Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static const struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636                                      struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638                                         u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640                                 u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646 /*
647  * Return true if nothing else is pending.
648  */
649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651         rbd_assert(pending->num_pending > 0);
652
653         if (*result && !pending->result)
654                 pending->result = *result;
655         if (--pending->num_pending)
656                 return false;
657
658         *result = pending->result;
659         return true;
660 }
661
662 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663 {
664         struct rbd_device *rbd_dev = disk->private_data;
665         bool removing = false;
666
667         spin_lock_irq(&rbd_dev->lock);
668         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669                 removing = true;
670         else
671                 rbd_dev->open_count++;
672         spin_unlock_irq(&rbd_dev->lock);
673         if (removing)
674                 return -ENOENT;
675
676         (void) get_device(&rbd_dev->dev);
677
678         return 0;
679 }
680
681 static void rbd_release(struct gendisk *disk)
682 {
683         struct rbd_device *rbd_dev = disk->private_data;
684         unsigned long open_count_before;
685
686         spin_lock_irq(&rbd_dev->lock);
687         open_count_before = rbd_dev->open_count--;
688         spin_unlock_irq(&rbd_dev->lock);
689         rbd_assert(open_count_before > 0);
690
691         put_device(&rbd_dev->dev);
692 }
693
694 static const struct block_device_operations rbd_bd_ops = {
695         .owner                  = THIS_MODULE,
696         .open                   = rbd_open,
697         .release                = rbd_release,
698 };
699
700 /*
701  * Initialize an rbd client instance.  Success or not, this function
702  * consumes ceph_opts.  Caller holds client_mutex.
703  */
704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706         struct rbd_client *rbdc;
707         int ret = -ENOMEM;
708
709         dout("%s:\n", __func__);
710         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711         if (!rbdc)
712                 goto out_opt;
713
714         kref_init(&rbdc->kref);
715         INIT_LIST_HEAD(&rbdc->node);
716
717         rbdc->client = ceph_create_client(ceph_opts, rbdc);
718         if (IS_ERR(rbdc->client))
719                 goto out_rbdc;
720         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722         ret = ceph_open_session(rbdc->client);
723         if (ret < 0)
724                 goto out_client;
725
726         spin_lock(&rbd_client_list_lock);
727         list_add_tail(&rbdc->node, &rbd_client_list);
728         spin_unlock(&rbd_client_list_lock);
729
730         dout("%s: rbdc %p\n", __func__, rbdc);
731
732         return rbdc;
733 out_client:
734         ceph_destroy_client(rbdc->client);
735 out_rbdc:
736         kfree(rbdc);
737 out_opt:
738         if (ceph_opts)
739                 ceph_destroy_options(ceph_opts);
740         dout("%s: error %d\n", __func__, ret);
741
742         return ERR_PTR(ret);
743 }
744
745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747         kref_get(&rbdc->kref);
748
749         return rbdc;
750 }
751
752 /*
753  * Find a ceph client with specific addr and configuration.  If
754  * found, bump its reference count.
755  */
756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758         struct rbd_client *rbdc = NULL, *iter;
759
760         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761                 return NULL;
762
763         spin_lock(&rbd_client_list_lock);
764         list_for_each_entry(iter, &rbd_client_list, node) {
765                 if (!ceph_compare_options(ceph_opts, iter->client)) {
766                         __rbd_get_client(iter);
767
768                         rbdc = iter;
769                         break;
770                 }
771         }
772         spin_unlock(&rbd_client_list_lock);
773
774         return rbdc;
775 }
776
777 /*
778  * (Per device) rbd map options
779  */
780 enum {
781         Opt_queue_depth,
782         Opt_alloc_size,
783         Opt_lock_timeout,
784         /* int args above */
785         Opt_pool_ns,
786         Opt_compression_hint,
787         /* string args above */
788         Opt_read_only,
789         Opt_read_write,
790         Opt_lock_on_read,
791         Opt_exclusive,
792         Opt_notrim,
793 };
794
795 enum {
796         Opt_compression_hint_none,
797         Opt_compression_hint_compressible,
798         Opt_compression_hint_incompressible,
799 };
800
801 static const struct constant_table rbd_param_compression_hint[] = {
802         {"none",                Opt_compression_hint_none},
803         {"compressible",        Opt_compression_hint_compressible},
804         {"incompressible",      Opt_compression_hint_incompressible},
805         {}
806 };
807
808 static const struct fs_parameter_spec rbd_parameters[] = {
809         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
810         fsparam_enum    ("compression_hint",            Opt_compression_hint,
811                          rbd_param_compression_hint),
812         fsparam_flag    ("exclusive",                   Opt_exclusive),
813         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
814         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
815         fsparam_flag    ("notrim",                      Opt_notrim),
816         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
817         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
818         fsparam_flag    ("read_only",                   Opt_read_only),
819         fsparam_flag    ("read_write",                  Opt_read_write),
820         fsparam_flag    ("ro",                          Opt_read_only),
821         fsparam_flag    ("rw",                          Opt_read_write),
822         {}
823 };
824
825 struct rbd_options {
826         int     queue_depth;
827         int     alloc_size;
828         unsigned long   lock_timeout;
829         bool    read_only;
830         bool    lock_on_read;
831         bool    exclusive;
832         bool    trim;
833
834         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835 };
836
837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
839 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
840 #define RBD_READ_ONLY_DEFAULT   false
841 #define RBD_LOCK_ON_READ_DEFAULT false
842 #define RBD_EXCLUSIVE_DEFAULT   false
843 #define RBD_TRIM_DEFAULT        true
844
845 struct rbd_parse_opts_ctx {
846         struct rbd_spec         *spec;
847         struct ceph_options     *copts;
848         struct rbd_options      *opts;
849 };
850
851 static char* obj_op_name(enum obj_operation_type op_type)
852 {
853         switch (op_type) {
854         case OBJ_OP_READ:
855                 return "read";
856         case OBJ_OP_WRITE:
857                 return "write";
858         case OBJ_OP_DISCARD:
859                 return "discard";
860         case OBJ_OP_ZEROOUT:
861                 return "zeroout";
862         default:
863                 return "???";
864         }
865 }
866
867 /*
868  * Destroy ceph client
869  *
870  * Caller must hold rbd_client_list_lock.
871  */
872 static void rbd_client_release(struct kref *kref)
873 {
874         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876         dout("%s: rbdc %p\n", __func__, rbdc);
877         spin_lock(&rbd_client_list_lock);
878         list_del(&rbdc->node);
879         spin_unlock(&rbd_client_list_lock);
880
881         ceph_destroy_client(rbdc->client);
882         kfree(rbdc);
883 }
884
885 /*
886  * Drop reference to ceph client node. If it's not referenced anymore, release
887  * it.
888  */
889 static void rbd_put_client(struct rbd_client *rbdc)
890 {
891         if (rbdc)
892                 kref_put(&rbdc->kref, rbd_client_release);
893 }
894
895 /*
896  * Get a ceph client with specific addr and configuration, if one does
897  * not exist create it.  Either way, ceph_opts is consumed by this
898  * function.
899  */
900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901 {
902         struct rbd_client *rbdc;
903         int ret;
904
905         mutex_lock(&client_mutex);
906         rbdc = rbd_client_find(ceph_opts);
907         if (rbdc) {
908                 ceph_destroy_options(ceph_opts);
909
910                 /*
911                  * Using an existing client.  Make sure ->pg_pools is up to
912                  * date before we look up the pool id in do_rbd_add().
913                  */
914                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
915                                         rbdc->client->options->mount_timeout);
916                 if (ret) {
917                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918                         rbd_put_client(rbdc);
919                         rbdc = ERR_PTR(ret);
920                 }
921         } else {
922                 rbdc = rbd_client_create(ceph_opts);
923         }
924         mutex_unlock(&client_mutex);
925
926         return rbdc;
927 }
928
929 static bool rbd_image_format_valid(u32 image_format)
930 {
931         return image_format == 1 || image_format == 2;
932 }
933
934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935 {
936         size_t size;
937         u32 snap_count;
938
939         /* The header has to start with the magic rbd header text */
940         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941                 return false;
942
943         /* The bio layer requires at least sector-sized I/O */
944
945         if (ondisk->options.order < SECTOR_SHIFT)
946                 return false;
947
948         /* If we use u64 in a few spots we may be able to loosen this */
949
950         if (ondisk->options.order > 8 * sizeof (int) - 1)
951                 return false;
952
953         /*
954          * The size of a snapshot header has to fit in a size_t, and
955          * that limits the number of snapshots.
956          */
957         snap_count = le32_to_cpu(ondisk->snap_count);
958         size = SIZE_MAX - sizeof (struct ceph_snap_context);
959         if (snap_count > size / sizeof (__le64))
960                 return false;
961
962         /*
963          * Not only that, but the size of the entire the snapshot
964          * header must also be representable in a size_t.
965          */
966         size -= snap_count * sizeof (__le64);
967         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968                 return false;
969
970         return true;
971 }
972
973 /*
974  * returns the size of an object in the image
975  */
976 static u32 rbd_obj_bytes(struct rbd_image_header *header)
977 {
978         return 1U << header->obj_order;
979 }
980
981 static void rbd_init_layout(struct rbd_device *rbd_dev)
982 {
983         if (rbd_dev->header.stripe_unit == 0 ||
984             rbd_dev->header.stripe_count == 0) {
985                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986                 rbd_dev->header.stripe_count = 1;
987         }
988
989         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995 }
996
997 static void rbd_image_header_cleanup(struct rbd_image_header *header)
998 {
999         kfree(header->object_prefix);
1000         ceph_put_snap_context(header->snapc);
1001         kfree(header->snap_sizes);
1002         kfree(header->snap_names);
1003
1004         memset(header, 0, sizeof(*header));
1005 }
1006
1007 /*
1008  * Fill an rbd image header with information from the given format 1
1009  * on-disk header.
1010  */
1011 static int rbd_header_from_disk(struct rbd_image_header *header,
1012                                 struct rbd_image_header_ondisk *ondisk,
1013                                 bool first_time)
1014 {
1015         struct ceph_snap_context *snapc;
1016         char *object_prefix = NULL;
1017         char *snap_names = NULL;
1018         u64 *snap_sizes = NULL;
1019         u32 snap_count;
1020         int ret = -ENOMEM;
1021         u32 i;
1022
1023         /* Allocate this now to avoid having to handle failure below */
1024
1025         if (first_time) {
1026                 object_prefix = kstrndup(ondisk->object_prefix,
1027                                          sizeof(ondisk->object_prefix),
1028                                          GFP_KERNEL);
1029                 if (!object_prefix)
1030                         return -ENOMEM;
1031         }
1032
1033         /* Allocate the snapshot context and fill it in */
1034
1035         snap_count = le32_to_cpu(ondisk->snap_count);
1036         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037         if (!snapc)
1038                 goto out_err;
1039         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040         if (snap_count) {
1041                 struct rbd_image_snap_ondisk *snaps;
1042                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044                 /* We'll keep a copy of the snapshot names... */
1045
1046                 if (snap_names_len > (u64)SIZE_MAX)
1047                         goto out_2big;
1048                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049                 if (!snap_names)
1050                         goto out_err;
1051
1052                 /* ...as well as the array of their sizes. */
1053                 snap_sizes = kmalloc_array(snap_count,
1054                                            sizeof(*header->snap_sizes),
1055                                            GFP_KERNEL);
1056                 if (!snap_sizes)
1057                         goto out_err;
1058
1059                 /*
1060                  * Copy the names, and fill in each snapshot's id
1061                  * and size.
1062                  *
1063                  * Note that rbd_dev_v1_header_info() guarantees the
1064                  * ondisk buffer we're working with has
1065                  * snap_names_len bytes beyond the end of the
1066                  * snapshot id array, this memcpy() is safe.
1067                  */
1068                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069                 snaps = ondisk->snaps;
1070                 for (i = 0; i < snap_count; i++) {
1071                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073                 }
1074         }
1075
1076         /* We won't fail any more, fill in the header */
1077
1078         if (first_time) {
1079                 header->object_prefix = object_prefix;
1080                 header->obj_order = ondisk->options.order;
1081         }
1082
1083         /* The remaining fields always get updated (when we refresh) */
1084
1085         header->image_size = le64_to_cpu(ondisk->image_size);
1086         header->snapc = snapc;
1087         header->snap_names = snap_names;
1088         header->snap_sizes = snap_sizes;
1089
1090         return 0;
1091 out_2big:
1092         ret = -EIO;
1093 out_err:
1094         kfree(snap_sizes);
1095         kfree(snap_names);
1096         ceph_put_snap_context(snapc);
1097         kfree(object_prefix);
1098
1099         return ret;
1100 }
1101
1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103 {
1104         const char *snap_name;
1105
1106         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108         /* Skip over names until we find the one we are looking for */
1109
1110         snap_name = rbd_dev->header.snap_names;
1111         while (which--)
1112                 snap_name += strlen(snap_name) + 1;
1113
1114         return kstrdup(snap_name, GFP_KERNEL);
1115 }
1116
1117 /*
1118  * Snapshot id comparison function for use with qsort()/bsearch().
1119  * Note that result is for snapshots in *descending* order.
1120  */
1121 static int snapid_compare_reverse(const void *s1, const void *s2)
1122 {
1123         u64 snap_id1 = *(u64 *)s1;
1124         u64 snap_id2 = *(u64 *)s2;
1125
1126         if (snap_id1 < snap_id2)
1127                 return 1;
1128         return snap_id1 == snap_id2 ? 0 : -1;
1129 }
1130
1131 /*
1132  * Search a snapshot context to see if the given snapshot id is
1133  * present.
1134  *
1135  * Returns the position of the snapshot id in the array if it's found,
1136  * or BAD_SNAP_INDEX otherwise.
1137  *
1138  * Note: The snapshot array is in kept sorted (by the osd) in
1139  * reverse order, highest snapshot id first.
1140  */
1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142 {
1143         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144         u64 *found;
1145
1146         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147                                 sizeof (snap_id), snapid_compare_reverse);
1148
1149         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 }
1151
1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153                                         u64 snap_id)
1154 {
1155         u32 which;
1156         const char *snap_name;
1157
1158         which = rbd_dev_snap_index(rbd_dev, snap_id);
1159         if (which == BAD_SNAP_INDEX)
1160                 return ERR_PTR(-ENOENT);
1161
1162         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 }
1165
1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167 {
1168         if (snap_id == CEPH_NOSNAP)
1169                 return RBD_SNAP_HEAD_NAME;
1170
1171         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172         if (rbd_dev->image_format == 1)
1173                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 }
1177
1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179                                 u64 *snap_size)
1180 {
1181         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182         if (snap_id == CEPH_NOSNAP) {
1183                 *snap_size = rbd_dev->header.image_size;
1184         } else if (rbd_dev->image_format == 1) {
1185                 u32 which;
1186
1187                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1188                 if (which == BAD_SNAP_INDEX)
1189                         return -ENOENT;
1190
1191                 *snap_size = rbd_dev->header.snap_sizes[which];
1192         } else {
1193                 u64 size = 0;
1194                 int ret;
1195
1196                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197                 if (ret)
1198                         return ret;
1199
1200                 *snap_size = size;
1201         }
1202         return 0;
1203 }
1204
1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206 {
1207         u64 snap_id = rbd_dev->spec->snap_id;
1208         u64 size = 0;
1209         int ret;
1210
1211         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212         if (ret)
1213                 return ret;
1214
1215         rbd_dev->mapping.size = size;
1216         return 0;
1217 }
1218
1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220 {
1221         rbd_dev->mapping.size = 0;
1222 }
1223
1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225 {
1226         struct ceph_bio_iter it = *bio_pos;
1227
1228         ceph_bio_iter_advance(&it, off);
1229         ceph_bio_iter_advance_step(&it, bytes, ({
1230                 memzero_bvec(&bv);
1231         }));
1232 }
1233
1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235 {
1236         struct ceph_bvec_iter it = *bvec_pos;
1237
1238         ceph_bvec_iter_advance(&it, off);
1239         ceph_bvec_iter_advance_step(&it, bytes, ({
1240                 memzero_bvec(&bv);
1241         }));
1242 }
1243
1244 /*
1245  * Zero a range in @obj_req data buffer defined by a bio (list) or
1246  * (private) bio_vec array.
1247  *
1248  * @off is relative to the start of the data buffer.
1249  */
1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251                                u32 bytes)
1252 {
1253         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255         switch (obj_req->img_request->data_type) {
1256         case OBJ_REQUEST_BIO:
1257                 zero_bios(&obj_req->bio_pos, off, bytes);
1258                 break;
1259         case OBJ_REQUEST_BVECS:
1260         case OBJ_REQUEST_OWN_BVECS:
1261                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262                 break;
1263         default:
1264                 BUG();
1265         }
1266 }
1267
1268 static void rbd_obj_request_destroy(struct kref *kref);
1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270 {
1271         rbd_assert(obj_request != NULL);
1272         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273                 kref_read(&obj_request->kref));
1274         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 }
1276
1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278                                         struct rbd_obj_request *obj_request)
1279 {
1280         rbd_assert(obj_request->img_request == NULL);
1281
1282         /* Image request now owns object's original reference */
1283         obj_request->img_request = img_request;
1284         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 }
1286
1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288                                         struct rbd_obj_request *obj_request)
1289 {
1290         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291         list_del(&obj_request->ex.oe_item);
1292         rbd_assert(obj_request->img_request == img_request);
1293         rbd_obj_request_put(obj_request);
1294 }
1295
1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297 {
1298         struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302              obj_req->ex.oe_off, obj_req->ex.oe_len);
1303         ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 }
1305
1306 /*
1307  * The default/initial value for all image request flags is 0.  Each
1308  * is conditionally set to 1 at image request initialization time
1309  * and currently never change thereafter.
1310  */
1311 static void img_request_layered_set(struct rbd_img_request *img_request)
1312 {
1313         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 }
1315
1316 static bool img_request_layered_test(struct rbd_img_request *img_request)
1317 {
1318         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 }
1320
1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322 {
1323         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325         return !obj_req->ex.oe_off &&
1326                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 }
1328
1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330 {
1331         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334                                         rbd_dev->layout.object_size;
1335 }
1336
1337 /*
1338  * Must be called after rbd_obj_calc_img_extents().
1339  */
1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341 {
1342         rbd_assert(obj_req->img_request->snapc);
1343
1344         if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345                 dout("%s %p objno %llu discard\n", __func__, obj_req,
1346                      obj_req->ex.oe_objno);
1347                 return;
1348         }
1349
1350         if (!obj_req->num_img_extents) {
1351                 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352                      obj_req->ex.oe_objno);
1353                 return;
1354         }
1355
1356         if (rbd_obj_is_entire(obj_req) &&
1357             !obj_req->img_request->snapc->num_snaps) {
1358                 dout("%s %p objno %llu entire\n", __func__, obj_req,
1359                      obj_req->ex.oe_objno);
1360                 return;
1361         }
1362
1363         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364 }
1365
1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367 {
1368         return ceph_file_extents_bytes(obj_req->img_extents,
1369                                        obj_req->num_img_extents);
1370 }
1371
1372 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373 {
1374         switch (img_req->op_type) {
1375         case OBJ_OP_READ:
1376                 return false;
1377         case OBJ_OP_WRITE:
1378         case OBJ_OP_DISCARD:
1379         case OBJ_OP_ZEROOUT:
1380                 return true;
1381         default:
1382                 BUG();
1383         }
1384 }
1385
1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387 {
1388         struct rbd_obj_request *obj_req = osd_req->r_priv;
1389         int result;
1390
1391         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392              osd_req->r_result, obj_req);
1393
1394         /*
1395          * Writes aren't allowed to return a data payload.  In some
1396          * guarded write cases (e.g. stat + zero on an empty object)
1397          * a stat response makes it through, but we don't care.
1398          */
1399         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400                 result = 0;
1401         else
1402                 result = osd_req->r_result;
1403
1404         rbd_obj_handle_request(obj_req, result);
1405 }
1406
1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408 {
1409         struct rbd_obj_request *obj_request = osd_req->r_priv;
1410         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414         osd_req->r_snapid = obj_request->img_request->snap_id;
1415 }
1416
1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418 {
1419         struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422         ktime_get_real_ts64(&osd_req->r_mtime);
1423         osd_req->r_data_offset = obj_request->ex.oe_off;
1424 }
1425
1426 static struct ceph_osd_request *
1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428                           struct ceph_snap_context *snapc, int num_ops)
1429 {
1430         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432         struct ceph_osd_request *req;
1433         const char *name_format = rbd_dev->image_format == 1 ?
1434                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435         int ret;
1436
1437         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438         if (!req)
1439                 return ERR_PTR(-ENOMEM);
1440
1441         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442         req->r_callback = rbd_osd_req_callback;
1443         req->r_priv = obj_req;
1444
1445         /*
1446          * Data objects may be stored in a separate pool, but always in
1447          * the same namespace in that pool as the header in its pool.
1448          */
1449         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453                                rbd_dev->header.object_prefix,
1454                                obj_req->ex.oe_objno);
1455         if (ret)
1456                 return ERR_PTR(ret);
1457
1458         return req;
1459 }
1460
1461 static struct ceph_osd_request *
1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463 {
1464         rbd_assert(obj_req->img_request->snapc);
1465         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466                                          num_ops);
1467 }
1468
1469 static struct rbd_obj_request *rbd_obj_request_create(void)
1470 {
1471         struct rbd_obj_request *obj_request;
1472
1473         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474         if (!obj_request)
1475                 return NULL;
1476
1477         ceph_object_extent_init(&obj_request->ex);
1478         INIT_LIST_HEAD(&obj_request->osd_reqs);
1479         mutex_init(&obj_request->state_mutex);
1480         kref_init(&obj_request->kref);
1481
1482         dout("%s %p\n", __func__, obj_request);
1483         return obj_request;
1484 }
1485
1486 static void rbd_obj_request_destroy(struct kref *kref)
1487 {
1488         struct rbd_obj_request *obj_request;
1489         struct ceph_osd_request *osd_req;
1490         u32 i;
1491
1492         obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494         dout("%s: obj %p\n", __func__, obj_request);
1495
1496         while (!list_empty(&obj_request->osd_reqs)) {
1497                 osd_req = list_first_entry(&obj_request->osd_reqs,
1498                                     struct ceph_osd_request, r_private_item);
1499                 list_del_init(&osd_req->r_private_item);
1500                 ceph_osdc_put_request(osd_req);
1501         }
1502
1503         switch (obj_request->img_request->data_type) {
1504         case OBJ_REQUEST_NODATA:
1505         case OBJ_REQUEST_BIO:
1506         case OBJ_REQUEST_BVECS:
1507                 break;          /* Nothing to do */
1508         case OBJ_REQUEST_OWN_BVECS:
1509                 kfree(obj_request->bvec_pos.bvecs);
1510                 break;
1511         default:
1512                 BUG();
1513         }
1514
1515         kfree(obj_request->img_extents);
1516         if (obj_request->copyup_bvecs) {
1517                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518                         if (obj_request->copyup_bvecs[i].bv_page)
1519                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1520                 }
1521                 kfree(obj_request->copyup_bvecs);
1522         }
1523
1524         kmem_cache_free(rbd_obj_request_cache, obj_request);
1525 }
1526
1527 /* It's OK to call this for a device with no parent */
1528
1529 static void rbd_spec_put(struct rbd_spec *spec);
1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531 {
1532         rbd_dev_remove_parent(rbd_dev);
1533         rbd_spec_put(rbd_dev->parent_spec);
1534         rbd_dev->parent_spec = NULL;
1535         rbd_dev->parent_overlap = 0;
1536 }
1537
1538 /*
1539  * Parent image reference counting is used to determine when an
1540  * image's parent fields can be safely torn down--after there are no
1541  * more in-flight requests to the parent image.  When the last
1542  * reference is dropped, cleaning them up is safe.
