Merge branch 'ttm-transhuge' of git://people.freedesktop.org/~thomash/linux into...
[linux-2.6-microblaze.git] / drivers / block / skd_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
4  * was acquired by Western Digital in 2012.
5  *
6  * Copyright 2012 sTec, Inc.
7  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
8  */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/sched.h>
19 #include <linux/interrupt.h>
20 #include <linux/compiler.h>
21 #include <linux/workqueue.h>
22 #include <linux/delay.h>
23 #include <linux/time.h>
24 #include <linux/hdreg.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/completion.h>
27 #include <linux/scatterlist.h>
28 #include <linux/version.h>
29 #include <linux/err.h>
30 #include <linux/aer.h>
31 #include <linux/wait.h>
32 #include <linux/stringify.h>
33 #include <scsi/scsi.h>
34 #include <scsi/sg.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <asm/unaligned.h>
38
39 #include "skd_s1120.h"
40
41 static int skd_dbg_level;
42 static int skd_isr_comp_limit = 4;
43
44 #define SKD_ASSERT(expr) \
45         do { \
46                 if (unlikely(!(expr))) { \
47                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
48                                # expr, __FILE__, __func__, __LINE__); \
49                 } \
50         } while (0)
51
52 #define DRV_NAME "skd"
53 #define PFX DRV_NAME ": "
54
55 MODULE_LICENSE("GPL");
56
57 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
58
59 #define PCI_VENDOR_ID_STEC      0x1B39
60 #define PCI_DEVICE_ID_S1120     0x0001
61
62 #define SKD_FUA_NV              (1 << 1)
63 #define SKD_MINORS_PER_DEVICE   16
64
65 #define SKD_MAX_QUEUE_DEPTH     200u
66
67 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
68
69 #define SKD_N_FITMSG_BYTES      (512u)
70 #define SKD_MAX_REQ_PER_MSG     14
71
72 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
73
74 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
75  * 128KB limit.  That allows 4096*4K = 16M xfer size
76  */
77 #define SKD_N_SG_PER_REQ_DEFAULT 256u
78
79 #define SKD_N_COMPLETION_ENTRY  256u
80 #define SKD_N_READ_CAP_BYTES    (8u)
81
82 #define SKD_N_INTERNAL_BYTES    (512u)
83
84 #define SKD_SKCOMP_SIZE                                                 \
85         ((sizeof(struct fit_completion_entry_v1) +                      \
86           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
87
88 /* 5 bits of uniqifier, 0xF800 */
89 #define SKD_ID_TABLE_MASK       (3u << 8u)
90 #define  SKD_ID_RW_REQUEST      (0u << 8u)
91 #define  SKD_ID_INTERNAL        (1u << 8u)
92 #define  SKD_ID_FIT_MSG         (3u << 8u)
93 #define SKD_ID_SLOT_MASK        0x00FFu
94 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
95
96 #define SKD_N_MAX_SECTORS 2048u
97
98 #define SKD_MAX_RETRIES 2u
99
100 #define SKD_TIMER_SECONDS(seconds) (seconds)
101 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
102
103 #define INQ_STD_NBYTES 36
104
105 enum skd_drvr_state {
106         SKD_DRVR_STATE_LOAD,
107         SKD_DRVR_STATE_IDLE,
108         SKD_DRVR_STATE_BUSY,
109         SKD_DRVR_STATE_STARTING,
110         SKD_DRVR_STATE_ONLINE,
111         SKD_DRVR_STATE_PAUSING,
112         SKD_DRVR_STATE_PAUSED,
113         SKD_DRVR_STATE_RESTARTING,
114         SKD_DRVR_STATE_RESUMING,
115         SKD_DRVR_STATE_STOPPING,
116         SKD_DRVR_STATE_FAULT,
117         SKD_DRVR_STATE_DISAPPEARED,
118         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
119         SKD_DRVR_STATE_BUSY_ERASE,
120         SKD_DRVR_STATE_BUSY_SANITIZE,
121         SKD_DRVR_STATE_BUSY_IMMINENT,
122         SKD_DRVR_STATE_WAIT_BOOT,
123         SKD_DRVR_STATE_SYNCING,
124 };
125
126 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
127 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
128 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
129 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
130 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
131 #define SKD_START_WAIT_SECONDS  90u
132
133 enum skd_req_state {
134         SKD_REQ_STATE_IDLE,
135         SKD_REQ_STATE_SETUP,
136         SKD_REQ_STATE_BUSY,
137         SKD_REQ_STATE_COMPLETED,
138         SKD_REQ_STATE_TIMEOUT,
139 };
140
141 enum skd_check_status_action {
142         SKD_CHECK_STATUS_REPORT_GOOD,
143         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
144         SKD_CHECK_STATUS_REQUEUE_REQUEST,
145         SKD_CHECK_STATUS_REPORT_ERROR,
146         SKD_CHECK_STATUS_BUSY_IMMINENT,
147 };
148
149 struct skd_msg_buf {
150         struct fit_msg_hdr      fmh;
151         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
152 };
153
154 struct skd_fitmsg_context {
155         u32 id;
156
157         u32 length;
158
159         struct skd_msg_buf *msg_buf;
160         dma_addr_t mb_dma_address;
161 };
162
163 struct skd_request_context {
164         enum skd_req_state state;
165
166         u16 id;
167         u32 fitmsg_id;
168
169         u8 flush_cmd;
170
171         enum dma_data_direction data_dir;
172         struct scatterlist *sg;
173         u32 n_sg;
174         u32 sg_byte_count;
175
176         struct fit_sg_descriptor *sksg_list;
177         dma_addr_t sksg_dma_address;
178
179         struct fit_completion_entry_v1 completion;
180
181         struct fit_comp_error_info err_info;
182         int retries;
183
184         blk_status_t status;
185 };
186
187 struct skd_special_context {
188         struct skd_request_context req;
189
190         void *data_buf;
191         dma_addr_t db_dma_address;
192
193         struct skd_msg_buf *msg_buf;
194         dma_addr_t mb_dma_address;
195 };
196
197 typedef enum skd_irq_type {
198         SKD_IRQ_LEGACY,
199         SKD_IRQ_MSI,
200         SKD_IRQ_MSIX
201 } skd_irq_type_t;
202
203 #define SKD_MAX_BARS                    2
204
205 struct skd_device {
206         void __iomem *mem_map[SKD_MAX_BARS];
207         resource_size_t mem_phys[SKD_MAX_BARS];
208         u32 mem_size[SKD_MAX_BARS];
209
210         struct skd_msix_entry *msix_entries;
211
212         struct pci_dev *pdev;
213         int pcie_error_reporting_is_enabled;
214
215         spinlock_t lock;
216         struct gendisk *disk;
217         struct blk_mq_tag_set tag_set;
218         struct request_queue *queue;
219         struct skd_fitmsg_context *skmsg;
220         struct device *class_dev;
221         int gendisk_on;
222         int sync_done;
223
224         u32 devno;
225         u32 major;
226         char isr_name[30];
227
228         enum skd_drvr_state state;
229         u32 drive_state;
230
231         u32 cur_max_queue_depth;
232         u32 queue_low_water_mark;
233         u32 dev_max_queue_depth;
234
235         u32 num_fitmsg_context;
236         u32 num_req_context;
237
238         struct skd_fitmsg_context *skmsg_table;
239
240         struct skd_special_context internal_skspcl;
241         u32 read_cap_blocksize;
242         u32 read_cap_last_lba;
243         int read_cap_is_valid;
244         int inquiry_is_valid;
245         u8 inq_serial_num[13];  /*12 chars plus null term */
246
247         u8 skcomp_cycle;
248         u32 skcomp_ix;
249         struct kmem_cache *msgbuf_cache;
250         struct kmem_cache *sglist_cache;
251         struct kmem_cache *databuf_cache;
252         struct fit_completion_entry_v1 *skcomp_table;
253         struct fit_comp_error_info *skerr_table;
254         dma_addr_t cq_dma_address;
255
256         wait_queue_head_t waitq;
257
258         struct timer_list timer;
259         u32 timer_countdown;
260         u32 timer_substate;
261
262         int sgs_per_request;
263         u32 last_mtd;
264
265         u32 proto_ver;
266
267         int dbg_level;
268         u32 connect_time_stamp;
269         int connect_retries;
270 #define SKD_MAX_CONNECT_RETRIES 16
271         u32 drive_jiffies;
272
273         u32 timo_slot;
274
275         struct work_struct start_queue;
276         struct work_struct completion_worker;
277 };
278
279 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
280 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
281 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
282
283 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
284 {
285         u32 val = readl(skdev->mem_map[1] + offset);
286
287         if (unlikely(skdev->dbg_level >= 2))
288                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
289         return val;
290 }
291
292 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
293                                    u32 offset)
294 {
295         writel(val, skdev->mem_map[1] + offset);
296         if (unlikely(skdev->dbg_level >= 2))
297                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
298 }
299
300 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
301                                    u32 offset)
302 {
303         writeq(val, skdev->mem_map[1] + offset);
304         if (unlikely(skdev->dbg_level >= 2))
305                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
306                         val);
307 }
308
309
310 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
311 static int skd_isr_type = SKD_IRQ_DEFAULT;
312
313 module_param(skd_isr_type, int, 0444);
314 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
315                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
316
317 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
318 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
319
320 module_param(skd_max_req_per_msg, int, 0444);
321 MODULE_PARM_DESC(skd_max_req_per_msg,
322                  "Maximum SCSI requests packed in a single message."
323                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
324
325 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
327 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
328
329 module_param(skd_max_queue_depth, int, 0444);
330 MODULE_PARM_DESC(skd_max_queue_depth,
331                  "Maximum SCSI requests issued to s1120."
332                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
333
334 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
335 module_param(skd_sgs_per_request, int, 0444);
336 MODULE_PARM_DESC(skd_sgs_per_request,
337                  "Maximum SG elements per block request."
338                  " (1-4096, default==256)");
339
340 static int skd_max_pass_thru = 1;
341 module_param(skd_max_pass_thru, int, 0444);
342 MODULE_PARM_DESC(skd_max_pass_thru,
343                  "Maximum SCSI pass-thru at a time. IGNORED");
344
345 module_param(skd_dbg_level, int, 0444);
346 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
347
348 module_param(skd_isr_comp_limit, int, 0444);
349 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
350
351 /* Major device number dynamically assigned. */
352 static u32 skd_major;
353
354 static void skd_destruct(struct skd_device *skdev);
355 static const struct block_device_operations skd_blockdev_ops;
356 static void skd_send_fitmsg(struct skd_device *skdev,
357                             struct skd_fitmsg_context *skmsg);
358 static void skd_send_special_fitmsg(struct skd_device *skdev,
359                                     struct skd_special_context *skspcl);
360 static bool skd_preop_sg_list(struct skd_device *skdev,
361                              struct skd_request_context *skreq);
362 static void skd_postop_sg_list(struct skd_device *skdev,
363                                struct skd_request_context *skreq);
364
365 static void skd_restart_device(struct skd_device *skdev);
366 static int skd_quiesce_dev(struct skd_device *skdev);
367 static int skd_unquiesce_dev(struct skd_device *skdev);
368 static void skd_disable_interrupts(struct skd_device *skdev);
369 static void skd_isr_fwstate(struct skd_device *skdev);
370 static void skd_recover_requests(struct skd_device *skdev);
371 static void skd_soft_reset(struct skd_device *skdev);
372
373 const char *skd_drive_state_to_str(int state);
374 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
375 static void skd_log_skdev(struct skd_device *skdev, const char *event);
376 static void skd_log_skreq(struct skd_device *skdev,
377                           struct skd_request_context *skreq, const char *event);
378
379 /*
380  *****************************************************************************
381  * READ/WRITE REQUESTS
382  *****************************************************************************
383  */
384 static bool skd_inc_in_flight(struct request *rq, void *data, bool reserved)
385 {
386         int *count = data;
387
388         count++;
389         return true;
390 }
391
392 static int skd_in_flight(struct skd_device *skdev)
393 {
394         int count = 0;
395
396         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397
398         return count;
399 }
400
401 static void
402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403                 int data_dir, unsigned lba,
404                 unsigned count)
405 {
406         if (data_dir == READ)
407                 scsi_req->cdb[0] = READ_10;
408         else
409                 scsi_req->cdb[0] = WRITE_10;
410
411         scsi_req->cdb[1] = 0;
412         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415         scsi_req->cdb[5] = (lba & 0xff);
416         scsi_req->cdb[6] = 0;
417         scsi_req->cdb[7] = (count & 0xff00) >> 8;
418         scsi_req->cdb[8] = count & 0xff;
419         scsi_req->cdb[9] = 0;
420 }
421
422 static void
423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424                             struct skd_request_context *skreq)
425 {
426         skreq->flush_cmd = 1;
427
428         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429         scsi_req->cdb[1] = 0;
430         scsi_req->cdb[2] = 0;
431         scsi_req->cdb[3] = 0;
432         scsi_req->cdb[4] = 0;
433         scsi_req->cdb[5] = 0;
434         scsi_req->cdb[6] = 0;
435         scsi_req->cdb[7] = 0;
436         scsi_req->cdb[8] = 0;
437         scsi_req->cdb[9] = 0;
438 }
439
440 /*
441  * Return true if and only if all pending requests should be failed.
442  */
443 static bool skd_fail_all(struct request_queue *q)
444 {
445         struct skd_device *skdev = q->queuedata;
446
447         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448
449         skd_log_skdev(skdev, "req_not_online");
450         switch (skdev->state) {
451         case SKD_DRVR_STATE_PAUSING:
452         case SKD_DRVR_STATE_PAUSED:
453         case SKD_DRVR_STATE_STARTING:
454         case SKD_DRVR_STATE_RESTARTING:
455         case SKD_DRVR_STATE_WAIT_BOOT:
456         /* In case of starting, we haven't started the queue,
457          * so we can't get here... but requests are
458          * possibly hanging out waiting for us because we
459          * reported the dev/skd0 already.  They'll wait
460          * forever if connect doesn't complete.
