Merge drm/drm-next into drm-intel-next-queued
[linux-2.6-microblaze.git] / drivers / block / xen-blkfront.c
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 #include <linux/sched/mm.h>
51
52 #include <xen/xen.h>
53 #include <xen/xenbus.h>
54 #include <xen/grant_table.h>
55 #include <xen/events.h>
56 #include <xen/page.h>
57 #include <xen/platform_pci.h>
58
59 #include <xen/interface/grant_table.h>
60 #include <xen/interface/io/blkif.h>
61 #include <xen/interface/io/protocols.h>
62
63 #include <asm/xen/hypervisor.h>
64
65 /*
66  * The minimal size of segment supported by the block framework is PAGE_SIZE.
67  * When Linux is using a different page size than Xen, it may not be possible
68  * to put all the data in a single segment.
69  * This can happen when the backend doesn't support indirect descriptor and
70  * therefore the maximum amount of data that a request can carry is
71  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
72  *
73  * Note that we only support one extra request. So the Linux page size
74  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
75  * 88KB.
76  */
77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
78
79 enum blkif_state {
80         BLKIF_STATE_DISCONNECTED,
81         BLKIF_STATE_CONNECTED,
82         BLKIF_STATE_SUSPENDED,
83 };
84
85 struct grant {
86         grant_ref_t gref;
87         struct page *page;
88         struct list_head node;
89 };
90
91 enum blk_req_status {
92         REQ_WAITING,
93         REQ_DONE,
94         REQ_ERROR,
95         REQ_EOPNOTSUPP,
96 };
97
98 struct blk_shadow {
99         struct blkif_request req;
100         struct request *request;
101         struct grant **grants_used;
102         struct grant **indirect_grants;
103         struct scatterlist *sg;
104         unsigned int num_sg;
105         enum blk_req_status status;
106
107         #define NO_ASSOCIATED_ID ~0UL
108         /*
109          * Id of the sibling if we ever need 2 requests when handling a
110          * block I/O request
111          */
112         unsigned long associated_id;
113 };
114
115 struct blkif_req {
116         blk_status_t    error;
117 };
118
119 static inline struct blkif_req *blkif_req(struct request *rq)
120 {
121         return blk_mq_rq_to_pdu(rq);
122 }
123
124 static DEFINE_MUTEX(blkfront_mutex);
125 static const struct block_device_operations xlvbd_block_fops;
126 static struct delayed_work blkfront_work;
127 static LIST_HEAD(info_list);
128
129 /*
130  * Maximum number of segments in indirect requests, the actual value used by
131  * the frontend driver is the minimum of this value and the value provided
132  * by the backend driver.
133  */
134
135 static unsigned int xen_blkif_max_segments = 32;
136 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
137 MODULE_PARM_DESC(max_indirect_segments,
138                  "Maximum amount of segments in indirect requests (default is 32)");
139
140 static unsigned int xen_blkif_max_queues = 4;
141 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
142 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
143
144 /*
145  * Maximum order of pages to be used for the shared ring between front and
146  * backend, 4KB page granularity is used.
147  */
148 static unsigned int xen_blkif_max_ring_order;
149 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
150 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
151
152 #define BLK_RING_SIZE(info)     \
153         __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
154
155 /*
156  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
157  * characters are enough. Define to 20 to keep consistent with backend.
158  */
159 #define RINGREF_NAME_LEN (20)
160 /*
161  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
162  */
163 #define QUEUE_NAME_LEN (17)
164
165 /*
166  *  Per-ring info.
167  *  Every blkfront device can associate with one or more blkfront_ring_info,
168  *  depending on how many hardware queues/rings to be used.
169  */
170 struct blkfront_ring_info {
171         /* Lock to protect data in every ring buffer. */
172         spinlock_t ring_lock;
173         struct blkif_front_ring ring;
174         unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
175         unsigned int evtchn, irq;
176         struct work_struct work;
177         struct gnttab_free_callback callback;
178         struct list_head indirect_pages;
179         struct list_head grants;
180         unsigned int persistent_gnts_c;
181         unsigned long shadow_free;
182         struct blkfront_info *dev_info;
183         struct blk_shadow shadow[];
184 };
185
186 /*
187  * We have one of these per vbd, whether ide, scsi or 'other'.  They
188  * hang in private_data off the gendisk structure. We may end up
189  * putting all kinds of interesting stuff here :-)
190  */
191 struct blkfront_info
192 {
193         struct mutex mutex;
194         struct xenbus_device *xbdev;
195         struct gendisk *gd;
196         u16 sector_size;
197         unsigned int physical_sector_size;
198         int vdevice;
199         blkif_vdev_t handle;
200         enum blkif_state connected;
201         /* Number of pages per ring buffer. */
202         unsigned int nr_ring_pages;
203         struct request_queue *rq;
204         unsigned int feature_flush:1;
205         unsigned int feature_fua:1;
206         unsigned int feature_discard:1;
207         unsigned int feature_secdiscard:1;
208         unsigned int feature_persistent:1;
209         unsigned int discard_granularity;
210         unsigned int discard_alignment;
211         /* Number of 4KB segments handled */
212         unsigned int max_indirect_segments;
213         int is_ready;
214         struct blk_mq_tag_set tag_set;
215         struct blkfront_ring_info *rinfo;
216         unsigned int nr_rings;
217         unsigned int rinfo_size;
218         /* Save uncomplete reqs and bios for migration. */
219         struct list_head requests;
220         struct bio_list bio_list;
221         struct list_head info_list;
222 };
223
224 static unsigned int nr_minors;
225 static unsigned long *minors;
226 static DEFINE_SPINLOCK(minor_lock);
227
228 #define GRANT_INVALID_REF       0
229
230 #define PARTS_PER_DISK          16
231 #define PARTS_PER_EXT_DISK      256
232
233 #define BLKIF_MAJOR(dev) ((dev)>>8)
234 #define BLKIF_MINOR(dev) ((dev) & 0xff)
235
236 #define EXT_SHIFT 28
237 #define EXTENDED (1<<EXT_SHIFT)
238 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
239 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
240 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
241 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
242 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
243 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
244
245 #define DEV_NAME        "xvd"   /* name in /dev */
246
247 /*
248  * Grants are always the same size as a Xen page (i.e 4KB).
249  * A physical segment is always the same size as a Linux page.
250  * Number of grants per physical segment
251  */
252 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
253
254 #define GRANTS_PER_INDIRECT_FRAME \
255         (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
256
257 #define INDIRECT_GREFS(_grants)         \
258         DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
259
260 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
261 static void blkfront_gather_backend_features(struct blkfront_info *info);
262 static int negotiate_mq(struct blkfront_info *info);
263
264 #define for_each_rinfo(info, ptr, idx)                          \
265         for ((ptr) = (info)->rinfo, (idx) = 0;                  \
266              (idx) < (info)->nr_rings;                          \
267              (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
268
269 static inline struct blkfront_ring_info *
270 get_rinfo(const struct blkfront_info *info, unsigned int i)
271 {
272         BUG_ON(i >= info->nr_rings);
273         return (void *)info->rinfo + i * info->rinfo_size;
274 }
275
276 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
277 {
278         unsigned long free = rinfo->shadow_free;
279
280         BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
281         rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
282         rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
283         return free;
284 }
285
286 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
287                               unsigned long id)
288 {
289         if (rinfo->shadow[id].req.u.rw.id != id)
290                 return -EINVAL;
291         if (rinfo->shadow[id].request == NULL)
292                 return -EINVAL;
293         rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
294         rinfo->shadow[id].request = NULL;
295         rinfo->shadow_free = id;
296         return 0;
297 }
298
299 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
300 {
301         struct blkfront_info *info = rinfo->dev_info;
302         struct page *granted_page;
303         struct grant *gnt_list_entry, *n;
304         int i = 0;
305
306         while (i < num) {
307                 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
308                 if (!gnt_list_entry)
309                         goto out_of_memory;
310
311                 if (info->feature_persistent) {
312                         granted_page = alloc_page(GFP_NOIO);
313                         if (!granted_page) {
314                                 kfree(gnt_list_entry);
315                                 goto out_of_memory;
316                         }
317                         gnt_list_entry->page = granted_page;
318                 }
319
320                 gnt_list_entry->gref = GRANT_INVALID_REF;
321                 list_add(&gnt_list_entry->node, &rinfo->grants);
322                 i++;
323         }
324
325         return 0;
326
327 out_of_memory:
328         list_for_each_entry_safe(gnt_list_entry, n,
329                                  &rinfo->grants, node) {
330                 list_del(&gnt_list_entry->node);
331                 if (info->feature_persistent)
332                         __free_page(gnt_list_entry->page);
333                 kfree(gnt_list_entry);
334                 i--;
335         }
336         BUG_ON(i != 0);
337         return -ENOMEM;
338 }
339
340 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
341 {
342         struct grant *gnt_list_entry;
343
344         BUG_ON(list_empty(&rinfo->grants));
345         gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
346                                           node);
347         list_del(&gnt_list_entry->node);
348
349         if (gnt_list_entry->gref != GRANT_INVALID_REF)
350                 rinfo->persistent_gnts_c--;
351
352         return gnt_list_entry;
353 }
354
355 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
356                                         const struct blkfront_info *info)
357 {
358         gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
359                                                  info->xbdev->otherend_id,
360                                                  gnt_list_entry->page,
361                                                  0);
362 }
363
364 static struct grant *get_grant(grant_ref_t *gref_head,
365                                unsigned long gfn,
366                                struct blkfront_ring_info *rinfo)
367 {
368         struct grant *gnt_list_entry = get_free_grant(rinfo);
369         struct blkfront_info *info = rinfo->dev_info;
370
371         if (gnt_list_entry->gref != GRANT_INVALID_REF)
372                 return gnt_list_entry;
373
374         /* Assign a gref to this page */
375         gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
376         BUG_ON(gnt_list_entry->gref == -ENOSPC);
377         if (info->feature_persistent)
378                 grant_foreign_access(gnt_list_entry, info);
379         else {
380                 /* Grant access to the GFN passed by the caller */
381                 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
382                                                 info->xbdev->otherend_id,
383                                                 gfn, 0);
384         }
385
386         return gnt_list_entry;
387 }
388
389 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
390                                         struct blkfront_ring_info *rinfo)
391 {
392         struct grant *gnt_list_entry = get_free_grant(rinfo);
393         struct blkfront_info *info = rinfo->dev_info;
394
395         if (gnt_list_entry->gref != GRANT_INVALID_REF)
396                 return gnt_list_entry;
397
398         /* Assign a gref to this page */
399         gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
400         BUG_ON(gnt_list_entry->gref == -ENOSPC);
401         if (!info->feature_persistent) {
402                 struct page *indirect_page;
403
404                 /* Fetch a pre-allocated page to use for indirect grefs */
405                 BUG_ON(list_empty(&rinfo->indirect_pages));
406                 indirect_page = list_first_entry(&rinfo->indirect_pages,
407                                                  struct page, lru);
408                 list_del(&indirect_page->lru);
409                 gnt_list_entry->page = indirect_page;
410         }
411         grant_foreign_access(gnt_list_entry, info);
412
413         return gnt_list_entry;
414 }
415
416 static const char *op_name(int op)
417 {
418         static const char *const names[] = {
419                 [BLKIF_OP_READ] = "read",
420                 [BLKIF_OP_WRITE] = "write",
421                 [BLKIF_OP_WRITE_BARRIER] = "barrier",
422                 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
423                 [BLKIF_OP_DISCARD] = "discard" };
424
425         if (op < 0 || op >= ARRAY_SIZE(names))
426                 return "unknown";
427
428         if (!names[op])
429                 return "reserved";
430
431         return names[op];
432 }
433 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