1543  */
1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545 {
1546         int counter;
1547
1548         if (!rbd_dev->parent_spec)
1549                 return;
1550
1551         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552         if (counter > 0)
1553                 return;
1554
1555         /* Last reference; clean up parent data structures */
1556
1557         if (!counter)
1558                 rbd_dev_unparent(rbd_dev);
1559         else
1560                 rbd_warn(rbd_dev, "parent reference underflow");
1561 }
1562
1563 /*
1564  * If an image has a non-zero parent overlap, get a reference to its
1565  * parent.
1566  *
1567  * Returns true if the rbd device has a parent with a non-zero
1568  * overlap and a reference for it was successfully taken, or
1569  * false otherwise.
1570  */
1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572 {
1573         int counter = 0;
1574
1575         if (!rbd_dev->parent_spec)
1576                 return false;
1577
1578         if (rbd_dev->parent_overlap)
1579                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580
1581         if (counter < 0)
1582                 rbd_warn(rbd_dev, "parent reference overflow");
1583
1584         return counter > 0;
1585 }
1586
1587 static void rbd_img_request_init(struct rbd_img_request *img_request,
1588                                  struct rbd_device *rbd_dev,
1589                                  enum obj_operation_type op_type)
1590 {
1591         memset(img_request, 0, sizeof(*img_request));
1592
1593         img_request->rbd_dev = rbd_dev;
1594         img_request->op_type = op_type;
1595
1596         INIT_LIST_HEAD(&img_request->lock_item);
1597         INIT_LIST_HEAD(&img_request->object_extents);
1598         mutex_init(&img_request->state_mutex);
1599 }
1600
1601 /*
1602  * Only snap_id is captured here, for reads.  For writes, snapshot
1603  * context is captured in rbd_img_object_requests() after exclusive
1604  * lock is ensured to be held.
1605  */
1606 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607 {
1608         struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610         lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612         if (!rbd_img_is_write(img_req))
1613                 img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615         if (rbd_dev_parent_get(rbd_dev))
1616                 img_request_layered_set(img_req);
1617 }
1618
1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620 {
1621         struct rbd_obj_request *obj_request;
1622         struct rbd_obj_request *next_obj_request;
1623
1624         dout("%s: img %p\n", __func__, img_request);
1625
1626         WARN_ON(!list_empty(&img_request->lock_item));
1627         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628                 rbd_img_obj_request_del(img_request, obj_request);
1629
1630         if (img_request_layered_test(img_request))
1631                 rbd_dev_parent_put(img_request->rbd_dev);
1632
1633         if (rbd_img_is_write(img_request))
1634                 ceph_put_snap_context(img_request->snapc);
1635
1636         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637                 kmem_cache_free(rbd_img_request_cache, img_request);
1638 }
1639
1640 #define BITS_PER_OBJ    2
1641 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1642 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1643
1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645                                    u64 *index, u8 *shift)
1646 {
1647         u32 off;
1648
1649         rbd_assert(objno < rbd_dev->object_map_size);
1650         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652 }
1653
1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655 {
1656         u64 index;
1657         u8 shift;
1658
1659         lockdep_assert_held(&rbd_dev->object_map_lock);
1660         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662 }
1663
1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665 {
1666         u64 index;
1667         u8 shift;
1668         u8 *p;
1669
1670         lockdep_assert_held(&rbd_dev->object_map_lock);
1671         rbd_assert(!(val & ~OBJ_MASK));
1672
1673         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674         p = &rbd_dev->object_map[index];
1675         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676 }
1677
1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679 {
1680         u8 state;
1681
1682         spin_lock(&rbd_dev->object_map_lock);
1683         state = __rbd_object_map_get(rbd_dev, objno);
1684         spin_unlock(&rbd_dev->object_map_lock);
1685         return state;
1686 }
1687
1688 static bool use_object_map(struct rbd_device *rbd_dev)
1689 {
1690         /*
1691          * An image mapped read-only can't use the object map -- it isn't
1692          * loaded because the header lock isn't acquired.  Someone else can
1693          * write to the image and update the object map behind our back.
1694          *
1695          * A snapshot can't be written to, so using the object map is always
1696          * safe.
1697          */
1698         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699                 return false;
1700
1701         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703 }
1704
1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706 {
1707         u8 state;
1708
1709         /* fall back to default logic if object map is disabled or invalid */
1710         if (!use_object_map(rbd_dev))
1711                 return true;
1712
1713         state = rbd_object_map_get(rbd_dev, objno);
1714         return state != OBJECT_NONEXISTENT;
1715 }
1716
1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718                                 struct ceph_object_id *oid)
1719 {
1720         if (snap_id == CEPH_NOSNAP)
1721                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722                                 rbd_dev->spec->image_id);
1723         else
1724                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725                                 rbd_dev->spec->image_id, snap_id);
1726 }
1727
1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729 {
1730         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731         CEPH_DEFINE_OID_ONSTACK(oid);
1732         u8 lock_type;
1733         char *lock_tag;
1734         struct ceph_locker *lockers;
1735         u32 num_lockers;
1736         bool broke_lock = false;
1737         int ret;
1738
1739         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740
1741 again:
1742         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744         if (ret != -EBUSY || broke_lock) {
1745                 if (ret == -EEXIST)
1746                         ret = 0; /* already locked by myself */
1747                 if (ret)
1748                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749                 return ret;
1750         }
1751
1752         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1754                                  &lockers, &num_lockers);
1755         if (ret) {
1756                 if (ret == -ENOENT)
1757                         goto again;
1758
1759                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760                 return ret;
1761         }
1762
1763         kfree(lock_tag);
1764         if (num_lockers == 0)
1765                 goto again;
1766
1767         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768                  ENTITY_NAME(lockers[0].id.name));
1769
1770         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1772                                   &lockers[0].id.name);
1773         ceph_free_lockers(lockers, num_lockers);
1774         if (ret) {
1775                 if (ret == -ENOENT)
1776                         goto again;
1777
1778                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779                 return ret;
1780         }
1781
1782         broke_lock = true;
1783         goto again;
1784 }
1785
1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787 {
1788         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789         CEPH_DEFINE_OID_ONSTACK(oid);
1790         int ret;
1791
1792         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793
1794         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795                               "");
1796         if (ret && ret != -ENOENT)
1797                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798 }
1799
1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801 {
1802         u8 struct_v;
1803         u32 struct_len;
1804         u32 header_len;
1805         void *header_end;
1806         int ret;
1807
1808         ceph_decode_32_safe(p, end, header_len, e_inval);
1809         header_end = *p + header_len;
1810
1811         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812                                   &struct_len);
1813         if (ret)
1814                 return ret;
1815
1816         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818         *p = header_end;
1819         return 0;
1820
1821 e_inval:
1822         return -EINVAL;
1823 }
1824
1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826 {
1827         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828         CEPH_DEFINE_OID_ONSTACK(oid);
1829         struct page **pages;
1830         void *p, *end;
1831         size_t reply_len;
1832         u64 num_objects;
1833         u64 object_map_bytes;
1834         u64 object_map_size;
1835         int num_pages;
1836         int ret;
1837
1838         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841                                            rbd_dev->mapping.size);
1842         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843                                             BITS_PER_BYTE);
1844         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846         if (IS_ERR(pages))
1847                 return PTR_ERR(pages);
1848
1849         reply_len = num_pages * PAGE_SIZE;
1850         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853                              NULL, 0, pages, &reply_len);
1854         if (ret)
1855                 goto out;
1856
1857         p = page_address(pages[0]);
1858         end = p + min(reply_len, (size_t)PAGE_SIZE);
1859         ret = decode_object_map_header(&p, end, &object_map_size);
1860         if (ret)
1861                 goto out;
1862
1863         if (object_map_size != num_objects) {
1864                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865                          object_map_size, num_objects);
1866                 ret = -EINVAL;
1867                 goto out;
1868         }
1869
1870         if (offset_in_page(p) + object_map_bytes > reply_len) {
1871                 ret = -EINVAL;
1872                 goto out;
1873         }
1874
1875         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876         if (!rbd_dev->object_map) {
1877                 ret = -ENOMEM;
1878                 goto out;
1879         }
1880
1881         rbd_dev->object_map_size = object_map_size;
1882         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883                                    offset_in_page(p), object_map_bytes);
1884
1885 out:
1886         ceph_release_page_vector(pages, num_pages);
1887         return ret;
1888 }
1889
1890 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891 {
1892         kvfree(rbd_dev->object_map);
1893         rbd_dev->object_map = NULL;
1894         rbd_dev->object_map_size = 0;
1895 }
1896
1897 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898 {
1899         int ret;
1900
1901         ret = __rbd_object_map_load(rbd_dev);
1902         if (ret)
1903                 return ret;
1904
1905         ret = rbd_dev_v2_get_flags(rbd_dev);
1906         if (ret) {
1907                 rbd_object_map_free(rbd_dev);
1908                 return ret;
1909         }
1910
1911         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912                 rbd_warn(rbd_dev, "object map is invalid");
1913
1914         return 0;
1915 }
1916
1917 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918 {
1919         int ret;
1920
1921         ret = rbd_object_map_lock(rbd_dev);
1922         if (ret)
1923                 return ret;
1924
1925         ret = rbd_object_map_load(rbd_dev);
1926         if (ret) {
1927                 rbd_object_map_unlock(rbd_dev);
1928                 return ret;
1929         }
1930
1931         return 0;
1932 }
1933
1934 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935 {
1936         rbd_object_map_free(rbd_dev);
1937         rbd_object_map_unlock(rbd_dev);
1938 }
1939
1940 /*
1941  * This function needs snap_id (or more precisely just something to
1942  * distinguish between HEAD and snapshot object maps), new_state and
1943  * current_state that were passed to rbd_object_map_update().
1944  *
1945  * To avoid allocating and stashing a context we piggyback on the OSD
1946  * request.  A HEAD update has two ops (assert_locked).  For new_state
1947  * and current_state we decode our own object_map_update op, encoded in
1948  * rbd_cls_object_map_update().
1949  */
1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951                                         struct ceph_osd_request *osd_req)
1952 {
1953         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954         struct ceph_osd_data *osd_data;
1955         u64 objno;
1956         u8 state, new_state, current_state;
1957         bool has_current_state;
1958         void *p;
1959
1960         if (osd_req->r_result)
1961                 return osd_req->r_result;
1962
1963         /*
1964          * Nothing to do for a snapshot object map.
1965          */
1966         if (osd_req->r_num_ops == 1)
1967                 return 0;
1968
1969         /*
1970          * Update in-memory HEAD object map.
1971          */
1972         rbd_assert(osd_req->r_num_ops == 2);
1973         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976         p = page_address(osd_data->pages[0]);
1977         objno = ceph_decode_64(&p);
1978         rbd_assert(objno == obj_req->ex.oe_objno);
1979         rbd_assert(ceph_decode_64(&p) == objno + 1);
1980         new_state = ceph_decode_8(&p);
1981         has_current_state = ceph_decode_8(&p);
1982         if (has_current_state)
1983                 current_state = ceph_decode_8(&p);
1984
1985         spin_lock(&rbd_dev->object_map_lock);
1986         state = __rbd_object_map_get(rbd_dev, objno);
1987         if (!has_current_state || current_state == state ||
1988             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989                 __rbd_object_map_set(rbd_dev, objno, new_state);
1990         spin_unlock(&rbd_dev->object_map_lock);
1991
1992         return 0;
1993 }
1994
1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996 {
1997         struct rbd_obj_request *obj_req = osd_req->r_priv;
1998         int result;
1999
2000         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001              osd_req->r_result, obj_req);
2002
2003         result = rbd_object_map_update_finish(obj_req, osd_req);
2004         rbd_obj_handle_request(obj_req, result);
2005 }
2006
2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008 {
2009         u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011         if (state == new_state ||
2012             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014                 return false;
2015
2016         return true;
2017 }
2018
2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020                                      int which, u64 objno, u8 new_state,
2021                                      const u8 *current_state)
2022 {
2023         struct page **pages;
2024         void *p, *start;
2025         int ret;
2026
2027         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028         if (ret)
2029                 return ret;
2030
2031         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032         if (IS_ERR(pages))
2033                 return PTR_ERR(pages);
2034
2035         p = start = page_address(pages[0]);
2036         ceph_encode_64(&p, objno);
2037         ceph_encode_64(&p, objno + 1);
2038         ceph_encode_8(&p, new_state);
2039         if (current_state) {
2040                 ceph_encode_8(&p, 1);
2041                 ceph_encode_8(&p, *current_state);
2042         } else {
2043                 ceph_encode_8(&p, 0);
2044         }
2045
2046         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047                                           false, true);
2048         return 0;
2049 }
2050
2051 /*
2052  * Return:
2053  *   0 - object map update sent
2054  *   1 - object map update isn't needed
2055  *  <0 - error
2056  */
2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058                                  u8 new_state, const u8 *current_state)
2059 {
2060         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062         struct ceph_osd_request *req;
2063         int num_ops = 1;
2064         int which = 0;
2065         int ret;
2066
2067         if (snap_id == CEPH_NOSNAP) {
2068                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069                         return 1;
2070
2071                 num_ops++; /* assert_locked */
2072         }
2073
2074         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075         if (!req)
2076                 return -ENOMEM;
2077
2078         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079         req->r_callback = rbd_object_map_callback;
2080         req->r_priv = obj_req;
2081
2082         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084         req->r_flags = CEPH_OSD_FLAG_WRITE;
2085         ktime_get_real_ts64(&req->r_mtime);
2086
2087         if (snap_id == CEPH_NOSNAP) {
2088                 /*
2089                  * Protect against possible race conditions during lock
2090                  * ownership transitions.
2091                  */
2092                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094                 if (ret)
2095                         return ret;
2096         }
2097
2098         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099                                         new_state, current_state);
2100         if (ret)
2101                 return ret;
2102
2103         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104         if (ret)
2105                 return ret;
2106
2107         ceph_osdc_start_request(osdc, req);
2108         return 0;
2109 }
2110
2111 static void prune_extents(struct ceph_file_extent *img_extents,
2112                           u32 *num_img_extents, u64 overlap)
2113 {
2114         u32 cnt = *num_img_extents;
2115
2116         /* drop extents completely beyond the overlap */
2117         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118                 cnt--;
2119
2120         if (cnt) {
2121                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123                 /* trim final overlapping extent */
2124                 if (ex->fe_off + ex->fe_len > overlap)
2125                         ex->fe_len = overlap - ex->fe_off;
2126         }
2127
2128         *num_img_extents = cnt;
2129 }
2130
2131 /*
2132  * Determine the byte range(s) covered by either just the object extent
2133  * or the entire object in the parent image.
2134  */
2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136                                     bool entire)
2137 {
2138         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139         int ret;
2140
2141         if (!rbd_dev->parent_overlap)
2142                 return 0;
2143
2144         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145                                   entire ? 0 : obj_req->ex.oe_off,
2146                                   entire ? rbd_dev->layout.object_size :
2147                                                         obj_req->ex.oe_len,
2148                                   &obj_req->img_extents,
2149                                   &obj_req->num_img_extents);
2150         if (ret)
2151                 return ret;
2152
2153         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154                       rbd_dev->parent_overlap);
2155         return 0;
2156 }
2157
2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159 {
2160         struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162         switch (obj_req->img_request->data_type) {
2163         case OBJ_REQUEST_BIO:
2164                 osd_req_op_extent_osd_data_bio(osd_req, which,
2165                                                &obj_req->bio_pos,
2166                                                obj_req->ex.oe_len);
2167                 break;
2168         case OBJ_REQUEST_BVECS:
2169         case OBJ_REQUEST_OWN_BVECS:
2170                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171                                                         obj_req->ex.oe_len);
2172                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174                                                     &obj_req->bvec_pos);
2175                 break;
2176         default:
2177                 BUG();
2178         }
2179 }
2180
2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182 {
2183         struct page **pages;
2184
2185         /*
2186          * The response data for a STAT call consists of:
2187          *     le64 length;
2188          *     struct {
2189          *         le32 tv_sec;
2190          *         le32 tv_nsec;
2191          *     } mtime;
2192          */
2193         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194         if (IS_ERR(pages))
2195                 return PTR_ERR(pages);
2196
2197         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199                                      8 + sizeof(struct ceph_timespec),
2200                                      0, false, true);
2201         return 0;
2202 }
2203
2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205                                 u32 bytes)
2206 {
2207         struct rbd_obj_request *obj_req = osd_req->r_priv;
2208         int ret;
2209
2210         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211         if (ret)
2212                 return ret;
2213
2214         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215                                           obj_req->copyup_bvec_count, bytes);
2216         return 0;
2217 }
2218
2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220 {
2221         obj_req->read_state = RBD_OBJ_READ_START;
2222         return 0;
2223 }
2224
2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226                                       int which)
2227 {
2228         struct rbd_obj_request *obj_req = osd_req->r_priv;
2229         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230         u16 opcode;
2231
2232         if (!use_object_map(rbd_dev) ||
2233             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234                 osd_req_op_alloc_hint_init(osd_req, which++,
2235                                            rbd_dev->layout.object_size,
2236                                            rbd_dev->layout.object_size,
2237                                            rbd_dev->opts->alloc_hint_flags);
2238         }
2239
2240         if (rbd_obj_is_entire(obj_req))
2241                 opcode = CEPH_OSD_OP_WRITEFULL;
2242         else
2243                 opcode = CEPH_OSD_OP_WRITE;
2244
2245         osd_req_op_extent_init(osd_req, which, opcode,
2246                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247         rbd_osd_setup_data(osd_req, which);
2248 }
2249
2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251 {
2252         int ret;
2253
2254         /* reverse map the entire object onto the parent */
2255         ret = rbd_obj_calc_img_extents(obj_req, true);
2256         if (ret)
2257                 return ret;
2258
2259         obj_req->write_state = RBD_OBJ_WRITE_START;
2260         return 0;
2261 }
2262
2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264 {
2265         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266                                           CEPH_OSD_OP_ZERO;
2267 }
2268
2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270                                         int which)
2271 {
2272         struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277         } else {
2278                 osd_req_op_extent_init(osd_req, which,
2279                                        truncate_or_zero_opcode(obj_req),
2280                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2281                                        0, 0);
2282         }
2283 }
2284
2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286 {
2287         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288         u64 off, next_off;
2289         int ret;
2290
2291         /*
2292          * Align the range to alloc_size boundary and punt on discards
2293          * that are too small to free up any space.
2294          *
2295          * alloc_size == object_size && is_tail() is a special case for
2296          * filestore with filestore_punch_hole = false, needed to allow
2297          * truncate (in addition to delete).
2298          */
2299         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300             !rbd_obj_is_tail(obj_req)) {
2301                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303                                       rbd_dev->opts->alloc_size);
2304                 if (off >= next_off)
2305                         return 1;
2306
2307                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309                      off, next_off - off);
2310                 obj_req->ex.oe_off = off;
2311                 obj_req->ex.oe_len = next_off - off;
2312         }
2313
2314         /* reverse map the entire object onto the parent */
2315         ret = rbd_obj_calc_img_extents(obj_req, true);
2316         if (ret)
2317                 return ret;
2318
2319         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323         obj_req->write_state = RBD_OBJ_WRITE_START;
2324         return 0;
2325 }
2326
2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328                                         int which)
2329 {
2330         struct rbd_obj_request *obj_req = osd_req->r_priv;
2331         u16 opcode;
2332
2333         if (rbd_obj_is_entire(obj_req)) {
2334                 if (obj_req->num_img_extents) {
2335                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336                                 osd_req_op_init(osd_req, which++,
2337                                                 CEPH_OSD_OP_CREATE, 0);
2338                         opcode = CEPH_OSD_OP_TRUNCATE;
2339                 } else {
2340                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341                         osd_req_op_init(osd_req, which++,
2342                                         CEPH_OSD_OP_DELETE, 0);
2343                         opcode = 0;
2344                 }
2345         } else {
2346                 opcode = truncate_or_zero_opcode(obj_req);
2347         }
2348
2349         if (opcode)
2350                 osd_req_op_extent_init(osd_req, which, opcode,
2351                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2352                                        0, 0);
2353 }
2354
2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356 {
2357         int ret;
2358
2359         /* reverse map the entire object onto the parent */
2360         ret = rbd_obj_calc_img_extents(obj_req, true);
2361         if (ret)
2362                 return ret;
2363
2364         if (!obj_req->num_img_extents) {
2365                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366                 if (rbd_obj_is_entire(obj_req))
2367                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368         }
2369
2370         obj_req->write_state = RBD_OBJ_WRITE_START;
2371         return 0;
2372 }
2373
2374 static int count_write_ops(struct rbd_obj_request *obj_req)
2375 {
2376         struct rbd_img_request *img_req = obj_req->img_request;
2377
2378         switch (img_req->op_type) {
2379         case OBJ_OP_WRITE:
2380                 if (!use_object_map(img_req->rbd_dev) ||
2381                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382                         return 2; /* setallochint + write/writefull */
2383
2384                 return 1; /* write/writefull */
2385         case OBJ_OP_DISCARD:
2386                 return 1; /* delete/truncate/zero */
2387         case OBJ_OP_ZEROOUT:
2388                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390                         return 2; /* create + truncate */
2391
2392                 return 1; /* delete/truncate/zero */
2393         default:
2394                 BUG();
2395         }
2396 }
2397
2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399                                     int which)
2400 {
2401         struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403         switch (obj_req->img_request->op_type) {
2404         case OBJ_OP_WRITE:
2405                 __rbd_osd_setup_write_ops(osd_req, which);
2406                 break;
2407         case OBJ_OP_DISCARD:
2408                 __rbd_osd_setup_discard_ops(osd_req, which);
2409                 break;
2410         case OBJ_OP_ZEROOUT:
2411                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2412                 break;
2413         default:
2414                 BUG();
2415         }
2416 }
2417
2418 /*
2419  * Prune the list of object requests (adjust offset and/or length, drop
2420  * redundant requests).  Prepare object request state machines and image
2421  * request state machine for execution.