461          * What to do??? delay dev/skd0 ??
462          */
463         case SKD_DRVR_STATE_BUSY:
464         case SKD_DRVR_STATE_BUSY_IMMINENT:
465         case SKD_DRVR_STATE_BUSY_ERASE:
466                 return false;
467
468         case SKD_DRVR_STATE_BUSY_SANITIZE:
469         case SKD_DRVR_STATE_STOPPING:
470         case SKD_DRVR_STATE_SYNCING:
471         case SKD_DRVR_STATE_FAULT:
472         case SKD_DRVR_STATE_DISAPPEARED:
473         default:
474                 return true;
475         }
476 }
477
478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479                                     const struct blk_mq_queue_data *mqd)
480 {
481         struct request *const req = mqd->rq;
482         struct request_queue *const q = req->q;
483         struct skd_device *skdev = q->queuedata;
484         struct skd_fitmsg_context *skmsg;
485         struct fit_msg_hdr *fmh;
486         const u32 tag = blk_mq_unique_tag(req);
487         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488         struct skd_scsi_request *scsi_req;
489         unsigned long flags = 0;
490         const u32 lba = blk_rq_pos(req);
491         const u32 count = blk_rq_sectors(req);
492         const int data_dir = rq_data_dir(req);
493
494         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496
497         if (!(req->rq_flags & RQF_DONTPREP)) {
498                 skreq->retries = 0;
499                 req->rq_flags |= RQF_DONTPREP;
500         }
501
502         blk_mq_start_request(req);
503
504         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
505                   tag, skd_max_queue_depth, q->nr_requests);
506
507         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
508
509         dev_dbg(&skdev->pdev->dev,
510                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
511                 lba, count, count, data_dir);
512
513         skreq->id = tag + SKD_ID_RW_REQUEST;
514         skreq->flush_cmd = 0;
515         skreq->n_sg = 0;
516         skreq->sg_byte_count = 0;
517
518         skreq->fitmsg_id = 0;
519
520         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
521
522         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
523                 dev_dbg(&skdev->pdev->dev, "error Out\n");
524                 skreq->status = BLK_STS_RESOURCE;
525                 blk_mq_complete_request(req);
526                 return BLK_STS_OK;
527         }
528
529         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
530                                    skreq->n_sg *
531                                    sizeof(struct fit_sg_descriptor),
532                                    DMA_TO_DEVICE);
533
534         /* Either a FIT msg is in progress or we have to start one. */
535         if (skd_max_req_per_msg == 1) {
536                 skmsg = NULL;
537         } else {
538                 spin_lock_irqsave(&skdev->lock, flags);
539                 skmsg = skdev->skmsg;
540         }
541         if (!skmsg) {
542                 skmsg = &skdev->skmsg_table[tag];
543                 skdev->skmsg = skmsg;
544
545                 /* Initialize the FIT msg header */
546                 fmh = &skmsg->msg_buf->fmh;
547                 memset(fmh, 0, sizeof(*fmh));
548                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
549                 skmsg->length = sizeof(*fmh);
550         } else {
551                 fmh = &skmsg->msg_buf->fmh;
552         }
553
554         skreq->fitmsg_id = skmsg->id;
555
556         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
557         memset(scsi_req, 0, sizeof(*scsi_req));
558
559         scsi_req->hdr.tag = skreq->id;
560         scsi_req->hdr.sg_list_dma_address =
561                 cpu_to_be64(skreq->sksg_dma_address);
562
563         if (req_op(req) == REQ_OP_FLUSH) {
564                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
565                 SKD_ASSERT(skreq->flush_cmd == 1);
566         } else {
567                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
568         }
569
570         if (req->cmd_flags & REQ_FUA)
571                 scsi_req->cdb[1] |= SKD_FUA_NV;
572
573         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
574
575         /* Complete resource allocations. */
576         skreq->state = SKD_REQ_STATE_BUSY;
577
578         skmsg->length += sizeof(struct skd_scsi_request);
579         fmh->num_protocol_cmds_coalesced++;
580
581         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
582                 skd_in_flight(skdev));
583
584         /*
585          * If the FIT msg buffer is full send it.
586          */
587         if (skd_max_req_per_msg == 1) {
588                 skd_send_fitmsg(skdev, skmsg);
589         } else {
590                 if (mqd->last ||
591                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
592                         skd_send_fitmsg(skdev, skmsg);
593                         skdev->skmsg = NULL;
594                 }
595                 spin_unlock_irqrestore(&skdev->lock, flags);
596         }
597
598         return BLK_STS_OK;
599 }
600
601 static enum blk_eh_timer_return skd_timed_out(struct request *req,
602                                               bool reserved)
603 {
604         struct skd_device *skdev = req->q->queuedata;
605
606         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
607                 blk_mq_unique_tag(req));
608
609         return BLK_EH_RESET_TIMER;
610 }
611
612 static void skd_complete_rq(struct request *req)
613 {
614         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
615
616         blk_mq_end_request(req, skreq->status);
617 }
618
619 static bool skd_preop_sg_list(struct skd_device *skdev,
620                              struct skd_request_context *skreq)
621 {
622         struct request *req = blk_mq_rq_from_pdu(skreq);
623         struct scatterlist *sgl = &skreq->sg[0], *sg;
624         int n_sg;
625         int i;
626
627         skreq->sg_byte_count = 0;
628
629         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
630                      skreq->data_dir != DMA_FROM_DEVICE);
631
632         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
633         if (n_sg <= 0)
634                 return false;
635
636         /*
637          * Map scatterlist to PCI bus addresses.
638          * Note PCI might change the number of entries.
639          */
640         n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
641         if (n_sg <= 0)
642                 return false;
643
644         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
645
646         skreq->n_sg = n_sg;
647
648         for_each_sg(sgl, sg, n_sg, i) {
649                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
650                 u32 cnt = sg_dma_len(sg);
651                 uint64_t dma_addr = sg_dma_address(sg);
652
653                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
654                 sgd->byte_count = cnt;
655                 skreq->sg_byte_count += cnt;
656                 sgd->host_side_addr = dma_addr;
657                 sgd->dev_side_addr = 0;
658         }
659
660         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
661         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
662
663         if (unlikely(skdev->dbg_level > 1)) {
664                 dev_dbg(&skdev->pdev->dev,
665                         "skreq=%x sksg_list=%p sksg_dma=%pad\n",
666                         skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
667                 for (i = 0; i < n_sg; i++) {
668                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
669
670                         dev_dbg(&skdev->pdev->dev,
671                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
672                                 i, sgd->byte_count, sgd->control,
673                                 sgd->host_side_addr, sgd->next_desc_ptr);
674                 }
675         }
676
677         return true;
678 }
679
680 static void skd_postop_sg_list(struct skd_device *skdev,
681                                struct skd_request_context *skreq)
682 {
683         /*
684          * restore the next ptr for next IO request so we
685          * don't have to set it every time.
686          */
687         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
688                 skreq->sksg_dma_address +
689                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
690         dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
691                      skreq->data_dir);
692 }
693
694 /*
695  *****************************************************************************
696  * TIMER
697  *****************************************************************************
698  */
699
700 static void skd_timer_tick_not_online(struct skd_device *skdev);
701
702 static void skd_start_queue(struct work_struct *work)
703 {
704         struct skd_device *skdev = container_of(work, typeof(*skdev),
705                                                 start_queue);
706
707         /*
708          * Although it is safe to call blk_start_queue() from interrupt
709          * context, blk_mq_start_hw_queues() must not be called from
710          * interrupt context.
711          */
712         blk_mq_start_hw_queues(skdev->queue);
713 }
714
715 static void skd_timer_tick(struct timer_list *t)
716 {
717         struct skd_device *skdev = from_timer(skdev, t, timer);
718         unsigned long reqflags;
719         u32 state;
720
721         if (skdev->state == SKD_DRVR_STATE_FAULT)
722                 /* The driver has declared fault, and we want it to
723                  * stay that way until driver is reloaded.
724                  */
725                 return;
726
727         spin_lock_irqsave(&skdev->lock, reqflags);
728
729         state = SKD_READL(skdev, FIT_STATUS);
730         state &= FIT_SR_DRIVE_STATE_MASK;
731         if (state != skdev->drive_state)
732                 skd_isr_fwstate(skdev);
733
734         if (skdev->state != SKD_DRVR_STATE_ONLINE)
735                 skd_timer_tick_not_online(skdev);
736
737         mod_timer(&skdev->timer, (jiffies + HZ));
738
739         spin_unlock_irqrestore(&skdev->lock, reqflags);
740 }
741
742 static void skd_timer_tick_not_online(struct skd_device *skdev)
743 {
744         switch (skdev->state) {
745         case SKD_DRVR_STATE_IDLE:
746         case SKD_DRVR_STATE_LOAD:
747                 break;
748         case SKD_DRVR_STATE_BUSY_SANITIZE:
749                 dev_dbg(&skdev->pdev->dev,
750                         "drive busy sanitize[%x], driver[%x]\n",
751                         skdev->drive_state, skdev->state);
752                 /* If we've been in sanitize for 3 seconds, we figure we're not
753                  * going to get anymore completions, so recover requests now
754                  */
755                 if (skdev->timer_countdown > 0) {
756                         skdev->timer_countdown--;
757                         return;
758                 }
759                 skd_recover_requests(skdev);
760                 break;
761
762         case SKD_DRVR_STATE_BUSY:
763         case SKD_DRVR_STATE_BUSY_IMMINENT:
764         case SKD_DRVR_STATE_BUSY_ERASE:
765                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
766                         skdev->state, skdev->timer_countdown);
767                 if (skdev->timer_countdown > 0) {
768                         skdev->timer_countdown--;
769                         return;
770                 }
771                 dev_dbg(&skdev->pdev->dev,
772                         "busy[%x], timedout=%d, restarting device.",
773                         skdev->state, skdev->timer_countdown);
774                 skd_restart_device(skdev);
775                 break;
776
777         case SKD_DRVR_STATE_WAIT_BOOT:
778         case SKD_DRVR_STATE_STARTING:
779                 if (skdev->timer_countdown > 0) {
780                         skdev->timer_countdown--;
781                         return;
782                 }
783                 /* For now, we fault the drive.  Could attempt resets to
784                  * revcover at some point. */
785                 skdev->state = SKD_DRVR_STATE_FAULT;
786
787                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
788                         skdev->drive_state);
789
790                 /*start the queue so we can respond with error to requests */
791                 /* wakeup anyone waiting for startup complete */
792                 schedule_work(&skdev->start_queue);
793                 skdev->gendisk_on = -1;
794                 wake_up_interruptible(&skdev->waitq);
795                 break;
796
797         case SKD_DRVR_STATE_ONLINE:
798                 /* shouldn't get here. */
799                 break;
800
801         case SKD_DRVR_STATE_PAUSING:
802         case SKD_DRVR_STATE_PAUSED:
803                 break;
804
805         case SKD_DRVR_STATE_RESTARTING:
806                 if (skdev->timer_countdown > 0) {
807                         skdev->timer_countdown--;
808                         return;
809                 }
810                 /* For now, we fault the drive. Could attempt resets to
811                  * revcover at some point. */
812                 skdev->state = SKD_DRVR_STATE_FAULT;
813                 dev_err(&skdev->pdev->dev,
814                         "DriveFault Reconnect Timeout (%x)\n",
815                         skdev->drive_state);
816
817                 /*
818                  * Recovering does two things:
819                  * 1. completes IO with error
820                  * 2. reclaims dma resources
821                  * When is it safe to recover requests?
822                  * - if the drive state is faulted
823                  * - if the state is still soft reset after out timeout
824                  * - if the drive registers are dead (state = FF)
825                  * If it is "unsafe", we still need to recover, so we will
826                  * disable pci bus mastering and disable our interrupts.
827                  */
828
829                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
830                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
831                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
832                         /* It never came out of soft reset. Try to
833                          * recover the requests and then let them
834                          * fail. This is to mitigate hung processes. */
835                         skd_recover_requests(skdev);
836                 else {
837                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
838                                 skdev->drive_state);
839                         pci_disable_device(skdev->pdev);
840                         skd_disable_interrupts(skdev);
841                         skd_recover_requests(skdev);
842                 }
843
844                 /*start the queue so we can respond with error to requests */
845                 /* wakeup anyone waiting for startup complete */
846                 schedule_work(&skdev->start_queue);
847                 skdev->gendisk_on = -1;
848                 wake_up_interruptible(&skdev->waitq);
849                 break;
850
851         case SKD_DRVR_STATE_RESUMING:
852         case SKD_DRVR_STATE_STOPPING:
853         case SKD_DRVR_STATE_SYNCING:
854         case SKD_DRVR_STATE_FAULT:
855         case SKD_DRVR_STATE_DISAPPEARED:
856         default:
857                 break;
858         }
859 }
860
861 static int skd_start_timer(struct skd_device *skdev)
862 {
863         int rc;
864
865         timer_setup(&skdev->timer, skd_timer_tick, 0);
866
867         rc = mod_timer(&skdev->timer, (jiffies + HZ));
868         if (rc)
869                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
870         return rc;
871 }
872
873 static void skd_kill_timer(struct skd_device *skdev)
874 {
875         del_timer_sync(&skdev->timer);
876 }
877
878 /*
879  *****************************************************************************
880  * INTERNAL REQUESTS -- generated by driver itself
881  *****************************************************************************
882  */
883
884 static int skd_format_internal_skspcl(struct skd_device *skdev)
885 {
886         struct skd_special_context *skspcl = &skdev->internal_skspcl;
887         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
888         struct fit_msg_hdr *fmh;
889         uint64_t dma_address;
890         struct skd_scsi_request *scsi;
891
892         fmh = &skspcl->msg_buf->fmh;
893         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
894         fmh->num_protocol_cmds_coalesced = 1;
895
896         scsi = &skspcl->msg_buf->scsi[0];
897         memset(scsi, 0, sizeof(*scsi));
898         dma_address = skspcl->req.sksg_dma_address;
899         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
900         skspcl->req.n_sg = 1;
901         sgd->control = FIT_SGD_CONTROL_LAST;
902         sgd->byte_count = 0;
903         sgd->host_side_addr = skspcl->db_dma_address;
904         sgd->dev_side_addr = 0;
905         sgd->next_desc_ptr = 0LL;
906
907         return 1;
908 }
909
910 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
911
912 static void skd_send_internal_skspcl(struct skd_device *skdev,
913                                      struct skd_special_context *skspcl,
914                                      u8 opcode)
915 {
916         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
917         struct skd_scsi_request *scsi;
918         unsigned char *buf = skspcl->data_buf;
919         int i;
920
921         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
922                 /*
923                  * A refresh is already in progress.
