocated.
1123          *
1124          * if we have a 'non-null' handle here then we are coming
1125          * from the slow path and handle has already been allocated.
1126          */
1127         if (!handle)
1128                 handle = zs_malloc(zram->mem_pool, comp_len,
1129                                 __GFP_KSWAPD_RECLAIM |
1130                                 __GFP_NOWARN |
1131                                 __GFP_HIGHMEM |
1132                                 __GFP_MOVABLE);
1133         if (!handle) {
1134                 zcomp_stream_put(zram->comp);
1135                 atomic64_inc(&zram->stats.writestall);
1136                 handle = zs_malloc(zram->mem_pool, comp_len,
1137                                 GFP_NOIO | __GFP_HIGHMEM |
1138                                 __GFP_MOVABLE);
1139                 if (handle)
1140                         goto compress_again;
1141                 return -ENOMEM;
1142         }
1143
1144         alloced_pages = zs_get_total_pages(zram->mem_pool);
1145         update_used_max(zram, alloced_pages);
1146
1147         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1148                 zcomp_stream_put(zram->comp);
1149                 zs_free(zram->mem_pool, handle);
1150                 return -ENOMEM;
1151         }
1152
1153         dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1154
1155         src = zstrm->buffer;
1156         if (comp_len == PAGE_SIZE)
1157                 src = kmap_atomic(page);
1158         memcpy(dst, src, comp_len);
1159         if (comp_len == PAGE_SIZE)
1160                 kunmap_atomic(src);
1161
1162         zcomp_stream_put(zram->comp);
1163         zs_unmap_object(zram->mem_pool, handle);
1164         atomic64_add(comp_len, &zram->stats.compr_data_size);
1165 out:
1166         /*
1167          * Free memory associated with this sector
1168          * before overwriting unused sectors.
1169          */
1170         zram_slot_lock(zram, index);
1171         zram_free_page(zram, index);
1172
1173         if (comp_len == PAGE_SIZE) {
1174                 zram_set_flag(zram, index, ZRAM_HUGE);
1175                 atomic64_inc(&zram->stats.huge_pages);
1176         }
1177
1178         if (flags) {
1179                 zram_set_flag(zram, index, flags);
1180                 zram_set_element(zram, index, element);
1181         }  else {
1182                 zram_set_handle(zram, index, handle);
1183                 zram_set_obj_size(zram, index, comp_len);
1184         }
1185         zram_slot_unlock(zram, index);
1186
1187         /* Update stats */
1188         atomic64_inc(&zram->stats.pages_stored);
1189         return ret;
1190 }
1191
1192 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1193                                 u32 index, int offset, struct bio *bio)
1194 {
1195         int ret;
1196         struct page *page = NULL;
1197         void *src;
1198         struct bio_vec vec;
1199
1200         vec = *bvec;
1201         if (is_partial_io(bvec)) {
1202                 void *dst;
1203                 /*
1204                  * This is a partial IO. We need to read the full page
1205                  * before to write the changes.
1206                  */
1207                 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1208                 if (!page)
1209                         return -ENOMEM;
1210
1211                 ret = __zram_bvec_read(zram, page, index, bio, true);
1212                 if (ret)
1213                         goto out;
1214
1215                 src = kmap_atomic(bvec->bv_page);
1216                 dst = kmap_atomic(page);
1217                 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1218                 kunmap_atomic(dst);
1219                 kunmap_atomic(src);
1220
1221                 vec.bv_page = page;
1222                 vec.bv_len = PAGE_SIZE;
1223                 vec.bv_offset = 0;
1224         }
1225
1226         ret = __zram_bvec_write(zram, &vec, index, bio);
1227 out:
1228         if (is_partial_io(bvec))
1229                 __free_page(page);
1230         return ret;
1231 }
1232
1233 /*
1234  * zram_bio_discard - handler on discard request
1235  * @index: physical block index in PAGE_SIZE units
1236  * @offset: byte offset within physical block
1237  */
1238 static void zram_bio_discard(struct zram *zram, u32 index,
1239                              int offset, struct bio *bio)
1240 {
1241         size_t n = bio->bi_iter.bi_size;
1242
1243         /*
1244          * zram manages data in physical block size units. Because logical block
1245          * size isn't identical with physical block size on some arch, we
1246          * could get a discard request pointing to a specific offset within a
1247          * certain physical block.  Although we can handle this request by
1248          * reading that physiclal block and decompressing and partially zeroing
1249          * and re-compressing and then re-storing it, this isn't reasonable
1250          * because our intent with a discard request is to save memory.  So
1251          * skipping this logical block is appropriate here.