434 {
435         unsigned int end = minor + nr;
436         int rc;
437
438         if (end > nr_minors) {
439                 unsigned long *bitmap, *old;
440
441                 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
442                                  GFP_KERNEL);
443                 if (bitmap == NULL)
444                         return -ENOMEM;
445
446                 spin_lock(&minor_lock);
447                 if (end > nr_minors) {
448                         old = minors;
449                         memcpy(bitmap, minors,
450                                BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
451                         minors = bitmap;
452                         nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
453                 } else
454                         old = bitmap;
455                 spin_unlock(&minor_lock);
456                 kfree(old);
457         }
458
459         spin_lock(&minor_lock);
460         if (find_next_bit(minors, end, minor) >= end) {
461                 bitmap_set(minors, minor, nr);
462                 rc = 0;
463         } else
464                 rc = -EBUSY;
465         spin_unlock(&minor_lock);
466
467         return rc;
468 }
469
470 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
471 {
472         unsigned int end = minor + nr;
473
474         BUG_ON(end > nr_minors);
475         spin_lock(&minor_lock);
476         bitmap_clear(minors,  minor, nr);
477         spin_unlock(&minor_lock);
478 }
479
480 static void blkif_restart_queue_callback(void *arg)
481 {
482         struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
483         schedule_work(&rinfo->work);
484 }
485
486 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
487 {
488         /* We don't have real geometry info, but let's at least return
489            values consistent with the size of the device */
490         sector_t nsect = get_capacity(bd->bd_disk);
491         sector_t cylinders = nsect;
492
493         hg->heads = 0xff;
494         hg->sectors = 0x3f;
495         sector_div(cylinders, hg->heads * hg->sectors);
496         hg->cylinders = cylinders;
497         if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
498                 hg->cylinders = 0xffff;
499         return 0;
500 }
501
502 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
503                        unsigned command, unsigned long argument)
504 {
505         struct blkfront_info *info = bdev->bd_disk->private_data;
506         int i;
507
508         dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
509                 command, (long)argument);
510
511         switch (command) {
512         case CDROMMULTISESSION:
513                 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
514                 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
515                         if (put_user(0, (char __user *)(argument + i)))
516                                 return -EFAULT;
517                 return 0;
518
519         case CDROM_GET_CAPABILITY: {
520                 struct gendisk *gd = info->gd;
521                 if (gd->flags & GENHD_FL_CD)
522                         return 0;
523                 return -EINVAL;
524         }
525
526         default:
527                 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
528                   command);*/
529                 return -EINVAL; /* same return as native Linux */
530         }
531
532         return 0;
533 }
534
535 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
536                                             struct request *req,
537                                             struct blkif_request **ring_req)
538 {
539         unsigned long id;
540
541         *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
542         rinfo->ring.req_prod_pvt++;
543
544         id = get_id_from_freelist(rinfo);
545         rinfo->shadow[id].request = req;
546         rinfo->shadow[id].status = REQ_WAITING;
547         rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
548
549         (*ring_req)->u.rw.id = id;
550
551         return id;
552 }
553
554 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
555 {
556         struct blkfront_info *info = rinfo->dev_info;
557         struct blkif_request *ring_req;
558         unsigned long id;
559
560         /* Fill out a communications ring structure. */
561         id = blkif_ring_get_request(rinfo, req, &ring_req);
562
563         ring_req->operation = BLKIF_OP_DISCARD;
564         ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
565         ring_req->u.discard.id = id;
566         ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
567         if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
568                 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
569         else
570                 ring_req->u.discard.flag = 0;
571
572         /* Keep a private copy so we can reissue requests when recovering. */
573         rinfo->shadow[id].req = *ring_req;
574
575         return 0;
576 }
577
578 struct setup_rw_req {
579         unsigned int grant_idx;
580         struct blkif_request_segment *segments;
581         struct blkfront_ring_info *rinfo;
582         struct blkif_request *ring_req;
583         grant_ref_t gref_head;
584         unsigned int id;
585         /* Only used when persistent grant is used and it's a read request */
586         bool need_copy;
587         unsigned int bvec_off;
588         char *bvec_data;
589
590         bool require_extra_req;
591         struct blkif_request *extra_ring_req;
592 };
593
594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
595                                      unsigned int len, void *data)
596 {
597         struct setup_rw_req *setup = data;
598         int n, ref;
599         struct grant *gnt_list_entry;
600         unsigned int fsect, lsect;
601         /* Convenient aliases */
602         unsigned int grant_idx = setup->grant_idx;
603         struct blkif_request *ring_req = setup->ring_req;
604         struct blkfront_ring_info *rinfo = setup->rinfo;
605         /*
606          * We always use the shadow of the first request to store the list
607          * of grant associated to the block I/O request. This made the
608          * completion more easy to handle even if the block I/O request is
609          * split.
610          */
611         struct blk_shadow *shadow = &rinfo->shadow[setup->id];
612
613         if (unlikely(setup->require_extra_req &&
614                      grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
615                 /*
616                  * We are using the second request, setup grant_idx
617                  * to be the index of the segment array.
618                  */
619                 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
620                 ring_req = setup->extra_ring_req;
621         }
622
623         if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
624             (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
625                 if (setup->segments)
626                         kunmap_atomic(setup->segments);
627
628                 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
629                 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
630                 shadow->indirect_grants[n] = gnt_list_entry;
631                 setup->segments = kmap_atomic(gnt_list_entry->page);
632                 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
633         }
634
635         gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
636         ref = gnt_list_entry->gref;
637         /*
638          * All the grants are stored in the shadow of the first
639          * request. Therefore we have to use the global index.
640          */
641         shadow->grants_used[setup->grant_idx] = gnt_list_entry;
642
643         if (setup->need_copy) {
644                 void *shared_data;
645
646                 shared_data = kmap_atomic(gnt_list_entry->page);
647                 /*
648                  * this does not wipe data stored outside the
649                  * range sg->offset..sg->offset+sg->length.
650                  * Therefore, blkback *could* see data from
651                  * previous requests. This is OK as long as
652                  * persistent grants are shared with just one
653                  * domain. It may need refactoring if this
654                  * changes
655                  */
656                 memcpy(shared_data + offset,
657                        setup->bvec_data + setup->bvec_off,
658                        len);
659
660                 kunmap_atomic(shared_data);
661                 setup->bvec_off += len;
662         }
663
664         fsect = offset >> 9;
665         lsect = fsect + (len >> 9) - 1;
666         if (ring_req->operation != BLKIF_OP_INDIRECT) {
667                 ring_req->u.rw.seg[grant_idx] =
668                         (struct blkif_request_segment) {
669                                 .gref       = ref,
670                                 .first_sect = fsect,
671                                 .last_sect  = lsect };
672         } else {
673                 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
674                         (struct blkif_request_segment) {
675                                 .gref       = ref,
676                                 .first_sect = fsect,
677                                 .last_sect  = lsect };
678         }
679
680         (setup->grant_idx)++;
681 }
682
683 static void blkif_setup_extra_req(struct blkif_request *first,
684                                   struct blkif_request *second)
685 {
686         uint16_t nr_segments = first->u.rw.nr_segments;
687
688         /*
689          * The second request is only present when the first request uses
690          * all its segments. It's always the continuity of the first one.
691          */
692         first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
693
694         second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
695         second->u.rw.sector_number = first->u.rw.sector_number +
696                 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
697
698         second->u.rw.handle = first->u.rw.handle;
699         second->operation = first->operation;
700 }
701
702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
703 {
704         struct blkfront_info *info = rinfo->dev_info;
705         struct blkif_request *ring_req, *extra_ring_req = NULL;
706         unsigned long id, extra_id = NO_ASSOCIATED_ID;
707         bool require_extra_req = false;
708         int i;
709         struct setup_rw_req setup = {
710                 .grant_idx = 0,
711                 .segments = NULL,
712                 .rinfo = rinfo,
713                 .need_copy = rq_data_dir(req) && info->feature_persistent,
714         };
715
716         /*
717          * Used to store if we are able to queue the request by just using
718          * existing persistent grants, or if we have to get new grants,
719          * as there are not sufficiently many free.
720          */
721         bool new_persistent_gnts = false;
722         struct scatterlist *sg;
723         int num_sg, max_grefs, num_grant;
724
725         max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
726         if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
727                 /*
728                  * If we are using indirect segments we need to account
729                  * for the indirect grefs used in the request.
730                  */
731                 max_grefs += INDIRECT_GREFS(max_grefs);
732
733         /* Check if we have enough persistent grants to allocate a requests */
734         if (rinfo->persistent_gnts_c < max_grefs) {
735                 new_persistent_gnts = true;
736
737                 if (gnttab_alloc_grant_references(
738                     max_grefs - rinfo->persistent_gnts_c,
739                     &setup.gref_head) < 0) {
740                         gnttab_request_free_callback(
741                                 &rinfo->callback,
742                                 blkif_restart_queue_callback,
743                                 rinfo,
744                                 max_grefs - rinfo->persistent_gnts_c);
745                         return 1;
746                 }
747         }
748
749         /* Fill out a communications ring structure. */
750         id = blkif_ring_get_request(rinfo, req, &ring_req);
751
752         num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
753         num_grant = 0;
754         /* Calculate the number of grant used */
755         for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
756                num_grant += gnttab_count_grant(sg->offset, sg->length);
757
758         require_extra_req = info->max_indirect_segments == 0 &&
759                 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
760         BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
761
762         rinfo->shadow[id].num_sg = num_sg;
763         if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
764             likely(!require_extra_req)) {
765                 /*
766                  * The indirect operation can only be a BLKIF_OP_READ or
767                  * BLKIF_OP_WRITE
768                  */
769                 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
770                 ring_req->operation = BLKIF_OP_INDIRECT;
771                 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
772                         BLKIF_OP_WRITE : BLKIF_OP_READ;
773                 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
774                 ring_req->u.indirect.handle = info->handle;
775                 ring_req->u.indirect.nr_segments = num_grant;
776         } else {
777                 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
778                 ring_req->u.rw.handle = info->handle;
779                 ring_req->operation = rq_data_dir(req) ?