924                  * Just wait for it to finish.
925                  */
926                 return;
927
928         skspcl->req.state = SKD_REQ_STATE_BUSY;
929
930         scsi = &skspcl->msg_buf->scsi[0];
931         scsi->hdr.tag = skspcl->req.id;
932
933         memset(scsi->cdb, 0, sizeof(scsi->cdb));
934
935         switch (opcode) {
936         case TEST_UNIT_READY:
937                 scsi->cdb[0] = TEST_UNIT_READY;
938                 sgd->byte_count = 0;
939                 scsi->hdr.sg_list_len_bytes = 0;
940                 break;
941
942         case READ_CAPACITY:
943                 scsi->cdb[0] = READ_CAPACITY;
944                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
945                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
946                 break;
947
948         case INQUIRY:
949                 scsi->cdb[0] = INQUIRY;
950                 scsi->cdb[1] = 0x01;    /* evpd */
951                 scsi->cdb[2] = 0x80;    /* serial number page */
952                 scsi->cdb[4] = 0x10;
953                 sgd->byte_count = 16;
954                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
955                 break;
956
957         case SYNCHRONIZE_CACHE:
958                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
959                 sgd->byte_count = 0;
960                 scsi->hdr.sg_list_len_bytes = 0;
961                 break;
962
963         case WRITE_BUFFER:
964                 scsi->cdb[0] = WRITE_BUFFER;
965                 scsi->cdb[1] = 0x02;
966                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
967                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
968                 sgd->byte_count = WR_BUF_SIZE;
969                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
970                 /* fill incrementing byte pattern */
971                 for (i = 0; i < sgd->byte_count; i++)
972                         buf[i] = i & 0xFF;
973                 break;
974
975         case READ_BUFFER:
976                 scsi->cdb[0] = READ_BUFFER;
977                 scsi->cdb[1] = 0x02;
978                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
979                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
980                 sgd->byte_count = WR_BUF_SIZE;
981                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
982                 memset(skspcl->data_buf, 0, sgd->byte_count);
983                 break;
984
985         default:
986                 SKD_ASSERT("Don't know what to send");
987                 return;
988
989         }
990         skd_send_special_fitmsg(skdev, skspcl);
991 }
992
993 static void skd_refresh_device_data(struct skd_device *skdev)
994 {
995         struct skd_special_context *skspcl = &skdev->internal_skspcl;
996
997         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
998 }
999
1000 static int skd_chk_read_buf(struct skd_device *skdev,
1001                             struct skd_special_context *skspcl)
1002 {
1003         unsigned char *buf = skspcl->data_buf;
1004         int i;
1005
1006         /* check for incrementing byte pattern */
1007         for (i = 0; i < WR_BUF_SIZE; i++)
1008                 if (buf[i] != (i & 0xFF))
1009                         return 1;
1010
1011         return 0;
1012 }
1013
1014 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1015                                  u8 code, u8 qual, u8 fruc)
1016 {
1017         /* If the check condition is of special interest, log a message */
1018         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1019             && (code == 0x04) && (qual == 0x06)) {
1020                 dev_err(&skdev->pdev->dev,
1021                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1022                         key, code, qual, fruc);
1023         }
1024 }
1025
1026 static void skd_complete_internal(struct skd_device *skdev,
1027                                   struct fit_completion_entry_v1 *skcomp,
1028                                   struct fit_comp_error_info *skerr,
1029                                   struct skd_special_context *skspcl)
1030 {
1031         u8 *buf = skspcl->data_buf;
1032         u8 status;
1033         int i;
1034         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1035
1036         lockdep_assert_held(&skdev->lock);
1037
1038         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1039
1040         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1041
1042         dma_sync_single_for_cpu(&skdev->pdev->dev,
1043                                 skspcl->db_dma_address,
1044                                 skspcl->req.sksg_list[0].byte_count,
1045                                 DMA_BIDIRECTIONAL);
1046
1047         skspcl->req.completion = *skcomp;
1048         skspcl->req.state = SKD_REQ_STATE_IDLE;
1049
1050         status = skspcl->req.completion.status;
1051
1052         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1053                              skerr->qual, skerr->fruc);
1054
1055         switch (scsi->cdb[0]) {
1056         case TEST_UNIT_READY:
1057                 if (status == SAM_STAT_GOOD)
1058                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1059                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1060                          (skerr->key == MEDIUM_ERROR))
1061                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1062                 else {
1063                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1064                                 dev_dbg(&skdev->pdev->dev,
1065                                         "TUR failed, don't send anymore state 0x%x\n",
1066                                         skdev->state);
1067                                 return;
1068                         }
1069                         dev_dbg(&skdev->pdev->dev,
1070                                 "**** TUR failed, retry skerr\n");
1071                         skd_send_internal_skspcl(skdev, skspcl,
1072                                                  TEST_UNIT_READY);
1073                 }
1074                 break;
1075
1076         case WRITE_BUFFER:
1077                 if (status == SAM_STAT_GOOD)
1078                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1079                 else {
1080                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1081                                 dev_dbg(&skdev->pdev->dev,
1082                                         "write buffer failed, don't send anymore state 0x%x\n",
1083                                         skdev->state);
1084                                 return;
1085                         }
1086                         dev_dbg(&skdev->pdev->dev,
1087                                 "**** write buffer failed, retry skerr\n");
1088                         skd_send_internal_skspcl(skdev, skspcl,
1089                                                  TEST_UNIT_READY);
1090                 }
1091                 break;
1092
1093         case READ_BUFFER:
1094                 if (status == SAM_STAT_GOOD) {
1095                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1096                                 skd_send_internal_skspcl(skdev, skspcl,
1097                                                          READ_CAPACITY);
1098                         else {
1099                                 dev_err(&skdev->pdev->dev,
1100                                         "*** W/R Buffer mismatch %d ***\n",
1101                                         skdev->connect_retries);
1102                                 if (skdev->connect_retries <
1103                                     SKD_MAX_CONNECT_RETRIES) {
1104                                         skdev->connect_retries++;
1105                                         skd_soft_reset(skdev);
1106                                 } else {
1107                                         dev_err(&skdev->pdev->dev,
1108                                                 "W/R Buffer Connect Error\n");
1109                                         return;
1110                                 }
1111                         }
1112
1113                 } else {
1114                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1115                                 dev_dbg(&skdev->pdev->dev,
1116                                         "read buffer failed, don't send anymore state 0x%x\n",
1117                                         skdev->state);
1118                                 return;
1119                         }
1120                         dev_dbg(&skdev->pdev->dev,
1121                                 "**** read buffer failed, retry skerr\n");
1122                         skd_send_internal_skspcl(skdev, skspcl,
1123                                                  TEST_UNIT_READY);
1124                 }
1125                 break;
1126
1127         case READ_CAPACITY:
1128                 skdev->read_cap_is_valid = 0;
1129                 if (status == SAM_STAT_GOOD) {
1130                         skdev->read_cap_last_lba =
1131                                 (buf[0] << 24) | (buf[1] << 16) |
1132                                 (buf[2] << 8) | buf[3];
1133                         skdev->read_cap_blocksize =
1134                                 (buf[4] << 24) | (buf[5] << 16) |
1135                                 (buf[6] << 8) | buf[7];
1136
1137                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1138                                 skdev->read_cap_last_lba,
1139                                 skdev->read_cap_blocksize);
1140
1141                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1142
1143                         skdev->read_cap_is_valid = 1;
1144
1145                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1146                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1147                            (skerr->key == MEDIUM_ERROR)) {
1148                         skdev->read_cap_last_lba = ~0;
1149                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1150                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1151                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1152                 } else {
1153                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1154                         skd_send_internal_skspcl(skdev, skspcl,
1155                                                  TEST_UNIT_READY);
1156                 }
1157                 break;
1158
1159         case INQUIRY:
1160                 skdev->inquiry_is_valid = 0;
1161                 if (status == SAM_STAT_GOOD) {
1162                         skdev->inquiry_is_valid = 1;
1163
1164                         for (i = 0; i < 12; i++)
1165                                 skdev->inq_serial_num[i] = buf[i + 4];
1166                         skdev->inq_serial_num[12] = 0;
1167                 }
1168
1169                 if (skd_unquiesce_dev(skdev) < 0)
1170                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1171                  /* connection is complete */
1172                 skdev->connect_retries = 0;
1173                 break;
1174
1175         case SYNCHRONIZE_CACHE:
1176                 if (status == SAM_STAT_GOOD)
1177                         skdev->sync_done = 1;
1178                 else
1179                         skdev->sync_done = -1;
1180                 wake_up_interruptible(&skdev->waitq);
1181                 break;
1182
1183         default:
1184                 SKD_ASSERT("we didn't send this");
1185         }
1186 }
1187
1188 /*
1189  *****************************************************************************
1190  * FIT MESSAGES
1191  *****************************************************************************
1192  */
1193
1194 static void skd_send_fitmsg(struct skd_device *skdev,
1195                             struct skd_fitmsg_context *skmsg)
1196 {
1197         u64 qcmd;
1198
1199         dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1200                 &skmsg->mb_dma_address, skd_in_flight(skdev));
1201         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1202
1203         qcmd = skmsg->mb_dma_address;
1204         qcmd |= FIT_QCMD_QID_NORMAL;
1205
1206         if (unlikely(skdev->dbg_level > 1)) {
1207                 u8 *bp = (u8 *)skmsg->msg_buf;
1208                 int i;
1209                 for (i = 0; i < skmsg->length; i += 8) {
1210                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1211                                 &bp[i]);
1212                         if (i == 0)
1213                                 i = 64 - 8;
1214                 }
1215         }
1216
1217         if (skmsg->length > 256)
1218                 qcmd |= FIT_QCMD_MSGSIZE_512;
1219         else if (skmsg->length > 128)
1220                 qcmd |= FIT_QCMD_MSGSIZE_256;
1221         else if (skmsg->length > 64)
1222                 qcmd |= FIT_QCMD_MSGSIZE_128;
1223         else
1224                 /*
1225                  * This makes no sense because the FIT msg header is
1226                  * 64 bytes. If the msg is only 64 bytes long it has
1227                  * no payload.
1228                  */
1229                 qcmd |= FIT_QCMD_MSGSIZE_64;
1230
1231         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1232                                    skmsg->length, DMA_TO_DEVICE);
1233
1234         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1235         smp_wmb();
1236
1237         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1238 }
1239
1240 static void skd_send_special_fitmsg(struct skd_device *skdev,
1241                                     struct skd_special_context *skspcl)
1242 {
1243         u64 qcmd;
1244
1245         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1246
1247         if (unlikely(skdev->dbg_level > 1)) {
1248                 u8 *bp = (u8 *)skspcl->msg_buf;
1249                 int i;
1250
1251                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1252                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1253                                 &bp[i]);
1254                         if (i == 0)
1255                                 i = 64 - 8;
1256                 }
1257
1258                 dev_dbg(&skdev->pdev->dev,
1259                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1260                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1261                         &skspcl->req.sksg_dma_address);
1262                 for (i = 0; i < skspcl->req.n_sg; i++) {
1263                         struct fit_sg_descriptor *sgd =
1264                                 &skspcl->req.sksg_list[i];
1265
1266                         dev_dbg(&skdev->pdev->dev,
1267                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1268                                 i, sgd->byte_count, sgd->control,
1269                                 sgd->host_side_addr, sgd->next_desc_ptr);
1270                 }
1271         }
1272
1273         /*
1274          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1275          * and one 64-byte SSDI command.
1276          */
1277         qcmd = skspcl->mb_dma_address;
1278         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1279
1280         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1281                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1282         dma_sync_single_for_device(&skdev->pdev->dev,
1283                                    skspcl->req.sksg_dma_address,
1284                                    1 * sizeof(struct fit_sg_descriptor),
1285                                    DMA_TO_DEVICE);
1286         dma_sync_single_for_device(&skdev->pdev->dev,
1287                                    skspcl->db_dma_address,
1288                                    skspcl->req.sksg_list[0].byte_count,
1289                                    DMA_BIDIRECTIONAL);
1290
1291         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1292         smp_wmb();
1293
1294         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1295 }
1296
1297 /*
1298  *****************************************************************************
1299  * COMPLETION QUEUE
1300  *****************************************************************************
1301  */
1302
1303 static void skd_complete_other(struct skd_device *skdev,
1304                                struct fit_completion_entry_v1 *skcomp,
1305                                struct fit_comp_error_info *skerr);
1306
1307 struct sns_info {
1308         u8 type;
1309         u8 stat;
1310         u8 key;
1311         u8 asc;
1312         u8 ascq;
1313         u8 mask;
1314         enum skd_check_status_action action;
1315 };
1316
1317 static struct sns_info skd_chkstat_table[] = {
1318         /* Good */
1319         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1320           SKD_CHECK_STATUS_REPORT_GOOD },
1321
1322         /* Smart alerts */
1323         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1324           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1325         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1326           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1327         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1328           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1329
1330         /* Retry (with limits) */
1331         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1332           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1333         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1334           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1335         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1336           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1337         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1338           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1339
1340         /* Busy (or about to be) */
1341         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1342           SKD_CHECK_STATUS_BUSY_IMMINENT },
1343 };
1344
1345 /*
1346  * Look up status and sense data to decide how to handle the error
1347  * from the device.