2422  */
2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424 {
2425         struct rbd_obj_request *obj_req, *next_obj_req;
2426         int ret;
2427
2428         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429                 switch (img_req->op_type) {
2430                 case OBJ_OP_READ:
2431                         ret = rbd_obj_init_read(obj_req);
2432                         break;
2433                 case OBJ_OP_WRITE:
2434                         ret = rbd_obj_init_write(obj_req);
2435                         break;
2436                 case OBJ_OP_DISCARD:
2437                         ret = rbd_obj_init_discard(obj_req);
2438                         break;
2439                 case OBJ_OP_ZEROOUT:
2440                         ret = rbd_obj_init_zeroout(obj_req);
2441                         break;
2442                 default:
2443                         BUG();
2444                 }
2445                 if (ret < 0)
2446                         return ret;
2447                 if (ret > 0) {
2448                         rbd_img_obj_request_del(img_req, obj_req);
2449                         continue;
2450                 }
2451         }
2452
2453         img_req->state = RBD_IMG_START;
2454         return 0;
2455 }
2456
2457 union rbd_img_fill_iter {
2458         struct ceph_bio_iter    bio_iter;
2459         struct ceph_bvec_iter   bvec_iter;
2460 };
2461
2462 struct rbd_img_fill_ctx {
2463         enum obj_request_type   pos_type;
2464         union rbd_img_fill_iter *pos;
2465         union rbd_img_fill_iter iter;
2466         ceph_object_extent_fn_t set_pos_fn;
2467         ceph_object_extent_fn_t count_fn;
2468         ceph_object_extent_fn_t copy_fn;
2469 };
2470
2471 static struct ceph_object_extent *alloc_object_extent(void *arg)
2472 {
2473         struct rbd_img_request *img_req = arg;
2474         struct rbd_obj_request *obj_req;
2475
2476         obj_req = rbd_obj_request_create();
2477         if (!obj_req)
2478                 return NULL;
2479
2480         rbd_img_obj_request_add(img_req, obj_req);
2481         return &obj_req->ex;
2482 }
2483
2484 /*
2485  * While su != os && sc == 1 is technically not fancy (it's the same
2486  * layout as su == os && sc == 1), we can't use the nocopy path for it
2487  * because ->set_pos_fn() should be called only once per object.
2488  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489  * treat su != os && sc == 1 as fancy.
2490  */
2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492 {
2493         return l->stripe_unit != l->object_size;
2494 }
2495
2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497                                        struct ceph_file_extent *img_extents,
2498                                        u32 num_img_extents,
2499                                        struct rbd_img_fill_ctx *fctx)
2500 {
2501         u32 i;
2502         int ret;
2503
2504         img_req->data_type = fctx->pos_type;
2505
2506         /*
2507          * Create object requests and set each object request's starting
2508          * position in the provided bio (list) or bio_vec array.
2509          */
2510         fctx->iter = *fctx->pos;
2511         for (i = 0; i < num_img_extents; i++) {
2512                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513                                            img_extents[i].fe_off,
2514                                            img_extents[i].fe_len,
2515                                            &img_req->object_extents,
2516                                            alloc_object_extent, img_req,
2517                                            fctx->set_pos_fn, &fctx->iter);
2518                 if (ret)
2519                         return ret;
2520         }
2521
2522         return __rbd_img_fill_request(img_req);
2523 }
2524
2525 /*
2526  * Map a list of image extents to a list of object extents, create the
2527  * corresponding object requests (normally each to a different object,
2528  * but not always) and add them to @img_req.  For each object request,
2529  * set up its data descriptor to point to the corresponding chunk(s) of
2530  * @fctx->pos data buffer.
2531  *
2532  * Because ceph_file_to_extents() will merge adjacent object extents
2533  * together, each object request's data descriptor may point to multiple
2534  * different chunks of @fctx->pos data buffer.
2535  *
2536  * @fctx->pos data buffer is assumed to be large enough.
2537  */
2538 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539                                 struct ceph_file_extent *img_extents,
2540                                 u32 num_img_extents,
2541                                 struct rbd_img_fill_ctx *fctx)
2542 {
2543         struct rbd_device *rbd_dev = img_req->rbd_dev;
2544         struct rbd_obj_request *obj_req;
2545         u32 i;
2546         int ret;
2547
2548         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549             !rbd_layout_is_fancy(&rbd_dev->layout))
2550                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2551                                                    num_img_extents, fctx);
2552
2553         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555         /*
2556          * Create object requests and determine ->bvec_count for each object
2557          * request.  Note that ->bvec_count sum over all object requests may
2558          * be greater than the number of bio_vecs in the provided bio (list)
2559          * or bio_vec array because when mapped, those bio_vecs can straddle
2560          * stripe unit boundaries.
2561          */
2562         fctx->iter = *fctx->pos;
2563         for (i = 0; i < num_img_extents; i++) {
2564                 ret = ceph_file_to_extents(&rbd_dev->layout,
2565                                            img_extents[i].fe_off,
2566                                            img_extents[i].fe_len,
2567                                            &img_req->object_extents,
2568                                            alloc_object_extent, img_req,
2569                                            fctx->count_fn, &fctx->iter);
2570                 if (ret)
2571                         return ret;
2572         }
2573
2574         for_each_obj_request(img_req, obj_req) {
2575                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576                                               sizeof(*obj_req->bvec_pos.bvecs),
2577                                               GFP_NOIO);
2578                 if (!obj_req->bvec_pos.bvecs)
2579                         return -ENOMEM;
2580         }
2581
2582         /*
2583          * Fill in each object request's private bio_vec array, splitting and
2584          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585          */
2586         fctx->iter = *fctx->pos;
2587         for (i = 0; i < num_img_extents; i++) {
2588                 ret = ceph_iterate_extents(&rbd_dev->layout,
2589                                            img_extents[i].fe_off,
2590                                            img_extents[i].fe_len,
2591                                            &img_req->object_extents,
2592                                            fctx->copy_fn, &fctx->iter);
2593                 if (ret)
2594                         return ret;
2595         }
2596
2597         return __rbd_img_fill_request(img_req);
2598 }
2599
2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601                                u64 off, u64 len)
2602 {
2603         struct ceph_file_extent ex = { off, len };
2604         union rbd_img_fill_iter dummy = {};
2605         struct rbd_img_fill_ctx fctx = {
2606                 .pos_type = OBJ_REQUEST_NODATA,
2607                 .pos = &dummy,
2608         };
2609
2610         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611 }
2612
2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614 {
2615         struct rbd_obj_request *obj_req =
2616             container_of(ex, struct rbd_obj_request, ex);
2617         struct ceph_bio_iter *it = arg;
2618
2619         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620         obj_req->bio_pos = *it;
2621         ceph_bio_iter_advance(it, bytes);
2622 }
2623
2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625 {
2626         struct rbd_obj_request *obj_req =
2627             container_of(ex, struct rbd_obj_request, ex);
2628         struct ceph_bio_iter *it = arg;
2629
2630         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631         ceph_bio_iter_advance_step(it, bytes, ({
2632                 obj_req->bvec_count++;
2633         }));
2634
2635 }
2636
2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639         struct rbd_obj_request *obj_req =
2640             container_of(ex, struct rbd_obj_request, ex);
2641         struct ceph_bio_iter *it = arg;
2642
2643         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644         ceph_bio_iter_advance_step(it, bytes, ({
2645                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647         }));
2648 }
2649
2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651                                    struct ceph_file_extent *img_extents,
2652                                    u32 num_img_extents,
2653                                    struct ceph_bio_iter *bio_pos)
2654 {
2655         struct rbd_img_fill_ctx fctx = {
2656                 .pos_type = OBJ_REQUEST_BIO,
2657                 .pos = (union rbd_img_fill_iter *)bio_pos,
2658                 .set_pos_fn = set_bio_pos,
2659                 .count_fn = count_bio_bvecs,
2660                 .copy_fn = copy_bio_bvecs,
2661         };
2662
2663         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664                                     &fctx);
2665 }
2666
2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668                                  u64 off, u64 len, struct bio *bio)
2669 {
2670         struct ceph_file_extent ex = { off, len };
2671         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674 }
2675
2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678         struct rbd_obj_request *obj_req =
2679             container_of(ex, struct rbd_obj_request, ex);
2680         struct ceph_bvec_iter *it = arg;
2681
2682         obj_req->bvec_pos = *it;
2683         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684         ceph_bvec_iter_advance(it, bytes);
2685 }
2686
2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689         struct rbd_obj_request *obj_req =
2690             container_of(ex, struct rbd_obj_request, ex);
2691         struct ceph_bvec_iter *it = arg;
2692
2693         ceph_bvec_iter_advance_step(it, bytes, ({
2694                 obj_req->bvec_count++;
2695         }));
2696 }
2697
2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700         struct rbd_obj_request *obj_req =
2701             container_of(ex, struct rbd_obj_request, ex);
2702         struct ceph_bvec_iter *it = arg;
2703
2704         ceph_bvec_iter_advance_step(it, bytes, ({
2705                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707         }));
2708 }
2709
2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711                                      struct ceph_file_extent *img_extents,
2712                                      u32 num_img_extents,
2713                                      struct ceph_bvec_iter *bvec_pos)
2714 {
2715         struct rbd_img_fill_ctx fctx = {
2716                 .pos_type = OBJ_REQUEST_BVECS,
2717                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2718                 .set_pos_fn = set_bvec_pos,
2719                 .count_fn = count_bvecs,
2720                 .copy_fn = copy_bvecs,
2721         };
2722
2723         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724                                     &fctx);
2725 }
2726
2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728                                    struct ceph_file_extent *img_extents,
2729                                    u32 num_img_extents,
2730                                    struct bio_vec *bvecs)
2731 {
2732         struct ceph_bvec_iter it = {
2733                 .bvecs = bvecs,
2734                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735                                                              num_img_extents) },
2736         };
2737
2738         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739                                          &it);
2740 }
2741
2742 static void rbd_img_handle_request_work(struct work_struct *work)
2743 {
2744         struct rbd_img_request *img_req =
2745             container_of(work, struct rbd_img_request, work);
2746
2747         rbd_img_handle_request(img_req, img_req->work_result);
2748 }
2749
2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751 {
2752         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753         img_req->work_result = result;
2754         queue_work(rbd_wq, &img_req->work);
2755 }
2756
2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758 {
2759         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763                 return true;
2764         }
2765
2766         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767              obj_req->ex.oe_objno);
2768         return false;
2769 }
2770
2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772 {
2773         struct ceph_osd_request *osd_req;
2774         int ret;
2775
2776         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777         if (IS_ERR(osd_req))
2778                 return PTR_ERR(osd_req);
2779
2780         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782         rbd_osd_setup_data(osd_req, 0);
2783         rbd_osd_format_read(osd_req);
2784
2785         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786         if (ret)
2787                 return ret;
2788
2789         rbd_osd_submit(osd_req);
2790         return 0;
2791 }
2792
2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794 {
2795         struct rbd_img_request *img_req = obj_req->img_request;
2796         struct rbd_device *parent = img_req->rbd_dev->parent;
2797         struct rbd_img_request *child_img_req;
2798         int ret;
2799
2800         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801         if (!child_img_req)
2802                 return -ENOMEM;
2803
2804         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806         child_img_req->obj_request = obj_req;
2807
2808         down_read(&parent->header_rwsem);
2809         rbd_img_capture_header(child_img_req);
2810         up_read(&parent->header_rwsem);
2811
2812         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813              obj_req);
2814
2815         if (!rbd_img_is_write(img_req)) {
2816                 switch (img_req->data_type) {
2817                 case OBJ_REQUEST_BIO:
2818                         ret = __rbd_img_fill_from_bio(child_img_req,
2819                                                       obj_req->img_extents,
2820                                                       obj_req->num_img_extents,
2821                                                       &obj_req->bio_pos);
2822                         break;
2823                 case OBJ_REQUEST_BVECS:
2824                 case OBJ_REQUEST_OWN_BVECS:
2825                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2826                                                       obj_req->img_extents,
2827                                                       obj_req->num_img_extents,
2828                                                       &obj_req->bvec_pos);
2829                         break;
2830                 default:
2831                         BUG();
2832                 }
2833         } else {
2834                 ret = rbd_img_fill_from_bvecs(child_img_req,
2835                                               obj_req->img_extents,
2836                                               obj_req->num_img_extents,
2837                                               obj_req->copyup_bvecs);
2838         }
2839         if (ret) {
2840                 rbd_img_request_destroy(child_img_req);
2841                 return ret;
2842         }
2843
2844         /* avoid parent chain recursion */
2845         rbd_img_schedule(child_img_req, 0);
2846         return 0;
2847 }
2848
2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850 {
2851         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852         int ret;
2853
2854 again:
2855         switch (obj_req->read_state) {
2856         case RBD_OBJ_READ_START:
2857                 rbd_assert(!*result);
2858
2859                 if (!rbd_obj_may_exist(obj_req)) {
2860                         *result = -ENOENT;
2861                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862                         goto again;
2863                 }
2864
2865                 ret = rbd_obj_read_object(obj_req);
2866                 if (ret) {
2867                         *result = ret;
2868                         return true;
2869                 }
2870                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871                 return false;
2872         case RBD_OBJ_READ_OBJECT:
2873                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874                         /* reverse map this object extent onto the parent */
2875                         ret = rbd_obj_calc_img_extents(obj_req, false);
2876                         if (ret) {
2877                                 *result = ret;
2878                                 return true;
2879                         }
2880                         if (obj_req->num_img_extents) {
2881                                 ret = rbd_obj_read_from_parent(obj_req);
2882                                 if (ret) {
2883                                         *result = ret;
2884                                         return true;
2885                                 }
2886                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2887                                 return false;
2888                         }
2889                 }
2890
2891                 /*
2892                  * -ENOENT means a hole in the image -- zero-fill the entire
2893                  * length of the request.  A short read also implies zero-fill
2894                  * to the end of the request.
2895                  */
2896                 if (*result == -ENOENT) {
2897                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898                         *result = 0;
2899                 } else if (*result >= 0) {
2900                         if (*result < obj_req->ex.oe_len)
2901                                 rbd_obj_zero_range(obj_req, *result,
2902                                                 obj_req->ex.oe_len - *result);
2903                         else
2904                                 rbd_assert(*result == obj_req->ex.oe_len);
2905                         *result = 0;
2906                 }
2907                 return true;
2908         case RBD_OBJ_READ_PARENT:
2909                 /*
2910                  * The parent image is read only up to the overlap -- zero-fill
2911                  * from the overlap to the end of the request.
2912                  */
2913                 if (!*result) {
2914                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916                         if (obj_overlap < obj_req->ex.oe_len)
2917                                 rbd_obj_zero_range(obj_req, obj_overlap,
2918                                             obj_req->ex.oe_len - obj_overlap);
2919                 }
2920                 return true;
2921         default:
2922                 BUG();
2923         }
2924 }
2925
2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927 {
2928         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936                 return true;
2937         }
2938
2939         return false;
2940 }
2941
2942 /*
2943  * Return:
2944  *   0 - object map update sent
2945  *   1 - object map update isn't needed
2946  *  <0 - error
2947  */
2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949 {
2950         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951         u8 new_state;
2952
2953         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954                 return 1;
2955
2956         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957                 new_state = OBJECT_PENDING;
2958         else
2959                 new_state = OBJECT_EXISTS;
2960
2961         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962 }
2963
2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965 {
2966         struct ceph_osd_request *osd_req;
2967         int num_ops = count_write_ops(obj_req);
2968         int which = 0;
2969         int ret;
2970
2971         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972                 num_ops++; /* stat */
2973
2974         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975         if (IS_ERR(osd_req))
2976                 return PTR_ERR(osd_req);
2977
2978         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979                 ret = rbd_osd_setup_stat(osd_req, which++);
2980                 if (ret)
2981                         return ret;
2982         }
2983
2984         rbd_osd_setup_write_ops(osd_req, which);
2985         rbd_osd_format_write(osd_req);
2986
2987         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988         if (ret)
2989                 return ret;
2990
2991         rbd_osd_submit(osd_req);
2992         return 0;
2993 }
2994
2995 /*
2996  * copyup_bvecs pages are never highmem pages
2997  */
2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999 {
3000         struct ceph_bvec_iter it = {
3001                 .bvecs = bvecs,
3002                 .iter = { .bi_size = bytes },
3003         };
3004
3005         ceph_bvec_iter_advance_step(&it, bytes, ({
3006                 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007                         return false;
3008         }));
3009         return true;
3010 }
3011
3012 #define MODS_ONLY       U32_MAX
3013
3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015                                       u32 bytes)
3016 {
3017         struct ceph_osd_request *osd_req;
3018         int ret;
3019
3020         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024         if (IS_ERR(osd_req))
3025                 return PTR_ERR(osd_req);
3026
3027         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028         if (ret)
3029                 return ret;
3030
3031         rbd_osd_format_write(osd_req);
3032
3033         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034         if (ret)
3035                 return ret;
3036
3037         rbd_osd_submit(osd_req);
3038         return 0;
3039 }
3040
3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042                                         u32 bytes)
3043 {
3044         struct ceph_osd_request *osd_req;
3045         int num_ops = count_write_ops(obj_req);
3046         int which = 0;
3047         int ret;
3048
3049         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051         if (bytes != MODS_ONLY)
3052                 num_ops++; /* copyup */
3053
3054         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055         if (IS_ERR(osd_req))
3056                 return PTR_ERR(osd_req);
3057
3058         if (bytes != MODS_ONLY) {
3059                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060                 if (ret)
3061                         return ret;
3062         }
3063
3064         rbd_osd_setup_write_ops(osd_req, which);
3065         rbd_osd_format_write(osd_req);
3066
3067         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068         if (ret)
3069                 return ret;
3070
3071         rbd_osd_submit(osd_req);
3072         return 0;
3073 }
3074
3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076 {
3077         u32 i;
3078
3079         rbd_assert(!obj_req->copyup_bvecs);
3080         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082                                         sizeof(*obj_req->copyup_bvecs),
3083                                         GFP_NOIO);
3084         if (!obj_req->copyup_bvecs)
3085                 return -ENOMEM;
3086
3087         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089                 struct page *page = alloc_page(GFP_NOIO);
3090
3091                 if (!page)
3092                         return -ENOMEM;
3093
3094                 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095                 obj_overlap -= len;
3096         }
3097
3098         rbd_assert(!obj_overlap);
3099         return 0;
3100 }
3101
3102 /*
3103  * The target object doesn't exist.  Read the data for the entire
3104  * target object up to the overlap point (if any) from the parent,
3105  * so we can use it for a copyup.
3106  */
3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108 {
3109         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110         int ret;
3111
3112         rbd_assert(obj_req->num_img_extents);
3113         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114                       rbd_dev->parent_overlap);
3115         if (!obj_req->num_img_extents) {
3116                 /*
3117                  * The overlap has become 0 (most likely because the
3118                  * image has been flattened).  Re-submit the original write
3119                  * request -- pass MODS_ONLY since the copyup isn't needed
3120                  * anymore.
3121                  */
3122                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123         }
3124
3125         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126         if (ret)
3127                 return ret;
3128
3129         return rbd_obj_read_from_parent(obj_req);
3130 }
3131
3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133 {
3134         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136         u8 new_state;
3137         u32 i;
3138         int ret;
3139
3140         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143                 return;
3144
3145         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146                 return;
3147
3148         for (i = 0; i < snapc->num_snaps; i++) {
3149                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150                     i + 1 < snapc->num_snaps)
3151                         new_state = OBJECT_EXISTS_CLEAN;
3152                 else
3153                         new_state = OBJECT_EXISTS;
3154
3155                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156                                             new_state, NULL);
3157                 if (ret < 0) {
3158                         obj_req->pending.result = ret;
3159                         return;
3160                 }
3161
3162                 rbd_assert(!ret);
3163                 obj_req->pending.num_pending++;
3164         }
3165 }
3166
3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168 {
3169         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170         int ret;
3171
3172         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174         /*
3175          * Only send non-zero copyup data to save some I/O and network
3176          * bandwidth -- zero copyup data is equivalent to the object not
3177          * existing.
3178          */
3179         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180                 bytes = 0;
3181
3182         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183                 /*
3184                  * Send a copyup request with an empty snapshot context to
3185                  * deep-copyup the object through all existing snapshots.
3186                  * A second request with the current snapshot context will be
3187                  * sent for the actual modification.
3188                  */
3189                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190                 if (ret) {
3191                         obj_req->pending.result = ret;
3192                         return;
3193                 }
3194
3195                 obj_req->pending.num_pending++;
3196                 bytes = MODS_ONLY;
3197         }
3198
3199         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200         if (ret) {
3201                 obj_req->pending.result = ret;
3202                 return;
3203         }
3204
3205         obj_req->pending.num_pending++;
3206 }
3207
3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209 {
3210         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211         int ret;
3212
3213 again:
3214         switch (obj_req->copyup_state) {
3215         case RBD_OBJ_COPYUP_START:
3216                 rbd_assert(!*result);
3217
3218                 ret = rbd_obj_copyup_read_parent(obj_req);
3219                 if (ret) {
3220                         *result = ret;
3221                         return true;
3222                 }
3223                 if (obj_req->num_img_extents)
3224                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225                 else
3226                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227                 return false;
3228         case RBD_OBJ_COPYUP_READ_PARENT:
3229                 if (*result)
3230                         return true;
3231
3232                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3233                                   rbd_obj_img_extents_bytes(obj_req))) {
3234                         dout("%s %p detected zeros\n", __func__, obj_req);
3235                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236                 }
3237
3238                 rbd_obj_copyup_object_maps(obj_req);
3239                 if (!obj_req->pending.num_pending) {
3240                         *result = obj_req->pending.result;
3241                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242                         goto again;
3243                 }
3244                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245                 return false;
3246         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247                 if (!pending_result_dec(&obj_req->pending, result))
3248                         return false;
3249                 fallthrough;
3250         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251                 if (*result) {
3252                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3253                                  *result);
3254                         return true;
3255                 }
3256
3257                 rbd_obj_copyup_write_object(obj_req);
3258                 if (!obj_req->pending.num_pending) {
3259                         *result = obj_req->pending.result;
3260                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261                         goto again;
3262                 }
3263                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264                 return false;
3265         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266                 if (!pending_result_dec(&obj_req->pending, result))
3267                         return false;
3268                 fallthrough;
3269         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270                 return true;
3271         default:
3272                 BUG();
3273         }
3274 }
3275
3276 /*
3277  * Return:
3278  *   0 - object map update sent
3279  *   1 - object map update isn't needed
3280  *  <0 - error
3281  */
3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283 {
3284         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285         u8 current_state = OBJECT_PENDING;
3286
3287         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288                 return 1;
3289
3290         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291                 return 1;
3292
3293         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294                                      &current_state);
3295 }
3296
3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298 {
3299         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300         int ret;
3301
3302 again:
3303         switch (obj_req->write_state) {
3304         case RBD_OBJ_WRITE_START:
3305                 rbd_assert(!*result);
3306
3307                 rbd_obj_set_copyup_enabled(obj_req);
3308                 if (rbd_obj_write_is_noop(obj_req))
3309                         return true;
3310
3311                 ret = rbd_obj_write_pre_object_map(obj_req);
3312                 if (ret < 0) {
3313                         *result = ret;
3314                         return true;
3315                 }
3316                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317                 if (ret > 0)
3318                         goto again;
3319                 return false;
3320         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321                 if (*result) {
3322                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3323                                  *result);
3324                         return true;
3325                 }
3326                 ret = rbd_obj_write_object(obj_req);
3327                 if (ret) {
3328                         *result = ret;
3329                         return true;
3330                 }
3331                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332                 return false;
3333         case RBD_OBJ_WRITE_OBJECT:
3334                 if (*result == -ENOENT) {
3335                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336                                 *result = 0;
3337                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339                                 goto again;
3340                         }
3341                         /*
3342                          * On a non-existent object:
3343                          *   delete - -ENOENT, truncate/zero - 0
3344                          */
3345                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346                                 *result = 0;
3347                 }
3348                 if (*result)
3349                         return true;
3350
3351                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352                 goto again;
3353         case __RBD_OBJ_WRITE_COPYUP:
3354                 if (!rbd_obj_advance_copyup(obj_req, result))
3355                         return false;
3356                 fallthrough;
3357         case RBD_OBJ_WRITE_COPYUP:
3358                 if (*result) {
3359                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360                         return true;
3361                 }
3362                 ret = rbd_obj_write_post_object_map(obj_req);
3363                 if (ret < 0) {
3364                         *result = ret;
3365                         return true;
3366                 }
3367                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368                 if (ret > 0)
3369                         goto again;
3370                 return false;
3371         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372                 if (*result)
3373                         rbd_warn(rbd_dev, "post object map update failed: %d",
3374                                  *result);
3375                 return true;
3376         default:
3377                 BUG();
3378         }
3379 }
3380
3381 /*
3382  * Return true if @obj_req is completed.