780                         BLKIF_OP_WRITE : BLKIF_OP_READ;
781                 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
782                         /*
783                          * Ideally we can do an unordered flush-to-disk.
784                          * In case the backend onlysupports barriers, use that.
785                          * A barrier request a superset of FUA, so we can
786                          * implement it the same way.  (It's also a FLUSH+FUA,
787                          * since it is guaranteed ordered WRT previous writes.)
788                          */
789                         if (info->feature_flush && info->feature_fua)
790                                 ring_req->operation =
791                                         BLKIF_OP_WRITE_BARRIER;
792                         else if (info->feature_flush)
793                                 ring_req->operation =
794                                         BLKIF_OP_FLUSH_DISKCACHE;
795                         else
796                                 ring_req->operation = 0;
797                 }
798                 ring_req->u.rw.nr_segments = num_grant;
799                 if (unlikely(require_extra_req)) {
800                         extra_id = blkif_ring_get_request(rinfo, req,
801                                                           &extra_ring_req);
802                         /*
803                          * Only the first request contains the scatter-gather
804                          * list.
805                          */
806                         rinfo->shadow[extra_id].num_sg = 0;
807
808                         blkif_setup_extra_req(ring_req, extra_ring_req);
809
810                         /* Link the 2 requests together */
811                         rinfo->shadow[extra_id].associated_id = id;
812                         rinfo->shadow[id].associated_id = extra_id;
813                 }
814         }
815
816         setup.ring_req = ring_req;
817         setup.id = id;
818
819         setup.require_extra_req = require_extra_req;
820         if (unlikely(require_extra_req))
821                 setup.extra_ring_req = extra_ring_req;
822
823         for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
824                 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
825
826                 if (setup.need_copy) {
827                         setup.bvec_off = sg->offset;
828                         setup.bvec_data = kmap_atomic(sg_page(sg));
829                 }
830
831                 gnttab_foreach_grant_in_range(sg_page(sg),
832                                               sg->offset,
833                                               sg->length,
834                                               blkif_setup_rw_req_grant,
835                                               &setup);
836
837                 if (setup.need_copy)
838                         kunmap_atomic(setup.bvec_data);
839         }
840         if (setup.segments)
841                 kunmap_atomic(setup.segments);
842
843         /* Keep a private copy so we can reissue requests when recovering. */
844         rinfo->shadow[id].req = *ring_req;
845         if (unlikely(require_extra_req))
846                 rinfo->shadow[extra_id].req = *extra_ring_req;
847
848         if (new_persistent_gnts)
849                 gnttab_free_grant_references(setup.gref_head);
850
851         return 0;
852 }
853
854 /*
855  * Generate a Xen blkfront IO request from a blk layer request.  Reads
856  * and writes are handled as expected.
857  *
858  * @req: a request struct
859  */
860 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
861 {
862         if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
863                 return 1;
864
865         if (unlikely(req_op(req) == REQ_OP_DISCARD ||
866                      req_op(req) == REQ_OP_SECURE_ERASE))
867                 return blkif_queue_discard_req(req, rinfo);
868         else
869                 return blkif_queue_rw_req(req, rinfo);
870 }
871
872 static inline void flush_requests(struct blkfront_ring_info *rinfo)
873 {
874         int notify;
875
876         RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
877
878         if (notify)
879                 notify_remote_via_irq(rinfo->irq);
880 }
881
882 static inline bool blkif_request_flush_invalid(struct request *req,
883                                                struct blkfront_info *info)
884 {
885         return (blk_rq_is_passthrough(req) ||
886                 ((req_op(req) == REQ_OP_FLUSH) &&
887                  !info->feature_flush) ||
888                 ((req->cmd_flags & REQ_FUA) &&
889                  !info->feature_fua));
890 }
891
892 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
893                           const struct blk_mq_queue_data *qd)
894 {
895         unsigned long flags;
896         int qid = hctx->queue_num;
897         struct blkfront_info *info = hctx->queue->queuedata;
898         struct blkfront_ring_info *rinfo = NULL;
899
900         rinfo = get_rinfo(info, qid);
901         blk_mq_start_request(qd->rq);
902         spin_lock_irqsave(&rinfo->ring_lock, flags);
903         if (RING_FULL(&rinfo->ring))
904                 goto out_busy;
905
906         if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
907                 goto out_err;
908
909         if (blkif_queue_request(qd->rq, rinfo))
910                 goto out_busy;
911
912         flush_requests(rinfo);
913         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
914         return BLK_STS_OK;
915
916 out_err:
917         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
918         return BLK_STS_IOERR;
919
920 out_busy:
921         blk_mq_stop_hw_queue(hctx);
922         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
923         return BLK_STS_DEV_RESOURCE;
924 }
925
926 static void blkif_complete_rq(struct request *rq)
927 {
928         blk_mq_end_request(rq, blkif_req(rq)->error);
929 }
930
931 static const struct blk_mq_ops blkfront_mq_ops = {
932         .queue_rq = blkif_queue_rq,
933         .complete = blkif_complete_rq,
934 };
935
936 static void blkif_set_queue_limits(struct blkfront_info *info)
937 {
938         struct request_queue *rq = info->rq;
939         struct gendisk *gd = info->gd;
940         unsigned int segments = info->max_indirect_segments ? :
941                                 BLKIF_MAX_SEGMENTS_PER_REQUEST;
942
943         blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
944
945         if (info->feature_discard) {
946                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
947                 blk_queue_max_discard_sectors(rq, get_capacity(gd));
948                 rq->limits.discard_granularity = info->discard_granularity;
949                 rq->limits.discard_alignment = info->discard_alignment;
950                 if (info->feature_secdiscard)
951                         blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
952         }
953
954         /* Hard sector size and max sectors impersonate the equiv. hardware. */
955         blk_queue_logical_block_size(rq, info->sector_size);
956         blk_queue_physical_block_size(rq, info->physical_sector_size);
957         blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
958
959         /* Each segment in a request is up to an aligned page in size. */
960         blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
961         blk_queue_max_segment_size(rq, PAGE_SIZE);
962
963         /* Ensure a merged request will fit in a single I/O ring slot. */
964         blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
965
966         /* Make sure buffer addresses are sector-aligned. */
967         blk_queue_dma_alignment(rq, 511);
968 }
969
970 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
971                                 unsigned int physical_sector_size)
972 {
973         struct request_queue *rq;
974         struct blkfront_info *info = gd->private_data;
975
976         memset(&info->tag_set, 0, sizeof(info->tag_set));
977         info->tag_set.ops = &blkfront_mq_ops;
978         info->tag_set.nr_hw_queues = info->nr_rings;
979         if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
980                 /*
981                  * When indirect descriptior is not supported, the I/O request
982                  * will be split between multiple request in the ring.
983                  * To avoid problems when sending the request, divide by
984                  * 2 the depth of the queue.
985                  */
986                 info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
987         } else
988                 info->tag_set.queue_depth = BLK_RING_SIZE(info);
989         info->tag_set.numa_node = NUMA_NO_NODE;
990         info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
991         info->tag_set.cmd_size = sizeof(struct blkif_req);
992         info->tag_set.driver_data = info;
993
994         if (blk_mq_alloc_tag_set(&info->tag_set))
995                 return -EINVAL;
996         rq = blk_mq_init_queue(&info->tag_set);
997         if (IS_ERR(rq)) {
998                 blk_mq_free_tag_set(&info->tag_set);
999                 return PTR_ERR(rq);
1000         }
1001
1002         rq->queuedata = info;
1003         info->rq = gd->queue = rq;
1004         info->gd = gd;
1005         info->sector_size = sector_size;
1006         info->physical_sector_size = physical_sector_size;
1007         blkif_set_queue_limits(info);
1008
1009         return 0;
1010 }
1011
1012 static const char *flush_info(struct blkfront_info *info)
1013 {
1014         if (info->feature_flush && info->feature_fua)
1015                 return "barrier: enabled;";
1016         else if (info->feature_flush)
1017                 return "flush diskcache: enabled;";
1018         else
1019                 return "barrier or flush: disabled;";
1020 }
1021
1022 static void xlvbd_flush(struct blkfront_info *info)
1023 {
1024         blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1025                               info->feature_fua ? true : false);
1026         pr_info("blkfront: %s: %s %s %s %s %s\n",
1027                 info->gd->disk_name, flush_info(info),
1028                 "persistent grants:", info->feature_persistent ?