1348  * mask says which fields must match e.g., mask=0x18 means check
1349  * type and stat, ignore key, asc, ascq.
1350  */
1351
1352 static enum skd_check_status_action
1353 skd_check_status(struct skd_device *skdev,
1354                  u8 cmp_status, struct fit_comp_error_info *skerr)
1355 {
1356         int i;
1357
1358         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1359                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1360
1361         dev_dbg(&skdev->pdev->dev,
1362                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1363                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1364                 skerr->fruc);
1365
1366         /* Does the info match an entry in the good category? */
1367         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1368                 struct sns_info *sns = &skd_chkstat_table[i];
1369
1370                 if (sns->mask & 0x10)
1371                         if (skerr->type != sns->type)
1372                                 continue;
1373
1374                 if (sns->mask & 0x08)
1375                         if (cmp_status != sns->stat)
1376                                 continue;
1377
1378                 if (sns->mask & 0x04)
1379                         if (skerr->key != sns->key)
1380                                 continue;
1381
1382                 if (sns->mask & 0x02)
1383                         if (skerr->code != sns->asc)
1384                                 continue;
1385
1386                 if (sns->mask & 0x01)
1387                         if (skerr->qual != sns->ascq)
1388                                 continue;
1389
1390                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1391                         dev_err(&skdev->pdev->dev,
1392                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1393                                 skerr->key, skerr->code, skerr->qual);
1394                 }
1395                 return sns->action;
1396         }
1397
1398         /* No other match, so nonzero status means error,
1399          * zero status means good
1400          */
1401         if (cmp_status) {
1402                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1403                 return SKD_CHECK_STATUS_REPORT_ERROR;
1404         }
1405
1406         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1407         return SKD_CHECK_STATUS_REPORT_GOOD;
1408 }
1409
1410 static void skd_resolve_req_exception(struct skd_device *skdev,
1411                                       struct skd_request_context *skreq,
1412                                       struct request *req)
1413 {
1414         u8 cmp_status = skreq->completion.status;
1415
1416         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1417         case SKD_CHECK_STATUS_REPORT_GOOD:
1418         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1419                 skreq->status = BLK_STS_OK;
1420                 blk_mq_complete_request(req);
1421                 break;
1422
1423         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1424                 skd_log_skreq(skdev, skreq, "retry(busy)");
1425                 blk_mq_requeue_request(req, true);
1426                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1427                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1428                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1429                 skd_quiesce_dev(skdev);
1430                 break;
1431
1432         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1433                 if (++skreq->retries < SKD_MAX_RETRIES) {
1434                         skd_log_skreq(skdev, skreq, "retry");
1435                         blk_mq_requeue_request(req, true);
1436                         break;
1437                 }
1438                 /* fall through */
1439
1440         case SKD_CHECK_STATUS_REPORT_ERROR:
1441         default:
1442                 skreq->status = BLK_STS_IOERR;
1443                 blk_mq_complete_request(req);
1444                 break;
1445         }
1446 }
1447
1448 static void skd_release_skreq(struct skd_device *skdev,
1449                               struct skd_request_context *skreq)
1450 {
1451         /*
1452          * Reclaim the skd_request_context
1453          */
1454         skreq->state = SKD_REQ_STATE_IDLE;
1455 }
1456
1457 static int skd_isr_completion_posted(struct skd_device *skdev,
1458                                         int limit, int *enqueued)
1459 {
1460         struct fit_completion_entry_v1 *skcmp;
1461         struct fit_comp_error_info *skerr;
1462         u16 req_id;
1463         u32 tag;
1464         u16 hwq = 0;
1465         struct request *rq;
1466         struct skd_request_context *skreq;
1467         u16 cmp_cntxt;
1468         u8 cmp_status;
1469         u8 cmp_cycle;
1470         u32 cmp_bytes;
1471         int rc = 0;
1472         int processed = 0;
1473
1474         lockdep_assert_held(&skdev->lock);
1475
1476         for (;; ) {
1477                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1478
1479                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1480                 cmp_cycle = skcmp->cycle;
1481                 cmp_cntxt = skcmp->tag;
1482                 cmp_status = skcmp->status;
1483                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1484
1485                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1486
1487                 dev_dbg(&skdev->pdev->dev,
1488                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1489                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1490                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1491                         cmp_bytes, skdev->proto_ver);
1492
1493                 if (cmp_cycle != skdev->skcomp_cycle) {
1494                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1495                         break;
1496                 }
1497                 /*
1498                  * Update the completion queue head index and possibly
1499                  * the completion cycle count. 8-bit wrap-around.
1500                  */
1501                 skdev->skcomp_ix++;
1502                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1503                         skdev->skcomp_ix = 0;
1504                         skdev->skcomp_cycle++;
1505                 }
1506
1507                 /*
1508                  * The command context is a unique 32-bit ID. The low order
1509                  * bits help locate the request. The request is usually a
1510                  * r/w request (see skd_start() above) or a special request.
1511                  */
1512                 req_id = cmp_cntxt;
1513                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1514
1515                 /* Is this other than a r/w request? */
1516                 if (tag >= skdev->num_req_context) {
1517                         /*
1518                          * This is not a completion for a r/w request.
1519                          */
1520                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1521                                                       tag));
1522                         skd_complete_other(skdev, skcmp, skerr);
1523                         continue;
1524                 }
1525
1526                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1527                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1528                          tag))
1529                         continue;
1530                 skreq = blk_mq_rq_to_pdu(rq);
1531
1532                 /*
1533                  * Make sure the request ID for the slot matches.
1534                  */
1535                 if (skreq->id != req_id) {
1536                         dev_err(&skdev->pdev->dev,
1537                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1538                                 req_id, skreq->id, cmp_cntxt);
1539
1540                         continue;
1541                 }
1542
1543                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1544
1545                 skreq->completion = *skcmp;
1546                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1547                         skreq->err_info = *skerr;
1548                         skd_log_check_status(skdev, cmp_status, skerr->key,
1549                                              skerr->code, skerr->qual,
1550                                              skerr->fruc);
1551                 }
1552                 /* Release DMA resources for the request. */
1553                 if (skreq->n_sg > 0)
1554                         skd_postop_sg_list(skdev, skreq);
1555
1556                 skd_release_skreq(skdev, skreq);
1557
1558                 /*
1559                  * Capture the outcome and post it back to the native request.
1560                  */
1561                 if (likely(cmp_status == SAM_STAT_GOOD)) {
1562                         skreq->status = BLK_STS_OK;
1563                         blk_mq_complete_request(rq);
1564                 } else {
1565                         skd_resolve_req_exception(skdev, skreq, rq);
1566                 }
1567
1568                 /* skd_isr_comp_limit equal zero means no limit */
1569                 if (limit) {
1570                         if (++processed >= limit) {
1571                                 rc = 1;
1572                                 break;
1573                         }
1574                 }
1575         }
1576
1577         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1578             skd_in_flight(skdev) == 0) {
1579                 skdev->state = SKD_DRVR_STATE_PAUSED;
1580                 wake_up_interruptible(&skdev->waitq);
1581         }
1582
1583         return rc;
1584 }
1585
1586 static void skd_complete_other(struct skd_device *skdev,
1587                                struct fit_completion_entry_v1 *skcomp,
1588                                struct fit_comp_error_info *skerr)
1589 {
1590         u32 req_id = 0;
1591         u32 req_table;
1592         u32 req_slot;
1593         struct skd_special_context *skspcl;
1594
1595         lockdep_assert_held(&skdev->lock);
1596
1597         req_id = skcomp->tag;
1598         req_table = req_id & SKD_ID_TABLE_MASK;
1599         req_slot = req_id & SKD_ID_SLOT_MASK;
1600
1601         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1602                 req_id, req_slot);
1603
1604         /*
1605          * Based on the request id, determine how to dispatch this completion.
1606          * This swich/case is finding the good cases and forwarding the
1607          * completion entry. Errors are reported below the switch.
1608          */
1609         switch (req_table) {
1610         case SKD_ID_RW_REQUEST:
1611                 /*
1612                  * The caller, skd_isr_completion_posted() above,
1613                  * handles r/w requests. The only way we get here
1614                  * is if the req_slot is out of bounds.
1615                  */
1616                 break;
1617
1618         case SKD_ID_INTERNAL:
1619                 if (req_slot == 0) {
1620                         skspcl = &skdev->internal_skspcl;
1621                         if (skspcl->req.id == req_id &&
1622                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1623                                 skd_complete_internal(skdev,
1624                                                       skcomp, skerr, skspcl);
1625                                 return;
1626                         }
1627                 }
1628                 break;
1629
1630         case SKD_ID_FIT_MSG:
1631                 /*
1632                  * These id's should never appear in a completion record.
1633                  */
1634                 break;
1635
1636         default:
1637                 /*
1638                  * These id's should never appear anywhere;
1639                  */
1640                 break;
1641         }
1642
1643         /*
1644          * If we get here it is a bad or stale id.
1645          */
1646 }
1647
1648 static void skd_reset_skcomp(struct skd_device *skdev)
1649 {
1650         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1651
1652         skdev->skcomp_ix = 0;
1653         skdev->skcomp_cycle = 1;
1654 }
1655
1656 /*
1657  *****************************************************************************
1658  * INTERRUPTS
1659  *****************************************************************************
1660  */
1661 static void skd_completion_worker(struct work_struct *work)
1662 {
1663         struct skd_device *skdev =
1664                 container_of(work, struct skd_device, completion_worker);
1665         unsigned long flags;
1666         int flush_enqueued = 0;
1667
1668         spin_lock_irqsave(&skdev->lock, flags);
1669
1670         /*
1671          * pass in limit=0, which means no limit..
1672          * process everything in compq
1673          */
1674         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1675         schedule_work(&skdev->start_queue);
1676
1677         spin_unlock_irqrestore(&skdev->lock, flags);
1678 }
1679
1680 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1681
1682 static irqreturn_t
1683 skd_isr(int irq, void *ptr)
1684 {
1685         struct skd_device *skdev = ptr;
1686         u32 intstat;
1687         u32 ack;
1688         int rc = 0;
1689         int deferred = 0;
1690         int flush_enqueued = 0;
1691
1692         spin_lock(&skdev->lock);
1693
1694         for (;; ) {
1695                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1696
1697                 ack = FIT_INT_DEF_MASK;
1698                 ack &= intstat;
1699
1700                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1701                         ack);
1702
1703                 /* As long as there is an int pending on device, keep
1704                  * running loop.  When none, get out, but if we've never
1705                  * done any processing, call completion handler?
1706                  */
1707                 if (ack == 0) {
1708                         /* No interrupts on device, but run the completion
1709                          * processor anyway?