3383  */
3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385                                      int *result)
3386 {
3387         struct rbd_img_request *img_req = obj_req->img_request;
3388         struct rbd_device *rbd_dev = img_req->rbd_dev;
3389         bool done;
3390
3391         mutex_lock(&obj_req->state_mutex);
3392         if (!rbd_img_is_write(img_req))
3393                 done = rbd_obj_advance_read(obj_req, result);
3394         else
3395                 done = rbd_obj_advance_write(obj_req, result);
3396         mutex_unlock(&obj_req->state_mutex);
3397
3398         if (done && *result) {
3399                 rbd_assert(*result < 0);
3400                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403         }
3404         return done;
3405 }
3406
3407 /*
3408  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409  * recursion.
3410  */
3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412 {
3413         if (__rbd_obj_handle_request(obj_req, &result))
3414                 rbd_img_handle_request(obj_req->img_request, result);
3415 }
3416
3417 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418 {
3419         struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422                 return false;
3423
3424         if (rbd_is_ro(rbd_dev))
3425                 return false;
3426
3427         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428         if (rbd_dev->opts->lock_on_read ||
3429             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430                 return true;
3431
3432         return rbd_img_is_write(img_req);
3433 }
3434
3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436 {
3437         struct rbd_device *rbd_dev = img_req->rbd_dev;
3438         bool locked;
3439
3440         lockdep_assert_held(&rbd_dev->lock_rwsem);
3441         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442         spin_lock(&rbd_dev->lock_lists_lock);
3443         rbd_assert(list_empty(&img_req->lock_item));
3444         if (!locked)
3445                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446         else
3447                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448         spin_unlock(&rbd_dev->lock_lists_lock);
3449         return locked;
3450 }
3451
3452 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453 {
3454         struct rbd_device *rbd_dev = img_req->rbd_dev;
3455         bool need_wakeup = false;
3456
3457         lockdep_assert_held(&rbd_dev->lock_rwsem);
3458         spin_lock(&rbd_dev->lock_lists_lock);
3459         if (!list_empty(&img_req->lock_item)) {
3460                 list_del_init(&img_req->lock_item);
3461                 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3462                                list_empty(&rbd_dev->running_list));
3463         }
3464         spin_unlock(&rbd_dev->lock_lists_lock);
3465         if (need_wakeup)
3466                 complete(&rbd_dev->releasing_wait);
3467 }
3468
3469 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3470 {
3471         struct rbd_device *rbd_dev = img_req->rbd_dev;
3472
3473         if (!need_exclusive_lock(img_req))
3474                 return 1;
3475
3476         if (rbd_lock_add_request(img_req))
3477                 return 1;
3478
3479         if (rbd_dev->opts->exclusive) {
3480                 WARN_ON(1); /* lock got released? */
3481                 return -EROFS;
3482         }
3483
3484         /*
3485          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3486          * and cancel_delayed_work() in wake_lock_waiters().
3487          */
3488         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3489         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3490         return 0;
3491 }
3492
3493 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3494 {
3495         struct rbd_device *rbd_dev = img_req->rbd_dev;
3496         struct rbd_obj_request *obj_req;
3497
3498         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3499         rbd_assert(!need_exclusive_lock(img_req) ||
3500                    __rbd_is_lock_owner(rbd_dev));
3501
3502         if (rbd_img_is_write(img_req)) {
3503                 rbd_assert(!img_req->snapc);
3504                 down_read(&rbd_dev->header_rwsem);
3505                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3506                 up_read(&rbd_dev->header_rwsem);
3507         }
3508
3509         for_each_obj_request(img_req, obj_req) {
3510                 int result = 0;
3511
3512                 if (__rbd_obj_handle_request(obj_req, &result)) {
3513                         if (result) {
3514                                 img_req->pending.result = result;
3515                                 return;
3516                         }
3517                 } else {
3518                         img_req->pending.num_pending++;
3519                 }
3520         }
3521 }
3522
3523 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3524 {
3525         int ret;
3526
3527 again:
3528         switch (img_req->state) {
3529         case RBD_IMG_START:
3530                 rbd_assert(!*result);
3531
3532                 ret = rbd_img_exclusive_lock(img_req);
3533                 if (ret < 0) {
3534                         *result = ret;
3535                         return true;
3536                 }
3537                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3538                 if (ret > 0)
3539                         goto again;
3540                 return false;
3541         case RBD_IMG_EXCLUSIVE_LOCK:
3542                 if (*result)
3543                         return true;
3544
3545                 rbd_img_object_requests(img_req);
3546                 if (!img_req->pending.num_pending) {
3547                         *result = img_req->pending.result;
3548                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3549                         goto again;
3550                 }
3551                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3552                 return false;
3553         case __RBD_IMG_OBJECT_REQUESTS:
3554                 if (!pending_result_dec(&img_req->pending, result))
3555                         return false;
3556                 fallthrough;
3557         case RBD_IMG_OBJECT_REQUESTS:
3558                 return true;
3559         default:
3560                 BUG();
3561         }
3562 }
3563
3564 /*
3565  * Return true if @img_req is completed.
3566  */
3567 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3568                                      int *result)
3569 {
3570         struct rbd_device *rbd_dev = img_req->rbd_dev;
3571         bool done;
3572
3573         if (need_exclusive_lock(img_req)) {
3574                 down_read(&rbd_dev->lock_rwsem);
3575                 mutex_lock(&img_req->state_mutex);
3576                 done = rbd_img_advance(img_req, result);
3577                 if (done)
3578                         rbd_lock_del_request(img_req);
3579                 mutex_unlock(&img_req->state_mutex);
3580                 up_read(&rbd_dev->lock_rwsem);
3581         } else {
3582                 mutex_lock(&img_req->state_mutex);
3583                 done = rbd_img_advance(img_req, result);
3584                 mutex_unlock(&img_req->state_mutex);
3585         }
3586
3587         if (done && *result) {
3588                 rbd_assert(*result < 0);
3589                 rbd_warn(rbd_dev, "%s%s result %d",
3590                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3591                       obj_op_name(img_req->op_type), *result);
3592         }
3593         return done;
3594 }
3595
3596 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3597 {
3598 again:
3599         if (!__rbd_img_handle_request(img_req, &result))
3600                 return;
3601
3602         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3603                 struct rbd_obj_request *obj_req = img_req->obj_request;
3604
3605                 rbd_img_request_destroy(img_req);
3606                 if (__rbd_obj_handle_request(obj_req, &result)) {
3607                         img_req = obj_req->img_request;
3608                         goto again;
3609                 }
3610         } else {
3611                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3612
3613                 rbd_img_request_destroy(img_req);
3614                 blk_mq_end_request(rq, errno_to_blk_status(result));
3615         }
3616 }
3617
3618 static const struct rbd_client_id rbd_empty_cid;
3619
3620 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3621                           const struct rbd_client_id *rhs)
3622 {
3623         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3624 }
3625
3626 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3627 {
3628         struct rbd_client_id cid;
3629
3630         mutex_lock(&rbd_dev->watch_mutex);
3631         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3632         cid.handle = rbd_dev->watch_cookie;
3633         mutex_unlock(&rbd_dev->watch_mutex);
3634         return cid;
3635 }
3636
3637 /*
3638  * lock_rwsem must be held for write
3639  */
3640 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3641                               const struct rbd_client_id *cid)
3642 {
3643         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3644              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3645              cid->gid, cid->handle);
3646         rbd_dev->owner_cid = *cid; /* struct */
3647 }
3648
3649 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3650 {
3651         mutex_lock(&rbd_dev->watch_mutex);
3652         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3653         mutex_unlock(&rbd_dev->watch_mutex);
3654 }
3655
3656 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3657 {
3658         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3659
3660         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3661         strcpy(rbd_dev->lock_cookie, cookie);
3662         rbd_set_owner_cid(rbd_dev, &cid);
3663         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3664 }
3665
3666 /*
3667  * lock_rwsem must be held for write
3668  */
3669 static int rbd_lock(struct rbd_device *rbd_dev)
3670 {
3671         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3672         char cookie[32];
3673         int ret;
3674
3675         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3676                 rbd_dev->lock_cookie[0] != '\0');
3677
3678         format_lock_cookie(rbd_dev, cookie);
3679         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3680                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3681                             RBD_LOCK_TAG, "", 0);
3682         if (ret && ret != -EEXIST)
3683                 return ret;
3684
3685         __rbd_lock(rbd_dev, cookie);
3686         return 0;
3687 }
3688
3689 /*
3690  * lock_rwsem must be held for write
3691  */
3692 static void rbd_unlock(struct rbd_device *rbd_dev)
3693 {
3694         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3695         int ret;
3696
3697         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3698                 rbd_dev->lock_cookie[0] == '\0');
3699
3700         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3701                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3702         if (ret && ret != -ENOENT)
3703                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3704
3705         /* treat errors as the image is unlocked */
3706         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3707         rbd_dev->lock_cookie[0] = '\0';
3708         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3709         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3710 }
3711
3712 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3713                                 enum rbd_notify_op notify_op,
3714                                 struct page ***preply_pages,
3715                                 size_t *preply_len)
3716 {
3717         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3718         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3719         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3720         int buf_size = sizeof(buf);
3721         void *p = buf;
3722
3723         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3724
3725         /* encode *LockPayload NotifyMessage (op + ClientId) */
3726         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3727         ceph_encode_32(&p, notify_op);
3728         ceph_encode_64(&p, cid.gid);
3729         ceph_encode_64(&p, cid.handle);
3730
3731         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3732                                 &rbd_dev->header_oloc, buf, buf_size,
3733                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3734 }
3735
3736 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3737                                enum rbd_notify_op notify_op)
3738 {
3739         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3740 }
3741
3742 static void rbd_notify_acquired_lock(struct work_struct *work)
3743 {
3744         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3745                                                   acquired_lock_work);
3746
3747         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3748 }
3749
3750 static void rbd_notify_released_lock(struct work_struct *work)
3751 {
3752         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3753                                                   released_lock_work);
3754
3755         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3756 }
3757
3758 static int rbd_request_lock(struct rbd_device *rbd_dev)
3759 {
3760         struct page **reply_pages;
3761         size_t reply_len;
3762         bool lock_owner_responded = false;
3763         int ret;
3764
3765         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3766
3767         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3768                                    &reply_pages, &reply_len);
3769         if (ret && ret != -ETIMEDOUT) {
3770                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3771                 goto out;
3772         }
3773
3774         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3775                 void *p = page_address(reply_pages[0]);
3776                 void *const end = p + reply_len;
3777                 u32 n;
3778
3779                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3780                 while (n--) {
3781                         u8 struct_v;
3782                         u32 len;
3783
3784                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3785                         p += 8 + 8; /* skip gid and cookie */
3786
3787                         ceph_decode_32_safe(&p, end, len, e_inval);
3788                         if (!len)
3789                                 continue;
3790
3791                         if (lock_owner_responded) {
3792                                 rbd_warn(rbd_dev,
3793                                          "duplicate lock owners detected");
3794                                 ret = -EIO;
3795                                 goto out;
3796                         }
3797
3798                         lock_owner_responded = true;
3799                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3800                                                   &struct_v, &len);
3801                         if (ret) {
3802                                 rbd_warn(rbd_dev,
3803                                          "failed to decode ResponseMessage: %d",
3804                                          ret);
3805                                 goto e_inval;
3806                         }
3807
3808                         ret = ceph_decode_32(&p);
3809                 }
3810         }
3811
3812         if (!lock_owner_responded) {
3813                 rbd_warn(rbd_dev, "no lock owners detected");
3814                 ret = -ETIMEDOUT;
3815         }
3816
3817 out:
3818         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3819         return ret;
3820
3821 e_inval:
3822         ret = -EINVAL;
3823         goto out;
3824 }
3825
3826 /*
3827  * Either image request state machine(s) or rbd_add_acquire_lock()
3828  * (i.e. "rbd map").
3829  */
3830 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3831 {
3832         struct rbd_img_request *img_req;
3833
3834         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3835         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3836
3837         cancel_delayed_work(&rbd_dev->lock_dwork);
3838         if (!completion_done(&rbd_dev->acquire_wait)) {
3839                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3840                            list_empty(&rbd_dev->running_list));
3841                 rbd_dev->acquire_err = result;
3842                 complete_all(&rbd_dev->acquire_wait);
3843                 return;
3844         }
3845
3846         while (!list_empty(&rbd_dev->acquiring_list)) {
3847                 img_req = list_first_entry(&rbd_dev->acquiring_list,
3848                                            struct rbd_img_request, lock_item);
3849                 mutex_lock(&img_req->state_mutex);
3850                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3851                 if (!result)
3852                         list_move_tail(&img_req->lock_item,
3853                                        &rbd_dev->running_list);
3854                 else
3855                         list_del_init(&img_req->lock_item);
3856                 rbd_img_schedule(img_req, result);
3857                 mutex_unlock(&img_req->state_mutex);
3858         }
3859 }
3860
3861 static bool locker_equal(const struct ceph_locker *lhs,
3862                          const struct ceph_locker *rhs)
3863 {
3864         return lhs->id.name.type == rhs->id.name.type &&
3865                lhs->id.name.num == rhs->id.name.num &&
3866                !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3867                ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3868 }
3869
3870 static void free_locker(struct ceph_locker *locker)
3871 {
3872         if (locker)
3873                 ceph_free_lockers(locker, 1);
3874 }
3875
3876 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3877 {
3878         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3879         struct ceph_locker *lockers;
3880         u32 num_lockers;
3881         u8 lock_type;
3882         char *lock_tag;
3883         u64 handle;
3884         int ret;
3885
3886         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3887                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3888                                  &lock_type, &lock_tag, &lockers, &num_lockers);
3889         if (ret) {
3890                 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3891                 return ERR_PTR(ret);
3892         }
3893
3894         if (num_lockers == 0) {
3895                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3896                 lockers = NULL;
3897                 goto out;
3898         }
3899
3900         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3901                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3902                          lock_tag);
3903                 goto err_busy;
3904         }
3905
3906         if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3907                 rbd_warn(rbd_dev, "incompatible lock type detected");
3908                 goto err_busy;
3909         }
3910
3911         WARN_ON(num_lockers != 1);
3912         ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3913                      &handle);
3914         if (ret != 1) {
3915                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3916                          lockers[0].id.cookie);
3917                 goto err_busy;
3918         }
3919         if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3920                 rbd_warn(rbd_dev, "locker has a blank address");
3921                 goto err_busy;
3922         }
3923
3924         dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3925              __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3926              &lockers[0].info.addr.in_addr,
3927              le32_to_cpu(lockers[0].info.addr.nonce), handle);
3928
3929 out:
3930         kfree(lock_tag);
3931         return lockers;
3932
3933 err_busy:
3934         kfree(lock_tag);
3935         ceph_free_lockers(lockers, num_lockers);
3936         return ERR_PTR(-EBUSY);
3937 }
3938
3939 static int find_watcher(struct rbd_device *rbd_dev,
3940                         const struct ceph_locker *locker)
3941 {
3942         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3943         struct ceph_watch_item *watchers;
3944         u32 num_watchers;
3945         u64 cookie;
3946         int i;
3947         int ret;
3948
3949         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3950                                       &rbd_dev->header_oloc, &watchers,
3951                                       &num_watchers);
3952         if (ret) {
3953                 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3954                 return ret;
3955         }
3956
3957         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3958         for (i = 0; i < num_watchers; i++) {
3959                 /*
3960                  * Ignore addr->type while comparing.  This mimics
3961                  * entity_addr_t::get_legacy_str() + strcmp().
3962                  */
3963                 if (ceph_addr_equal_no_type(&watchers[i].addr,
3964                                             &locker->info.addr) &&
3965                     watchers[i].cookie == cookie) {
3966                         struct rbd_client_id cid = {
3967                                 .gid = le64_to_cpu(watchers[i].name.num),
3968                                 .handle = cookie,
3969                         };
3970
3971                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3972                              rbd_dev, cid.gid, cid.handle);
3973                         rbd_set_owner_cid(rbd_dev, &cid);
3974                         ret = 1;
3975                         goto out;
3976                 }
3977         }
3978
3979         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3980         ret = 0;
3981 out:
3982         kfree(watchers);
3983         return ret;
3984 }
3985
3986 /*
3987  * lock_rwsem must be held for write
3988  */
3989 static int rbd_try_lock(struct rbd_device *rbd_dev)
3990 {
3991         struct ceph_client *client = rbd_dev->rbd_client->client;
3992         struct ceph_locker *locker, *refreshed_locker;
3993         int ret;
3994
3995         for (;;) {
3996                 locker = refreshed_locker = NULL;
3997
3998                 ret = rbd_lock(rbd_dev);
3999                 if (!ret)
4000                         goto out;
4001                 if (ret != -EBUSY) {
4002                         rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4003                         goto out;
4004                 }
4005
4006                 /* determine if the current lock holder is still alive */
4007                 locker = get_lock_owner_info(rbd_dev);
4008                 if (IS_ERR(locker)) {
4009                         ret = PTR_ERR(locker);
4010                         locker = NULL;
4011                         goto out;
4012                 }
4013                 if (!locker)
4014                         goto again;
4015
4016                 ret = find_watcher(rbd_dev, locker);
4017                 if (ret)
4018                         goto out; /* request lock or error */
4019
4020                 refreshed_locker = get_lock_owner_info(rbd_dev);
4021                 if (IS_ERR(refreshed_locker)) {
4022                         ret = PTR_ERR(refreshed_locker);
4023                         refreshed_locker = NULL;
4024                         goto out;
4025                 }
4026                 if (!refreshed_locker ||
4027                     !locker_equal(locker, refreshed_locker))
4028                         goto again;
4029
4030                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4031                          ENTITY_NAME(locker->id.name));
4032
4033                 ret = ceph_monc_blocklist_add(&client->monc,
4034                                               &locker->info.addr);
4035                 if (ret) {
4036                         rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4037                                  ENTITY_NAME(locker->id.name), ret);
4038                         goto out;
4039                 }
4040
4041                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4042                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4043                                           locker->id.cookie, &locker->id.name);
4044                 if (ret && ret != -ENOENT) {
4045                         rbd_warn(rbd_dev, "failed to break header lock: %d",
4046                                  ret);
4047                         goto out;
4048                 }
4049
4050 again:
4051                 free_locker(refreshed_locker);
4052                 free_locker(locker);
4053         }
4054
4055 out:
4056         free_locker(refreshed_locker);
4057         free_locker(locker);
4058         return ret;
4059 }
4060
4061 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4062 {
4063         int ret;
4064
4065         ret = rbd_dev_refresh(rbd_dev);
4066         if (ret)
4067                 return ret;
4068
4069         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4070                 ret = rbd_object_map_open(rbd_dev);
4071                 if (ret)
4072                         return ret;
4073         }
4074
4075         return 0;
4076 }
4077
4078 /*
4079  * Return:
4080  *   0 - lock acquired
4081  *   1 - caller should call rbd_request_lock()
4082  *  <0 - error
4083  */
4084 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4085 {
4086         int ret;
4087
4088         down_read(&rbd_dev->lock_rwsem);
4089         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4090              rbd_dev->lock_state);
4091         if (__rbd_is_lock_owner(rbd_dev)) {
4092                 up_read(&rbd_dev->lock_rwsem);
4093                 return 0;
4094         }
4095
4096         up_read(&rbd_dev->lock_rwsem);
4097         down_write(&rbd_dev->lock_rwsem);
4098         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4099              rbd_dev->lock_state);
4100         if (__rbd_is_lock_owner(rbd_dev)) {
4101                 up_write(&rbd_dev->lock_rwsem);
4102                 return 0;
4103         }
4104
4105         ret = rbd_try_lock(rbd_dev);
4106         if (ret < 0) {
4107                 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4108                 goto out;
4109         }
4110         if (ret > 0) {
4111                 up_write(&rbd_dev->lock_rwsem);
4112                 return ret;
4113         }
4114
4115         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4116         rbd_assert(list_empty(&rbd_dev->running_list));
4117
4118         ret = rbd_post_acquire_action(rbd_dev);
4119         if (ret) {
4120                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4121                 /*
4122                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4123                  * rbd_lock_add_request() would let the request through,
4124                  * assuming that e.g. object map is locked and loaded.
4125                  */
4126                 rbd_unlock(rbd_dev);
4127         }
4128
4129 out:
4130         wake_lock_waiters(rbd_dev, ret);
4131         up_write(&rbd_dev->lock_rwsem);
4132         return ret;
4133 }
4134
4135 static void rbd_acquire_lock(struct work_struct *work)
4136 {
4137         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4138                                             struct rbd_device, lock_dwork);
4139         int ret;
4140
4141         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4142 again:
4143         ret = rbd_try_acquire_lock(rbd_dev);
4144         if (ret <= 0) {
4145                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4146                 return;
4147         }
4148
4149         ret = rbd_request_lock(rbd_dev);
4150         if (ret == -ETIMEDOUT) {
4151                 goto again; /* treat this as a dead client */
4152         } else if (ret == -EROFS) {
4153                 rbd_warn(rbd_dev, "peer will not release lock");
4154                 down_write(&rbd_dev->lock_rwsem);
4155                 wake_lock_waiters(rbd_dev, ret);
4156                 up_write(&rbd_dev->lock_rwsem);
4157         } else if (ret < 0) {
4158                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4159                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4160                                  RBD_RETRY_DELAY);
4161         } else {
4162                 /*
4163                  * lock owner acked, but resend if we don't see them
4164                  * release the lock
4165                  */
4166                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4167                      rbd_dev);
4168                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4169                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4170         }
4171 }
4172
4173 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4174 {
4175         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4176         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4177
4178         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4179                 return false;
4180
4181         /*
4182          * Ensure that all in-flight IO is flushed.