1252          */
1253         if (offset) {
1254                 if (n <= (PAGE_SIZE - offset))
1255                         return;
1256
1257                 n -= (PAGE_SIZE - offset);
1258                 index++;
1259         }
1260
1261         while (n >= PAGE_SIZE) {
1262                 zram_slot_lock(zram, index);
1263                 zram_free_page(zram, index);
1264                 zram_slot_unlock(zram, index);
1265                 atomic64_inc(&zram->stats.notify_free);
1266                 index++;
1267                 n -= PAGE_SIZE;
1268         }
1269 }
1270
1271 /*
1272  * Returns errno if it has some problem. Otherwise return 0 or 1.
1273  * Returns 0 if IO request was done synchronously
1274  * Returns 1 if IO request was successfully submitted.
1275  */
1276 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1277                         int offset, unsigned int op, struct bio *bio)
1278 {
1279         unsigned long start_time = jiffies;
1280         struct request_queue *q = zram->disk->queue;
1281         int ret;
1282
1283         generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1284                         &zram->disk->part0);
1285
1286         if (!op_is_write(op)) {
1287                 atomic64_inc(&zram->stats.num_reads);
1288                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1289                 flush_dcache_page(bvec->bv_page);
1290         } else {
1291                 atomic64_inc(&zram->stats.num_writes);
1292                 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1293         }
1294
1295         generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1296
1297         zram_slot_lock(zram, index);
1298         zram_accessed(zram, index);
1299         zram_slot_unlock(zram, index);
1300
1301         if (unlikely(ret < 0)) {
1302                 if (!op_is_write(op))
1303                         atomic64_inc(&zram->stats.failed_reads);
1304                 else
1305                         atomic64_inc(&zram->stats.failed_writes);
1306         }
1307
1308         return ret;
1309 }
1310
1311 static void __zram_make_request(struct zram *zram, struct bio *bio)
1312 {
1313         int offset;
1314         u32 index;
1315         struct bio_vec bvec;
1316         struct bvec_iter iter;
1317
1318         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1319         offset = (bio->bi_iter.bi_sector &
1320                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1321
1322         switch (bio_op(bio)) {
1323         case REQ_OP_DISCARD:
1324         case REQ_OP_WRITE_ZEROES:
1325                 zram_bio_discard(zram, index, offset, bio);
1326                 bio_endio(bio);
1327                 return;
1328         default:
1329                 break;
1330         }
1331
1332         bio_for_each_segment(bvec, bio, iter) {
1333                 struct bio_vec bv = bvec;
1334                 unsigned int unwritten = bvec.bv_len;
1335
1336                 do {
1337                         bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1338                                                         unwritten);
1339                         if (zram_bvec_rw(zram, &bv, index, offset,
1340                                          bio_op(bio), bio) < 0)
1341                                 goto out;
1342
1343                         bv.bv_offset += bv.bv_len;
1344                         unwritten -= bv.bv_len;
1345
1346                         update_position(&index, &offset, &bv);
1347                 } while (unwritten);
1348         }
1349
1350         bio_endio(bio);
1351         return;
1352
1353 out:
1354         bio_io_error(bio);
1355 }
1356
1357 /*
1358  * Handler function for all zram I/O requests.