1710                          */
1711                         if (rc == 0)
1712                                 if (likely (skdev->state
1713                                         == SKD_DRVR_STATE_ONLINE))
1714                                         deferred = 1;
1715                         break;
1716                 }
1717
1718                 rc = IRQ_HANDLED;
1719
1720                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1721
1722                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1723                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1724                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1725                                 /*
1726                                  * If we have already deferred completion
1727                                  * processing, don't bother running it again
1728                                  */
1729                                 if (deferred == 0)
1730                                         deferred =
1731                                                 skd_isr_completion_posted(skdev,
1732                                                 skd_isr_comp_limit, &flush_enqueued);
1733                         }
1734
1735                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1736                                 skd_isr_fwstate(skdev);
1737                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1738                                     skdev->state ==
1739                                     SKD_DRVR_STATE_DISAPPEARED) {
1740                                         spin_unlock(&skdev->lock);
1741                                         return rc;
1742                                 }
1743                         }
1744
1745                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1746                                 skd_isr_msg_from_dev(skdev);
1747                 }
1748         }
1749
1750         if (unlikely(flush_enqueued))
1751                 schedule_work(&skdev->start_queue);
1752
1753         if (deferred)
1754                 schedule_work(&skdev->completion_worker);
1755         else if (!flush_enqueued)
1756                 schedule_work(&skdev->start_queue);
1757
1758         spin_unlock(&skdev->lock);
1759
1760         return rc;
1761 }
1762
1763 static void skd_drive_fault(struct skd_device *skdev)
1764 {
1765         skdev->state = SKD_DRVR_STATE_FAULT;
1766         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1767 }
1768
1769 static void skd_drive_disappeared(struct skd_device *skdev)
1770 {
1771         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1772         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1773 }
1774
1775 static void skd_isr_fwstate(struct skd_device *skdev)
1776 {
1777         u32 sense;
1778         u32 state;
1779         u32 mtd;
1780         int prev_driver_state = skdev->state;
1781
1782         sense = SKD_READL(skdev, FIT_STATUS);
1783         state = sense & FIT_SR_DRIVE_STATE_MASK;
1784
1785         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1786                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1787                 skd_drive_state_to_str(state), state);
1788
1789         skdev->drive_state = state;
1790
1791         switch (skdev->drive_state) {
1792         case FIT_SR_DRIVE_INIT:
1793                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1794                         skd_disable_interrupts(skdev);
1795                         break;
1796                 }
1797                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1798                         skd_recover_requests(skdev);
1799                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1800                         skdev->timer_countdown = SKD_STARTING_TIMO;
1801                         skdev->state = SKD_DRVR_STATE_STARTING;
1802                         skd_soft_reset(skdev);
1803                         break;
1804                 }
1805                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1806                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1807                 skdev->last_mtd = mtd;
1808                 break;
1809
1810         case FIT_SR_DRIVE_ONLINE:
1811                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1812                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1813                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1814
1815                 skdev->queue_low_water_mark =
1816                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1817                 if (skdev->queue_low_water_mark < 1)
1818                         skdev->queue_low_water_mark = 1;
1819                 dev_info(&skdev->pdev->dev,
1820                          "Queue depth limit=%d dev=%d lowat=%d\n",
1821                          skdev->cur_max_queue_depth,
1822                          skdev->dev_max_queue_depth,
1823                          skdev->queue_low_water_mark);
1824
1825                 skd_refresh_device_data(skdev);
1826                 break;
1827
1828         case FIT_SR_DRIVE_BUSY:
1829                 skdev->state = SKD_DRVR_STATE_BUSY;
1830                 skdev->timer_countdown = SKD_BUSY_TIMO;
1831                 skd_quiesce_dev(skdev);
1832                 break;
1833         case FIT_SR_DRIVE_BUSY_SANITIZE:
1834                 /* set timer for 3 seconds, we'll abort any unfinished
1835                  * commands after that expires
1836                  */
1837                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1838                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1839                 schedule_work(&skdev->start_queue);
1840                 break;
1841         case FIT_SR_DRIVE_BUSY_ERASE:
1842                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1843                 skdev->timer_countdown = SKD_BUSY_TIMO;
1844                 break;
1845         case FIT_SR_DRIVE_OFFLINE:
1846                 skdev->state = SKD_DRVR_STATE_IDLE;
1847                 break;
1848         case FIT_SR_DRIVE_SOFT_RESET:
1849                 switch (skdev->state) {
1850                 case SKD_DRVR_STATE_STARTING:
1851                 case SKD_DRVR_STATE_RESTARTING:
1852                         /* Expected by a caller of skd_soft_reset() */
1853                         break;
1854                 default:
1855                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1856                         break;
1857                 }
1858                 break;
1859         case FIT_SR_DRIVE_FW_BOOTING:
1860                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1861                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1862                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1863                 break;
1864
1865         case FIT_SR_DRIVE_DEGRADED:
1866         case FIT_SR_PCIE_LINK_DOWN:
1867         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1868                 break;
1869
1870         case FIT_SR_DRIVE_FAULT:
1871                 skd_drive_fault(skdev);
1872                 skd_recover_requests(skdev);
1873                 schedule_work(&skdev->start_queue);
1874                 break;
1875
1876         /* PCIe bus returned all Fs? */
1877         case 0xFF:
1878                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1879                          sense);
1880                 skd_drive_disappeared(skdev);
1881                 skd_recover_requests(skdev);
1882                 schedule_work(&skdev->start_queue);
1883                 break;
1884         default:
1885                 /*
1886                  * Uknown FW State. Wait for a state we recognize.
1887                  */
1888                 break;
1889         }
1890         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1891                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1892                 skd_skdev_state_to_str(skdev->state), skdev->state);
1893 }
1894
1895 static bool skd_recover_request(struct request *req, void *data, bool reserved)
1896 {
1897         struct skd_device *const skdev = data;
1898         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1899
1900         if (skreq->state != SKD_REQ_STATE_BUSY)
1901                 return true;
1902
1903         skd_log_skreq(skdev, skreq, "recover");
1904
1905         /* Release DMA resources for the request. */
1906         if (skreq->n_sg > 0)
1907                 skd_postop_sg_list(skdev, skreq);
1908
1909         skreq->state = SKD_REQ_STATE_IDLE;
1910         skreq->status = BLK_STS_IOERR;
1911         blk_mq_complete_request(req);
1912         return true;
1913 }
1914
1915 static void skd_recover_requests(struct skd_device *skdev)
1916 {
1917         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1918 }
1919
1920 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1921 {
1922         u32 mfd;
1923         u32 mtd;
1924         u32 data;
1925
1926         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1927
1928         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1929                 skdev->last_mtd);
1930
1931         /* ignore any mtd that is an ack for something we didn't send */
1932         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1933                 return;
1934
1935         switch (FIT_MXD_TYPE(mfd)) {
1936         case FIT_MTD_FITFW_INIT:
1937                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1938
1939                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1940                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1941                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1942                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1943                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1944                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1945                         skd_soft_reset(skdev);
1946                         break;
1947                 }
1948                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1949                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1950                 skdev->last_mtd = mtd;
1951                 break;
1952
1953         case FIT_MTD_GET_CMDQ_DEPTH:
1954                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1955                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1956                                    SKD_N_COMPLETION_ENTRY);
1957                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1958                 skdev->last_mtd = mtd;
1959                 break;
1960
1961         case FIT_MTD_SET_COMPQ_DEPTH:
1962                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1963                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1964                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1965                 skdev->last_mtd = mtd;
1966                 break;
1967
1968         case FIT_MTD_SET_COMPQ_ADDR:
1969                 skd_reset_skcomp(skdev);
1970                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1971                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1972                 skdev->last_mtd = mtd;
1973                 break;
1974
1975         case FIT_MTD_CMD_LOG_HOST_ID:
1976                 /* hardware interface overflows in y2106 */
1977                 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1978                 data = skdev->connect_time_stamp & 0xFFFF;
1979                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1980                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1981                 skdev->last_mtd = mtd;
1982                 break;
1983
1984         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1985                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1986                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1987                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1988                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989                 skdev->last_mtd = mtd;
1990                 break;
1991
1992         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1993                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1994                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1995                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1996                 skdev->last_mtd = mtd;
1997
1998                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1999                         skdev->connect_time_stamp, skdev->drive_jiffies);
2000                 break;
2001
2002         case FIT_MTD_ARM_QUEUE:
2003                 skdev->last_mtd = 0;
2004                 /*
2005                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2006                  */
2007                 break;
2008
2009         default:
2010                 break;
2011         }
2012 }
2013
2014 static void skd_disable_interrupts(struct skd_device *skdev)
2015 {
2016         u32 sense;
2017
2018         sense = SKD_READL(skdev, FIT_CONTROL);
2019         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2020         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2021         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2022
2023         /* Note that the 1s is written. A 1-bit means
2024          * disable, a 0 means enable.
2025          */
2026         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2027 }
2028
2029 static void skd_enable_interrupts(struct skd_device *skdev)
2030 {
2031         u32 val;
2032
2033         /* unmask interrupts first */
2034         val = FIT_ISH_FW_STATE_CHANGE +
2035               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2036
2037         /* Note that the compliment of mask is written. A 1-bit means
2038          * disable, a 0 means enable. */
2039         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2040         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2041
2042         val = SKD_READL(skdev, FIT_CONTROL);
2043         val |= FIT_CR_ENABLE_INTERRUPTS;
2044         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2045         SKD_WRITEL(skdev, val, FIT_CONTROL);
2046 }
2047
2048 /*
2049  *****************************************************************************
2050  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2051  *****************************************************************************
2052  */
2053
2054 static void skd_soft_reset(struct skd_device *skdev)
2055 {
2056         u32 val;
2057
2058         val = SKD_READL(skdev, FIT_CONTROL);
2059         val |= (FIT_CR_SOFT_RESET);
2060         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2061         SKD_WRITEL(skdev, val, FIT_CONTROL);
2062 }
2063
2064 static void skd_start_device(struct skd_device *skdev)
2065 {
2066         unsigned long flags;
2067         u32 sense;
2068         u32 state;
2069
2070         spin_lock_irqsave(&skdev->lock, flags);
2071
2072         /* ack all ghost interrupts */
2073         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2074
2075         sense = SKD_READL(skdev, FIT_STATUS);
2076
2077         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2078
2079         state = sense & FIT_SR_DRIVE_STATE_MASK;
2080         skdev->drive_state = state;
2081         skdev->last_mtd = 0;
2082
2083         skdev->state = SKD_DRVR_STATE_STARTING;
2084         skdev->timer_countdown = SKD_STARTING_TIMO;
2085
2086         skd_enable_interrupts(skdev);
2087
2088         switch (skdev->drive_state) {
2089         case FIT_SR_DRIVE_OFFLINE:
2090                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2091                 break;
2092
2093         case FIT_SR_DRIVE_FW_BOOTING:
2094                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2095                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2096                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2097                 break;
2098
2099         case FIT_SR_DRIVE_BUSY_SANITIZE:
2100                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2101                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2102                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2103                 break;
2104
2105         case FIT_SR_DRIVE_BUSY_ERASE:
2106                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2107                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2108                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2109                 break;
2110
2111         case FIT_SR_DRIVE_INIT:
2112         case FIT_SR_DRIVE_ONLINE:
2113                 skd_soft_reset(skdev);
2114                 break;
2115
2116         case FIT_SR_DRIVE_BUSY:
2117                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2118                 skdev->state = SKD_DRVR_STATE_BUSY;
2119                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2120                 break;
2121
2122         case FIT_SR_DRIVE_SOFT_RESET:
2123                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2124                 break;
2125
2126         case FIT_SR_DRIVE_FAULT:
2127                 /* Fault state is bad...soft reset won't do it...
2128                  * Hard reset, maybe, but does it work on device?
2129                  * For now, just fault so the system doesn't hang.
2130                  */
2131                 skd_drive_fault(skdev);
2132                 /*start the queue so we can respond with error to requests */
2133                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2134                 schedule_work(&skdev->start_queue);
2135                 skdev->gendisk_on = -1;
2136                 wake_up_interruptible(&skdev->waitq);
2137                 break;
2138
2139         case 0xFF:
2140                 /* Most likely the device isn't there or isn't responding
2141                  * to the BAR1 addresses. */
2142                 skd_drive_disappeared(skdev);
2143                 /*start the queue so we can respond with error to requests */
2144                 dev_dbg(&skdev->pdev->dev,
2145                         "starting queue to error-out reqs\n");
2146                 schedule_work(&skdev->start_queue);
2147                 skdev->gendisk_on = -1;
2148                 wake_up_interruptible(&skdev->waitq);
2149                 break;
2150
2151         default:
2152                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2153                         skdev->drive_state);
2154                 break;
2155         }
2156
2157         state = SKD_READL(skdev, FIT_CONTROL);
2158         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2159
2160         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2161         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2162
2163         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2164         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2165
2166         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2167         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2168
2169         state = SKD_READL(skdev, FIT_HW_VERSION);
2170         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2171
2172         spin_unlock_irqrestore(&skdev->lock, flags);
2173 }
2174
2175 static void skd_stop_device(struct skd_device *skdev)
2176 {
2177         unsigned long flags;
2178         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2179         u32 dev_state;
2180         int i;
2181
2182         spin_lock_irqsave(&skdev->lock, flags);
2183
2184         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2185                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2186                 goto stop_out;
2187         }
2188
2189         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2190                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2191                 goto stop_out;
2192         }
2193
2194         skdev->state = SKD_DRVR_STATE_SYNCING;
2195         skdev->sync_done = 0;
2196
2197         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2198
2199         spin_unlock_irqrestore(&skdev->lock, flags);
2200
2201         wait_event_interruptible_timeout(skdev->waitq,
2202                                          (skdev->sync_done), (10 * HZ));
2203
2204         spin_lock_irqsave(&skdev->lock, flags);
2205
2206         switch (skdev->sync_done) {
2207         case 0:
2208                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2209                 break;
2210         case 1:
2211                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2212                 break;
2213         default:
2214                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2215         }
2216
2217 stop_out:
2218         skdev->state = SKD_DRVR_STATE_STOPPING;
2219         spin_unlock_irqrestore(&skdev->lock, flags);
2220
2221         skd_kill_timer(skdev);
2222
2223         spin_lock_irqsave(&skdev->lock, flags);
2224         skd_disable_interrupts(skdev);
2225
2226         /* ensure all ints on device are cleared */
2227         /* soft reset the device to unload with a clean slate */
2228         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2229         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2230
2231         spin_unlock_irqrestore(&skdev->lock, flags);
2232
2233         /* poll every 100ms, 1 second timeout */
2234         for (i = 0; i < 10; i++) {
2235                 dev_state =
2236                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2237                 if (dev_state == FIT_SR_DRIVE_INIT)
2238                         break;
2239                 set_current_state(TASK_INTERRUPTIBLE);
2240                 schedule_timeout(msecs_to_jiffies(100));
2241         }
2242
2243         if (dev_state != FIT_SR_DRIVE_INIT)
2244                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2245                         dev_state);
2246 }
2247
2248 /* assume spinlock is held */
2249 static void skd_restart_device(struct skd_device *skdev)
2250 {
2251         u32 state;
2252
2253         /* ack all ghost interrupts */
2254         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2255
2256         state = SKD_READL(skdev, FIT_STATUS);
2257
2258         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2259
2260         state &= FIT_SR_DRIVE_STATE_MASK;
2261         skdev->drive_state = state;
2262         skdev->last_mtd = 0;
2263
2264         skdev->state = SKD_DRVR_STATE_RESTARTING;
2265         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2266
2267         skd_soft_reset(skdev);
2268 }
2269
2270 /* assume spinlock is held */
2271 static int skd_quiesce_dev(struct skd_device *skdev)
2272 {
2273         int rc = 0;
2274
2275         switch (skdev->state) {
2276         case SKD_DRVR_STATE_BUSY:
2277         case SKD_DRVR_STATE_BUSY_IMMINENT:
2278                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2279                 blk_mq_stop_hw_queues(skdev->queue);
2280                 break;
2281         case SKD_DRVR_STATE_ONLINE:
2282         case SKD_DRVR_STATE_STOPPING:
2283         case SKD_DRVR_STATE_SYNCING:
2284         case SKD_DRVR_STATE_PAUSING:
2285         case SKD_DRVR_STATE_PAUSED:
2286         case SKD_DRVR_STATE_STARTING:
2287         case SKD_DRVR_STATE_RESTARTING:
2288         case SKD_DRVR_STATE_RESUMING:
2289         default:
2290                 rc = -EINVAL;
2291                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2292                         skdev->state);
2293         }
2294         return rc;
2295 }
2296
2297 /* assume spinlock is held */
2298 static int skd_unquiesce_dev(struct skd_device *skdev)
2299 {
2300         int prev_driver_state = skdev->state;
2301
2302         skd_log_skdev(skdev, "unquiesce");
2303         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2304                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2305                 return 0;
2306         }
2307         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2308                 /*
2309                  * If there has been an state change to other than
2310                  * ONLINE, we will rely on controller state change
2311                  * to come back online and restart the queue.