1029                 "enabled;" : "disabled;", "indirect descriptors:",
1030                 info->max_indirect_segments ? "enabled;" : "disabled;");
1031 }
1032
1033 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1034 {
1035         int major;
1036         major = BLKIF_MAJOR(vdevice);
1037         *minor = BLKIF_MINOR(vdevice);
1038         switch (major) {
1039                 case XEN_IDE0_MAJOR:
1040                         *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1041                         *minor = ((*minor / 64) * PARTS_PER_DISK) +
1042                                 EMULATED_HD_DISK_MINOR_OFFSET;
1043                         break;
1044                 case XEN_IDE1_MAJOR:
1045                         *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1046                         *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1047                                 EMULATED_HD_DISK_MINOR_OFFSET;
1048                         break;
1049                 case XEN_SCSI_DISK0_MAJOR:
1050                         *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1051                         *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1052                         break;
1053                 case XEN_SCSI_DISK1_MAJOR:
1054                 case XEN_SCSI_DISK2_MAJOR:
1055                 case XEN_SCSI_DISK3_MAJOR:
1056                 case XEN_SCSI_DISK4_MAJOR:
1057                 case XEN_SCSI_DISK5_MAJOR:
1058                 case XEN_SCSI_DISK6_MAJOR:
1059                 case XEN_SCSI_DISK7_MAJOR:
1060                         *offset = (*minor / PARTS_PER_DISK) + 
1061                                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1062                                 EMULATED_SD_DISK_NAME_OFFSET;
1063                         *minor = *minor +
1064                                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1065                                 EMULATED_SD_DISK_MINOR_OFFSET;
1066                         break;
1067                 case XEN_SCSI_DISK8_MAJOR:
1068                 case XEN_SCSI_DISK9_MAJOR:
1069                 case XEN_SCSI_DISK10_MAJOR:
1070                 case XEN_SCSI_DISK11_MAJOR:
1071                 case XEN_SCSI_DISK12_MAJOR:
1072                 case XEN_SCSI_DISK13_MAJOR:
1073                 case XEN_SCSI_DISK14_MAJOR:
1074                 case XEN_SCSI_DISK15_MAJOR:
1075                         *offset = (*minor / PARTS_PER_DISK) + 
1076                                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1077                                 EMULATED_SD_DISK_NAME_OFFSET;
1078                         *minor = *minor +
1079                                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1080                                 EMULATED_SD_DISK_MINOR_OFFSET;
1081                         break;
1082                 case XENVBD_MAJOR:
1083                         *offset = *minor / PARTS_PER_DISK;
1084                         break;
1085                 default:
1086                         printk(KERN_WARNING "blkfront: your disk configuration is "
1087                                         "incorrect, please use an xvd device instead\n");
1088                         return -ENODEV;
1089         }
1090         return 0;
1091 }
1092
1093 static char *encode_disk_name(char *ptr, unsigned int n)
1094 {
1095         if (n >= 26)
1096                 ptr = encode_disk_name(ptr, n / 26 - 1);
1097         *ptr = 'a' + n % 26;
1098         return ptr + 1;
1099 }
1100
1101 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1102                                struct blkfront_info *info,
1103                                u16 vdisk_info, u16 sector_size,
1104                                unsigned int physical_sector_size)
1105 {
1106         struct gendisk *gd;
1107         int nr_minors = 1;
1108         int err;
1109         unsigned int offset;
1110         int minor;
1111         int nr_parts;
1112         char *ptr;
1113
1114         BUG_ON(info->gd != NULL);
1115         BUG_ON(info->rq != NULL);
1116
1117         if ((info->vdevice>>EXT_SHIFT) > 1) {
1118                 /* this is above the extended range; something is wrong */
1119                 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1120                 return -ENODEV;
1121         }
1122
1123         if (!VDEV_IS_EXTENDED(info->vdevice)) {
1124                 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1125                 if (err)
1126                         return err;
1127                 nr_parts = PARTS_PER_DISK;
1128         } else {
1129                 minor = BLKIF_MINOR_EXT(info->vdevice);
1130                 nr_parts = PARTS_PER_EXT_DISK;
1131                 offset = minor / nr_parts;
1132                 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1133                         printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1134                                         "emulated IDE disks,\n\t choose an xvd device name"
1135                                         "from xvde on\n", info->vdevice);
1136         }
1137         if (minor >> MINORBITS) {
1138                 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1139                         info->vdevice, minor);
1140                 return -ENODEV;
1141         }
1142
1143         if ((minor % nr_parts) == 0)
1144                 nr_minors = nr_parts;
1145
1146         err = xlbd_reserve_minors(minor, nr_minors);
1147         if (err)
1148                 goto out;
1149         err = -ENODEV;
1150
1151         gd = alloc_disk(nr_minors);
1152         if (gd == NULL)
1153                 goto release;
1154
1155         strcpy(gd->disk_name, DEV_NAME);
1156         ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1157         BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1158         if (nr_minors > 1)
1159                 *ptr = 0;
1160         else
1161                 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1162                          "%d", minor & (nr_parts - 1));
1163
1164         gd->major = XENVBD_MAJOR;
1165         gd->first_minor = minor;
1166         gd->fops = &xlvbd_block_fops;
1167         gd->private_data = info;
1168         set_capacity(gd, capacity);
1169
1170         if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1171                 del_gendisk(gd);
1172                 goto release;
1173         }
1174
1175         xlvbd_flush(info);
1176
1177         if (vdisk_info & VDISK_READONLY)
1178                 set_disk_ro(gd, 1);
1179
1180         if (vdisk_info & VDISK_REMOVABLE)
1181                 gd->flags |= GENHD_FL_REMOVABLE;
1182
1183         if (vdisk_info & VDISK_CDROM)
1184                 gd->flags |= GENHD_FL_CD;
1185
1186         return 0;
1187
1188  release:
1189         xlbd_release_minors(minor, nr_minors);
1190  out:
1191         return err;
1192 }
1193
1194 static void xlvbd_release_gendisk(struct blkfront_info *info)
1195 {
1196         unsigned int minor, nr_minors, i;
1197         struct blkfront_ring_info *rinfo;
1198
1199         if (info->rq == NULL)
1200                 return;
1201
1202         /* No more blkif_request(). */
1203         blk_mq_stop_hw_queues(info->rq);
1204
1205         for_each_rinfo(info, rinfo, i) {
1206                 /* No more gnttab callback work. */
1207                 gnttab_cancel_free_callback(&rinfo->callback);
1208
1209                 /* Flush gnttab callback work. Must be done with no locks held. */
1210                 flush_work(&rinfo->work);
1211         }
1212
1213         del_gendisk(info->gd);
1214
1215         minor = info->gd->first_minor;
1216         nr_minors = info->gd->minors;
1217         xlbd_release_minors(minor, nr_minors);
1218
1219         blk_cleanup_queue(info->rq);
1220         blk_mq_free_tag_set(&info->tag_set);
1221         info->rq = NULL;
1222
1223         put_disk(info->gd);
1224         info->gd = NULL;
1225 }
1226
1227 /* Already hold rinfo->ring_lock. */
1228 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1229 {
1230         if (!RING_FULL(&rinfo->ring))
1231                 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1232 }
1233
1234 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1235 {
1236         unsigned long flags;
1237
1238         spin_lock_irqsave(&rinfo->ring_lock, flags);
1239         kick_pending_request_queues_locked(rinfo);
1240         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1241 }
1242
1243 static void blkif_restart_queue(struct work_struct *work)
1244 {
1245         struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1246
1247         if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1248                 kick_pending_request_queues(rinfo);
1249 }
1250
1251 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1252 {
1253         struct grant *persistent_gnt, *n;
1254         struct blkfront_info *info = rinfo->dev_info;
1255         int i, j, segs;
1256
1257         /*
1258          * Remove indirect pages, this only happens when using indirect
1259          * descriptors but not persistent grants
1260          */
1261         if (!list_empty(&rinfo->indirect_pages)) {
1262                 struct page *indirect_page, *n;
1263
1264                 BUG_ON(info->feature_persistent);
1265                 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1266                         list_del(&indirect_page->lru);
1267                         __free_page(indirect_page);
1268                 }
1269         }
1270
1271         /* Remove all persistent grants. */
1272         if (!list_empty(&rinfo->grants)) {
1273                 list_for_each_entry_safe(persistent_gnt, n,
1274                                          &rinfo->grants, node) {
1275                         list_del(&persistent_gnt->node);
1276                         if (persistent_gnt->gref != GRANT_INVALID_REF) {
1277                                 gnttab_end_foreign_access(persistent_gnt->gref,
1278                                                           0, 0UL);
1279                                 rinfo->persistent_gnts_c--;
1280                         }
1281                         if (info->feature_persistent)
1282                                 __free_page(persistent_gnt->page);
1283                         kfree(persistent_gnt);
1284                 }
1285         }
1286         BUG_ON(rinfo->persistent_gnts_c != 0);
1287
1288         for (i = 0; i < BLK_RING_SIZE(info); i++) {
1289                 /*
1290                  * Clear persistent grants present in requests already
1291                  * on the shared ring
1292                  */
1293                 if (!rinfo->shadow[i].request)
1294                         goto free_shadow;
1295
1296                 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1297                        rinfo->shadow[i].req.u.indirect.nr_segments :
1298                        rinfo->shadow[i].req.u.rw.nr_segments;
1299                 for (j = 0; j < segs; j++) {
1300                         persistent_gnt = rinfo->shadow[i].grants_used[j];
1301                         gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1302                         if (info->feature_persistent)
1303                                 __free_page(persistent_gnt->page);
1304                         kfree(persistent_gnt);
1305                 }
1306
1307                 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1308                         /*
1309                          * If this is not an indirect operation don't try to
1310                          * free indirect segments
1311                          */
1312                         goto free_shadow;
1313
1314                 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1315                         persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1316                         gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1317                         __free_page(persistent_gnt->page);
1318                         kfree(persistent_gnt);
1319                 }
1320
1321 free_shadow:
1322                 kvfree(rinfo->shadow[i].grants_used);
1323                 rinfo->shadow[i].grants_used = NULL;
1324                 kvfree(rinfo->shadow[i].indirect_grants);
1325                 rinfo->shadow[i].indirect_grants = NULL;
1326                 kvfree(rinfo->shadow[i].sg);
1327                 rinfo->shadow[i].sg = NULL;
1328         }
1329
1330         /* No more gnttab callback work. */
1331         gnttab_cancel_free_callback(&rinfo->callback);
1332
1333         /* Flush gnttab callback work. Must be done with no locks held. */
1334         flush_work(&rinfo->work);
1335
1336         /* Free resources associated with old device channel. */
1337         for (i = 0; i < info->nr_ring_pages; i++) {
1338                 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1339                         gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1340                         rinfo->ring_ref[i] = GRANT_INVALID_REF;
1341                 }
1342         }
1343         free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1344         rinfo->ring.sring = NULL;
1345
1346         if (rinfo->irq)
1347                 unbind_from_irqhandler(rinfo->irq, rinfo);
1348         rinfo->evtchn = rinfo->irq = 0;
1349 }
1350
1351 static void blkif_free(struct blkfront_info *info, int suspend)
1352 {
1353         unsigned int i;
1354         struct blkfront_ring_info *rinfo;
1355
1356         /* Prevent new requests being issued until we fix things up. */
1357         info->connected = suspend ?