1359  */
1360 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1361 {
1362         struct zram *zram = queue->queuedata;
1363
1364         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1365                                         bio->bi_iter.bi_size)) {
1366                 atomic64_inc(&zram->stats.invalid_io);
1367                 goto error;
1368         }
1369
1370         __zram_make_request(zram, bio);
1371         return BLK_QC_T_NONE;
1372
1373 error:
1374         bio_io_error(bio);
1375         return BLK_QC_T_NONE;
1376 }
1377
1378 static void zram_slot_free_notify(struct block_device *bdev,
1379                                 unsigned long index)
1380 {
1381         struct zram *zram;
1382
1383         zram = bdev->bd_disk->private_data;
1384
1385         zram_slot_lock(zram, index);
1386         zram_free_page(zram, index);
1387         zram_slot_unlock(zram, index);
1388         atomic64_inc(&zram->stats.notify_free);
1389 }
1390
1391 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1392                        struct page *page, unsigned int op)
1393 {
1394         int offset, ret;
1395         u32 index;
1396         struct zram *zram;
1397         struct bio_vec bv;
1398
1399         if (PageTransHuge(page))
1400                 return -ENOTSUPP;
1401         zram = bdev->bd_disk->private_data;
1402
1403         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1404                 atomic64_inc(&zram->stats.invalid_io);
1405                 ret = -EINVAL;
1406                 goto out;
1407         }
1408
1409         index = sector >> SECTORS_PER_PAGE_SHIFT;
1410         offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1411
1412         bv.bv_page = page;
1413         bv.bv_len = PAGE_SIZE;
1414         bv.bv_offset = 0;
1415
1416         ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1417 out:
1418         /*
1419          * If I/O fails, just return error(ie, non-zero) without
1420          * calling page_endio.
1421          * It causes resubmit the I/O with bio request by upper functions
1422          * of rw_page(e.g., swap_readpage, __swap_writepage) and
1423          * bio->bi_end_io does things to handle the error
1424          * (e.g., SetPageError, set_page_dirty and extra works).
1425          */
1426         if (unlikely(ret < 0))
1427                 return ret;
1428
1429         switch (ret) {
1430         case 0:
1431                 page_endio(page, op_is_write(op), 0);
1432                 break;
1433         case 1:
1434                 ret = 0;
1435                 break;
1436         default:
1437                 WARN_ON(1);
1438         }
1439         return ret;
1440 }
1441
1442 static void zram_reset_device(struct zram *zram)
1443 {
1444         struct zcomp *comp;
1445         u64 disksize;
1446
1447         down_write(&zram->init_lock);
1448
1449         zram->limit_pages = 0;
1450
1451         if (!init_done(zram)) {
1452                 up_write(&zram->init_lock);
1453                 return;
1454         }
1455
1456         comp = zram->comp;
1457         disksize = zram->disksize;
1458         zram->disksize = 0;
1459
1460         set_capacity(zram->disk, 0);
1461         part_stat_set_all(&zram->disk->part0, 0);
1462
1463         up_write(&zram->init_lock);
1464         /* I/O operation under all of CPU are done so let's free */
1465         zram_meta_free(zram, disksize);
1466         memset(&zram->stats, 0, sizeof(zram->stats));
1467         zcomp_destroy(comp);
1468         reset_bdev(zram);
1469 }
1470
1471 static ssize_t disksize_store(struct device *dev,
1472                 struct device_attribute *attr, const char *buf, size_t len)
1473 {
1474         u64 disksize;
1475         struct zcomp *comp;
1476         struct zram *zram = dev_to_zram(dev);
1477         int err;
1478
1479         disksize = memparse(buf, NULL);
1480         if (!disksize)
1481                 return -EINVAL;
1482
1483         down_write(&zram->init_lock);
1484         if (init_done(zram)) {
1485                 pr_info("Cannot change disksize for initialized device\n");
1486                 err = -EBUSY;
1487                 goto out_unlock;
1488         }
1489
1490         disksize = PAGE_ALIGN(disksize);