4183          */
4184         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4185         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4186         if (list_empty(&rbd_dev->running_list))
4187                 return true;
4188
4189         up_write(&rbd_dev->lock_rwsem);
4190         wait_for_completion(&rbd_dev->releasing_wait);
4191
4192         down_write(&rbd_dev->lock_rwsem);
4193         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4194                 return false;
4195
4196         rbd_assert(list_empty(&rbd_dev->running_list));
4197         return true;
4198 }
4199
4200 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4201 {
4202         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4203                 rbd_object_map_close(rbd_dev);
4204 }
4205
4206 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4207 {
4208         rbd_assert(list_empty(&rbd_dev->running_list));
4209
4210         rbd_pre_release_action(rbd_dev);
4211         rbd_unlock(rbd_dev);
4212 }
4213
4214 /*
4215  * lock_rwsem must be held for write
4216  */
4217 static void rbd_release_lock(struct rbd_device *rbd_dev)
4218 {
4219         if (!rbd_quiesce_lock(rbd_dev))
4220                 return;
4221
4222         __rbd_release_lock(rbd_dev);
4223
4224         /*
4225          * Give others a chance to grab the lock - we would re-acquire
4226          * almost immediately if we got new IO while draining the running
4227          * list otherwise.  We need to ack our own notifications, so this
4228          * lock_dwork will be requeued from rbd_handle_released_lock() by
4229          * way of maybe_kick_acquire().
4230          */
4231         cancel_delayed_work(&rbd_dev->lock_dwork);
4232 }
4233
4234 static void rbd_release_lock_work(struct work_struct *work)
4235 {
4236         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4237                                                   unlock_work);
4238
4239         down_write(&rbd_dev->lock_rwsem);
4240         rbd_release_lock(rbd_dev);
4241         up_write(&rbd_dev->lock_rwsem);
4242 }
4243
4244 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4245 {
4246         bool have_requests;
4247
4248         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4249         if (__rbd_is_lock_owner(rbd_dev))
4250                 return;
4251
4252         spin_lock(&rbd_dev->lock_lists_lock);
4253         have_requests = !list_empty(&rbd_dev->acquiring_list);
4254         spin_unlock(&rbd_dev->lock_lists_lock);
4255         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4256                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4257                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4258         }
4259 }
4260
4261 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4262                                      void **p)
4263 {
4264         struct rbd_client_id cid = { 0 };
4265
4266         if (struct_v >= 2) {
4267                 cid.gid = ceph_decode_64(p);
4268                 cid.handle = ceph_decode_64(p);
4269         }
4270
4271         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4272              cid.handle);
4273         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4274                 down_write(&rbd_dev->lock_rwsem);
4275                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4276                         dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4277                              __func__, rbd_dev, cid.gid, cid.handle);
4278                 } else {
4279                         rbd_set_owner_cid(rbd_dev, &cid);
4280                 }
4281                 downgrade_write(&rbd_dev->lock_rwsem);
4282         } else {
4283                 down_read(&rbd_dev->lock_rwsem);
4284         }
4285
4286         maybe_kick_acquire(rbd_dev);
4287         up_read(&rbd_dev->lock_rwsem);
4288 }
4289
4290 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4291                                      void **p)
4292 {
4293         struct rbd_client_id cid = { 0 };
4294
4295         if (struct_v >= 2) {
4296                 cid.gid = ceph_decode_64(p);
4297                 cid.handle = ceph_decode_64(p);
4298         }
4299
4300         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4301              cid.handle);
4302         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4303                 down_write(&rbd_dev->lock_rwsem);
4304                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4305                         dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4306                              __func__, rbd_dev, cid.gid, cid.handle,
4307                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4308                 } else {
4309                         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4310                 }
4311                 downgrade_write(&rbd_dev->lock_rwsem);
4312         } else {
4313                 down_read(&rbd_dev->lock_rwsem);
4314         }
4315
4316         maybe_kick_acquire(rbd_dev);
4317         up_read(&rbd_dev->lock_rwsem);
4318 }
4319
4320 /*
4321  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4322  * ResponseMessage is needed.
4323  */
4324 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4325                                    void **p)
4326 {
4327         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4328         struct rbd_client_id cid = { 0 };
4329         int result = 1;
4330
4331         if (struct_v >= 2) {
4332                 cid.gid = ceph_decode_64(p);
4333                 cid.handle = ceph_decode_64(p);
4334         }
4335
4336         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4337              cid.handle);
4338         if (rbd_cid_equal(&cid, &my_cid))
4339                 return result;
4340
4341         down_read(&rbd_dev->lock_rwsem);
4342         if (__rbd_is_lock_owner(rbd_dev)) {
4343                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4344                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4345                         goto out_unlock;
4346
4347                 /*
4348                  * encode ResponseMessage(0) so the peer can detect
4349                  * a missing owner
4350                  */
4351                 result = 0;
4352
4353                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4354                         if (!rbd_dev->opts->exclusive) {
4355                                 dout("%s rbd_dev %p queueing unlock_work\n",
4356                                      __func__, rbd_dev);
4357                                 queue_work(rbd_dev->task_wq,
4358                                            &rbd_dev->unlock_work);
4359                         } else {
4360                                 /* refuse to release the lock */
4361                                 result = -EROFS;
4362                         }
4363                 }
4364         }
4365
4366 out_unlock:
4367         up_read(&rbd_dev->lock_rwsem);
4368         return result;
4369 }
4370
4371 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4372                                      u64 notify_id, u64 cookie, s32 *result)
4373 {
4374         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4375         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4376         int buf_size = sizeof(buf);
4377         int ret;
4378
4379         if (result) {
4380                 void *p = buf;
4381
4382                 /* encode ResponseMessage */
4383                 ceph_start_encoding(&p, 1, 1,
4384                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4385                 ceph_encode_32(&p, *result);
4386         } else {
4387                 buf_size = 0;
4388         }
4389
4390         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4391                                    &rbd_dev->header_oloc, notify_id, cookie,
4392                                    buf, buf_size);
4393         if (ret)
4394                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4395 }
4396
4397 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4398                                    u64 cookie)
4399 {
4400         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4401         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4402 }
4403
4404 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4405                                           u64 notify_id, u64 cookie, s32 result)
4406 {
4407         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4408         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4409 }
4410
4411 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4412                          u64 notifier_id, void *data, size_t data_len)
4413 {
4414         struct rbd_device *rbd_dev = arg;
4415         void *p = data;
4416         void *const end = p + data_len;
4417         u8 struct_v = 0;
4418         u32 len;
4419         u32 notify_op;
4420         int ret;
4421
4422         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4423              __func__, rbd_dev, cookie, notify_id, data_len);
4424         if (data_len) {
4425                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4426                                           &struct_v, &len);
4427                 if (ret) {
4428                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4429                                  ret);
4430                         return;
4431                 }
4432
4433                 notify_op = ceph_decode_32(&p);
4434         } else {
4435                 /* legacy notification for header updates */
4436                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4437                 len = 0;
4438         }
4439
4440         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4441         switch (notify_op) {
4442         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4443                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4444                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445                 break;
4446         case RBD_NOTIFY_OP_RELEASED_LOCK:
4447                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4448                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4449                 break;
4450         case RBD_NOTIFY_OP_REQUEST_LOCK:
4451                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4452                 if (ret <= 0)
4453                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4454                                                       cookie, ret);
4455                 else
4456                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4457                 break;
4458         case RBD_NOTIFY_OP_HEADER_UPDATE:
4459                 ret = rbd_dev_refresh(rbd_dev);
4460                 if (ret)
4461                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4462
4463                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4464                 break;
4465         default:
4466                 if (rbd_is_lock_owner(rbd_dev))
4467                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4468                                                       cookie, -EOPNOTSUPP);
4469                 else
4470                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4471                 break;
4472         }
4473 }
4474
4475 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4476
4477 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4478 {
4479         struct rbd_device *rbd_dev = arg;
4480
4481         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4482
4483         down_write(&rbd_dev->lock_rwsem);
4484         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4485         up_write(&rbd_dev->lock_rwsem);
4486
4487         mutex_lock(&rbd_dev->watch_mutex);
4488         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4489                 __rbd_unregister_watch(rbd_dev);
4490                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4491
4492                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4493         }
4494         mutex_unlock(&rbd_dev->watch_mutex);
4495 }
4496
4497 /*
4498  * watch_mutex must be locked
4499  */
4500 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4501 {
4502         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4503         struct ceph_osd_linger_request *handle;
4504
4505         rbd_assert(!rbd_dev->watch_handle);
4506         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4507
4508         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4509                                  &rbd_dev->header_oloc, rbd_watch_cb,
4510                                  rbd_watch_errcb, rbd_dev);
4511         if (IS_ERR(handle))
4512                 return PTR_ERR(handle);
4513
4514         rbd_dev->watch_handle = handle;
4515         return 0;
4516 }
4517
4518 /*
4519  * watch_mutex must be locked
4520  */
4521 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4522 {
4523         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4524         int ret;
4525
4526         rbd_assert(rbd_dev->watch_handle);
4527         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4528
4529         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4530         if (ret)
4531                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4532
4533         rbd_dev->watch_handle = NULL;
4534 }
4535
4536 static int rbd_register_watch(struct rbd_device *rbd_dev)
4537 {
4538         int ret;
4539
4540         mutex_lock(&rbd_dev->watch_mutex);
4541         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4542         ret = __rbd_register_watch(rbd_dev);
4543         if (ret)
4544                 goto out;
4545
4546         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4547         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4548
4549 out:
4550         mutex_unlock(&rbd_dev->watch_mutex);
4551         return ret;
4552 }
4553
4554 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4555 {
4556         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4557
4558         cancel_work_sync(&rbd_dev->acquired_lock_work);
4559         cancel_work_sync(&rbd_dev->released_lock_work);
4560         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4561         cancel_work_sync(&rbd_dev->unlock_work);
4562 }
4563
4564 /*
4565  * header_rwsem must not be held to avoid a deadlock with
4566  * rbd_dev_refresh() when flushing notifies.
4567  */
4568 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4569 {
4570         cancel_tasks_sync(rbd_dev);
4571
4572         mutex_lock(&rbd_dev->watch_mutex);
4573         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4574                 __rbd_unregister_watch(rbd_dev);
4575         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4576         mutex_unlock(&rbd_dev->watch_mutex);
4577
4578         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4579         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4580 }
4581
4582 /*
4583  * lock_rwsem must be held for write
4584  */
4585 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4586 {
4587         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4588         char cookie[32];
4589         int ret;
4590
4591         if (!rbd_quiesce_lock(rbd_dev))
4592                 return;
4593
4594         format_lock_cookie(rbd_dev, cookie);
4595         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4596                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4597                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4598                                   RBD_LOCK_TAG, cookie);
4599         if (ret) {
4600                 if (ret != -EOPNOTSUPP)
4601                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4602                                  ret);
4603
4604                 /*
4605                  * Lock cookie cannot be updated on older OSDs, so do
4606                  * a manual release and queue an acquire.
4607                  */
4608                 __rbd_release_lock(rbd_dev);
4609                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4610         } else {
4611                 __rbd_lock(rbd_dev, cookie);
4612                 wake_lock_waiters(rbd_dev, 0);
4613         }
4614 }
4615
4616 static void rbd_reregister_watch(struct work_struct *work)
4617 {
4618         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4619                                             struct rbd_device, watch_dwork);
4620         int ret;
4621
4622         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4623
4624         mutex_lock(&rbd_dev->watch_mutex);
4625         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4626                 mutex_unlock(&rbd_dev->watch_mutex);
4627                 return;
4628         }
4629
4630         ret = __rbd_register_watch(rbd_dev);
4631         if (ret) {
4632                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4633                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4634                         queue_delayed_work(rbd_dev->task_wq,
4635                                            &rbd_dev->watch_dwork,
4636                                            RBD_RETRY_DELAY);
4637                         mutex_unlock(&rbd_dev->watch_mutex);
4638                         return;
4639                 }
4640
4641                 mutex_unlock(&rbd_dev->watch_mutex);
4642                 down_write(&rbd_dev->lock_rwsem);
4643                 wake_lock_waiters(rbd_dev, ret);
4644                 up_write(&rbd_dev->lock_rwsem);
4645                 return;
4646         }
4647
4648         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4649         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4650         mutex_unlock(&rbd_dev->watch_mutex);
4651
4652         down_write(&rbd_dev->lock_rwsem);
4653         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4654                 rbd_reacquire_lock(rbd_dev);
4655         up_write(&rbd_dev->lock_rwsem);
4656
4657         ret = rbd_dev_refresh(rbd_dev);
4658         if (ret)
4659                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4660 }
4661
4662 /*
4663  * Synchronous osd object method call.  Returns the number of bytes
4664  * returned in the outbound buffer, or a negative error code.
4665  */
4666 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4667                              struct ceph_object_id *oid,
4668                              struct ceph_object_locator *oloc,
4669                              const char *method_name,
4670                              const void *outbound,
4671                              size_t outbound_size,
4672                              void *inbound,
4673                              size_t inbound_size)
4674 {
4675         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4676         struct page *req_page = NULL;
4677         struct page *reply_page;
4678         int ret;
4679
4680         /*
4681          * Method calls are ultimately read operations.  The result
4682          * should placed into the inbound buffer provided.  They
4683          * also supply outbound data--parameters for the object
4684          * method.  Currently if this is present it will be a
4685          * snapshot id.
4686          */
4687         if (outbound) {
4688                 if (outbound_size > PAGE_SIZE)
4689                         return -E2BIG;
4690
4691                 req_page = alloc_page(GFP_KERNEL);
4692                 if (!req_page)
4693                         return -ENOMEM;
4694
4695                 memcpy(page_address(req_page), outbound, outbound_size);
4696         }
4697
4698         reply_page = alloc_page(GFP_KERNEL);
4699         if (!reply_page) {
4700                 if (req_page)
4701                         __free_page(req_page);
4702                 return -ENOMEM;
4703         }
4704
4705         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4706                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4707                              &reply_page, &inbound_size);
4708         if (!ret) {
4709                 memcpy(inbound, page_address(reply_page), inbound_size);
4710                 ret = inbound_size;
4711         }
4712
4713         if (req_page)
4714                 __free_page(req_page);
4715         __free_page(reply_page);
4716         return ret;
4717 }
4718
4719 static void rbd_queue_workfn(struct work_struct *work)
4720 {
4721         struct rbd_img_request *img_request =
4722             container_of(work, struct rbd_img_request, work);
4723         struct rbd_device *rbd_dev = img_request->rbd_dev;
4724         enum obj_operation_type op_type = img_request->op_type;
4725         struct request *rq = blk_mq_rq_from_pdu(img_request);
4726         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4727         u64 length = blk_rq_bytes(rq);
4728         u64 mapping_size;
4729         int result;
4730
4731         /* Ignore/skip any zero-length requests */
4732         if (!length) {
4733                 dout("%s: zero-length request\n", __func__);
4734                 result = 0;
4735                 goto err_img_request;
4736         }
4737
4738         blk_mq_start_request(rq);
4739
4740         down_read(&rbd_dev->header_rwsem);
4741         mapping_size = rbd_dev->mapping.size;
4742         rbd_img_capture_header(img_request);
4743         up_read(&rbd_dev->header_rwsem);
4744
4745         if (offset + length > mapping_size) {
4746                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4747                          length, mapping_size);
4748                 result = -EIO;
4749                 goto err_img_request;
4750         }
4751
4752         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4753              img_request, obj_op_name(op_type), offset, length);
4754
4755         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4756                 result = rbd_img_fill_nodata(img_request, offset, length);
4757         else
4758                 result = rbd_img_fill_from_bio(img_request, offset, length,
4759                                                rq->bio);
4760         if (result)
4761                 goto err_img_request;
4762
4763         rbd_img_handle_request(img_request, 0);
4764         return;
4765
4766 err_img_request:
4767         rbd_img_request_destroy(img_request);
4768         if (result)
4769                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4770                          obj_op_name(op_type), length, offset, result);
4771         blk_mq_end_request(rq, errno_to_blk_status(result));
4772 }
4773
4774 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4775                 const struct blk_mq_queue_data *bd)
4776 {
4777         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4778         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4779         enum obj_operation_type op_type;
4780
4781         switch (req_op(bd->rq)) {
4782         case REQ_OP_DISCARD:
4783                 op_type = OBJ_OP_DISCARD;
4784                 break;
4785         case REQ_OP_WRITE_ZEROES:
4786                 op_type = OBJ_OP_ZEROOUT;
4787                 break;
4788         case REQ_OP_WRITE:
4789                 op_type = OBJ_OP_WRITE;
4790                 break;
4791         case REQ_OP_READ:
4792                 op_type = OBJ_OP_READ;
4793                 break;
4794         default:
4795                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4796                 return BLK_STS_IOERR;
4797         }
4798
4799         rbd_img_request_init(img_req, rbd_dev, op_type);
4800
4801         if (rbd_img_is_write(img_req)) {
4802                 if (rbd_is_ro(rbd_dev)) {
4803                         rbd_warn(rbd_dev, "%s on read-only mapping",
4804                                  obj_op_name(img_req->op_type));
4805                         return BLK_STS_IOERR;
4806                 }
4807                 rbd_assert(!rbd_is_snap(rbd_dev));
4808         }
4809
4810         INIT_WORK(&img_req->work, rbd_queue_workfn);
4811         queue_work(rbd_wq, &img_req->work);
4812         return BLK_STS_OK;
4813 }
4814
4815 static void rbd_free_disk(struct rbd_device *rbd_dev)
4816 {
4817         put_disk(rbd_dev->disk);
4818         blk_mq_free_tag_set(&rbd_dev->tag_set);
4819         rbd_dev->disk = NULL;
4820 }
4821
4822 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4823                              struct ceph_object_id *oid,
4824                              struct ceph_object_locator *oloc,
4825                              void *buf, int buf_len)
4826
4827 {
4828         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4829         struct ceph_osd_request *req;
4830         struct page **pages;
4831         int num_pages = calc_pages_for(0, buf_len);
4832         int ret;
4833
4834         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4835         if (!req)
4836                 return -ENOMEM;
4837
4838         ceph_oid_copy(&req->r_base_oid, oid);
4839         ceph_oloc_copy(&req->r_base_oloc, oloc);
4840         req->r_flags = CEPH_OSD_FLAG_READ;
4841
4842         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4843         if (IS_ERR(pages)) {
4844                 ret = PTR_ERR(pages);
4845                 goto out_req;
4846         }
4847
4848         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4849         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4850                                          true);
4851
4852         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4853         if (ret)
4854                 goto out_req;
4855
4856         ceph_osdc_start_request(osdc, req);
4857         ret = ceph_osdc_wait_request(osdc, req);
4858         if (ret >= 0)
4859                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4860
4861 out_req:
4862         ceph_osdc_put_request(req);
4863         return ret;
4864 }
4865
4866 /*
4867  * Read the complete header for the given rbd device.  On successful
4868  * return, the rbd_dev->header field will contain up-to-date
4869  * information about the image.
4870  */
4871 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4872                                   struct rbd_image_header *header,
4873                                   bool first_time)
4874 {
4875         struct rbd_image_header_ondisk *ondisk = NULL;
4876         u32 snap_count = 0;
4877         u64 names_size = 0;
4878         u32 want_count;
4879         int ret;
4880
4881         /*
4882          * The complete header will include an array of its 64-bit
4883          * snapshot ids, followed by the names of those snapshots as
4884          * a contiguous block of NUL-terminated strings.  Note that
4885          * the number of snapshots could change by the time we read
4886          * it in, in which case we re-read it.
4887          */
4888         do {
4889                 size_t size;
4890
4891                 kfree(ondisk);
4892
4893                 size = sizeof (*ondisk);
4894                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4895                 size += names_size;
4896                 ondisk = kmalloc(size, GFP_KERNEL);
4897                 if (!ondisk)
4898                         return -ENOMEM;
4899
4900                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4901                                         &rbd_dev->header_oloc, ondisk, size);
4902                 if (ret < 0)
4903                         goto out;
4904                 if ((size_t)ret < size) {
4905                         ret = -ENXIO;
4906                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4907                                 size, ret);
4908                         goto out;
4909                 }
4910                 if (!rbd_dev_ondisk_valid(ondisk)) {
4911                         ret = -ENXIO;
4912                         rbd_warn(rbd_dev, "invalid header");
4913                         goto out;
4914                 }
4915
4916                 names_size = le64_to_cpu(ondisk->snap_names_len);
4917                 want_count = snap_count;
4918                 snap_count = le32_to_cpu(ondisk->snap_count);
4919         } while (snap_count != want_count);
4920
4921         ret = rbd_header_from_disk(header, ondisk, first_time);
4922 out:
4923         kfree(ondisk);
4924
4925         return ret;
4926 }
4927
4928 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4929 {
4930         sector_t size;
4931
4932         /*
4933          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4934          * try to update its size.  If REMOVING is set, updating size
4935          * is just useless work since the device can't be opened.