1358                 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1359         /* No more blkif_request(). */
1360         if (info->rq)
1361                 blk_mq_stop_hw_queues(info->rq);
1362
1363         for_each_rinfo(info, rinfo, i)
1364                 blkif_free_ring(rinfo);
1365
1366         kvfree(info->rinfo);
1367         info->rinfo = NULL;
1368         info->nr_rings = 0;
1369 }
1370
1371 struct copy_from_grant {
1372         const struct blk_shadow *s;
1373         unsigned int grant_idx;
1374         unsigned int bvec_offset;
1375         char *bvec_data;
1376 };
1377
1378 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1379                                   unsigned int len, void *data)
1380 {
1381         struct copy_from_grant *info = data;
1382         char *shared_data;
1383         /* Convenient aliases */
1384         const struct blk_shadow *s = info->s;
1385
1386         shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1387
1388         memcpy(info->bvec_data + info->bvec_offset,
1389                shared_data + offset, len);
1390
1391         info->bvec_offset += len;
1392         info->grant_idx++;
1393
1394         kunmap_atomic(shared_data);
1395 }
1396
1397 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1398 {
1399         switch (rsp)
1400         {
1401         case BLKIF_RSP_OKAY:
1402                 return REQ_DONE;
1403         case BLKIF_RSP_EOPNOTSUPP:
1404                 return REQ_EOPNOTSUPP;
1405         case BLKIF_RSP_ERROR:
1406                 /* Fallthrough. */
1407         default:
1408                 return REQ_ERROR;
1409         }
1410 }
1411
1412 /*
1413  * Get the final status of the block request based on two ring response
1414  */
1415 static int blkif_get_final_status(enum blk_req_status s1,
1416                                   enum blk_req_status s2)
1417 {
1418         BUG_ON(s1 == REQ_WAITING);
1419         BUG_ON(s2 == REQ_WAITING);
1420
1421         if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1422                 return BLKIF_RSP_ERROR;
1423         else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1424                 return BLKIF_RSP_EOPNOTSUPP;
1425         return BLKIF_RSP_OKAY;
1426 }
1427
1428 static bool blkif_completion(unsigned long *id,
1429                              struct blkfront_ring_info *rinfo,
1430                              struct blkif_response *bret)
1431 {
1432         int i = 0;
1433         struct scatterlist *sg;
1434         int num_sg, num_grant;
1435         struct blkfront_info *info = rinfo->dev_info;
1436         struct blk_shadow *s = &rinfo->shadow[*id];
1437         struct copy_from_grant data = {
1438                 .grant_idx = 0,
1439         };
1440
1441         num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1442                 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1443
1444         /* The I/O request may be split in two. */
1445         if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1446                 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1447
1448                 /* Keep the status of the current response in shadow. */
1449                 s->status = blkif_rsp_to_req_status(bret->status);
1450
1451                 /* Wait the second response if not yet here. */
1452                 if (s2->status == REQ_WAITING)
1453                         return false;
1454
1455                 bret->status = blkif_get_final_status(s->status,
1456                                                       s2->status);
1457
1458                 /*
1459                  * All the grants is stored in the first shadow in order
1460                  * to make the completion code simpler.
1461                  */
1462                 num_grant += s2->req.u.rw.nr_segments;
1463
1464                 /*
1465                  * The two responses may not come in order. Only the
1466                  * first request will store the scatter-gather list.
1467                  */
1468                 if (s2->num_sg != 0) {
1469                         /* Update "id" with the ID of the first response. */
1470                         *id = s->associated_id;
1471                         s = s2;
1472                 }
1473
1474                 /*
1475                  * We don't need anymore the second request, so recycling
1476                  * it now.
1477                  */
1478                 if (add_id_to_freelist(rinfo, s->associated_id))
1479                         WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1480                              info->gd->disk_name, s->associated_id);
1481         }
1482
1483         data.s = s;
1484         num_sg = s->num_sg;
1485
1486         if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1487                 for_each_sg(s->sg, sg, num_sg, i) {
1488                         BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1489
1490                         data.bvec_offset = sg->offset;
1491                         data.bvec_data = kmap_atomic(sg_page(sg));
1492
1493                         gnttab_foreach_grant_in_range(sg_page(sg),
1494                                                       sg->offset,
1495                                                       sg->length,
1496                                                       blkif_copy_from_grant,
1497                                                       &data);
1498
1499                         kunmap_atomic(data.bvec_data);
1500                 }
1501         }
1502         /* Add the persistent grant into the list of free grants */
1503         for (i = 0; i < num_grant; i++) {
1504                 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1505                         /*
1506                          * If the grant is still mapped by the backend (the
1507                          * backend has chosen to make this grant persistent)
1508                          * we add it at the head of the list, so it will be
1509                          * reused first.
1510                          */
1511                         if (!info->feature_persistent)
1512                                 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1513                                                      s->grants_used[i]->gref);
1514                         list_add(&s->grants_used[i]->node, &rinfo->grants);
1515                         rinfo->persistent_gnts_c++;
1516                 } else {
1517                         /*
1518                          * If the grant is not mapped by the backend we end the
1519                          * foreign access and add it to the tail of the list,
1520                          * so it will not be picked again unless we run out of
1521                          * persistent grants.
1522                          */
1523                         gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1524                         s->grants_used[i]->gref = GRANT_INVALID_REF;
1525                         list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1526                 }
1527         }
1528         if (s->req.operation == BLKIF_OP_INDIRECT) {
1529                 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1530                         if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1531                                 if (!info->feature_persistent)
1532                                         pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1533                                                              s->indirect_grants[i]->gref);
1534                                 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1535                                 rinfo->persistent_gnts_c++;
1536                         } else {
1537                                 struct page *indirect_page;
1538
1539                                 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1540                                 /*
1541                                  * Add the used indirect page back to the list of
1542                                  * available pages for indirect grefs.
1543                                  */
1544                                 if (!info->feature_persistent) {
1545                                         indirect_page = s->indirect_grants[i]->page;
1546                                         list_add(&indirect_page->lru, &rinfo->indirect_pages);
1547                                 }
1548                                 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1549                                 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1550                         }
1551                 }
1552         }
1553
1554         return true;
1555 }
1556
1557 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1558 {
1559         struct request *req;
1560         struct blkif_response *bret;
1561         RING_IDX i, rp;
1562         unsigned long flags;
1563         struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1564         struct blkfront_info *info = rinfo->dev_info;
1565
1566         if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1567                 return IRQ_HANDLED;
1568
1569         spin_lock_irqsave(&rinfo->ring_lock, flags);
1570  again:
1571         rp = rinfo->ring.sring->rsp_prod;
1572         rmb(); /* Ensure we see queued responses up to 'rp'. */
1573
1574         for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1575                 unsigned long id;
1576
1577                 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1578                 id   = bret->id;
1579                 /*
1580                  * The backend has messed up and given us an id that we would
1581                  * never have given to it (we stamp it up to BLK_RING_SIZE -
1582                  * look in get_id_from_freelist.
1583                  */
1584                 if (id >= BLK_RING_SIZE(info)) {
1585                         WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1586                              info->gd->disk_name, op_name(bret->operation), id);
1587                         /* We can't safely get the 'struct request' as
1588                          * the id is busted. */
1589                         continue;
1590                 }
1591                 req  = rinfo->shadow[id].request;
1592
1593                 if (bret->operation != BLKIF_OP_DISCARD) {
1594                         /*
1595                          * We may need to wait for an extra response if the
1596                          * I/O request is split in 2
1597                          */
1598                         if (!blkif_completion(&id, rinfo, bret))
1599                                 continue;
1600                 }
1601
1602                 if (add_id_to_freelist(rinfo, id)) {
1603                         WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1604                              info->gd->disk_name, op_name(bret->operation), id);
1605                         continue;
1606                 }
1607
1608                 if (bret->status == BLKIF_RSP_OKAY)
1609                         blkif_req(req)->error = BLK_STS_OK;
1610                 else
1611                         blkif_req(req)->error = BLK_STS_IOERR;
1612
1613                 switch (bret->operation) {
1614                 case BLKIF_OP_DISCARD:
1615                         if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1616                                 struct request_queue *rq = info->rq;
1617                                 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1618                                            info->gd->disk_name, op_name(bret->operation));
1619                                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1620                                 info->feature_discard = 0;
1621                                 info->feature_secdiscard = 0;
1622                                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1623                                 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1624                         }
1625                         break;
1626                 case BLKIF_OP_FLUSH_DISKCACHE:
1627                 case BLKIF_OP_WRITE_BARRIER:
1628                         if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1629                                 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1630                                        info->gd->disk_name, op_name(bret->operation));
1631                                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1632                         }
1633                         if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1634                                      rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1635                                 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1636                                        info->gd->disk_name, op_name(bret->operation));
1637                                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1638                         }
1639                         if (unlikely(blkif_req(req)->error)) {
1640                                 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1641                                         blkif_req(req)->error = BLK_STS_OK;
1642                                 info->feature_fua = 0;
1643                                 info->feature_flush = 0;
1644                                 xlvbd_flush(info);
1645                         }
1646                         /* fall through */
1647                 case BLKIF_OP_READ:
1648                 case BLKIF_OP_WRITE:
1649                         if (unlikely(bret->status != BLKIF_RSP_OKAY))
1650                                 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1651                                         "request: %x\n", bret->status);
1652
1653                         break;
1654                 default:
1655                         BUG();
1656                 }
1657
1658                 blk_mq_complete_request(req);
1659         }
1660
1661         rinfo->ring.rsp_cons = i;
1662
1663         if (i != rinfo->ring.req_prod_pvt) {
1664                 int more_to_do;
1665                 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1666                 if (more_to_do)
1667                         goto again;
1668         } else
1669                 rinfo->ring.sring->rsp_event = i + 1;
1670
1671         kick_pending_request_queues_locked(rinfo);
1672
1673         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1674
1675         return IRQ_HANDLED;
1676 }
1677
1678
1679 static int setup_blkring(struct xenbus_device *dev,
1680                          struct blkfront_ring_info *rinfo)
1681 {
1682         struct blkif_sring *sring;
1683         int err, i;
1684         struct blkfront_info *info = rinfo->dev_info;
1685         unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1686         grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1687
1688         for (i = 0; i < info->nr_ring_pages; i++)
1689                 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1690
1691         sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1692                                                        get_order(ring_size));
1693         if (!sring) {
1694                 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1695                 return -ENOMEM;
1696         }
1697         SHARED_RING_INIT(sring);
1698         FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1699
1700         err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1701         if (err < 0) {
1702                 free_pages((unsigned long)sring, get_order(ring_size));
1703                 rinfo->ring.sring = NULL;
1704                 goto fail;
1705         }
1706         for (i = 0; i < info->nr_ring_pages; i++)
1707                 rinfo->ring_ref[i] = gref[i];
1708
1709         err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1710         if (err)
1711                 goto fail;
1712
1713         err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1714                                         "blkif", rinfo);
1715         if (err <= 0) {
1716                 xenbus_dev_fatal(dev, err,
1717                                  "bind_evtchn_to_irqhandler failed");
1718                 goto fail;
1719         }
1720         rinfo->irq = err;
1721
1722         return 0;
1723 fail:
1724         blkif_free(info, 0);
1725         return err;
1726 }
1727
1728 /*
1729  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1730  * ring buffer may have multi pages depending on ->nr_ring_pages.