1491         if (!zram_meta_alloc(zram, disksize)) {
1492                 err = -ENOMEM;
1493                 goto out_unlock;
1494         }
1495
1496         comp = zcomp_create(zram->compressor);
1497         if (IS_ERR(comp)) {
1498                 pr_err("Cannot initialise %s compressing backend\n",
1499                                 zram->compressor);
1500                 err = PTR_ERR(comp);
1501                 goto out_free_meta;
1502         }
1503
1504         zram->comp = comp;
1505         zram->disksize = disksize;
1506         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1507
1508         revalidate_disk(zram->disk);
1509         up_write(&zram->init_lock);
1510
1511         return len;
1512
1513 out_free_meta:
1514         zram_meta_free(zram, disksize);
1515 out_unlock:
1516         up_write(&zram->init_lock);
1517         return err;
1518 }
1519
1520 static ssize_t reset_store(struct device *dev,
1521                 struct device_attribute *attr, const char *buf, size_t len)
1522 {
1523         int ret;
1524         unsigned short do_reset;
1525         struct zram *zram;
1526         struct block_device *bdev;
1527
1528         ret = kstrtou16(buf, 10, &do_reset);
1529         if (ret)
1530                 return ret;
1531
1532         if (!do_reset)
1533                 return -EINVAL;
1534
1535         zram = dev_to_zram(dev);
1536         bdev = bdget_disk(zram->disk, 0);
1537         if (!bdev)
1538                 return -ENOMEM;
1539
1540         mutex_lock(&bdev->bd_mutex);
1541         /* Do not reset an active device or claimed device */
1542         if (bdev->bd_openers || zram->claim) {
1543                 mutex_unlock(&bdev->bd_mutex);
1544                 bdput(bdev);
1545                 return -EBUSY;
1546         }
1547
1548         /* From now on, anyone can't open /dev/zram[0-9] */
1549         zram->claim = true;
1550         mutex_unlock(&bdev->bd_mutex);
1551
1552         /* Make sure all the pending I/O are finished */
1553         fsync_bdev(bdev);
1554         zram_reset_device(zram);
1555         revalidate_disk(zram->disk);
1556         bdput(bdev);
1557
1558         mutex_lock(&bdev->bd_mutex);
1559         zram->claim = false;
1560         mutex_unlock(&bdev->bd_mutex);
1561
1562         return len;
1563 }
1564
1565 static int zram_open(struct block_device *bdev, fmode_t mode)
1566 {
1567         int ret = 0;
1568         struct zram *zram;
1569
1570         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1571
1572         zram = bdev->bd_disk->private_data;
1573         /* zram was claimed to reset so open request fails */
1574         if (zram->claim)
1575                 ret = -EBUSY;
1576
1577         return ret;
1578 }
1579
1580 static const struct block_device_operations zram_devops = {
1581         .open = zram_open,
1582         .swap_slot_free_notify = zram_slot_free_notify,
1583         .rw_page = zram_rw_page,
1584         .owner = THIS_MODULE
1585 };
1586
1587 static DEVICE_ATTR_WO(compact);
1588 static DEVICE_ATTR_RW(disksize);
1589 static DEVICE_ATTR_RO(initstate);
1590 static DEVICE_ATTR_WO(reset);
1591 static DEVICE_ATTR_WO(mem_limit);
1592 static DEVICE_ATTR_WO(mem_used_max);
1593 static DEVICE_ATTR_RW(max_comp_streams);
1594 static DEVICE_ATTR_RW(comp_algorithm);
1595 #ifdef CONFIG_ZRAM_WRITEBACK
1596 static DEVICE_ATTR_RW(backing_dev);
1597 #endif
1598
1599 static struct attribute *zram_disk_attrs[] = {
1600         &dev_attr_disksize.attr,
1601         &dev_attr_initstate.attr,
1602         &dev_attr_reset.attr,
1603         &dev_attr_compact.attr,
1604         &dev_attr_mem_limit.attr,
1605         &dev_attr_mem_used_max.attr,
1606         &dev_attr_max_comp_streams.attr,
1607         &dev_attr_comp_algorithm.attr,
1608 #ifdef CONFIG_ZRAM_WRITEBACK
1609         &dev_attr_backing_dev.attr,
1610 #endif
1611         &dev_attr_io_stat.attr,
1612         &dev_attr_mm_stat.attr,
1613         &dev_attr_debug_stat.attr,
1614         NULL,
1615 };
1616
1617 static const struct attribute_group zram_disk_attr_group = {
1618         .attrs = zram_disk_attrs,
1619 };
1620
1621 /*
1622  * Allocate and initialize new zram device. the function returns
1623  * '>= 0' device_id upon success, and negative value otherwise.