2312                  * The BUSY state means that driver is ready to
2313                  * continue normal processing but waiting for controller
2314                  * to become available.
2315                  */
2316                 skdev->state = SKD_DRVR_STATE_BUSY;
2317                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2318                 return 0;
2319         }
2320
2321         /*
2322          * Drive has just come online, driver is either in startup,
2323          * paused performing a task, or bust waiting for hardware.
2324          */
2325         switch (skdev->state) {
2326         case SKD_DRVR_STATE_PAUSED:
2327         case SKD_DRVR_STATE_BUSY:
2328         case SKD_DRVR_STATE_BUSY_IMMINENT:
2329         case SKD_DRVR_STATE_BUSY_ERASE:
2330         case SKD_DRVR_STATE_STARTING:
2331         case SKD_DRVR_STATE_RESTARTING:
2332         case SKD_DRVR_STATE_FAULT:
2333         case SKD_DRVR_STATE_IDLE:
2334         case SKD_DRVR_STATE_LOAD:
2335                 skdev->state = SKD_DRVR_STATE_ONLINE;
2336                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2337                         skd_skdev_state_to_str(prev_driver_state),
2338                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2339                         skdev->state);
2340                 dev_dbg(&skdev->pdev->dev,
2341                         "**** device ONLINE...starting block queue\n");
2342                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2343                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2344                 schedule_work(&skdev->start_queue);
2345                 skdev->gendisk_on = 1;
2346                 wake_up_interruptible(&skdev->waitq);
2347                 break;
2348
2349         case SKD_DRVR_STATE_DISAPPEARED:
2350         default:
2351                 dev_dbg(&skdev->pdev->dev,
2352                         "**** driver state %d, not implemented\n",
2353                         skdev->state);
2354                 return -EBUSY;
2355         }
2356         return 0;
2357 }
2358
2359 /*
2360  *****************************************************************************
2361  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2362  *****************************************************************************
2363  */
2364
2365 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2366 {
2367         struct skd_device *skdev = skd_host_data;
2368         unsigned long flags;
2369
2370         spin_lock_irqsave(&skdev->lock, flags);
2371         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2372                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2373         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2374                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2375         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2376         spin_unlock_irqrestore(&skdev->lock, flags);
2377         return IRQ_HANDLED;
2378 }
2379
2380 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2381 {
2382         struct skd_device *skdev = skd_host_data;
2383         unsigned long flags;
2384
2385         spin_lock_irqsave(&skdev->lock, flags);
2386         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2387                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2388         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2389         skd_isr_fwstate(skdev);
2390         spin_unlock_irqrestore(&skdev->lock, flags);
2391         return IRQ_HANDLED;
2392 }
2393
2394 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2395 {
2396         struct skd_device *skdev = skd_host_data;
2397         unsigned long flags;
2398         int flush_enqueued = 0;
2399         int deferred;
2400
2401         spin_lock_irqsave(&skdev->lock, flags);
2402         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2403                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2404         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2405         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2406                                                 &flush_enqueued);
2407         if (flush_enqueued)
2408                 schedule_work(&skdev->start_queue);
2409
2410         if (deferred)
2411                 schedule_work(&skdev->completion_worker);
2412         else if (!flush_enqueued)
2413                 schedule_work(&skdev->start_queue);
2414
2415         spin_unlock_irqrestore(&skdev->lock, flags);
2416
2417         return IRQ_HANDLED;
2418 }
2419
2420 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2421 {
2422         struct skd_device *skdev = skd_host_data;
2423         unsigned long flags;
2424
2425         spin_lock_irqsave(&skdev->lock, flags);
2426         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2427                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2428         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2429         skd_isr_msg_from_dev(skdev);
2430         spin_unlock_irqrestore(&skdev->lock, flags);
2431         return IRQ_HANDLED;
2432 }
2433
2434 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2435 {
2436         struct skd_device *skdev = skd_host_data;
2437         unsigned long flags;
2438
2439         spin_lock_irqsave(&skdev->lock, flags);
2440         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2441                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2442         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2443         spin_unlock_irqrestore(&skdev->lock, flags);
2444         return IRQ_HANDLED;
2445 }
2446
2447 /*
2448  *****************************************************************************
2449  * PCIe MSI/MSI-X SETUP
2450  *****************************************************************************
2451  */
2452
2453 struct skd_msix_entry {
2454         char isr_name[30];
2455 };
2456
2457 struct skd_init_msix_entry {
2458         const char *name;
2459         irq_handler_t handler;
2460 };
2461
2462 #define SKD_MAX_MSIX_COUNT              13
2463 #define SKD_MIN_MSIX_COUNT              7
2464 #define SKD_BASE_MSIX_IRQ               4
2465
2466 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2467         { "(DMA 0)",        skd_reserved_isr },
2468         { "(DMA 1)",        skd_reserved_isr },
2469         { "(DMA 2)",        skd_reserved_isr },
2470         { "(DMA 3)",        skd_reserved_isr },
2471         { "(State Change)", skd_statec_isr   },
2472         { "(COMPL_Q)",      skd_comp_q       },
2473         { "(MSG)",          skd_msg_isr      },
2474         { "(Reserved)",     skd_reserved_isr },
2475         { "(Reserved)",     skd_reserved_isr },
2476         { "(Queue Full 0)", skd_qfull_isr    },
2477         { "(Queue Full 1)", skd_qfull_isr    },
2478         { "(Queue Full 2)", skd_qfull_isr    },
2479         { "(Queue Full 3)", skd_qfull_isr    },
2480 };
2481
2482 static int skd_acquire_msix(struct skd_device *skdev)
2483 {
2484         int i, rc;
2485         struct pci_dev *pdev = skdev->pdev;
2486
2487         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2488                         PCI_IRQ_MSIX);
2489         if (rc < 0) {
2490                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2491                 goto out;
2492         }
2493
2494         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2495                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2496         if (!skdev->msix_entries) {
2497                 rc = -ENOMEM;
2498                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2499                 goto out;
2500         }
2501
2502         /* Enable MSI-X vectors for the base queue */
2503         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2504                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2505
2506                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2507                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2508                          msix_entries[i].name);
2509
2510                 rc = devm_request_irq(&skdev->pdev->dev,
2511                                 pci_irq_vector(skdev->pdev, i),
2512                                 msix_entries[i].handler, 0,
2513                                 qentry->isr_name, skdev);
2514                 if (rc) {
2515                         dev_err(&skdev->pdev->dev,
2516                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2517                                 rc, i, qentry->isr_name);
2518                         goto msix_out;
2519                 }
2520         }
2521
2522         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2523                 SKD_MAX_MSIX_COUNT);
2524         return 0;
2525
2526 msix_out:
2527         while (--i >= 0)
2528                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2529 out:
2530         kfree(skdev->msix_entries);
2531         skdev->msix_entries = NULL;
2532         return rc;
2533 }
2534
2535 static int skd_acquire_irq(struct skd_device *skdev)
2536 {
2537         struct pci_dev *pdev = skdev->pdev;
2538         unsigned int irq_flag = PCI_IRQ_LEGACY;
2539         int rc;
2540
2541         if (skd_isr_type == SKD_IRQ_MSIX) {
2542                 rc = skd_acquire_msix(skdev);
2543                 if (!rc)
2544                         return 0;
2545
2546                 dev_err(&skdev->pdev->dev,
2547                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2548         }
2549
2550         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2551                         skdev->devno);
2552
2553         if (skd_isr_type != SKD_IRQ_LEGACY)
2554                 irq_flag |= PCI_IRQ_MSI;
2555         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2556         if (rc < 0) {
2557                 dev_err(&skdev->pdev->dev,
2558                         "failed to allocate the MSI interrupt %d\n", rc);
2559                 return rc;
2560         }
2561
2562         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2563                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2564                         skdev->isr_name, skdev);
2565         if (rc) {
2566                 pci_free_irq_vectors(pdev);
2567                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2568                         rc);
2569                 return rc;
2570         }
2571
2572         return 0;
2573 }
2574
2575 static void skd_release_irq(struct skd_device *skdev)
2576 {
2577         struct pci_dev *pdev = skdev->pdev;
2578
2579         if (skdev->msix_entries) {
2580                 int i;
2581
2582                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2583                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2584                                         skdev);
2585                 }
2586
2587                 kfree(skdev->msix_entries);
2588                 skdev->msix_entries = NULL;
2589         } else {
2590                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2591         }
2592
2593         pci_free_irq_vectors(pdev);
2594 }
2595
2596 /*
2597  *****************************************************************************
2598  * CONSTRUCT
2599  *****************************************************************************
2600  */
2601
2602 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2603                            dma_addr_t *dma_handle, gfp_t gfp,
2604                            enum dma_data_direction dir)
2605 {
2606         struct device *dev = &skdev->pdev->dev;
2607         void *buf;
2608
2609         buf = kmem_cache_alloc(s, gfp);
2610         if (!buf)
2611                 return NULL;
2612         *dma_handle = dma_map_single(dev, buf,
2613                                      kmem_cache_size(s), dir);
2614         if (dma_mapping_error(dev, *dma_handle)) {
2615                 kmem_cache_free(s, buf);
2616                 buf = NULL;
2617         }
2618         return buf;
2619 }
2620
2621 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2622                          void *vaddr, dma_addr_t dma_handle,
2623                          enum dma_data_direction dir)
2624 {
2625         if (!vaddr)
2626                 return;
2627
2628         dma_unmap_single(&skdev->pdev->dev, dma_handle,
2629                          kmem_cache_size(s), dir);
2630         kmem_cache_free(s, vaddr);
2631 }
2632
2633 static int skd_cons_skcomp(struct skd_device *skdev)
2634 {
2635         int rc = 0;
2636         struct fit_completion_entry_v1 *skcomp;
2637
2638         dev_dbg(&skdev->pdev->dev,
2639                 "comp pci_alloc, total bytes %zd entries %d\n",
2640                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2641
2642         skcomp = dma_alloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2643                                     &skdev->cq_dma_address, GFP_KERNEL);
2644
2645         if (skcomp == NULL) {
2646                 rc = -ENOMEM;
2647                 goto err_out;
2648         }
2649
2650         skdev->skcomp_table = skcomp;
2651         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2652                                                            sizeof(*skcomp) *
2653                                                            SKD_N_COMPLETION_ENTRY);
2654
2655 err_out:
2656         return rc;
2657 }
2658
2659 static int skd_cons_skmsg(struct skd_device *skdev)
2660 {
2661         int rc = 0;
2662         u32 i;
2663
2664         dev_dbg(&skdev->pdev->dev,
2665                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2666                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2667                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2668
2669         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2670                                      sizeof(struct skd_fitmsg_context),
2671                                      GFP_KERNEL);
2672         if (skdev->skmsg_table == NULL) {
2673                 rc = -ENOMEM;
2674                 goto err_out;
2675         }
2676
2677         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2678                 struct skd_fitmsg_context *skmsg;
2679
2680                 skmsg = &skdev->skmsg_table[i];
2681
2682                 skmsg->id = i + SKD_ID_FIT_MSG;
2683
2684                 skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2685                                                     SKD_N_FITMSG_BYTES,
2686                                                     &skmsg->mb_dma_address,
2687                                                     GFP_KERNEL);
2688                 if (skmsg->msg_buf == NULL) {
2689                         rc = -ENOMEM;
2690                         goto err_out;
2691                 }
2692
2693                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2694                      (FIT_QCMD_ALIGN - 1),
2695                      "not aligned: msg_buf %p mb_dma_address %pad\n",
2696                      skmsg->msg_buf, &skmsg->mb_dma_address);
2697         }
2698
2699 err_out:
2700         return rc;
2701 }
2702
2703 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2704                                                   u32 n_sg,
2705                                                   dma_addr_t *ret_dma_addr)
2706 {
2707         struct fit_sg_descriptor *sg_list;
2708
2709         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2710                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2711
2712         if (sg_list != NULL) {
2713                 uint64_t dma_address = *ret_dma_addr;
2714                 u32 i;
2715
2716                 for (i = 0; i < n_sg - 1; i++) {
2717                         uint64_t ndp_off;
2718                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2719
2720                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2721                 }
2722                 sg_list[i].next_desc_ptr = 0LL;
2723         }
2724
2725         return sg_list;
2726 }
2727
2728 static void skd_free_sg_list(struct skd_device *skdev,
2729                              struct fit_sg_descriptor *sg_list,
2730                              dma_addr_t dma_addr)
2731 {
2732         if (WARN_ON_ONCE(!sg_list))
2733                 return;
2734
2735         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2736                      DMA_TO_DEVICE);
2737 }
2738
2739 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2740                             unsigned int hctx_idx, unsigned int numa_node)
2741 {
2742         struct skd_device *skdev = set->driver_data;
2743         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2744