4936          */
4937         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4938             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4939                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4940                 dout("setting size to %llu sectors", (unsigned long long)size);
4941                 set_capacity_and_notify(rbd_dev->disk, size);
4942         }
4943 }
4944
4945 static const struct blk_mq_ops rbd_mq_ops = {
4946         .queue_rq       = rbd_queue_rq,
4947 };
4948
4949 static int rbd_init_disk(struct rbd_device *rbd_dev)
4950 {
4951         struct gendisk *disk;
4952         struct request_queue *q;
4953         unsigned int objset_bytes =
4954             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4955         struct queue_limits lim = {
4956                 .max_hw_sectors         = objset_bytes >> SECTOR_SHIFT,
4957                 .max_user_sectors       = objset_bytes >> SECTOR_SHIFT,
4958                 .io_min                 = rbd_dev->opts->alloc_size,
4959                 .io_opt                 = rbd_dev->opts->alloc_size,
4960                 .max_segments           = USHRT_MAX,
4961                 .max_segment_size       = UINT_MAX,
4962         };
4963         int err;
4964
4965         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4966         rbd_dev->tag_set.ops = &rbd_mq_ops;
4967         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4968         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4969         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4970         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4971         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4972
4973         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4974         if (err)
4975                 return err;
4976
4977         if (rbd_dev->opts->trim) {
4978                 lim.discard_granularity = rbd_dev->opts->alloc_size;
4979                 lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT;
4980                 lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT;
4981         }
4982
4983         disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev);
4984         if (IS_ERR(disk)) {
4985                 err = PTR_ERR(disk);
4986                 goto out_tag_set;
4987         }
4988         q = disk->queue;
4989
4990         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4991                  rbd_dev->dev_id);
4992         disk->major = rbd_dev->major;
4993         disk->first_minor = rbd_dev->minor;
4994         if (single_major)
4995                 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4996         else
4997                 disk->minors = RBD_MINORS_PER_MAJOR;
4998         disk->fops = &rbd_bd_ops;
4999         disk->private_data = rbd_dev;
5000
5001         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5002         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5003
5004         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5005                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5006
5007         rbd_dev->disk = disk;
5008
5009         return 0;
5010 out_tag_set:
5011         blk_mq_free_tag_set(&rbd_dev->tag_set);
5012         return err;
5013 }
5014
5015 /*
5016   sysfs
5017 */
5018
5019 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5020 {
5021         return container_of(dev, struct rbd_device, dev);
5022 }
5023
5024 static ssize_t rbd_size_show(struct device *dev,
5025                              struct device_attribute *attr, char *buf)
5026 {
5027         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5028
5029         return sprintf(buf, "%llu\n",
5030                 (unsigned long long)rbd_dev->mapping.size);
5031 }
5032
5033 static ssize_t rbd_features_show(struct device *dev,
5034                              struct device_attribute *attr, char *buf)
5035 {
5036         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5037
5038         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5039 }
5040
5041 static ssize_t rbd_major_show(struct device *dev,
5042                               struct device_attribute *attr, char *buf)
5043 {
5044         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5045
5046         if (rbd_dev->major)
5047                 return sprintf(buf, "%d\n", rbd_dev->major);
5048
5049         return sprintf(buf, "(none)\n");
5050 }
5051
5052 static ssize_t rbd_minor_show(struct device *dev,
5053                               struct device_attribute *attr, char *buf)
5054 {
5055         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5056
5057         return sprintf(buf, "%d\n", rbd_dev->minor);
5058 }
5059
5060 static ssize_t rbd_client_addr_show(struct device *dev,
5061                                     struct device_attribute *attr, char *buf)
5062 {
5063         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5064         struct ceph_entity_addr *client_addr =
5065             ceph_client_addr(rbd_dev->rbd_client->client);
5066
5067         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5068                        le32_to_cpu(client_addr->nonce));
5069 }
5070
5071 static ssize_t rbd_client_id_show(struct device *dev,
5072                                   struct device_attribute *attr, char *buf)
5073 {
5074         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5075
5076         return sprintf(buf, "client%lld\n",
5077                        ceph_client_gid(rbd_dev->rbd_client->client));
5078 }
5079
5080 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5081                                      struct device_attribute *attr, char *buf)
5082 {
5083         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084
5085         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5086 }
5087
5088 static ssize_t rbd_config_info_show(struct device *dev,
5089                                     struct device_attribute *attr, char *buf)
5090 {
5091         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5092
5093         if (!capable(CAP_SYS_ADMIN))
5094                 return -EPERM;
5095
5096         return sprintf(buf, "%s\n", rbd_dev->config_info);
5097 }
5098
5099 static ssize_t rbd_pool_show(struct device *dev,
5100                              struct device_attribute *attr, char *buf)
5101 {
5102         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5103
5104         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5105 }
5106
5107 static ssize_t rbd_pool_id_show(struct device *dev,
5108                              struct device_attribute *attr, char *buf)
5109 {
5110         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5111
5112         return sprintf(buf, "%llu\n",
5113                         (unsigned long long) rbd_dev->spec->pool_id);
5114 }
5115
5116 static ssize_t rbd_pool_ns_show(struct device *dev,
5117                                 struct device_attribute *attr, char *buf)
5118 {
5119         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5120
5121         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5122 }
5123
5124 static ssize_t rbd_name_show(struct device *dev,
5125                              struct device_attribute *attr, char *buf)
5126 {
5127         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128
5129         if (rbd_dev->spec->image_name)
5130                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5131
5132         return sprintf(buf, "(unknown)\n");
5133 }
5134
5135 static ssize_t rbd_image_id_show(struct device *dev,
5136                              struct device_attribute *attr, char *buf)
5137 {
5138         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5139
5140         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5141 }
5142
5143 /*
5144  * Shows the name of the currently-mapped snapshot (or
5145  * RBD_SNAP_HEAD_NAME for the base image).
5146  */
5147 static ssize_t rbd_snap_show(struct device *dev,
5148                              struct device_attribute *attr,
5149                              char *buf)
5150 {
5151         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5152
5153         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5154 }
5155
5156 static ssize_t rbd_snap_id_show(struct device *dev,
5157                                 struct device_attribute *attr, char *buf)
5158 {
5159         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5160
5161         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5162 }
5163
5164 /*
5165  * For a v2 image, shows the chain of parent images, separated by empty
5166  * lines.  For v1 images or if there is no parent, shows "(no parent
5167  * image)".
5168  */
5169 static ssize_t rbd_parent_show(struct device *dev,
5170                                struct device_attribute *attr,
5171                                char *buf)
5172 {
5173         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5174         ssize_t count = 0;
5175
5176         if (!rbd_dev->parent)
5177                 return sprintf(buf, "(no parent image)\n");
5178
5179         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5180                 struct rbd_spec *spec = rbd_dev->parent_spec;
5181
5182                 count += sprintf(&buf[count], "%s"
5183                             "pool_id %llu\npool_name %s\n"
5184                             "pool_ns %s\n"
5185                             "image_id %s\nimage_name %s\n"
5186                             "snap_id %llu\nsnap_name %s\n"
5187                             "overlap %llu\n",
5188                             !count ? "" : "\n", /* first? */
5189                             spec->pool_id, spec->pool_name,
5190                             spec->pool_ns ?: "",
5191                             spec->image_id, spec->image_name ?: "(unknown)",
5192                             spec->snap_id, spec->snap_name,
5193                             rbd_dev->parent_overlap);
5194         }
5195
5196         return count;
5197 }
5198
5199 static ssize_t rbd_image_refresh(struct device *dev,
5200                                  struct device_attribute *attr,
5201                                  const char *buf,
5202                                  size_t size)
5203 {
5204         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5205         int ret;
5206
5207         if (!capable(CAP_SYS_ADMIN))
5208                 return -EPERM;
5209
5210         ret = rbd_dev_refresh(rbd_dev);
5211         if (ret)
5212                 return ret;
5213
5214         return size;
5215 }
5216
5217 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5218 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5219 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5220 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5221 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5222 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5223 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5224 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5225 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5226 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5227 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5228 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5229 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5230 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5231 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5232 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5233 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5234
5235 static struct attribute *rbd_attrs[] = {
5236         &dev_attr_size.attr,
5237         &dev_attr_features.attr,
5238         &dev_attr_major.attr,
5239         &dev_attr_minor.attr,
5240         &dev_attr_client_addr.attr,
5241         &dev_attr_client_id.attr,
5242         &dev_attr_cluster_fsid.attr,
5243         &dev_attr_config_info.attr,
5244         &dev_attr_pool.attr,
5245         &dev_attr_pool_id.attr,
5246         &dev_attr_pool_ns.attr,
5247         &dev_attr_name.attr,
5248         &dev_attr_image_id.attr,
5249         &dev_attr_current_snap.attr,
5250         &dev_attr_snap_id.attr,
5251         &dev_attr_parent.attr,
5252         &dev_attr_refresh.attr,
5253         NULL
5254 };
5255
5256 static struct attribute_group rbd_attr_group = {
5257         .attrs = rbd_attrs,
5258 };
5259
5260 static const struct attribute_group *rbd_attr_groups[] = {
5261         &rbd_attr_group,
5262         NULL
5263 };
5264
5265 static void rbd_dev_release(struct device *dev);
5266
5267 static const struct device_type rbd_device_type = {
5268         .name           = "rbd",
5269         .groups         = rbd_attr_groups,
5270         .release        = rbd_dev_release,
5271 };
5272
5273 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5274 {
5275         kref_get(&spec->kref);
5276
5277         return spec;
5278 }
5279
5280 static void rbd_spec_free(struct kref *kref);
5281 static void rbd_spec_put(struct rbd_spec *spec)
5282 {
5283         if (spec)
5284                 kref_put(&spec->kref, rbd_spec_free);
5285 }
5286
5287 static struct rbd_spec *rbd_spec_alloc(void)
5288 {
5289         struct rbd_spec *spec;
5290
5291         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5292         if (!spec)
5293                 return NULL;
5294
5295         spec->pool_id = CEPH_NOPOOL;
5296         spec->snap_id = CEPH_NOSNAP;
5297         kref_init(&spec->kref);
5298
5299         return spec;
5300 }
5301
5302 static void rbd_spec_free(struct kref *kref)
5303 {
5304         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5305
5306         kfree(spec->pool_name);
5307         kfree(spec->pool_ns);
5308         kfree(spec->image_id);
5309         kfree(spec->image_name);
5310         kfree(spec->snap_name);
5311         kfree(spec);
5312 }
5313
5314 static void rbd_dev_free(struct rbd_device *rbd_dev)
5315 {
5316         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5317         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5318
5319         ceph_oid_destroy(&rbd_dev->header_oid);
5320         ceph_oloc_destroy(&rbd_dev->header_oloc);
5321         kfree(rbd_dev->config_info);
5322
5323         rbd_put_client(rbd_dev->rbd_client);
5324         rbd_spec_put(rbd_dev->spec);
5325         kfree(rbd_dev->opts);
5326         kfree(rbd_dev);
5327 }
5328
5329 static void rbd_dev_release(struct device *dev)
5330 {
5331         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5332         bool need_put = !!rbd_dev->opts;
5333
5334         if (need_put) {
5335                 destroy_workqueue(rbd_dev->task_wq);
5336                 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5337         }
5338
5339         rbd_dev_free(rbd_dev);
5340
5341         /*
5342          * This is racy, but way better than putting module outside of
5343          * the release callback.  The race window is pretty small, so
5344          * doing something similar to dm (dm-builtin.c) is overkill.
5345          */
5346         if (need_put)
5347                 module_put(THIS_MODULE);
5348 }
5349
5350 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5351 {
5352         struct rbd_device *rbd_dev;
5353
5354         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5355         if (!rbd_dev)
5356                 return NULL;
5357
5358         spin_lock_init(&rbd_dev->lock);
5359         INIT_LIST_HEAD(&rbd_dev->node);
5360         init_rwsem(&rbd_dev->header_rwsem);
5361
5362         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5363         ceph_oid_init(&rbd_dev->header_oid);
5364         rbd_dev->header_oloc.pool = spec->pool_id;
5365         if (spec->pool_ns) {
5366                 WARN_ON(!*spec->pool_ns);
5367                 rbd_dev->header_oloc.pool_ns =
5368                     ceph_find_or_create_string(spec->pool_ns,
5369                                                strlen(spec->pool_ns));
5370         }
5371
5372         mutex_init(&rbd_dev->watch_mutex);
5373         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5374         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5375
5376         init_rwsem(&rbd_dev->lock_rwsem);
5377         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5378         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5379         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5380         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5381         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5382         spin_lock_init(&rbd_dev->lock_lists_lock);
5383         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5384         INIT_LIST_HEAD(&rbd_dev->running_list);
5385         init_completion(&rbd_dev->acquire_wait);
5386         init_completion(&rbd_dev->releasing_wait);
5387
5388         spin_lock_init(&rbd_dev->object_map_lock);
5389
5390         rbd_dev->dev.bus = &rbd_bus_type;
5391         rbd_dev->dev.type = &rbd_device_type;
5392         rbd_dev->dev.parent = &rbd_root_dev;
5393         device_initialize(&rbd_dev->dev);
5394
5395         return rbd_dev;
5396 }
5397
5398 /*
5399  * Create a mapping rbd_dev.
5400  */
5401 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5402                                          struct rbd_spec *spec,
5403                                          struct rbd_options *opts)
5404 {
5405         struct rbd_device *rbd_dev;
5406
5407         rbd_dev = __rbd_dev_create(spec);
5408         if (!rbd_dev)
5409                 return NULL;
5410
5411         /* get an id and fill in device name */
5412         rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida,
5413                                         minor_to_rbd_dev_id(1 << MINORBITS) - 1,
5414                                         GFP_KERNEL);
5415         if (rbd_dev->dev_id < 0)
5416                 goto fail_rbd_dev;
5417
5418         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5419         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5420                                                    rbd_dev->name);
5421         if (!rbd_dev->task_wq)
5422                 goto fail_dev_id;
5423
5424         /* we have a ref from do_rbd_add() */
5425         __module_get(THIS_MODULE);
5426
5427         rbd_dev->rbd_client = rbdc;
5428         rbd_dev->spec = spec;
5429         rbd_dev->opts = opts;
5430
5431         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5432         return rbd_dev;
5433
5434 fail_dev_id:
5435         ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5436 fail_rbd_dev:
5437         rbd_dev_free(rbd_dev);
5438         return NULL;
5439 }
5440
5441 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5442 {
5443         if (rbd_dev)
5444                 put_device(&rbd_dev->dev);
5445 }
5446
5447 /*
5448  * Get the size and object order for an image snapshot, or if
5449  * snap_id is CEPH_NOSNAP, gets this information for the base
5450  * image.
5451  */
5452 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5453                                 u8 *order, u64 *snap_size)
5454 {
5455         __le64 snapid = cpu_to_le64(snap_id);
5456         int ret;
5457         struct {
5458                 u8 order;
5459                 __le64 size;
5460         } __attribute__ ((packed)) size_buf = { 0 };
5461
5462         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5463                                   &rbd_dev->header_oloc, "get_size",
5464                                   &snapid, sizeof(snapid),
5465                                   &size_buf, sizeof(size_buf));
5466         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5467         if (ret < 0)
5468                 return ret;
5469         if (ret < sizeof (size_buf))
5470                 return -ERANGE;
5471
5472         if (order) {
5473                 *order = size_buf.order;
5474                 dout("  order %u", (unsigned int)*order);
5475         }
5476         *snap_size = le64_to_cpu(size_buf.size);
5477
5478         dout("  snap_id 0x%016llx snap_size = %llu\n",
5479                 (unsigned long long)snap_id,
5480                 (unsigned long long)*snap_size);
5481
5482         return 0;
5483 }
5484
5485 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5486                                     char **pobject_prefix)
5487 {
5488         size_t size;
5489         void *reply_buf;
5490         char *object_prefix;
5491         int ret;
5492         void *p;
5493
5494         /* Response will be an encoded string, which includes a length */
5495         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5496         reply_buf = kzalloc(size, GFP_KERNEL);
5497         if (!reply_buf)
5498                 return -ENOMEM;
5499
5500         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5501                                   &rbd_dev->header_oloc, "get_object_prefix",
5502                                   NULL, 0, reply_buf, size);
5503         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5504         if (ret < 0)
5505                 goto out;
5506
5507         p = reply_buf;
5508         object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5509                                                     GFP_NOIO);
5510         if (IS_ERR(object_prefix)) {
5511                 ret = PTR_ERR(object_prefix);
5512                 goto out;
5513         }
5514         ret = 0;
5515
5516         *pobject_prefix = object_prefix;
5517         dout("  object_prefix = %s\n", object_prefix);
5518 out:
5519         kfree(reply_buf);
5520
5521         return ret;
5522 }
5523
5524 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5525                                      bool read_only, u64 *snap_features)
5526 {
5527         struct {
5528                 __le64 snap_id;
5529                 u8 read_only;
5530         } features_in;
5531         struct {
5532                 __le64 features;
5533                 __le64 incompat;
5534         } __attribute__ ((packed)) features_buf = { 0 };
5535         u64 unsup;
5536         int ret;
5537
5538         features_in.snap_id = cpu_to_le64(snap_id);
5539         features_in.read_only = read_only;
5540
5541         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5542                                   &rbd_dev->header_oloc, "get_features",
5543                                   &features_in, sizeof(features_in),
5544                                   &features_buf, sizeof(features_buf));
5545         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5546         if (ret < 0)
5547                 return ret;
5548         if (ret < sizeof (features_buf))
5549                 return -ERANGE;
5550
5551         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5552         if (unsup) {
5553                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5554                          unsup);
5555                 return -ENXIO;
5556         }
5557
5558         *snap_features = le64_to_cpu(features_buf.features);
5559
5560         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5561                 (unsigned long long)snap_id,
5562                 (unsigned long long)*snap_features,
5563                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5564
5565         return 0;
5566 }
5567
5568 /*
5569  * These are generic image flags, but since they are used only for
5570  * object map, store them in rbd_dev->object_map_flags.
5571  *
5572  * For the same reason, this function is called only on object map
5573  * (re)load and not on header refresh.
5574  */
5575 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5576 {
5577         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5578         __le64 flags;
5579         int ret;
5580
5581         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5582                                   &rbd_dev->header_oloc, "get_flags",
5583                                   &snapid, sizeof(snapid),
5584                                   &flags, sizeof(flags));
5585         if (ret < 0)
5586                 return ret;
5587         if (ret < sizeof(flags))
5588                 return -EBADMSG;
5589
5590         rbd_dev->object_map_flags = le64_to_cpu(flags);
5591         return 0;
5592 }
5593
5594 struct parent_image_info {
5595         u64             pool_id;
5596         const char      *pool_ns;
5597         const char      *image_id;
5598         u64             snap_id;
5599
5600         bool            has_overlap;
5601         u64             overlap;
5602 };
5603
5604 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5605 {
5606         kfree(pii->pool_ns);
5607         kfree(pii->image_id);
5608
5609         memset(pii, 0, sizeof(*pii));
5610 }
5611
5612 /*
5613  * The caller is responsible for @pii.
5614  */
5615 static int decode_parent_image_spec(void **p, void *end,
5616                                     struct parent_image_info *pii)
5617 {
5618         u8 struct_v;
5619         u32 struct_len;
5620         int ret;
5621
5622         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5623                                   &struct_v, &struct_len);
5624         if (ret)
5625                 return ret;
5626
5627         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5628         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5629         if (IS_ERR(pii->pool_ns)) {
5630                 ret = PTR_ERR(pii->pool_ns);
5631                 pii->pool_ns = NULL;
5632                 return ret;
5633         }
5634         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5635         if (IS_ERR(pii->image_id)) {
5636                 ret = PTR_ERR(pii->image_id);
5637                 pii->image_id = NULL;
5638                 return ret;
5639         }
5640         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5641         return 0;
5642
5643 e_inval:
5644         return -EINVAL;
5645 }
5646
5647 static int __get_parent_info(struct rbd_device *rbd_dev,
5648                              struct page *req_page,
5649                              struct page *reply_page,
5650                              struct parent_image_info *pii)
5651 {
5652         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5653         size_t reply_len = PAGE_SIZE;
5654         void *p, *end;
5655         int ret;
5656
5657         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5658                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5659                              req_page, sizeof(u64), &reply_page, &reply_len);
5660         if (ret)
5661                 return ret == -EOPNOTSUPP ? 1 : ret;
5662
5663         p = page_address(reply_page);
5664         end = p + reply_len;
5665         ret = decode_parent_image_spec(&p, end, pii);
5666         if (ret)
5667                 return ret;
5668
5669         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5670                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5671                              req_page, sizeof(u64), &reply_page, &reply_len);
5672         if (ret)
5673                 return ret;
5674
5675         p = page_address(reply_page);
5676         end = p + reply_len;
5677         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5678         if (pii->has_overlap)
5679                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5680
5681         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5682              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5683              pii->has_overlap, pii->overlap);
5684         return 0;
5685
5686 e_inval:
5687         return -EINVAL;
5688 }
5689
5690 /*
5691  * The caller is responsible for @pii.
5692  */
5693 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5694                                     struct page *req_page,
5695                                     struct page *reply_page,
5696                                     struct parent_image_info *pii)
5697 {
5698         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5699         size_t reply_len = PAGE_SIZE;
5700         void *p, *end;
5701         int ret;
5702
5703         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5704                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5705                              req_page, sizeof(u64), &reply_page, &reply_len);
5706         if (ret)
5707                 return ret;
5708
5709         p = page_address(reply_page);
5710         end = p + reply_len;
5711         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5712         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5713         if (IS_ERR(pii->image_id)) {
5714                 ret = PTR_ERR(pii->image_id);
5715                 pii->image_id = NULL;
5716                 return ret;
5717         }
5718         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5719         pii->has_overlap = true;
5720         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5721
5722         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5723              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5724              pii->has_overlap, pii->overlap);
5725         return 0;
5726
5727 e_inval:
5728         return -EINVAL;
5729 }
5730
5731 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5732                                   struct parent_image_info *pii)
5733 {
5734         struct page *req_page, *reply_page;
5735         void *p;
5736         int ret;
5737
5738         req_page = alloc_page(GFP_KERNEL);
5739         if (!req_page)
5740                 return -ENOMEM;
5741
5742         reply_page = alloc_page(GFP_KERNEL);
5743         if (!reply_page) {
5744                 __free_page(req_page);
5745                 return -ENOMEM;
5746         }
5747
5748         p = page_address(req_page);
5749         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5750         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5751         if (ret > 0)
5752                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5753                                                pii);
5754
5755         __free_page(req_page);
5756         __free_page(reply_page);
5757         return ret;
5758 }
5759
5760 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5761 {
5762         struct rbd_spec *parent_spec;
5763         struct parent_image_info pii = { 0 };
5764         int ret;
5765
5766         parent_spec = rbd_spec_alloc();
5767         if (!parent_spec)
5768                 return -ENOMEM;
5769
5770         ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5771         if (ret)
5772                 goto out_err;
5773
5774         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5775                 goto out;       /* No parent?  No problem. */
5776
5777         /* The ceph file layout needs to fit pool id in 32 bits */
5778
5779         ret = -EIO;
5780         if (pii.pool_id > (u64)U32_MAX) {
5781                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5782                         (unsigned long long)pii.pool_id, U32_MAX);
5783                 goto out_err;
5784         }
5785
5786         /*
5787          * The parent won't change except when the clone is flattened,
5788          * so we only need to record the parent image spec once.
5789          */
5790         parent_spec->pool_id = pii.pool_id;
5791         if (pii.pool_ns && *pii.pool_ns) {
5792                 parent_spec->pool_ns = pii.pool_ns;
5793                 pii.pool_ns = NULL;
5794         }
5795         parent_spec->image_id = pii.image_id;
5796         pii.image_id = NULL;
5797         parent_spec->snap_id = pii.snap_id;
5798
5799         rbd_assert(!rbd_dev->parent_spec);
5800         rbd_dev->parent_spec = parent_spec;
5801         parent_spec = NULL;     /* rbd_dev now owns this */
5802
5803         /*
5804          * Record the parent overlap.  If it's zero, issue a warning as
5805          * we will proceed as if there is no parent.