1624  */
1625 static int zram_add(void)
1626 {
1627         struct zram *zram;
1628         struct request_queue *queue;
1629         int ret, device_id;
1630
1631         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1632         if (!zram)
1633                 return -ENOMEM;
1634
1635         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1636         if (ret < 0)
1637                 goto out_free_dev;
1638         device_id = ret;
1639
1640         init_rwsem(&zram->init_lock);
1641
1642         queue = blk_alloc_queue(GFP_KERNEL);
1643         if (!queue) {
1644                 pr_err("Error allocating disk queue for device %d\n",
1645                         device_id);
1646                 ret = -ENOMEM;
1647                 goto out_free_idr;
1648         }
1649
1650         blk_queue_make_request(queue, zram_make_request);
1651
1652         /* gendisk structure */
1653         zram->disk = alloc_disk(1);
1654         if (!zram->disk) {
1655                 pr_err("Error allocating disk structure for device %d\n",
1656                         device_id);
1657                 ret = -ENOMEM;
1658                 goto out_free_queue;
1659         }
1660
1661         zram->disk->major = zram_major;
1662         zram->disk->first_minor = device_id;
1663         zram->disk->fops = &zram_devops;
1664         zram->disk->queue = queue;
1665         zram->disk->queue->queuedata = zram;
1666         zram->disk->private_data = zram;
1667         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1668
1669         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1670         set_capacity(zram->disk, 0);
1671         /* zram devices sort of resembles non-rotational disks */
1672         blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1673         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1674
1675         /*
1676          * To ensure that we always get PAGE_SIZE aligned
1677          * and n*PAGE_SIZED sized I/O requests.
1678          */
1679         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1680         blk_queue_logical_block_size(zram->disk->queue,
1681                                         ZRAM_LOGICAL_BLOCK_SIZE);
1682         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1683         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1684         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1685         blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1686         blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1687
1688         /*
1689          * zram_bio_discard() will clear all logical blocks if logical block
1690          * size is identical with physical block size(PAGE_SIZE). But if it is
1691          * different, we will skip discarding some parts of logical blocks in
1692          * the part of the request range which isn't aligned to physical block
1693          * size.  So we can't ensure that all discarded logical blocks are
1694          * zeroed.
1695          */
1696         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1697                 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1698
1699         zram->disk->queue->backing_dev_info->capabilities |=
1700                         (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1701         add_disk(zram->disk);
1702
1703         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1704                                 &zram_disk_attr_group);
1705         if (ret < 0) {
1706                 pr_err("Error creating sysfs group for device %d\n",
1707                                 device_id);
1708                 goto out_free_disk;
1709         }
1710         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1711
1712         zram_debugfs_register(zram);
1713         pr_info("Added device: %s\n", zram->disk->disk_name);
1714         return device_id;
1715
1716 out_free_disk:
1717         del_gendisk(zram->disk);
1718         put_disk(zram->disk);
1719 out_free_queue:
1720         blk_cleanup_queue(queue);
1721 out_free_idr:
1722         idr_remove(&zram_index_idr, device_id);
1723 out_free_dev:
1724         kfree(zram);
1725         return ret;
1726 }
1727
1728 static int zram_remove(struct zram *zram)
1729 {
1730         struct block_device *bdev;
1731
1732         bdev = bdget_disk(zram->disk, 0);
1733         if (!bdev)
1734                 return -ENOMEM;
1735
1736         mutex_lock(&bdev->bd_mutex);
1737         if (bdev->bd_openers || zram->claim) {
1738                 mutex_unlock(&bdev->bd_mutex);
1739                 bdput(bdev);
1740                 return -EBUSY;
1741         }
1742
1743         zram->claim = true;
1744         mutex_unlock(&bdev->bd_mutex);
1745
1746         zram_debugfs_unregister(zram);
1747         /*
1748          * Remove sysfs first, so no one will perform a disksize
1749          * store while we destroy the devices. This also helps during
1750          * hot_remove -- zram_reset_device() is the last holder of
1751          * ->init_lock, no later/concurrent disksize_store() or any
1752          * other sysfs handlers are possible.
1753          */
1754         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1755                         &zram_disk_attr_group);
1756
1757         /* Make sure all the pending I/O are finished */
1758         fsync_bdev(bdev);
1759         zram_reset_device(zram);
1760         bdput(bdev);
1761
1762         pr_info("Removed device: %s\n", zram->disk->disk_name);
1763
1764         del_gendisk(zram->disk);
1765         blk_cleanup_queue(zram->disk->queue);
1766         put_disk(zram->disk);
1767         kfree(zram);
1768         return 0;
1769 }
1770
1771 /* zram-control sysfs attributes */
1772
1773 /*
1774  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1775  * sense that reading from this file does alter the state of your system -- it
1776  * creates a new un-initialized zram device and returns back this device's
1777  * device_id (or an error code if it fails to create a new device).