2745         skreq->state = SKD_REQ_STATE_IDLE;
2746         skreq->sg = (void *)(skreq + 1);
2747         sg_init_table(skreq->sg, skd_sgs_per_request);
2748         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2749                                             &skreq->sksg_dma_address);
2750
2751         return skreq->sksg_list ? 0 : -ENOMEM;
2752 }
2753
2754 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2755                              unsigned int hctx_idx)
2756 {
2757         struct skd_device *skdev = set->driver_data;
2758         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2759
2760         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2761 }
2762
2763 static int skd_cons_sksb(struct skd_device *skdev)
2764 {
2765         int rc = 0;
2766         struct skd_special_context *skspcl;
2767
2768         skspcl = &skdev->internal_skspcl;
2769
2770         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2771         skspcl->req.state = SKD_REQ_STATE_IDLE;
2772
2773         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2774                                          &skspcl->db_dma_address,
2775                                          GFP_DMA | __GFP_ZERO,
2776                                          DMA_BIDIRECTIONAL);
2777         if (skspcl->data_buf == NULL) {
2778                 rc = -ENOMEM;
2779                 goto err_out;
2780         }
2781
2782         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2783                                         &skspcl->mb_dma_address,
2784                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2785         if (skspcl->msg_buf == NULL) {
2786                 rc = -ENOMEM;
2787                 goto err_out;
2788         }
2789
2790         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2791                                                  &skspcl->req.sksg_dma_address);
2792         if (skspcl->req.sksg_list == NULL) {
2793                 rc = -ENOMEM;
2794                 goto err_out;
2795         }
2796
2797         if (!skd_format_internal_skspcl(skdev)) {
2798                 rc = -EINVAL;
2799                 goto err_out;
2800         }
2801
2802 err_out:
2803         return rc;
2804 }
2805
2806 static const struct blk_mq_ops skd_mq_ops = {
2807         .queue_rq       = skd_mq_queue_rq,
2808         .complete       = skd_complete_rq,
2809         .timeout        = skd_timed_out,
2810         .init_request   = skd_init_request,
2811         .exit_request   = skd_exit_request,
2812 };
2813
2814 static int skd_cons_disk(struct skd_device *skdev)
2815 {
2816         int rc = 0;
2817         struct gendisk *disk;
2818         struct request_queue *q;
2819         unsigned long flags;
2820
2821         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2822         if (!disk) {
2823                 rc = -ENOMEM;
2824                 goto err_out;
2825         }
2826
2827         skdev->disk = disk;
2828         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2829
2830         disk->major = skdev->major;
2831         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2832         disk->fops = &skd_blockdev_ops;
2833         disk->private_data = skdev;
2834
2835         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2836         skdev->tag_set.ops = &skd_mq_ops;
2837         skdev->tag_set.nr_hw_queues = 1;
2838         skdev->tag_set.queue_depth = skd_max_queue_depth;
2839         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2840                 skdev->sgs_per_request * sizeof(struct scatterlist);
2841         skdev->tag_set.numa_node = NUMA_NO_NODE;
2842         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2843                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2844         skdev->tag_set.driver_data = skdev;
2845         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2846         if (rc)
2847                 goto err_out;
2848         q = blk_mq_init_queue(&skdev->tag_set);
2849         if (IS_ERR(q)) {
2850                 blk_mq_free_tag_set(&skdev->tag_set);
2851                 rc = PTR_ERR(q);
2852                 goto err_out;
2853         }
2854         q->queuedata = skdev;
2855
2856         skdev->queue = q;
2857         disk->queue = q;
2858
2859         blk_queue_write_cache(q, true, true);
2860         blk_queue_max_segments(q, skdev->sgs_per_request);
2861         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2862
2863         /* set optimal I/O size to 8KB */
2864         blk_queue_io_opt(q, 8192);
2865
2866         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2867         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2868
2869         blk_queue_rq_timeout(q, 8 * HZ);
2870
2871         spin_lock_irqsave(&skdev->lock, flags);
2872         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2873         blk_mq_stop_hw_queues(skdev->queue);
2874         spin_unlock_irqrestore(&skdev->lock, flags);
2875
2876 err_out:
2877         return rc;
2878 }
2879
2880 #define SKD_N_DEV_TABLE         16u
2881 static u32 skd_next_devno;
2882
2883 static struct skd_device *skd_construct(struct pci_dev *pdev)
2884 {
2885         struct skd_device *skdev;
2886         int blk_major = skd_major;
2887         size_t size;
2888         int rc;
2889
2890         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2891
2892         if (!skdev) {
2893                 dev_err(&pdev->dev, "memory alloc failure\n");
2894                 return NULL;
2895         }
2896
2897         skdev->state = SKD_DRVR_STATE_LOAD;
2898         skdev->pdev = pdev;
2899         skdev->devno = skd_next_devno++;
2900         skdev->major = blk_major;
2901         skdev->dev_max_queue_depth = 0;
2902
2903         skdev->num_req_context = skd_max_queue_depth;
2904         skdev->num_fitmsg_context = skd_max_queue_depth;
2905         skdev->cur_max_queue_depth = 1;
2906         skdev->queue_low_water_mark = 1;
2907         skdev->proto_ver = 99;
2908         skdev->sgs_per_request = skd_sgs_per_request;
2909         skdev->dbg_level = skd_dbg_level;
2910
2911         spin_lock_init(&skdev->lock);
2912
2913         INIT_WORK(&skdev->start_queue, skd_start_queue);
2914         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2915
2916         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2917         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2918                                                 SLAB_HWCACHE_ALIGN, NULL);
2919         if (!skdev->msgbuf_cache)
2920                 goto err_out;
2921         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2922                   "skd-msgbuf: %d < %zd\n",
2923                   kmem_cache_size(skdev->msgbuf_cache), size);
2924         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2925         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2926                                                 SLAB_HWCACHE_ALIGN, NULL);
2927         if (!skdev->sglist_cache)
2928                 goto err_out;
2929         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2930                   "skd-sglist: %d < %zd\n",
2931                   kmem_cache_size(skdev->sglist_cache), size);
2932         size = SKD_N_INTERNAL_BYTES;
2933         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2934                                                  SLAB_HWCACHE_ALIGN, NULL);
2935         if (!skdev->databuf_cache)
2936                 goto err_out;
2937         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2938                   "skd-databuf: %d < %zd\n",
2939                   kmem_cache_size(skdev->databuf_cache), size);
2940
2941         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2942         rc = skd_cons_skcomp(skdev);
2943         if (rc < 0)
2944                 goto err_out;
2945
2946         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2947         rc = skd_cons_skmsg(skdev);
2948         if (rc < 0)
2949                 goto err_out;
2950
2951         dev_dbg(&skdev->pdev->dev, "sksb\n");
2952         rc = skd_cons_sksb(skdev);
2953         if (rc < 0)
2954                 goto err_out;
2955
2956         dev_dbg(&skdev->pdev->dev, "disk\n");
2957         rc = skd_cons_disk(skdev);
2958         if (rc < 0)
2959                 goto err_out;
2960
2961         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2962         return skdev;
2963
2964 err_out:
2965         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2966         skd_destruct(skdev);
2967         return NULL;
2968 }
2969
2970 /*
2971  *****************************************************************************
2972  * DESTRUCT (FREE)
2973  *****************************************************************************
2974  */
2975
2976 static void skd_free_skcomp(struct skd_device *skdev)
2977 {
2978         if (skdev->skcomp_table)
2979                 dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2980                                   skdev->skcomp_table, skdev->cq_dma_address);
2981
2982         skdev->skcomp_table = NULL;
2983         skdev->cq_dma_address = 0;
2984 }
2985
2986 static void skd_free_skmsg(struct skd_device *skdev)
2987 {
2988         u32 i;
2989
2990         if (skdev->skmsg_table == NULL)
2991                 return;
2992
2993         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2994                 struct skd_fitmsg_context *skmsg;
2995
2996                 skmsg = &skdev->skmsg_table[i];
2997
2998                 if (skmsg->msg_buf != NULL) {
2999                         dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
3000                                           skmsg->msg_buf,
3001                                             skmsg->mb_dma_address);
3002                 }
3003                 skmsg->msg_buf = NULL;
3004                 skmsg->mb_dma_address = 0;
3005         }
3006
3007         kfree(skdev->skmsg_table);
3008         skdev->skmsg_table = NULL;
3009 }
3010
3011 static void skd_free_sksb(struct skd_device *skdev)
3012 {
3013         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3014
3015         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3016                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3017
3018         skspcl->data_buf = NULL;
3019         skspcl->db_dma_address = 0;
3020
3021         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3022                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3023
3024         skspcl->msg_buf = NULL;
3025         skspcl->mb_dma_address = 0;
3026
3027         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3028                          skspcl->req.sksg_dma_address);
3029
3030         skspcl->req.sksg_list = NULL;
3031         skspcl->req.sksg_dma_address = 0;
3032 }
3033
3034 static void skd_free_disk(struct skd_device *skdev)
3035 {
3036         struct gendisk *disk = skdev->disk;
3037
3038         if (disk && (disk->flags & GENHD_FL_UP))
3039                 del_gendisk(disk);
3040
3041         if (skdev->queue) {
3042                 blk_cleanup_queue(skdev->queue);
3043                 skdev->queue = NULL;
3044                 if (disk)
3045                         disk->queue = NULL;
3046         }
3047
3048         if (skdev->tag_set.tags)
3049                 blk_mq_free_tag_set(&skdev->tag_set);
3050
3051         put_disk(disk);
3052         skdev->disk = NULL;
3053 }
3054
3055 static void skd_destruct(struct skd_device *skdev)
3056 {
3057         if (skdev == NULL)
3058                 return;
3059
3060         cancel_work_sync(&skdev->start_queue);
3061
3062         dev_dbg(&skdev->pdev->dev, "disk\n");
3063         skd_free_disk(skdev);
3064
3065         dev_dbg(&skdev->pdev->dev, "sksb\n");
3066         skd_free_sksb(skdev);
3067
3068         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3069         skd_free_skmsg(skdev);
3070
3071         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3072         skd_free_skcomp(skdev);
3073
3074         kmem_cache_destroy(skdev->databuf_cache);
3075         kmem_cache_destroy(skdev->sglist_cache);
3076         kmem_cache_destroy(skdev->msgbuf_cache);
3077
3078         dev_dbg(&skdev->pdev->dev, "skdev\n");
3079         kfree(skdev);
3080 }
3081
3082 /*
3083  *****************************************************************************
3084  * BLOCK DEVICE (BDEV) GLUE
3085  *****************************************************************************
3086  */
3087
3088 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3089 {
3090         struct skd_device *skdev;
3091         u64 capacity;
3092
3093         skdev = bdev->bd_disk->private_data;
3094
3095         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3096                 bdev->bd_disk->disk_name, current->comm);
3097
3098         if (skdev->read_cap_is_valid) {
3099                 capacity = get_capacity(skdev->disk);
3100                 geo->heads = 64;
3101                 geo->sectors = 255;
3102                 geo->cylinders = (capacity) / (255 * 64);
3103
3104                 return 0;
3105         }
3106         return -EIO;
3107 }
3108
3109 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3110 {
3111         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3112         device_add_disk(parent, skdev->disk, NULL);
3113         return 0;
3114 }
3115
3116 static const struct block_device_operations skd_blockdev_ops = {
3117         .owner          = THIS_MODULE,
3118         .getgeo         = skd_bdev_getgeo,
3119 };
3120
3121 /*
3122  *****************************************************************************
3123  * PCIe DRIVER GLUE
3124  *****************************************************************************
3125  */
3126
3127 static const struct pci_device_id skd_pci_tbl[] = {
3128         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3129           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3130         { 0 }                     /* terminate list */
3131 };
3132
3133 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3134
3135 static char *skd_pci_info(struct skd_device *skdev, char *str)
3136 {
3137         int pcie_reg;
3138
3139         strcpy(str, "PCIe (");
3140         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3141
3142         if (pcie_reg) {
3143
3144                 char lwstr[6];
3145                 uint16_t pcie_lstat, lspeed, lwidth;
3146
3147                 pcie_reg += 0x12;
3148                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3149                 lspeed = pcie_lstat & (0xF);
3150                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3151
3152                 if (lspeed == 1)
3153                         strcat(str, "2.5GT/s ");
3154                 else if (lspeed == 2)
3155                         strcat(str, "5.0GT/s ");
3156                 else
3157                         strcat(str, "<unknown> ");
3158                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3159                 strcat(str, lwstr);
3160         }
3161         return str;
3162 }
3163
3164 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3165 {
3166         int i;
3167         int rc = 0;
3168         char pci_str[32];
3169         struct skd_device *skdev;
3170
3171         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3172                 pdev->device);
3173
3174         rc = pci_enable_device(pdev);
3175         if (rc)
3176                 return rc;
3177         rc = pci_request_regions(pdev, DRV_NAME);
3178         if (rc)
3179                 goto err_out;
3180         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3181         if (rc)
3182                 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3183         if (rc) {
3184                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3185                 goto err_out_regions;
3186         }
3187
3188         if (!skd_major) {
3189                 rc = register_blkdev(0, DRV_NAME);
3190                 if (rc < 0)
3191                         goto err_out_regions;
3192                 BUG_ON(!rc);
3193                 skd_major = rc;
3194         }
3195
3196         skdev = skd_construct(pdev);
3197         if (skdev == NULL) {
3198                 rc = -ENOMEM;
3199                 goto err_out_regions;
3200         }
3201
3202         skd_pci_info(skdev, pci_str);
3203         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3204
3205         pci_set_master(pdev);
3206         rc = pci_enable_pcie_error_reporting(pdev);
3207         if (rc) {
3208                 dev_err(&pdev->dev,
3209                         "bad enable of PCIe error reporting rc=%d\n", rc);
3210                 skdev->pcie_error_reporting_is_enabled = 0;
3211         } else