1731  */
1732 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1733                                 struct blkfront_ring_info *rinfo, const char *dir)
1734 {
1735         int err;
1736         unsigned int i;
1737         const char *message = NULL;
1738         struct blkfront_info *info = rinfo->dev_info;
1739
1740         if (info->nr_ring_pages == 1) {
1741                 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1742                 if (err) {
1743                         message = "writing ring-ref";
1744                         goto abort_transaction;
1745                 }
1746         } else {
1747                 for (i = 0; i < info->nr_ring_pages; i++) {
1748                         char ring_ref_name[RINGREF_NAME_LEN];
1749
1750                         snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1751                         err = xenbus_printf(xbt, dir, ring_ref_name,
1752                                             "%u", rinfo->ring_ref[i]);
1753                         if (err) {
1754                                 message = "writing ring-ref";
1755                                 goto abort_transaction;
1756                         }
1757                 }
1758         }
1759
1760         err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1761         if (err) {
1762                 message = "writing event-channel";
1763                 goto abort_transaction;
1764         }
1765
1766         return 0;
1767
1768 abort_transaction:
1769         xenbus_transaction_end(xbt, 1);
1770         if (message)
1771                 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1772
1773         return err;
1774 }
1775
1776 static void free_info(struct blkfront_info *info)
1777 {
1778         list_del(&info->info_list);
1779         kfree(info);
1780 }
1781
1782 /* Common code used when first setting up, and when resuming. */
1783 static int talk_to_blkback(struct xenbus_device *dev,
1784                            struct blkfront_info *info)
1785 {
1786         const char *message = NULL;
1787         struct xenbus_transaction xbt;
1788         int err;
1789         unsigned int i, max_page_order;
1790         unsigned int ring_page_order;
1791         struct blkfront_ring_info *rinfo;
1792
1793         if (!info)
1794                 return -ENODEV;
1795
1796         max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1797                                               "max-ring-page-order", 0);
1798         ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1799         info->nr_ring_pages = 1 << ring_page_order;
1800
1801         err = negotiate_mq(info);
1802         if (err)
1803                 goto destroy_blkring;
1804
1805         for_each_rinfo(info, rinfo, i) {
1806                 /* Create shared ring, alloc event channel. */
1807                 err = setup_blkring(dev, rinfo);
1808                 if (err)
1809                         goto destroy_blkring;
1810         }
1811
1812 again:
1813         err = xenbus_transaction_start(&xbt);
1814         if (err) {
1815                 xenbus_dev_fatal(dev, err, "starting transaction");
1816                 goto destroy_blkring;
1817         }
1818
1819         if (info->nr_ring_pages > 1) {
1820                 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1821                                     ring_page_order);
1822                 if (err) {
1823                         message = "writing ring-page-order";
1824                         goto abort_transaction;
1825                 }
1826         }
1827
1828         /* We already got the number of queues/rings in _probe */
1829         if (info->nr_rings == 1) {
1830                 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1831                 if (err)
1832                         goto destroy_blkring;
1833         } else {
1834                 char *path;
1835                 size_t pathsize;
1836
1837                 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1838                                     info->nr_rings);
1839                 if (err) {
1840                         message = "writing multi-queue-num-queues";
1841                         goto abort_transaction;
1842                 }
1843
1844                 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1845                 path = kmalloc(pathsize, GFP_KERNEL);
1846                 if (!path) {
1847                         err = -ENOMEM;
1848                         message = "ENOMEM while writing ring references";
1849                         goto abort_transaction;
1850                 }
1851
1852                 for_each_rinfo(info, rinfo, i) {
1853                         memset(path, 0, pathsize);
1854                         snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1855                         err = write_per_ring_nodes(xbt, rinfo, path);
1856                         if (err) {
1857                                 kfree(path);
1858                                 goto destroy_blkring;
1859                         }
1860                 }
1861                 kfree(path);
1862         }
1863         err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1864                             XEN_IO_PROTO_ABI_NATIVE);
1865         if (err) {
1866                 message = "writing protocol";
1867                 goto abort_transaction;
1868         }
1869         err = xenbus_printf(xbt, dev->nodename,
1870                             "feature-persistent", "%u", 1);
1871         if (err)
1872                 dev_warn(&dev->dev,
1873                          "writing persistent grants feature to xenbus");
1874
1875         err = xenbus_transaction_end(xbt, 0);
1876         if (err) {
1877                 if (err == -EAGAIN)
1878                         goto again;
1879                 xenbus_dev_fatal(dev, err, "completing transaction");
1880                 goto destroy_blkring;
1881         }
1882
1883         for_each_rinfo(info, rinfo, i) {
1884                 unsigned int j;
1885
1886                 for (j = 0; j < BLK_RING_SIZE(info); j++)
1887                         rinfo->shadow[j].req.u.rw.id = j + 1;
1888                 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1889         }
1890         xenbus_switch_state(dev, XenbusStateInitialised);
1891
1892         return 0;
1893
1894  abort_transaction:
1895         xenbus_transaction_end(xbt, 1);
1896         if (message)
1897                 xenbus_dev_fatal(dev, err, "%s", message);
1898  destroy_blkring:
1899         blkif_free(info, 0);
1900
1901         mutex_lock(&blkfront_mutex);
1902         free_info(info);
1903         mutex_unlock(&blkfront_mutex);
1904
1905         dev_set_drvdata(&dev->dev, NULL);
1906
1907         return err;
1908 }
1909
1910 static int negotiate_mq(struct blkfront_info *info)
1911 {
1912         unsigned int backend_max_queues;
1913         unsigned int i;
1914         struct blkfront_ring_info *rinfo;
1915
1916         BUG_ON(info->nr_rings);
1917
1918         /* Check if backend supports multiple queues. */
1919         backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1920                                                   "multi-queue-max-queues", 1);
1921         info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1922         /* We need at least one ring. */
1923         if (!info->nr_rings)
1924                 info->nr_rings = 1;
1925
1926         info->rinfo_size = struct_size(info->rinfo, shadow,
1927                                        BLK_RING_SIZE(info));
1928         info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1929         if (!info->rinfo) {
1930                 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1931                 info->nr_rings = 0;
1932                 return -ENOMEM;
1933         }
1934
1935         for_each_rinfo(info, rinfo, i) {
1936                 INIT_LIST_HEAD(&rinfo->indirect_pages);
1937                 INIT_LIST_HEAD(&rinfo->grants);
1938                 rinfo->dev_info = info;
1939                 INIT_WORK(&rinfo->work, blkif_restart_queue);
1940                 spin_lock_init(&rinfo->ring_lock);
1941         }
1942         return 0;
1943 }
1944 /**
1945  * Entry point to this code when a new device is created.  Allocate the basic
1946  * structures and the ring buffer for communication with the backend, and
1947  * inform the backend of the appropriate details for those.  Switch to
1948  * Initialised state.
1949  */
1950 static int blkfront_probe(struct xenbus_device *dev,
1951                           const struct xenbus_device_id *id)
1952 {
1953         int err, vdevice;
1954         struct blkfront_info *info;
1955
1956         /* FIXME: Use dynamic device id if this is not set. */
1957         err = xenbus_scanf(XBT_NIL, dev->nodename,
1958                            "virtual-device", "%i", &vdevice);
1959         if (err != 1) {
1960                 /* go looking in the extended area instead */
1961                 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1962                                    "%i", &vdevice);
1963                 if (err != 1) {
1964                         xenbus_dev_fatal(dev, err, "reading virtual-device");
1965                         return err;
1966                 }
1967         }
1968
1969         if (xen_hvm_domain()) {
1970                 char *type;
1971                 int len;
1972                 /* no unplug has been done: do not hook devices != xen vbds */
1973                 if (xen_has_pv_and_legacy_disk_devices()) {
1974                         int major;
1975
1976                         if (!VDEV_IS_EXTENDED(vdevice))
1977                                 major = BLKIF_MAJOR(vdevice);
1978                         else
1979                                 major = XENVBD_MAJOR;
1980
1981                         if (major != XENVBD_MAJOR) {
1982                                 printk(KERN_INFO
1983                                                 "%s: HVM does not support vbd %d as xen block device\n",
1984                                                 __func__, vdevice);
1985                                 return -ENODEV;
1986                         }
1987                 }
1988                 /* do not create a PV cdrom device if we are an HVM guest */
1989                 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1990                 if (IS_ERR(type))
1991                         return -ENODEV;
1992                 if (strncmp(type, "cdrom", 5) == 0) {
1993                         kfree(type);
1994                         return -ENODEV;
1995                 }
1996                 kfree(type);
1997         }
1998         info = kzalloc(sizeof(*info), GFP_KERNEL);
1999         if (!info) {
2000                 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
2001                 return -ENOMEM;
2002         }
2003
2004         info->xbdev = dev;
2005
2006         mutex_init(&info->mutex);
2007         info->vdevice = vdevice;
2008         info->connected = BLKIF_STATE_DISCONNECTED;
2009
2010         /* Front end dir is a number, which is used as the id. */
2011         info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2012         dev_set_drvdata(&dev->dev, info);
2013
2014         mutex_lock(&blkfront_mutex);
2015         list_add(&info->info_list, &info_list);
2016         mutex_unlock(&blkfront_mutex);
2017
2018         return 0;
2019 }
2020
2021 static int blkif_recover(struct blkfront_info *info)
2022 {
2023         unsigned int r_index;
2024         struct request *req, *n;
2025         int rc;
2026         struct bio *bio;
2027         unsigned int segs;
2028         struct blkfront_ring_info *rinfo;
2029
2030         blkfront_gather_backend_features(info);
2031         /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2032         blkif_set_queue_limits(info);
2033         segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2034         blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2035
2036         for_each_rinfo(info, rinfo, r_index) {
2037                 rc = blkfront_setup_indirect(rinfo);
2038                 if (rc)
2039                         return rc;
2040         }
2041         xenbus_switch_state(info->xbdev, XenbusStateConnected);
2042
2043         /* Now safe for us to use the shared ring */
2044         info->connected = BLKIF_STATE_CONNECTED;
2045
2046         for_each_rinfo(info, rinfo, r_index) {
2047                 /* Kick any other new requests queued since we resumed */
2048                 kick_pending_request_queues(rinfo);
2049         }
2050
2051         list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2052                 /* Requeue pending requests (flush or discard) */
2053                 list_del_init(&req->queuelist);
2054                 BUG_ON(req->nr_phys_segments > segs);
2055                 blk_mq_requeue_request(req, false);
2056         }
2057         blk_mq_start_stopped_hw_queues(info->rq, true);
2058         blk_mq_kick_requeue_list(info->rq);
2059
2060         while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2061                 /* Traverse the list of pending bios and re-queue them */
2062                 submit_bio(bio);
2063         }
2064
2065         return 0;
2066 }
2067
2068 /**
2069  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2070  * driver restart.  We tear down our blkif structure and recreate it, but
2071  * leave the device-layer structures intact so that this is transparent to the
2072  * rest of the kernel.
2073  */
2074 static int blkfront_resume(struct xenbus_device *dev)
2075 {
2076         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2077         int err = 0;
2078         unsigned int i, j;
2079         struct blkfront_ring_info *rinfo;
2080
2081         dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2082
2083         bio_list_init(&info->bio_list);
2084         INIT_LIST_HEAD(&info->requests);
2085         for_each_rinfo(info, rinfo, i) {
2086                 struct bio_list merge_bio;
2087                 struct blk_shadow *shadow = rinfo->shadow;
2088
2089                 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2090                         /* Not in use? */
2091                         if (!shadow[j].request)
2092                                 continue;
2093
2094                         /*
2095                          * Get the bios in the request so we can re-queue them.