1778  */
1779 static ssize_t hot_add_show(struct class *class,
1780                         struct class_attribute *attr,
1781                         char *buf)
1782 {
1783         int ret;
1784
1785         mutex_lock(&zram_index_mutex);
1786         ret = zram_add();
1787         mutex_unlock(&zram_index_mutex);
1788
1789         if (ret < 0)
1790                 return ret;
1791         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1792 }
1793 static CLASS_ATTR_RO(hot_add);
1794
1795 static ssize_t hot_remove_store(struct class *class,
1796                         struct class_attribute *attr,
1797                         const char *buf,
1798                         size_t count)
1799 {
1800         struct zram *zram;
1801         int ret, dev_id;
1802
1803         /* dev_id is gendisk->first_minor, which is `int' */
1804         ret = kstrtoint(buf, 10, &dev_id);
1805         if (ret)
1806                 return ret;
1807         if (dev_id < 0)
1808                 return -EINVAL;
1809
1810         mutex_lock(&zram_index_mutex);
1811
1812         zram = idr_find(&zram_index_idr, dev_id);
1813         if (zram) {
1814                 ret = zram_remove(zram);
1815                 if (!ret)
1816                         idr_remove(&zram_index_idr, dev_id);
1817         } else {
1818                 ret = -ENODEV;
1819         }
1820
1821         mutex_unlock(&zram_index_mutex);
1822         return ret ? ret : count;
1823 }
1824 static CLASS_ATTR_WO(hot_remove);
1825
1826 static struct attribute *zram_control_class_attrs[] = {
1827         &class_attr_hot_add.attr,
1828         &class_attr_hot_remove.attr,
1829         NULL,
1830 };
1831 ATTRIBUTE_GROUPS(zram_control_class);
1832
1833 static struct class zram_control_class = {
1834         .name           = "zram-control",
1835         .owner          = THIS_MODULE,
1836         .class_groups   = zram_control_class_groups,
1837 };
1838
1839 static int zram_remove_cb(int id, void *ptr, void *data)
1840 {
1841         zram_remove(ptr);
1842         return 0;
1843 }
1844
1845 static void destroy_devices(void)
1846 {
1847         class_unregister(&zram_control_class);
1848         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1849         zram_debugfs_destroy();
1850         idr_destroy(&zram_index_idr);
1851         unregister_blkdev(zram_major, "zram");
1852         cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1853 }
1854
1855 static int __init zram_init(void)
1856 {
1857         int ret;
1858
1859         ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1860                                       zcomp_cpu_up_prepare, zcomp_cpu_dead);
1861         if (ret < 0)
1862                 return ret;
1863
1864         ret = class_register(&zram_control_class);
1865         if (ret) {
1866                 pr_err("Unable to register zram-control class\n");
1867                 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1868                 return ret;
1869         }
1870
1871         zram_debugfs_create();
1872         zram_major = register_blkdev(0, "zram");
1873         if (zram_major <= 0) {
1874                 pr_err("Unable to get major number\n");
1875                 class_unregister(&zram_control_class);
1876                 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1877                 return -EBUSY;
1878         }
1879
1880         while (num_devices != 0) {
1881                 mutex_lock(&zram_index_mutex);
1882                 ret = zram_add();
1883                 mutex_unlock(&zram_index_mutex);
1884                 if (ret < 0)
1885                         goto out_error;
1886                 num_devices--;
1887         }
1888
1889         return 0;
1890
1891 out_error:
1892         destroy_devices();
1893         return ret;
1894 }
1895
1896 static void __exit zram_exit(void)
1897 {
1898         destroy_devices();
1899 }
1900
1901 module_init(zram_init);
1902 module_exit(zram_exit);
1903
1904 module_param(num_devices, uint, 0);
1905 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1906
1907 MODULE_LICENSE("Dual BSD/GPL");
1908 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1909 MODULE_DESCRIPTION("Compressed RAM Block Device");