3212                 skdev->pcie_error_reporting_is_enabled = 1;
3213
3214         pci_set_drvdata(pdev, skdev);
3215
3216         for (i = 0; i < SKD_MAX_BARS; i++) {
3217                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3218                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3219                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3220                                             skdev->mem_size[i]);
3221                 if (!skdev->mem_map[i]) {
3222                         dev_err(&pdev->dev,
3223                                 "Unable to map adapter memory!\n");
3224                         rc = -ENODEV;
3225                         goto err_out_iounmap;
3226                 }
3227                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3228                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3229                         skdev->mem_size[i]);
3230         }
3231
3232         rc = skd_acquire_irq(skdev);
3233         if (rc) {
3234                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3235                 goto err_out_iounmap;
3236         }
3237
3238         rc = skd_start_timer(skdev);
3239         if (rc)
3240                 goto err_out_timer;
3241
3242         init_waitqueue_head(&skdev->waitq);
3243
3244         skd_start_device(skdev);
3245
3246         rc = wait_event_interruptible_timeout(skdev->waitq,
3247                                               (skdev->gendisk_on),
3248                                               (SKD_START_WAIT_SECONDS * HZ));
3249         if (skdev->gendisk_on > 0) {
3250                 /* device came on-line after reset */
3251                 skd_bdev_attach(&pdev->dev, skdev);
3252                 rc = 0;
3253         } else {
3254                 /* we timed out, something is wrong with the device,
3255                    don't add the disk structure */
3256                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3257                         rc);
3258                 /* in case of no error; we timeout with ENXIO */
3259                 if (!rc)
3260                         rc = -ENXIO;
3261                 goto err_out_timer;
3262         }
3263
3264         return rc;
3265
3266 err_out_timer:
3267         skd_stop_device(skdev);
3268         skd_release_irq(skdev);
3269
3270 err_out_iounmap:
3271         for (i = 0; i < SKD_MAX_BARS; i++)
3272                 if (skdev->mem_map[i])
3273                         iounmap(skdev->mem_map[i]);
3274
3275         if (skdev->pcie_error_reporting_is_enabled)
3276                 pci_disable_pcie_error_reporting(pdev);
3277
3278         skd_destruct(skdev);
3279
3280 err_out_regions:
3281         pci_release_regions(pdev);
3282
3283 err_out:
3284         pci_disable_device(pdev);
3285         pci_set_drvdata(pdev, NULL);
3286         return rc;
3287 }
3288
3289 static void skd_pci_remove(struct pci_dev *pdev)
3290 {
3291         int i;
3292         struct skd_device *skdev;
3293
3294         skdev = pci_get_drvdata(pdev);
3295         if (!skdev) {
3296                 dev_err(&pdev->dev, "no device data for PCI\n");
3297                 return;
3298         }
3299         skd_stop_device(skdev);
3300         skd_release_irq(skdev);
3301
3302         for (i = 0; i < SKD_MAX_BARS; i++)
3303                 if (skdev->mem_map[i])
3304                         iounmap(skdev->mem_map[i]);
3305
3306         if (skdev->pcie_error_reporting_is_enabled)
3307                 pci_disable_pcie_error_reporting(pdev);
3308
3309         skd_destruct(skdev);
3310
3311         pci_release_regions(pdev);
3312         pci_disable_device(pdev);
3313         pci_set_drvdata(pdev, NULL);
3314
3315         return;
3316 }
3317
3318 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3319 {
3320         int i;
3321         struct skd_device *skdev;
3322
3323         skdev = pci_get_drvdata(pdev);
3324         if (!skdev) {
3325                 dev_err(&pdev->dev, "no device data for PCI\n");
3326                 return -EIO;
3327         }
3328
3329         skd_stop_device(skdev);
3330
3331         skd_release_irq(skdev);
3332
3333         for (i = 0; i < SKD_MAX_BARS; i++)
3334                 if (skdev->mem_map[i])
3335                         iounmap(skdev->mem_map[i]);
3336
3337         if (skdev->pcie_error_reporting_is_enabled)
3338                 pci_disable_pcie_error_reporting(pdev);
3339
3340         pci_release_regions(pdev);
3341         pci_save_state(pdev);
3342         pci_disable_device(pdev);
3343         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3344         return 0;
3345 }
3346
3347 static int skd_pci_resume(struct pci_dev *pdev)
3348 {
3349         int i;
3350         int rc = 0;
3351         struct skd_device *skdev;
3352
3353         skdev = pci_get_drvdata(pdev);
3354         if (!skdev) {
3355                 dev_err(&pdev->dev, "no device data for PCI\n");
3356                 return -1;
3357         }
3358
3359         pci_set_power_state(pdev, PCI_D0);
3360         pci_enable_wake(pdev, PCI_D0, 0);
3361         pci_restore_state(pdev);
3362
3363         rc = pci_enable_device(pdev);
3364         if (rc)
3365                 return rc;
3366         rc = pci_request_regions(pdev, DRV_NAME);
3367         if (rc)
3368                 goto err_out;
3369         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3370         if (rc)
3371                 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3372         if (rc) {
3373                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3374                 goto err_out_regions;
3375         }
3376
3377         pci_set_master(pdev);
3378         rc = pci_enable_pcie_error_reporting(pdev);
3379         if (rc) {
3380                 dev_err(&pdev->dev,
3381                         "bad enable of PCIe error reporting rc=%d\n", rc);
3382                 skdev->pcie_error_reporting_is_enabled = 0;
3383         } else
3384                 skdev->pcie_error_reporting_is_enabled = 1;
3385
3386         for (i = 0; i < SKD_MAX_BARS; i++) {
3387
3388                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3389                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3390                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3391                                             skdev->mem_size[i]);
3392                 if (!skdev->mem_map[i]) {
3393                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3394                         rc = -ENODEV;
3395                         goto err_out_iounmap;
3396                 }
3397                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3398                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3399                         skdev->mem_size[i]);
3400         }
3401         rc = skd_acquire_irq(skdev);
3402         if (rc) {
3403                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3404                 goto err_out_iounmap;
3405         }
3406
3407         rc = skd_start_timer(skdev);
3408         if (rc)
3409                 goto err_out_timer;
3410
3411         init_waitqueue_head(&skdev->waitq);
3412
3413         skd_start_device(skdev);
3414
3415         return rc;
3416
3417 err_out_timer:
3418         skd_stop_device(skdev);
3419         skd_release_irq(skdev);
3420
3421 err_out_iounmap:
3422         for (i = 0; i < SKD_MAX_BARS; i++)
3423                 if (skdev->mem_map[i])
3424                         iounmap(skdev->mem_map[i]);
3425
3426         if (skdev->pcie_error_reporting_is_enabled)
3427                 pci_disable_pcie_error_reporting(pdev);
3428
3429 err_out_regions:
3430         pci_release_regions(pdev);
3431
3432 err_out:
3433         pci_disable_device(pdev);
3434         return rc;
3435 }
3436
3437 static void skd_pci_shutdown(struct pci_dev *pdev)
3438 {
3439         struct skd_device *skdev;
3440
3441         dev_err(&pdev->dev, "%s called\n", __func__);
3442
3443         skdev = pci_get_drvdata(pdev);
3444         if (!skdev) {
3445                 dev_err(&pdev->dev, "no device data for PCI\n");
3446                 return;
3447         }
3448
3449         dev_err(&pdev->dev, "calling stop\n");
3450         skd_stop_device(skdev);
3451 }
3452
3453 static struct pci_driver skd_driver = {
3454         .name           = DRV_NAME,
3455         .id_table       = skd_pci_tbl,
3456         .probe          = skd_pci_probe,
3457         .remove         = skd_pci_remove,
3458         .suspend        = skd_pci_suspend,
3459         .resume         = skd_pci_resume,
3460         .shutdown       = skd_pci_shutdown,
3461 };
3462
3463 /*
3464  *****************************************************************************
3465  * LOGGING SUPPORT
3466  *****************************************************************************
3467  */
3468
3469 const char *skd_drive_state_to_str(int state)
3470 {
3471         switch (state) {
3472         case FIT_SR_DRIVE_OFFLINE:
3473                 return "OFFLINE";
3474         case FIT_SR_DRIVE_INIT:
3475                 return "INIT";
3476         case FIT_SR_DRIVE_ONLINE:
3477                 return "ONLINE";
3478         case FIT_SR_DRIVE_BUSY:
3479                 return "BUSY";
3480         case FIT_SR_DRIVE_FAULT:
3481                 return "FAULT";
3482         case FIT_SR_DRIVE_DEGRADED:
3483                 return "DEGRADED";
3484         case FIT_SR_PCIE_LINK_DOWN:
3485                 return "INK_DOWN";
3486         case FIT_SR_DRIVE_SOFT_RESET:
3487                 return "SOFT_RESET";
3488         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3489                 return "NEED_FW";
3490         case FIT_SR_DRIVE_INIT_FAULT:
3491                 return "INIT_FAULT";
3492         case FIT_SR_DRIVE_BUSY_SANITIZE:
3493                 return "BUSY_SANITIZE";
3494         case FIT_SR_DRIVE_BUSY_ERASE:
3495                 return "BUSY_ERASE";
3496         case FIT_SR_DRIVE_FW_BOOTING:
3497                 return "FW_BOOTING";
3498         default:
3499                 return "???";
3500         }
3501 }
3502
3503 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3504 {
3505         switch (state) {
3506         case SKD_DRVR_STATE_LOAD:
3507                 return "LOAD";
3508         case SKD_DRVR_STATE_IDLE:
3509                 return "IDLE";
3510         case SKD_DRVR_STATE_BUSY:
3511                 return "BUSY";
3512         case SKD_DRVR_STATE_STARTING:
3513                 return "STARTING";
3514         case SKD_DRVR_STATE_ONLINE:
3515                 return "ONLINE";
3516         case SKD_DRVR_STATE_PAUSING:
3517                 return "PAUSING";
3518         case SKD_DRVR_STATE_PAUSED:
3519                 return "PAUSED";
3520         case SKD_DRVR_STATE_RESTARTING:
3521                 return "RESTARTING";
3522         case SKD_DRVR_STATE_RESUMING:
3523                 return "RESUMING";
3524         case SKD_DRVR_STATE_STOPPING:
3525                 return "STOPPING";
3526         case SKD_DRVR_STATE_SYNCING:
3527                 return "SYNCING";
3528         case SKD_DRVR_STATE_FAULT:
3529                 return "FAULT";
3530         case SKD_DRVR_STATE_DISAPPEARED:
3531                 return "DISAPPEARED";
3532         case SKD_DRVR_STATE_BUSY_ERASE:
3533                 return "BUSY_ERASE";
3534         case SKD_DRVR_STATE_BUSY_SANITIZE:
3535                 return "BUSY_SANITIZE";
3536         case SKD_DRVR_STATE_BUSY_IMMINENT:
3537                 return "BUSY_IMMINENT";
3538         case SKD_DRVR_STATE_WAIT_BOOT:
3539                 return "WAIT_BOOT";
3540
3541         default:
3542                 return "???";
3543         }
3544 }
3545
3546 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3547 {
3548         switch (state) {
3549         case SKD_REQ_STATE_IDLE:
3550                 return "IDLE";
3551         case SKD_REQ_STATE_SETUP:
3552                 return "SETUP";
3553         case SKD_REQ_STATE_BUSY:
3554                 return "BUSY";
3555         case SKD_REQ_STATE_COMPLETED:
3556                 return "COMPLETED";
3557         case SKD_REQ_STATE_TIMEOUT:
3558                 return "TIMEOUT";
3559         default:
3560                 return "???";
3561         }
3562 }
3563
3564 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3565 {
3566         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3567         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3568                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3569                 skd_skdev_state_to_str(skdev->state), skdev->state);
3570         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3571                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3572                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3573         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3574                 skdev->skcomp_cycle, skdev->skcomp_ix);
3575 }
3576
3577 static void skd_log_skreq(struct skd_device *skdev,
3578                           struct skd_request_context *skreq, const char *event)
3579 {
3580         struct request *req = blk_mq_rq_from_pdu(skreq);
3581         u32 lba = blk_rq_pos(req);
3582         u32 count = blk_rq_sectors(req);
3583
3584         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3585         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3586                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3587                 skreq->fitmsg_id);
3588         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3589                 skreq->data_dir, skreq->n_sg);
3590
3591         dev_dbg(&skdev->pdev->dev,
3592                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3593                 count, count, (int)rq_data_dir(req));
3594 }
3595
3596 /*
3597  *****************************************************************************
3598  * MODULE GLUE
3599  *****************************************************************************
3600  */
3601
3602 static int __init skd_init(void)
3603 {
3604         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3605         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3606         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3607         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3608         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3609         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3610         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3611         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3612
3613         switch (skd_isr_type) {
3614         case SKD_IRQ_LEGACY:
3615         case SKD_IRQ_MSI:
3616         case SKD_IRQ_MSIX:
3617                 break;
3618         default:
3619                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3620                        skd_isr_type, SKD_IRQ_DEFAULT);
3621                 skd_isr_type = SKD_IRQ_DEFAULT;
3622         }
3623
3624         if (skd_max_queue_depth < 1 ||
3625             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3626                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3627                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3628                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3629         }
3630
3631         if (skd_max_req_per_msg < 1 ||
3632             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3633                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3634                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3635                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3636         }
3637
3638         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3639                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3640                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3641                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3642         }
3643
3644         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3645                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3646                        skd_dbg_level, 0);
3647                 skd_dbg_level = 0;
3648         }
3649
3650         if (skd_isr_comp_limit < 0) {
3651                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3652                        skd_isr_comp_limit, 0);
3653                 skd_isr_comp_limit = 0;
3654         }
3655
3656         return pci_register_driver(&skd_driver);
3657 }
3658
3659 static void __exit skd_exit(void)
3660 {
3661         pci_unregister_driver(&skd_driver);
3662
3663         if (skd_major)
3664                 unregister_blkdev(skd_major, DRV_NAME);
3665 }
3666
3667 module_init(skd_init);
3668 module_exit(skd_exit);