5806          */
5807         if (!pii.overlap)
5808                 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5809         rbd_dev->parent_overlap = pii.overlap;
5810
5811 out:
5812         ret = 0;
5813 out_err:
5814         rbd_parent_info_cleanup(&pii);
5815         rbd_spec_put(parent_spec);
5816         return ret;
5817 }
5818
5819 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5820                                     u64 *stripe_unit, u64 *stripe_count)
5821 {
5822         struct {
5823                 __le64 stripe_unit;
5824                 __le64 stripe_count;
5825         } __attribute__ ((packed)) striping_info_buf = { 0 };
5826         size_t size = sizeof (striping_info_buf);
5827         int ret;
5828
5829         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5830                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5831                                 NULL, 0, &striping_info_buf, size);
5832         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5833         if (ret < 0)
5834                 return ret;
5835         if (ret < size)
5836                 return -ERANGE;
5837
5838         *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5839         *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5840         dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5841              *stripe_count);
5842
5843         return 0;
5844 }
5845
5846 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5847 {
5848         __le64 data_pool_buf;
5849         int ret;
5850
5851         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5852                                   &rbd_dev->header_oloc, "get_data_pool",
5853                                   NULL, 0, &data_pool_buf,
5854                                   sizeof(data_pool_buf));
5855         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5856         if (ret < 0)
5857                 return ret;
5858         if (ret < sizeof(data_pool_buf))
5859                 return -EBADMSG;
5860
5861         *data_pool_id = le64_to_cpu(data_pool_buf);
5862         dout("  data_pool_id = %lld\n", *data_pool_id);
5863         WARN_ON(*data_pool_id == CEPH_NOPOOL);
5864
5865         return 0;
5866 }
5867
5868 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5869 {
5870         CEPH_DEFINE_OID_ONSTACK(oid);
5871         size_t image_id_size;
5872         char *image_id;
5873         void *p;
5874         void *end;
5875         size_t size;
5876         void *reply_buf = NULL;
5877         size_t len = 0;
5878         char *image_name = NULL;
5879         int ret;
5880
5881         rbd_assert(!rbd_dev->spec->image_name);
5882
5883         len = strlen(rbd_dev->spec->image_id);
5884         image_id_size = sizeof (__le32) + len;
5885         image_id = kmalloc(image_id_size, GFP_KERNEL);
5886         if (!image_id)
5887                 return NULL;
5888
5889         p = image_id;
5890         end = image_id + image_id_size;
5891         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5892
5893         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5894         reply_buf = kmalloc(size, GFP_KERNEL);
5895         if (!reply_buf)
5896                 goto out;
5897
5898         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5899         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5900                                   "dir_get_name", image_id, image_id_size,
5901                                   reply_buf, size);
5902         if (ret < 0)
5903                 goto out;
5904         p = reply_buf;
5905         end = reply_buf + ret;
5906
5907         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5908         if (IS_ERR(image_name))
5909                 image_name = NULL;
5910         else
5911                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5912 out:
5913         kfree(reply_buf);
5914         kfree(image_id);
5915
5916         return image_name;
5917 }
5918
5919 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5920 {
5921         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5922         const char *snap_name;
5923         u32 which = 0;
5924
5925         /* Skip over names until we find the one we are looking for */
5926
5927         snap_name = rbd_dev->header.snap_names;
5928         while (which < snapc->num_snaps) {
5929                 if (!strcmp(name, snap_name))
5930                         return snapc->snaps[which];
5931                 snap_name += strlen(snap_name) + 1;
5932                 which++;
5933         }
5934         return CEPH_NOSNAP;
5935 }
5936
5937 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5938 {
5939         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5940         u32 which;
5941         bool found = false;
5942         u64 snap_id;
5943
5944         for (which = 0; !found && which < snapc->num_snaps; which++) {
5945                 const char *snap_name;
5946
5947                 snap_id = snapc->snaps[which];
5948                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5949                 if (IS_ERR(snap_name)) {
5950                         /* ignore no-longer existing snapshots */
5951                         if (PTR_ERR(snap_name) == -ENOENT)
5952                                 continue;
5953                         else
5954                                 break;
5955                 }
5956                 found = !strcmp(name, snap_name);
5957                 kfree(snap_name);
5958         }
5959         return found ? snap_id : CEPH_NOSNAP;
5960 }
5961
5962 /*
5963  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5964  * no snapshot by that name is found, or if an error occurs.
5965  */
5966 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5967 {
5968         if (rbd_dev->image_format == 1)
5969                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5970
5971         return rbd_v2_snap_id_by_name(rbd_dev, name);
5972 }
5973
5974 /*
5975  * An image being mapped will have everything but the snap id.
5976  */
5977 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5978 {
5979         struct rbd_spec *spec = rbd_dev->spec;
5980
5981         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5982         rbd_assert(spec->image_id && spec->image_name);
5983         rbd_assert(spec->snap_name);
5984
5985         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5986                 u64 snap_id;
5987
5988                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5989                 if (snap_id == CEPH_NOSNAP)
5990                         return -ENOENT;
5991
5992                 spec->snap_id = snap_id;
5993         } else {
5994                 spec->snap_id = CEPH_NOSNAP;
5995         }
5996
5997         return 0;
5998 }
5999
6000 /*
6001  * A parent image will have all ids but none of the names.
6002  *
6003  * All names in an rbd spec are dynamically allocated.  It's OK if we
6004  * can't figure out the name for an image id.
6005  */
6006 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6007 {
6008         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6009         struct rbd_spec *spec = rbd_dev->spec;
6010         const char *pool_name;
6011         const char *image_name;
6012         const char *snap_name;
6013         int ret;
6014
6015         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6016         rbd_assert(spec->image_id);
6017         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6018
6019         /* Get the pool name; we have to make our own copy of this */
6020
6021         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6022         if (!pool_name) {
6023                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6024                 return -EIO;
6025         }
6026         pool_name = kstrdup(pool_name, GFP_KERNEL);
6027         if (!pool_name)
6028                 return -ENOMEM;
6029
6030         /* Fetch the image name; tolerate failure here */
6031
6032         image_name = rbd_dev_image_name(rbd_dev);
6033         if (!image_name)
6034                 rbd_warn(rbd_dev, "unable to get image name");
6035
6036         /* Fetch the snapshot name */
6037
6038         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6039         if (IS_ERR(snap_name)) {
6040                 ret = PTR_ERR(snap_name);
6041                 goto out_err;
6042         }
6043
6044         spec->pool_name = pool_name;
6045         spec->image_name = image_name;
6046         spec->snap_name = snap_name;
6047
6048         return 0;
6049
6050 out_err:
6051         kfree(image_name);
6052         kfree(pool_name);
6053         return ret;
6054 }
6055
6056 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6057                                    struct ceph_snap_context **psnapc)
6058 {
6059         size_t size;
6060         int ret;
6061         void *reply_buf;
6062         void *p;
6063         void *end;
6064         u64 seq;
6065         u32 snap_count;
6066         struct ceph_snap_context *snapc;
6067         u32 i;
6068
6069         /*
6070          * We'll need room for the seq value (maximum snapshot id),
6071          * snapshot count, and array of that many snapshot ids.
6072          * For now we have a fixed upper limit on the number we're
6073          * prepared to receive.
6074          */
6075         size = sizeof (__le64) + sizeof (__le32) +
6076                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6077         reply_buf = kzalloc(size, GFP_KERNEL);
6078         if (!reply_buf)
6079                 return -ENOMEM;
6080
6081         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6082                                   &rbd_dev->header_oloc, "get_snapcontext",
6083                                   NULL, 0, reply_buf, size);
6084         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6085         if (ret < 0)
6086                 goto out;
6087
6088         p = reply_buf;
6089         end = reply_buf + ret;
6090         ret = -ERANGE;
6091         ceph_decode_64_safe(&p, end, seq, out);
6092         ceph_decode_32_safe(&p, end, snap_count, out);
6093
6094         /*
6095          * Make sure the reported number of snapshot ids wouldn't go
6096          * beyond the end of our buffer.  But before checking that,
6097          * make sure the computed size of the snapshot context we
6098          * allocate is representable in a size_t.
6099          */
6100         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6101                                  / sizeof (u64)) {
6102                 ret = -EINVAL;
6103                 goto out;
6104         }
6105         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6106                 goto out;
6107         ret = 0;
6108
6109         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6110         if (!snapc) {
6111                 ret = -ENOMEM;
6112                 goto out;
6113         }
6114         snapc->seq = seq;
6115         for (i = 0; i < snap_count; i++)
6116                 snapc->snaps[i] = ceph_decode_64(&p);
6117
6118         *psnapc = snapc;
6119         dout("  snap context seq = %llu, snap_count = %u\n",
6120                 (unsigned long long)seq, (unsigned int)snap_count);
6121 out:
6122         kfree(reply_buf);
6123
6124         return ret;
6125 }
6126
6127 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6128                                         u64 snap_id)
6129 {
6130         size_t size;
6131         void *reply_buf;
6132         __le64 snapid;
6133         int ret;
6134         void *p;
6135         void *end;
6136         char *snap_name;
6137
6138         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6139         reply_buf = kmalloc(size, GFP_KERNEL);
6140         if (!reply_buf)
6141                 return ERR_PTR(-ENOMEM);
6142
6143         snapid = cpu_to_le64(snap_id);
6144         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6145                                   &rbd_dev->header_oloc, "get_snapshot_name",
6146                                   &snapid, sizeof(snapid), reply_buf, size);
6147         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6148         if (ret < 0) {
6149                 snap_name = ERR_PTR(ret);
6150                 goto out;
6151         }
6152
6153         p = reply_buf;
6154         end = reply_buf + ret;
6155         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6156         if (IS_ERR(snap_name))
6157                 goto out;
6158
6159         dout("  snap_id 0x%016llx snap_name = %s\n",
6160                 (unsigned long long)snap_id, snap_name);
6161 out:
6162         kfree(reply_buf);
6163
6164         return snap_name;
6165 }
6166
6167 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6168                                   struct rbd_image_header *header,
6169                                   bool first_time)
6170 {
6171         int ret;
6172
6173         ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6174                                     first_time ? &header->obj_order : NULL,
6175                                     &header->image_size);
6176         if (ret)
6177                 return ret;
6178
6179         if (first_time) {
6180                 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6181                 if (ret)
6182                         return ret;
6183         }
6184
6185         ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6186         if (ret)
6187                 return ret;
6188
6189         return 0;
6190 }
6191
6192 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6193                                struct rbd_image_header *header,
6194                                bool first_time)
6195 {
6196         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6197         rbd_assert(!header->object_prefix && !header->snapc);
6198
6199         if (rbd_dev->image_format == 1)
6200                 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6201
6202         return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6203 }
6204
6205 /*
6206  * Skips over white space at *buf, and updates *buf to point to the
6207  * first found non-space character (if any). Returns the length of
6208  * the token (string of non-white space characters) found.  Note
6209  * that *buf must be terminated with '\0'.
6210  */
6211 static inline size_t next_token(const char **buf)
6212 {
6213         /*
6214         * These are the characters that produce nonzero for
6215         * isspace() in the "C" and "POSIX" locales.
6216         */
6217         static const char spaces[] = " \f\n\r\t\v";
6218
6219         *buf += strspn(*buf, spaces);   /* Find start of token */
6220
6221         return strcspn(*buf, spaces);   /* Return token length */
6222 }
6223
6224 /*
6225  * Finds the next token in *buf, dynamically allocates a buffer big
6226  * enough to hold a copy of it, and copies the token into the new
6227  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6228  * that a duplicate buffer is created even for a zero-length token.
6229  *
6230  * Returns a pointer to the newly-allocated duplicate, or a null
6231  * pointer if memory for the duplicate was not available.  If
6232  * the lenp argument is a non-null pointer, the length of the token
6233  * (not including the '\0') is returned in *lenp.
6234  *
6235  * If successful, the *buf pointer will be updated to point beyond
6236  * the end of the found token.
6237  *
6238  * Note: uses GFP_KERNEL for allocation.
6239  */
6240 static inline char *dup_token(const char **buf, size_t *lenp)
6241 {
6242         char *dup;
6243         size_t len;
6244
6245         len = next_token(buf);
6246         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6247         if (!dup)
6248                 return NULL;
6249         *(dup + len) = '\0';
6250         *buf += len;
6251
6252         if (lenp)
6253                 *lenp = len;
6254
6255         return dup;
6256 }
6257
6258 static int rbd_parse_param(struct fs_parameter *param,
6259                             struct rbd_parse_opts_ctx *pctx)
6260 {
6261         struct rbd_options *opt = pctx->opts;
6262         struct fs_parse_result result;
6263         struct p_log log = {.prefix = "rbd"};
6264         int token, ret;
6265
6266         ret = ceph_parse_param(param, pctx->copts, NULL);
6267         if (ret != -ENOPARAM)
6268                 return ret;
6269
6270         token = __fs_parse(&log, rbd_parameters, param, &result);
6271         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6272         if (token < 0) {
6273                 if (token == -ENOPARAM)
6274                         return inval_plog(&log, "Unknown parameter '%s'",
6275                                           param->key);
6276                 return token;
6277         }
6278
6279         switch (token) {
6280         case Opt_queue_depth:
6281                 if (result.uint_32 < 1)
6282                         goto out_of_range;
6283                 opt->queue_depth = result.uint_32;
6284                 break;
6285         case Opt_alloc_size:
6286                 if (result.uint_32 < SECTOR_SIZE)
6287                         goto out_of_range;
6288                 if (!is_power_of_2(result.uint_32))
6289                         return inval_plog(&log, "alloc_size must be a power of 2");
6290                 opt->alloc_size = result.uint_32;
6291                 break;
6292         case Opt_lock_timeout:
6293                 /* 0 is "wait forever" (i.e. infinite timeout) */
6294                 if (result.uint_32 > INT_MAX / 1000)
6295                         goto out_of_range;
6296                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6297                 break;
6298         case Opt_pool_ns:
6299                 kfree(pctx->spec->pool_ns);
6300                 pctx->spec->pool_ns = param->string;
6301                 param->string = NULL;
6302                 break;
6303         case Opt_compression_hint:
6304                 switch (result.uint_32) {
6305                 case Opt_compression_hint_none:
6306                         opt->alloc_hint_flags &=
6307                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6308                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6309                         break;
6310                 case Opt_compression_hint_compressible:
6311                         opt->alloc_hint_flags |=
6312                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6313                         opt->alloc_hint_flags &=
6314                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6315                         break;
6316                 case Opt_compression_hint_incompressible:
6317                         opt->alloc_hint_flags |=
6318                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6319                         opt->alloc_hint_flags &=
6320                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6321                         break;
6322                 default:
6323                         BUG();
6324                 }
6325                 break;
6326         case Opt_read_only:
6327                 opt->read_only = true;
6328                 break;
6329         case Opt_read_write:
6330                 opt->read_only = false;
6331                 break;
6332         case Opt_lock_on_read:
6333                 opt->lock_on_read = true;
6334                 break;
6335         case Opt_exclusive:
6336                 opt->exclusive = true;
6337                 break;
6338         case Opt_notrim:
6339                 opt->trim = false;
6340                 break;
6341         default:
6342                 BUG();
6343         }
6344
6345         return 0;
6346
6347 out_of_range:
6348         return inval_plog(&log, "%s out of range", param->key);
6349 }
6350
6351 /*
6352  * This duplicates most of generic_parse_monolithic(), untying it from
6353  * fs_context and skipping standard superblock and security options.
6354  */
6355 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6356 {
6357         char *key;
6358         int ret = 0;
6359
6360         dout("%s '%s'\n", __func__, options);
6361         while ((key = strsep(&options, ",")) != NULL) {
6362                 if (*key) {
6363                         struct fs_parameter param = {
6364                                 .key    = key,
6365                                 .type   = fs_value_is_flag,
6366                         };
6367                         char *value = strchr(key, '=');
6368                         size_t v_len = 0;
6369
6370                         if (value) {
6371                                 if (value == key)
6372                                         continue;
6373                                 *value++ = 0;
6374                                 v_len = strlen(value);
6375                                 param.string = kmemdup_nul(value, v_len,
6376                                                            GFP_KERNEL);
6377                                 if (!param.string)
6378                                         return -ENOMEM;
6379                                 param.type = fs_value_is_string;
6380                         }
6381                         param.size = v_len;
6382
6383                         ret = rbd_parse_param(&param, pctx);
6384                         kfree(param.string);
6385                         if (ret)
6386                                 break;
6387                 }
6388         }
6389
6390         return ret;
6391 }
6392
6393 /*
6394  * Parse the options provided for an "rbd add" (i.e., rbd image
6395  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6396  * and the data written is passed here via a NUL-terminated buffer.
6397  * Returns 0 if successful or an error code otherwise.
6398  *
6399  * The information extracted from these options is recorded in
6400  * the other parameters which return dynamically-allocated
6401  * structures:
6402  *  ceph_opts
6403  *      The address of a pointer that will refer to a ceph options
6404  *      structure.  Caller must release the returned pointer using
6405  *      ceph_destroy_options() when it is no longer needed.
6406  *  rbd_opts
6407  *      Address of an rbd options pointer.  Fully initialized by
6408  *      this function; caller must release with kfree().
6409  *  spec
6410  *      Address of an rbd image specification pointer.  Fully
6411  *      initialized by this function based on parsed options.
6412  *      Caller must release with rbd_spec_put().
6413  *
6414  * The options passed take this form:
6415  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6416  * where:
6417  *  <mon_addrs>
6418  *      A comma-separated list of one or more monitor addresses.
6419  *      A monitor address is an ip address, optionally followed
6420  *      by a port number (separated by a colon).
6421  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6422  *  <options>
6423  *      A comma-separated list of ceph and/or rbd options.
6424  *  <pool_name>
6425  *      The name of the rados pool containing the rbd image.
6426  *  <image_name>
6427  *      The name of the image in that pool to map.
6428  *  <snap_id>
6429  *      An optional snapshot id.  If provided, the mapping will
6430  *      present data from the image at the time that snapshot was
6431  *      created.  The image head is used if no snapshot id is
6432  *      provided.  Snapshot mappings are always read-only.
6433  */
6434 static int rbd_add_parse_args(const char *buf,
6435                                 struct ceph_options **ceph_opts,
6436                                 struct rbd_options **opts,
6437                                 struct rbd_spec **rbd_spec)
6438 {
6439         size_t len;
6440         char *options;
6441         const char *mon_addrs;
6442         char *snap_name;
6443         size_t mon_addrs_size;
6444         struct rbd_parse_opts_ctx pctx = { 0 };
6445         int ret;
6446
6447         /* The first four tokens are required */
6448
6449         len = next_token(&buf);
6450         if (!len) {
6451                 rbd_warn(NULL, "no monitor address(es) provided");
6452                 return -EINVAL;
6453         }
6454         mon_addrs = buf;
6455         mon_addrs_size = len;
6456         buf += len;
6457
6458         ret = -EINVAL;
6459         options = dup_token(&buf, NULL);
6460         if (!options)
6461                 return -ENOMEM;
6462         if (!*options) {
6463                 rbd_warn(NULL, "no options provided");
6464                 goto out_err;
6465         }
6466
6467         pctx.spec = rbd_spec_alloc();
6468         if (!pctx.spec)
6469                 goto out_mem;
6470
6471         pctx.spec->pool_name = dup_token(&buf, NULL);
6472         if (!pctx.spec->pool_name)
6473                 goto out_mem;
6474         if (!*pctx.spec->pool_name) {
6475                 rbd_warn(NULL, "no pool name provided");
6476                 goto out_err;
6477         }
6478
6479         pctx.spec->image_name = dup_token(&buf, NULL);
6480         if (!pctx.spec->image_name)
6481                 goto out_mem;
6482         if (!*pctx.spec->image_name) {
6483                 rbd_warn(NULL, "no image name provided");
6484                 goto out_err;
6485         }
6486
6487         /*
6488          * Snapshot name is optional; default is to use "-"
6489          * (indicating the head/no snapshot).
6490          */
6491         len = next_token(&buf);
6492         if (!len) {
6493                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6494                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6495         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6496                 ret = -ENAMETOOLONG;
6497                 goto out_err;
6498         }
6499         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6500         if (!snap_name)
6501                 goto out_mem;
6502         *(snap_name + len) = '\0';
6503         pctx.spec->snap_name = snap_name;
6504
6505         pctx.copts = ceph_alloc_options();
6506         if (!pctx.copts)
6507                 goto out_mem;
6508
6509         /* Initialize all rbd options to the defaults */
6510
6511         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6512         if (!pctx.opts)
6513                 goto out_mem;
6514
6515         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6516         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6517         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6518         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6519         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6520         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6521         pctx.opts->trim = RBD_TRIM_DEFAULT;
6522
6523         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6524                                  ',');
6525         if (ret)
6526                 goto out_err;
6527
6528         ret = rbd_parse_options(options, &pctx);
6529         if (ret)
6530                 goto out_err;
6531
6532         *ceph_opts = pctx.copts;
6533         *opts = pctx.opts;
6534         *rbd_spec = pctx.spec;
6535         kfree(options);
6536         return 0;
6537
6538 out_mem:
6539         ret = -ENOMEM;
6540 out_err:
6541         kfree(pctx.opts);
6542         ceph_destroy_options(pctx.copts);
6543         rbd_spec_put(pctx.spec);
6544         kfree(options);
6545         return ret;
6546 }
6547
6548 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6549 {
6550         down_write(&rbd_dev->lock_rwsem);
6551         if (__rbd_is_lock_owner(rbd_dev))
6552                 __rbd_release_lock(rbd_dev);
6553         up_write(&rbd_dev->lock_rwsem);
6554 }
6555
6556 /*
6557  * If the wait is interrupted, an error is returned even if the lock
6558  * was successfully acquired.  rbd_dev_image_unlock() will release it
6559  * if needed.
6560  */
6561 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6562 {
6563         long ret;
6564
6565         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6566                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6567                         return 0;
6568
6569                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6570                 return -EINVAL;
6571         }
6572
6573         if (rbd_is_ro(rbd_dev))
6574                 return 0;
6575
6576         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6577         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6578         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6579                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6580         if (ret > 0) {
6581                 ret = rbd_dev->acquire_err;
6582         } else {
6583                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6584                 if (!ret)
6585                         ret = -ETIMEDOUT;
6586
6587                 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6588         }
6589         if (ret)
6590                 return ret;
6591
6592         /*
6593          * The lock may have been released by now, unless automatic lock
6594          * transitions are disabled.
6595          */
6596         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6597         return 0;
6598 }
6599
6600 /*
6601  * An rbd format 2 image has a unique identifier, distinct from the
6602  * name given to it by the user.  Internally, that identifier is
6603  * what's used to specify the names of objects related to the image.
6604  *
6605  * A special "rbd id" object is used to map an rbd image name to its
6606  * id.  If that object doesn't exist, then there is no v2 rbd image
6607  * with the supplied name.
6608  *
6609  * This function will record the given rbd_dev's image_id field if
6610  * it can be determined, and in that case will return 0.  If any
6611  * errors occur a negative errno will be returned and the rbd_dev's
6612  * image_id field will be unchanged (and should be NULL).
6613  */
6614 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6615 {
6616         int ret;
6617         size_t size;
6618         CEPH_DEFINE_OID_ONSTACK(oid);
6619         void *response;
6620         char *image_id;
6621
6622         /*
6623          * When probing a parent image, the image id is already
6624          * known (and the image name likely is not).  There's no
6625          * need to fetch the image id again in this case.  We
6626          * do still need to set the image format though.
6627          */
6628         if (rbd_dev->spec->image_id) {
6629                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6630
6631                 return 0;
6632         }
6633
6634         /*
6635          * First, see if the format 2 image id file exists, and if
6636          * so, get the image's persistent id from it.
6637          */
6638         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6639                                rbd_dev->spec->image_name);
6640         if (ret)
6641                 return ret;
6642
6643         dout("rbd id object name is %s\n", oid.name);
6644
6645         /* Response will be an encoded string, which includes a length */
6646         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6647         response = kzalloc(size, GFP_NOIO);
6648         if (!response) {
6649                 ret = -ENOMEM;
6650                 goto out;
6651         }
6652
6653         /* If it doesn't exist we'll assume it's a format 1 image */
6654
6655         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6656                                   "get_id", NULL, 0,
6657                                   response, size);
6658         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6659         if (ret == -ENOENT) {
6660                 image_id = kstrdup("", GFP_KERNEL);
6661                 ret = image_id ? 0 : -ENOMEM;
6662                 if (!ret)
6663                         rbd_dev->image_format = 1;
6664         } else if (ret >= 0) {
6665                 void *p = response;
6666
6667                 image_id = ceph_extract_encoded_string(&p, p + ret,
6668                                                 NULL, GFP_NOIO);
6669                 ret = PTR_ERR_OR_ZERO(image_id);
6670                 if (!ret)
6671                         rbd_dev->image_format = 2;
6672         }
6673
6674         if (!ret) {
6675                 rbd_dev->spec->image_id = image_id;
6676                 dout("image_id is %s\n", image_id);
6677         }
6678 out:
6679         kfree(response);
6680         ceph_oid_destroy(&oid);
6681         return ret;
6682 }
6683
6684 /*
6685  * Undo whatever state changes are made by v1 or v2 header info
6686  * call.