2096                          */
2097                         if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2098                             req_op(shadow[j].request) == REQ_OP_DISCARD ||
2099                             req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2100                             shadow[j].request->cmd_flags & REQ_FUA) {
2101                                 /*
2102                                  * Flush operations don't contain bios, so
2103                                  * we need to requeue the whole request
2104                                  *
2105                                  * XXX: but this doesn't make any sense for a
2106                                  * write with the FUA flag set..
2107                                  */
2108                                 list_add(&shadow[j].request->queuelist, &info->requests);
2109                                 continue;
2110                         }
2111                         merge_bio.head = shadow[j].request->bio;
2112                         merge_bio.tail = shadow[j].request->biotail;
2113                         bio_list_merge(&info->bio_list, &merge_bio);
2114                         shadow[j].request->bio = NULL;
2115                         blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2116                 }
2117         }
2118
2119         blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2120
2121         err = talk_to_blkback(dev, info);
2122         if (!err)
2123                 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2124
2125         /*
2126          * We have to wait for the backend to switch to
2127          * connected state, since we want to read which
2128          * features it supports.
2129          */
2130
2131         return err;
2132 }
2133
2134 static void blkfront_closing(struct blkfront_info *info)
2135 {
2136         struct xenbus_device *xbdev = info->xbdev;
2137         struct block_device *bdev = NULL;
2138
2139         mutex_lock(&info->mutex);
2140
2141         if (xbdev->state == XenbusStateClosing) {
2142                 mutex_unlock(&info->mutex);
2143                 return;
2144         }
2145
2146         if (info->gd)
2147                 bdev = bdget_disk(info->gd, 0);
2148
2149         mutex_unlock(&info->mutex);
2150
2151         if (!bdev) {
2152                 xenbus_frontend_closed(xbdev);
2153                 return;
2154         }
2155
2156         mutex_lock(&bdev->bd_mutex);
2157
2158         if (bdev->bd_openers) {
2159                 xenbus_dev_error(xbdev, -EBUSY,
2160                                  "Device in use; refusing to close");
2161                 xenbus_switch_state(xbdev, XenbusStateClosing);
2162         } else {
2163                 xlvbd_release_gendisk(info);
2164                 xenbus_frontend_closed(xbdev);
2165         }
2166
2167         mutex_unlock(&bdev->bd_mutex);
2168         bdput(bdev);
2169 }
2170
2171 static void blkfront_setup_discard(struct blkfront_info *info)
2172 {
2173         int err;
2174         unsigned int discard_granularity;
2175         unsigned int discard_alignment;
2176
2177         info->feature_discard = 1;
2178         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2179                 "discard-granularity", "%u", &discard_granularity,
2180                 "discard-alignment", "%u", &discard_alignment,
2181                 NULL);
2182         if (!err) {
2183                 info->discard_granularity = discard_granularity;
2184                 info->discard_alignment = discard_alignment;
2185         }
2186         info->feature_secdiscard =
2187                 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2188                                        0);
2189 }
2190
2191 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2192 {
2193         unsigned int psegs, grants, memflags;
2194         int err, i;
2195         struct blkfront_info *info = rinfo->dev_info;
2196
2197         memflags = memalloc_noio_save();
2198
2199         if (info->max_indirect_segments == 0) {
2200                 if (!HAS_EXTRA_REQ)
2201                         grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2202                 else {
2203                         /*
2204                          * When an extra req is required, the maximum
2205                          * grants supported is related to the size of the
2206                          * Linux block segment.
2207                          */
2208                         grants = GRANTS_PER_PSEG;
2209                 }
2210         }
2211         else
2212                 grants = info->max_indirect_segments;
2213         psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2214
2215         err = fill_grant_buffer(rinfo,
2216                                 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2217         if (err)
2218                 goto out_of_memory;
2219
2220         if (!info->feature_persistent && info->max_indirect_segments) {
2221                 /*
2222                  * We are using indirect descriptors but not persistent
2223                  * grants, we need to allocate a set of pages that can be
2224                  * used for mapping indirect grefs
2225                  */
2226                 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2227
2228                 BUG_ON(!list_empty(&rinfo->indirect_pages));
2229                 for (i = 0; i < num; i++) {
2230                         struct page *indirect_page = alloc_page(GFP_KERNEL);
2231                         if (!indirect_page)
2232                                 goto out_of_memory;
2233                         list_add(&indirect_page->lru, &rinfo->indirect_pages);
2234                 }
2235         }
2236
2237         for (i = 0; i < BLK_RING_SIZE(info); i++) {
2238                 rinfo->shadow[i].grants_used =
2239                         kvcalloc(grants,
2240                                  sizeof(rinfo->shadow[i].grants_used[0]),
2241                                  GFP_KERNEL);
2242                 rinfo->shadow[i].sg = kvcalloc(psegs,
2243                                                sizeof(rinfo->shadow[i].sg[0]),
2244                                                GFP_KERNEL);
2245                 if (info->max_indirect_segments)
2246                         rinfo->shadow[i].indirect_grants =
2247                                 kvcalloc(INDIRECT_GREFS(grants),
2248                                          sizeof(rinfo->shadow[i].indirect_grants[0]),
2249                                          GFP_KERNEL);
2250                 if ((rinfo->shadow[i].grants_used == NULL) ||
2251                         (rinfo->shadow[i].sg == NULL) ||
2252                      (info->max_indirect_segments &&
2253                      (rinfo->shadow[i].indirect_grants == NULL)))
2254                         goto out_of_memory;
2255                 sg_init_table(rinfo->shadow[i].sg, psegs);
2256         }
2257
2258         memalloc_noio_restore(memflags);
2259
2260         return 0;
2261
2262 out_of_memory:
2263         for (i = 0; i < BLK_RING_SIZE(info); i++) {
2264                 kvfree(rinfo->shadow[i].grants_used);
2265                 rinfo->shadow[i].grants_used = NULL;
2266                 kvfree(rinfo->shadow[i].sg);
2267                 rinfo->shadow[i].sg = NULL;
2268                 kvfree(rinfo->shadow[i].indirect_grants);
2269                 rinfo->shadow[i].indirect_grants = NULL;
2270         }
2271         if (!list_empty(&rinfo->indirect_pages)) {
2272                 struct page *indirect_page, *n;
2273                 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2274                         list_del(&indirect_page->lru);
2275                         __free_page(indirect_page);
2276                 }
2277         }
2278
2279         memalloc_noio_restore(memflags);
2280
2281         return -ENOMEM;
2282 }
2283
2284 /*
2285  * Gather all backend feature-*
2286  */
2287 static void blkfront_gather_backend_features(struct blkfront_info *info)
2288 {
2289         unsigned int indirect_segments;
2290
2291         info->feature_flush = 0;
2292         info->feature_fua = 0;
2293
2294         /*
2295          * If there's no "feature-barrier" defined, then it means
2296          * we're dealing with a very old backend which writes
2297          * synchronously; nothing to do.
2298          *
2299          * If there are barriers, then we use flush.
2300          */
2301         if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2302                 info->feature_flush = 1;
2303                 info->feature_fua = 1;
2304         }
2305
2306         /*
2307          * And if there is "feature-flush-cache" use that above
2308          * barriers.
2309          */
2310         if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2311                                  0)) {
2312                 info->feature_flush = 1;
2313                 info->feature_fua = 0;
2314         }
2315
2316         if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2317                 blkfront_setup_discard(info);
2318
2319         info->feature_persistent =
2320                 !!xenbus_read_unsigned(info->xbdev->otherend,
2321                                        "feature-persistent", 0);
2322
2323         indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2324                                         "feature-max-indirect-segments", 0);
2325         if (indirect_segments > xen_blkif_max_segments)
2326                 indirect_segments = xen_blkif_max_segments;
2327         if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2328                 indirect_segments = 0;
2329         info->max_indirect_segments = indirect_segments;
2330
2331         if (info->feature_persistent) {
2332                 mutex_lock(&blkfront_mutex);
2333                 schedule_delayed_work(&blkfront_work, HZ * 10);
2334                 mutex_unlock(&blkfront_mutex);
2335         }
2336 }
2337
2338 /*
2339  * Invoked when the backend is finally 'ready' (and has told produced
2340  * the details about the physical device - #sectors, size, etc).
2341  */
2342 static void blkfront_connect(struct blkfront_info *info)
2343 {
2344         unsigned long long sectors;
2345         unsigned long sector_size;
2346         unsigned int physical_sector_size;
2347         unsigned int binfo;
2348         int err, i;
2349         struct blkfront_ring_info *rinfo;
2350
2351         switch (info->connected) {
2352         case BLKIF_STATE_CONNECTED:
2353                 /*
2354                  * Potentially, the back-end may be signalling
2355                  * a capacity change; update the capacity.
2356                  */
2357                 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2358                                    "sectors", "%Lu", &sectors);
2359                 if (XENBUS_EXIST_ERR(err))
2360                         return;
2361                 printk(KERN_INFO "Setting capacity to %Lu\n",
2362                        sectors);
2363                 set_capacity_revalidate_and_notify(info->gd, sectors, true);
2364
2365                 return;
2366         case BLKIF_STATE_SUSPENDED:
2367                 /*
2368                  * If we are recovering from suspension, we need to wait
2369                  * for the backend to announce it's features before
2370                  * reconnecting, at least we need to know if the backend
2371                  * supports indirect descriptors, and how many.
2372                  */
2373                 blkif_recover(info);
2374                 return;
2375
2376         default:
2377                 break;
2378         }
2379
2380         dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2381                 __func__, info->xbdev->otherend);
2382
2383         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2384                             "sectors", "%llu", &sectors,
2385                             "info", "%u", &binfo,
2386                             "sector-size", "%lu", &sector_size,
2387                             NULL);
2388         if (err) {
2389                 xenbus_dev_fatal(info->xbdev, err,
2390                                  "reading backend fields at %s",
2391                                  info->xbdev->otherend);
2392                 return;
2393         }
2394
2395         /*
2396          * physcial-sector-size is a newer field, so old backends may not
2397          * provide this. Assume physical sector size to be the same as
2398          * sector_size in that case.