6687  */
6688 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6689 {
6690         rbd_dev_parent_put(rbd_dev);
6691         rbd_object_map_free(rbd_dev);
6692         rbd_dev_mapping_clear(rbd_dev);
6693
6694         /* Free dynamic fields from the header, then zero it out */
6695
6696         rbd_image_header_cleanup(&rbd_dev->header);
6697 }
6698
6699 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6700                                      struct rbd_image_header *header)
6701 {
6702         int ret;
6703
6704         ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6705         if (ret)
6706                 return ret;
6707
6708         /*
6709          * Get the and check features for the image.  Currently the
6710          * features are assumed to never change.
6711          */
6712         ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6713                                         rbd_is_ro(rbd_dev), &header->features);
6714         if (ret)
6715                 return ret;
6716
6717         /* If the image supports fancy striping, get its parameters */
6718
6719         if (header->features & RBD_FEATURE_STRIPINGV2) {
6720                 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6721                                                &header->stripe_count);
6722                 if (ret)
6723                         return ret;
6724         }
6725
6726         if (header->features & RBD_FEATURE_DATA_POOL) {
6727                 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6728                 if (ret)
6729                         return ret;
6730         }
6731
6732         return 0;
6733 }
6734
6735 /*
6736  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6737  * rbd_dev_image_probe() recursion depth, which means it's also the
6738  * length of the already discovered part of the parent chain.
6739  */
6740 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6741 {
6742         struct rbd_device *parent = NULL;
6743         int ret;
6744
6745         if (!rbd_dev->parent_spec)
6746                 return 0;
6747
6748         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6749                 pr_info("parent chain is too long (%d)\n", depth);
6750                 ret = -EINVAL;
6751                 goto out_err;
6752         }
6753
6754         parent = __rbd_dev_create(rbd_dev->parent_spec);
6755         if (!parent) {
6756                 ret = -ENOMEM;
6757                 goto out_err;
6758         }
6759
6760         /*
6761          * Images related by parent/child relationships always share
6762          * rbd_client and spec/parent_spec, so bump their refcounts.
6763          */
6764         parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6765         parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6766
6767         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6768
6769         ret = rbd_dev_image_probe(parent, depth);
6770         if (ret < 0)
6771                 goto out_err;
6772
6773         rbd_dev->parent = parent;
6774         atomic_set(&rbd_dev->parent_ref, 1);
6775         return 0;
6776
6777 out_err:
6778         rbd_dev_unparent(rbd_dev);
6779         rbd_dev_destroy(parent);
6780         return ret;
6781 }
6782
6783 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6784 {
6785         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6786         rbd_free_disk(rbd_dev);
6787         if (!single_major)
6788                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6789 }
6790
6791 /*
6792  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6793  * upon return.
6794  */
6795 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6796 {
6797         int ret;
6798
6799         /* Record our major and minor device numbers. */
6800
6801         if (!single_major) {
6802                 ret = register_blkdev(0, rbd_dev->name);
6803                 if (ret < 0)
6804                         goto err_out_unlock;
6805
6806                 rbd_dev->major = ret;
6807                 rbd_dev->minor = 0;
6808         } else {
6809                 rbd_dev->major = rbd_major;
6810                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6811         }
6812
6813         /* Set up the blkdev mapping. */
6814
6815         ret = rbd_init_disk(rbd_dev);
6816         if (ret)
6817                 goto err_out_blkdev;
6818
6819         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6820         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6821
6822         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6823         if (ret)
6824                 goto err_out_disk;
6825
6826         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6827         up_write(&rbd_dev->header_rwsem);
6828         return 0;
6829
6830 err_out_disk:
6831         rbd_free_disk(rbd_dev);
6832 err_out_blkdev:
6833         if (!single_major)
6834                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6835 err_out_unlock:
6836         up_write(&rbd_dev->header_rwsem);
6837         return ret;
6838 }
6839
6840 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6841 {
6842         struct rbd_spec *spec = rbd_dev->spec;
6843         int ret;
6844
6845         /* Record the header object name for this rbd image. */
6846
6847         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6848         if (rbd_dev->image_format == 1)
6849                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6850                                        spec->image_name, RBD_SUFFIX);
6851         else
6852                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6853                                        RBD_HEADER_PREFIX, spec->image_id);
6854
6855         return ret;
6856 }
6857
6858 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6859 {
6860         if (!is_snap) {
6861                 pr_info("image %s/%s%s%s does not exist\n",
6862                         rbd_dev->spec->pool_name,
6863                         rbd_dev->spec->pool_ns ?: "",
6864                         rbd_dev->spec->pool_ns ? "/" : "",
6865                         rbd_dev->spec->image_name);
6866         } else {
6867                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6868                         rbd_dev->spec->pool_name,
6869                         rbd_dev->spec->pool_ns ?: "",
6870                         rbd_dev->spec->pool_ns ? "/" : "",
6871                         rbd_dev->spec->image_name,
6872                         rbd_dev->spec->snap_name);
6873         }
6874 }
6875
6876 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6877 {
6878         if (!rbd_is_ro(rbd_dev))
6879                 rbd_unregister_watch(rbd_dev);
6880
6881         rbd_dev_unprobe(rbd_dev);
6882         rbd_dev->image_format = 0;
6883         kfree(rbd_dev->spec->image_id);
6884         rbd_dev->spec->image_id = NULL;
6885 }
6886
6887 /*
6888  * Probe for the existence of the header object for the given rbd
6889  * device.  If this image is the one being mapped (i.e., not a
6890  * parent), initiate a watch on its header object before using that
6891  * object to get detailed information about the rbd image.
6892  *
6893  * On success, returns with header_rwsem held for write if called
6894  * with @depth == 0.
6895  */
6896 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6897 {
6898         bool need_watch = !rbd_is_ro(rbd_dev);
6899         int ret;
6900
6901         /*
6902          * Get the id from the image id object.  Unless there's an
6903          * error, rbd_dev->spec->image_id will be filled in with
6904          * a dynamically-allocated string, and rbd_dev->image_format
6905          * will be set to either 1 or 2.
6906          */
6907         ret = rbd_dev_image_id(rbd_dev);
6908         if (ret)
6909                 return ret;
6910
6911         ret = rbd_dev_header_name(rbd_dev);
6912         if (ret)
6913                 goto err_out_format;
6914
6915         if (need_watch) {
6916                 ret = rbd_register_watch(rbd_dev);
6917                 if (ret) {
6918                         if (ret == -ENOENT)
6919                                 rbd_print_dne(rbd_dev, false);
6920                         goto err_out_format;
6921                 }
6922         }
6923
6924         if (!depth)
6925                 down_write(&rbd_dev->header_rwsem);
6926
6927         ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6928         if (ret) {
6929                 if (ret == -ENOENT && !need_watch)
6930                         rbd_print_dne(rbd_dev, false);
6931                 goto err_out_probe;
6932         }
6933
6934         rbd_init_layout(rbd_dev);
6935
6936         /*
6937          * If this image is the one being mapped, we have pool name and
6938          * id, image name and id, and snap name - need to fill snap id.
6939          * Otherwise this is a parent image, identified by pool, image
6940          * and snap ids - need to fill in names for those ids.
6941          */
6942         if (!depth)
6943                 ret = rbd_spec_fill_snap_id(rbd_dev);
6944         else
6945                 ret = rbd_spec_fill_names(rbd_dev);
6946         if (ret) {
6947                 if (ret == -ENOENT)
6948                         rbd_print_dne(rbd_dev, true);
6949                 goto err_out_probe;
6950         }
6951
6952         ret = rbd_dev_mapping_set(rbd_dev);
6953         if (ret)
6954                 goto err_out_probe;
6955
6956         if (rbd_is_snap(rbd_dev) &&
6957             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6958                 ret = rbd_object_map_load(rbd_dev);
6959                 if (ret)
6960                         goto err_out_probe;
6961         }
6962
6963         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6964                 ret = rbd_dev_setup_parent(rbd_dev);
6965                 if (ret)
6966                         goto err_out_probe;
6967         }
6968
6969         ret = rbd_dev_probe_parent(rbd_dev, depth);
6970         if (ret)
6971                 goto err_out_probe;
6972
6973         dout("discovered format %u image, header name is %s\n",
6974                 rbd_dev->image_format, rbd_dev->header_oid.name);
6975         return 0;
6976
6977 err_out_probe:
6978         if (!depth)
6979                 up_write(&rbd_dev->header_rwsem);
6980         if (need_watch)
6981                 rbd_unregister_watch(rbd_dev);
6982         rbd_dev_unprobe(rbd_dev);
6983 err_out_format:
6984         rbd_dev->image_format = 0;
6985         kfree(rbd_dev->spec->image_id);
6986         rbd_dev->spec->image_id = NULL;
6987         return ret;
6988 }
6989
6990 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6991                                   struct rbd_image_header *header)
6992 {
6993         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6994         rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6995
6996         if (rbd_dev->header.image_size != header->image_size) {
6997                 rbd_dev->header.image_size = header->image_size;
6998
6999                 if (!rbd_is_snap(rbd_dev)) {
7000                         rbd_dev->mapping.size = header->image_size;
7001                         rbd_dev_update_size(rbd_dev);
7002                 }
7003         }
7004
7005         ceph_put_snap_context(rbd_dev->header.snapc);
7006         rbd_dev->header.snapc = header->snapc;
7007         header->snapc = NULL;
7008
7009         if (rbd_dev->image_format == 1) {
7010                 kfree(rbd_dev->header.snap_names);
7011                 rbd_dev->header.snap_names = header->snap_names;
7012                 header->snap_names = NULL;
7013
7014                 kfree(rbd_dev->header.snap_sizes);
7015                 rbd_dev->header.snap_sizes = header->snap_sizes;
7016                 header->snap_sizes = NULL;
7017         }
7018 }
7019
7020 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7021                                   struct parent_image_info *pii)
7022 {
7023         if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7024                 /*
7025                  * Either the parent never existed, or we have
7026                  * record of it but the image got flattened so it no
7027                  * longer has a parent.  When the parent of a
7028                  * layered image disappears we immediately set the
7029                  * overlap to 0.  The effect of this is that all new
7030                  * requests will be treated as if the image had no
7031                  * parent.
7032                  *
7033                  * If !pii.has_overlap, the parent image spec is not
7034                  * applicable.  It's there to avoid duplication in each
7035                  * snapshot record.
7036                  */
7037                 if (rbd_dev->parent_overlap) {
7038                         rbd_dev->parent_overlap = 0;
7039                         rbd_dev_parent_put(rbd_dev);
7040                         pr_info("%s: clone has been flattened\n",
7041                                 rbd_dev->disk->disk_name);
7042                 }
7043         } else {
7044                 rbd_assert(rbd_dev->parent_spec);
7045
7046                 /*
7047                  * Update the parent overlap.  If it became zero, issue
7048                  * a warning as we will proceed as if there is no parent.
7049                  */
7050                 if (!pii->overlap && rbd_dev->parent_overlap)
7051                         rbd_warn(rbd_dev,
7052                                  "clone has become standalone (overlap 0)");
7053                 rbd_dev->parent_overlap = pii->overlap;
7054         }
7055 }
7056
7057 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7058 {
7059         struct rbd_image_header header = { 0 };
7060         struct parent_image_info pii = { 0 };
7061         int ret;
7062
7063         dout("%s rbd_dev %p\n", __func__, rbd_dev);
7064
7065         ret = rbd_dev_header_info(rbd_dev, &header, false);
7066         if (ret)
7067                 goto out;
7068
7069         /*
7070          * If there is a parent, see if it has disappeared due to the
7071          * mapped image getting flattened.
7072          */
7073         if (rbd_dev->parent) {
7074                 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7075                 if (ret)
7076                         goto out;
7077         }
7078
7079         down_write(&rbd_dev->header_rwsem);
7080         rbd_dev_update_header(rbd_dev, &header);
7081         if (rbd_dev->parent)
7082                 rbd_dev_update_parent(rbd_dev, &pii);
7083         up_write(&rbd_dev->header_rwsem);
7084
7085 out:
7086         rbd_parent_info_cleanup(&pii);
7087         rbd_image_header_cleanup(&header);
7088         return ret;
7089 }
7090
7091 static ssize_t do_rbd_add(const char *buf, size_t count)
7092 {
7093         struct rbd_device *rbd_dev = NULL;
7094         struct ceph_options *ceph_opts = NULL;
7095         struct rbd_options *rbd_opts = NULL;
7096         struct rbd_spec *spec = NULL;
7097         struct rbd_client *rbdc;
7098         int rc;
7099
7100         if (!capable(CAP_SYS_ADMIN))
7101                 return -EPERM;
7102
7103         if (!try_module_get(THIS_MODULE))
7104                 return -ENODEV;
7105
7106         /* parse add command */
7107         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7108         if (rc < 0)
7109                 goto out;
7110
7111         rbdc = rbd_get_client(ceph_opts);
7112         if (IS_ERR(rbdc)) {
7113                 rc = PTR_ERR(rbdc);
7114                 goto err_out_args;
7115         }
7116
7117         /* pick the pool */
7118         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7119         if (rc < 0) {
7120                 if (rc == -ENOENT)
7121                         pr_info("pool %s does not exist\n", spec->pool_name);
7122                 goto err_out_client;
7123         }
7124         spec->pool_id = (u64)rc;
7125
7126         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7127         if (!rbd_dev) {
7128                 rc = -ENOMEM;
7129                 goto err_out_client;
7130         }
7131         rbdc = NULL;            /* rbd_dev now owns this */
7132         spec = NULL;            /* rbd_dev now owns this */
7133         rbd_opts = NULL;        /* rbd_dev now owns this */
7134
7135         /* if we are mapping a snapshot it will be a read-only mapping */
7136         if (rbd_dev->opts->read_only ||
7137             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7138                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7139
7140         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7141         if (!rbd_dev->config_info) {
7142                 rc = -ENOMEM;
7143                 goto err_out_rbd_dev;
7144         }
7145
7146         rc = rbd_dev_image_probe(rbd_dev, 0);
7147         if (rc < 0)
7148                 goto err_out_rbd_dev;
7149
7150         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7151                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7152                          rbd_dev->layout.object_size);
7153                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7154         }
7155
7156         rc = rbd_dev_device_setup(rbd_dev);
7157         if (rc)
7158                 goto err_out_image_probe;
7159
7160         rc = rbd_add_acquire_lock(rbd_dev);
7161         if (rc)
7162                 goto err_out_image_lock;
7163
7164         /* Everything's ready.  Announce the disk to the world. */
7165
7166         rc = device_add(&rbd_dev->dev);
7167         if (rc)
7168                 goto err_out_image_lock;
7169
7170         rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7171         if (rc)
7172                 goto err_out_cleanup_disk;
7173
7174         spin_lock(&rbd_dev_list_lock);
7175         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7176         spin_unlock(&rbd_dev_list_lock);
7177
7178         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7179                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7180                 rbd_dev->header.features);
7181         rc = count;
7182 out:
7183         module_put(THIS_MODULE);
7184         return rc;
7185
7186 err_out_cleanup_disk:
7187         rbd_free_disk(rbd_dev);
7188 err_out_image_lock:
7189         rbd_dev_image_unlock(rbd_dev);
7190         rbd_dev_device_release(rbd_dev);
7191 err_out_image_probe:
7192         rbd_dev_image_release(rbd_dev);
7193 err_out_rbd_dev:
7194         rbd_dev_destroy(rbd_dev);
7195 err_out_client:
7196         rbd_put_client(rbdc);
7197 err_out_args:
7198         rbd_spec_put(spec);
7199         kfree(rbd_opts);
7200         goto out;
7201 }
7202
7203 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7204 {
7205         if (single_major)
7206                 return -EINVAL;
7207
7208         return do_rbd_add(buf, count);
7209 }
7210
7211 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7212                                       size_t count)
7213 {
7214         return do_rbd_add(buf, count);
7215 }
7216
7217 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7218 {
7219         while (rbd_dev->parent) {
7220                 struct rbd_device *first = rbd_dev;
7221                 struct rbd_device *second = first->parent;
7222                 struct rbd_device *third;
7223
7224                 /*
7225                  * Follow to the parent with no grandparent and
7226                  * remove it.
7227                  */
7228                 while (second && (third = second->parent)) {
7229                         first = second;
7230                         second = third;
7231                 }
7232                 rbd_assert(second);
7233                 rbd_dev_image_release(second);
7234                 rbd_dev_destroy(second);
7235                 first->parent = NULL;
7236                 first->parent_overlap = 0;
7237
7238                 rbd_assert(first->parent_spec);
7239                 rbd_spec_put(first->parent_spec);
7240                 first->parent_spec = NULL;
7241         }
7242 }
7243
7244 static ssize_t do_rbd_remove(const char *buf, size_t count)
7245 {
7246         struct rbd_device *rbd_dev = NULL;
7247         int dev_id;
7248         char opt_buf[6];
7249         bool force = false;
7250         int ret;
7251
7252         if (!capable(CAP_SYS_ADMIN))
7253                 return -EPERM;
7254
7255         dev_id = -1;
7256         opt_buf[0] = '\0';
7257         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7258         if (dev_id < 0) {
7259                 pr_err("dev_id out of range\n");
7260                 return -EINVAL;
7261         }
7262         if (opt_buf[0] != '\0') {
7263                 if (!strcmp(opt_buf, "force")) {
7264                         force = true;
7265                 } else {
7266                         pr_err("bad remove option at '%s'\n", opt_buf);
7267                         return -EINVAL;
7268                 }
7269         }
7270
7271         ret = -ENOENT;
7272         spin_lock(&rbd_dev_list_lock);
7273         list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7274                 if (rbd_dev->dev_id == dev_id) {
7275                         ret = 0;
7276                         break;
7277                 }
7278         }
7279         if (!ret) {
7280                 spin_lock_irq(&rbd_dev->lock);
7281                 if (rbd_dev->open_count && !force)
7282                         ret = -EBUSY;
7283                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7284                                           &rbd_dev->flags))
7285                         ret = -EINPROGRESS;
7286                 spin_unlock_irq(&rbd_dev->lock);
7287         }
7288         spin_unlock(&rbd_dev_list_lock);
7289         if (ret)
7290                 return ret;
7291
7292         if (force) {
7293                 /*
7294                  * Prevent new IO from being queued and wait for existing
7295                  * IO to complete/fail.
7296                  */
7297                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7298                 blk_mark_disk_dead(rbd_dev->disk);
7299         }
7300
7301         del_gendisk(rbd_dev->disk);
7302         spin_lock(&rbd_dev_list_lock);
7303         list_del_init(&rbd_dev->node);
7304         spin_unlock(&rbd_dev_list_lock);
7305         device_del(&rbd_dev->dev);
7306
7307         rbd_dev_image_unlock(rbd_dev);
7308         rbd_dev_device_release(rbd_dev);
7309         rbd_dev_image_release(rbd_dev);
7310         rbd_dev_destroy(rbd_dev);
7311         return count;
7312 }
7313
7314 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7315 {
7316         if (single_major)
7317                 return -EINVAL;
7318
7319         return do_rbd_remove(buf, count);
7320 }
7321
7322 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7323                                          size_t count)
7324 {
7325         return do_rbd_remove(buf, count);
7326 }
7327
7328 /*
7329  * create control files in sysfs
7330  * /sys/bus/rbd/...
7331  */
7332 static int __init rbd_sysfs_init(void)
7333 {
7334         int ret;
7335
7336         ret = device_register(&rbd_root_dev);
7337         if (ret < 0) {
7338                 put_device(&rbd_root_dev);
7339                 return ret;
7340         }
7341
7342         ret = bus_register(&rbd_bus_type);
7343         if (ret < 0)
7344                 device_unregister(&rbd_root_dev);
7345
7346         return ret;
7347 }
7348
7349 static void __exit rbd_sysfs_cleanup(void)
7350 {
7351         bus_unregister(&rbd_bus_type);
7352         device_unregister(&rbd_root_dev);
7353 }
7354
7355 static int __init rbd_slab_init(void)
7356 {
7357         rbd_assert(!rbd_img_request_cache);
7358         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7359         if (!rbd_img_request_cache)
7360                 return -ENOMEM;
7361
7362         rbd_assert(!rbd_obj_request_cache);
7363         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7364         if (!rbd_obj_request_cache)
7365                 goto out_err;
7366
7367         return 0;
7368
7369 out_err:
7370         kmem_cache_destroy(rbd_img_request_cache);
7371         rbd_img_request_cache = NULL;
7372         return -ENOMEM;
7373 }
7374
7375 static void rbd_slab_exit(void)
7376 {
7377         rbd_assert(rbd_obj_request_cache);
7378         kmem_cache_destroy(rbd_obj_request_cache);
7379         rbd_obj_request_cache = NULL;
7380
7381         rbd_assert(rbd_img_request_cache);
7382         kmem_cache_destroy(rbd_img_request_cache);
7383         rbd_img_request_cache = NULL;
7384 }
7385
7386 static int __init rbd_init(void)
7387 {
7388         int rc;
7389
7390         if (!libceph_compatible(NULL)) {
7391                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7392                 return -EINVAL;
7393         }
7394
7395         rc = rbd_slab_init();
7396         if (rc)
7397                 return rc;
7398
7399         /*
7400          * The number of active work items is limited by the number of
7401          * rbd devices * queue depth, so leave @max_active at default.
7402          */
7403         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7404         if (!rbd_wq) {
7405                 rc = -ENOMEM;
7406                 goto err_out_slab;
7407         }
7408
7409         if (single_major) {
7410                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7411                 if (rbd_major < 0) {
7412                         rc = rbd_major;
7413                         goto err_out_wq;
7414                 }
7415         }
7416
7417         rc = rbd_sysfs_init();
7418         if (rc)
7419                 goto err_out_blkdev;
7420
7421         if (single_major)
7422                 pr_info("loaded (major %d)\n", rbd_major);
7423         else
7424                 pr_info("loaded\n");
7425
7426         return 0;
7427
7428 err_out_blkdev:
7429         if (single_major)
7430                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7431 err_out_wq:
7432         destroy_workqueue(rbd_wq);
7433 err_out_slab:
7434         rbd_slab_exit();
7435         return rc;
7436 }
7437
7438 static void __exit rbd_exit(void)
7439 {
7440         ida_destroy(&rbd_dev_id_ida);
7441         rbd_sysfs_cleanup();
7442         if (single_major)
7443                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7444         destroy_workqueue(rbd_wq);
7445         rbd_slab_exit();
7446 }
7447
7448 module_init(rbd_init);
7449 module_exit(rbd_exit);
7450
7451 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7452 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7453 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7454 /* following authorship retained from original osdblk.c */
7455 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7456
7457 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7458 MODULE_LICENSE("GPL");