2399          */
2400         physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2401                                                     "physical-sector-size",
2402                                                     sector_size);
2403         blkfront_gather_backend_features(info);
2404         for_each_rinfo(info, rinfo, i) {
2405                 err = blkfront_setup_indirect(rinfo);
2406                 if (err) {
2407                         xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2408                                          info->xbdev->otherend);
2409                         blkif_free(info, 0);
2410                         break;
2411                 }
2412         }
2413
2414         err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2415                                   physical_sector_size);
2416         if (err) {
2417                 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2418                                  info->xbdev->otherend);
2419                 goto fail;
2420         }
2421
2422         xenbus_switch_state(info->xbdev, XenbusStateConnected);
2423
2424         /* Kick pending requests. */
2425         info->connected = BLKIF_STATE_CONNECTED;
2426         for_each_rinfo(info, rinfo, i)
2427                 kick_pending_request_queues(rinfo);
2428
2429         device_add_disk(&info->xbdev->dev, info->gd, NULL);
2430
2431         info->is_ready = 1;
2432         return;
2433
2434 fail:
2435         blkif_free(info, 0);
2436         return;
2437 }
2438
2439 /**
2440  * Callback received when the backend's state changes.
2441  */
2442 static void blkback_changed(struct xenbus_device *dev,
2443                             enum xenbus_state backend_state)
2444 {
2445         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2446
2447         dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2448
2449         switch (backend_state) {
2450         case XenbusStateInitWait:
2451                 if (dev->state != XenbusStateInitialising)
2452                         break;
2453                 if (talk_to_blkback(dev, info))
2454                         break;
2455         case XenbusStateInitialising:
2456         case XenbusStateInitialised:
2457         case XenbusStateReconfiguring:
2458         case XenbusStateReconfigured:
2459         case XenbusStateUnknown:
2460                 break;
2461
2462         case XenbusStateConnected:
2463                 /*
2464                  * talk_to_blkback sets state to XenbusStateInitialised
2465                  * and blkfront_connect sets it to XenbusStateConnected
2466                  * (if connection went OK).
2467                  *
2468                  * If the backend (or toolstack) decides to poke at backend
2469                  * state (and re-trigger the watch by setting the state repeatedly
2470                  * to XenbusStateConnected (4)) we need to deal with this.
2471                  * This is allowed as this is used to communicate to the guest
2472                  * that the size of disk has changed!
2473                  */
2474                 if ((dev->state != XenbusStateInitialised) &&
2475                     (dev->state != XenbusStateConnected)) {
2476                         if (talk_to_blkback(dev, info))
2477                                 break;
2478                 }
2479
2480                 blkfront_connect(info);
2481                 break;
2482
2483         case XenbusStateClosed:
2484                 if (dev->state == XenbusStateClosed)
2485                         break;
2486                 /* fall through */
2487         case XenbusStateClosing:
2488                 if (info)
2489                         blkfront_closing(info);
2490                 break;
2491         }
2492 }
2493
2494 static int blkfront_remove(struct xenbus_device *xbdev)
2495 {
2496         struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2497         struct block_device *bdev = NULL;
2498         struct gendisk *disk;
2499
2500         dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2501
2502         if (!info)
2503                 return 0;
2504
2505         blkif_free(info, 0);
2506
2507         mutex_lock(&info->mutex);
2508
2509         disk = info->gd;
2510         if (disk)
2511                 bdev = bdget_disk(disk, 0);
2512
2513         info->xbdev = NULL;
2514         mutex_unlock(&info->mutex);
2515
2516         if (!bdev) {
2517                 mutex_lock(&blkfront_mutex);
2518                 free_info(info);
2519                 mutex_unlock(&blkfront_mutex);
2520                 return 0;
2521         }
2522
2523         /*
2524          * The xbdev was removed before we reached the Closed
2525          * state. See if it's safe to remove the disk. If the bdev
2526          * isn't closed yet, we let release take care of it.
2527          */
2528
2529         mutex_lock(&bdev->bd_mutex);
2530         info = disk->private_data;
2531
2532         dev_warn(disk_to_dev(disk),
2533                  "%s was hot-unplugged, %d stale handles\n",
2534                  xbdev->nodename, bdev->bd_openers);
2535
2536         if (info && !bdev->bd_openers) {
2537                 xlvbd_release_gendisk(info);
2538                 disk->private_data = NULL;
2539                 mutex_lock(&blkfront_mutex);
2540                 free_info(info);
2541                 mutex_unlock(&blkfront_mutex);
2542         }
2543
2544         mutex_unlock(&bdev->bd_mutex);
2545         bdput(bdev);
2546
2547         return 0;
2548 }
2549
2550 static int blkfront_is_ready(struct xenbus_device *dev)
2551 {
2552         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2553
2554         return info->is_ready && info->xbdev;
2555 }
2556
2557 static int blkif_open(struct block_device *bdev, fmode_t mode)
2558 {
2559         struct gendisk *disk = bdev->bd_disk;
2560         struct blkfront_info *info;
2561         int err = 0;
2562
2563         mutex_lock(&blkfront_mutex);
2564
2565         info = disk->private_data;
2566         if (!info) {
2567                 /* xbdev gone */
2568                 err = -ERESTARTSYS;
2569                 goto out;
2570         }
2571
2572         mutex_lock(&info->mutex);
2573
2574         if (!info->gd)
2575                 /* xbdev is closed */
2576                 err = -ERESTARTSYS;
2577
2578         mutex_unlock(&info->mutex);
2579
2580 out:
2581         mutex_unlock(&blkfront_mutex);
2582         return err;
2583 }
2584
2585 static void blkif_release(struct gendisk *disk, fmode_t mode)
2586 {
2587         struct blkfront_info *info = disk->private_data;
2588         struct block_device *bdev;
2589         struct xenbus_device *xbdev;
2590
2591         mutex_lock(&blkfront_mutex);
2592
2593         bdev = bdget_disk(disk, 0);
2594
2595         if (!bdev) {
2596                 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2597                 goto out_mutex;
2598         }
2599         if (bdev->bd_openers)
2600                 goto out;
2601
2602         /*
2603          * Check if we have been instructed to close. We will have
2604          * deferred this request, because the bdev was still open.
2605          */
2606
2607         mutex_lock(&info->mutex);
2608         xbdev = info->xbdev;
2609
2610         if (xbdev && xbdev->state == XenbusStateClosing) {
2611                 /* pending switch to state closed */
2612                 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2613                 xlvbd_release_gendisk(info);
2614                 xenbus_frontend_closed(info->xbdev);
2615         }
2616
2617         mutex_unlock(&info->mutex);
2618
2619         if (!xbdev) {
2620                 /* sudden device removal */
2621                 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2622                 xlvbd_release_gendisk(info);
2623                 disk->private_data = NULL;
2624                 free_info(info);
2625         }
2626
2627 out:
2628         bdput(bdev);
2629 out_mutex:
2630         mutex_unlock(&blkfront_mutex);
2631 }
2632
2633 static const struct block_device_operations xlvbd_block_fops =
2634 {
2635         .owner = THIS_MODULE,
2636         .open = blkif_open,
2637         .release = blkif_release,
2638         .getgeo = blkif_getgeo,
2639         .ioctl = blkif_ioctl,
2640         .compat_ioctl = blkdev_compat_ptr_ioctl,
2641 };
2642
2643
2644 static const struct xenbus_device_id blkfront_ids[] = {
2645         { "vbd" },
2646         { "" }
2647 };
2648
2649 static struct xenbus_driver blkfront_driver = {
2650         .ids  = blkfront_ids,
2651         .probe = blkfront_probe,
2652         .remove = blkfront_remove,
2653         .resume = blkfront_resume,
2654         .otherend_changed = blkback_changed,
2655         .is_ready = blkfront_is_ready,
2656 };
2657
2658 static void purge_persistent_grants(struct blkfront_info *info)
2659 {
2660         unsigned int i;
2661         unsigned long flags;
2662         struct blkfront_ring_info *rinfo;
2663
2664         for_each_rinfo(info, rinfo, i) {
2665                 struct grant *gnt_list_entry, *tmp;
2666
2667                 spin_lock_irqsave(&rinfo->ring_lock, flags);
2668
2669                 if (rinfo->persistent_gnts_c == 0) {
2670                         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2671                         continue;
2672                 }
2673
2674                 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2675                                          node) {
2676                         if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2677                             gnttab_query_foreign_access(gnt_list_entry->gref))
2678                                 continue;
2679
2680                         list_del(&gnt_list_entry->node);
2681                         gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL);
2682                         rinfo->persistent_gnts_c--;
2683                         gnt_list_entry->gref = GRANT_INVALID_REF;
2684                         list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2685                 }
2686
2687                 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2688         }
2689 }
2690
2691 static void blkfront_delay_work(struct work_struct *work)
2692 {
2693         struct blkfront_info *info;
2694         bool need_schedule_work = false;
2695
2696         mutex_lock(&blkfront_mutex);
2697
2698         list_for_each_entry(info, &info_list, info_list) {
2699                 if (info->feature_persistent) {
2700                         need_schedule_work = true;
2701                         mutex_lock(&info->mutex);
2702                         purge_persistent_grants(info);
2703                         mutex_unlock(&info->mutex);
2704                 }
2705         }
2706
2707         if (need_schedule_work)
2708                 schedule_delayed_work(&blkfront_work, HZ * 10);
2709
2710         mutex_unlock(&blkfront_mutex);
2711 }
2712
2713 static int __init xlblk_init(void)
2714 {
2715         int ret;
2716         int nr_cpus = num_online_cpus();
2717
2718         if (!xen_domain())
2719                 return -ENODEV;
2720
2721         if (!xen_has_pv_disk_devices())
2722                 return -ENODEV;
2723
2724         if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2725                 pr_warn("xen_blk: can't get major %d with name %s\n",
2726                         XENVBD_MAJOR, DEV_NAME);
2727                 return -ENODEV;
2728         }
2729
2730         if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2731                 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2732
2733         if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2734                 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2735                         xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2736                 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2737         }
2738
2739         if (xen_blkif_max_queues > nr_cpus) {
2740                 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2741                         xen_blkif_max_queues, nr_cpus);
2742                 xen_blkif_max_queues = nr_cpus;
2743         }
2744
2745         INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2746
2747         ret = xenbus_register_frontend(&blkfront_driver);
2748         if (ret) {
2749                 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2750                 return ret;
2751         }
2752
2753         return 0;
2754 }
2755 module_init(xlblk_init);
2756
2757
2758 static void __exit xlblk_exit(void)
2759 {
2760         cancel_delayed_work_sync(&blkfront_work);
2761
2762         xenbus_unregister_driver(&blkfront_driver);
2763         unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2764         kfree(minors);
2765 }
2766 module_exit(xlblk_exit);
2767
2768 MODULE_DESCRIPTION("Xen virtual block device frontend");
2769 MODULE_LICENSE("GPL");
2770 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2771 MODULE_ALIAS("xen:vbd");
2772 MODULE_ALIAS("xenblk");