Merge tag 'fuse-update-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/mszered...
[linux-2.6-microblaze.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639                                         u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641                                 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652         rbd_assert(pending->num_pending > 0);
653
654         if (*result && !pending->result)
655                 pending->result = *result;
656         if (--pending->num_pending)
657                 return false;
658
659         *result = pending->result;
660         return true;
661 }
662
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666         bool removing = false;
667
668         spin_lock_irq(&rbd_dev->lock);
669         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670                 removing = true;
671         else
672                 rbd_dev->open_count++;
673         spin_unlock_irq(&rbd_dev->lock);
674         if (removing)
675                 return -ENOENT;
676
677         (void) get_device(&rbd_dev->dev);
678
679         return 0;
680 }
681
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684         struct rbd_device *rbd_dev = disk->private_data;
685         unsigned long open_count_before;
686
687         spin_lock_irq(&rbd_dev->lock);
688         open_count_before = rbd_dev->open_count--;
689         spin_unlock_irq(&rbd_dev->lock);
690         rbd_assert(open_count_before > 0);
691
692         put_device(&rbd_dev->dev);
693 }
694
695 static const struct block_device_operations rbd_bd_ops = {
696         .owner                  = THIS_MODULE,
697         .open                   = rbd_open,
698         .release                = rbd_release,
699 };
700
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707         struct rbd_client *rbdc;
708         int ret = -ENOMEM;
709
710         dout("%s:\n", __func__);
711         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712         if (!rbdc)
713                 goto out_opt;
714
715         kref_init(&rbdc->kref);
716         INIT_LIST_HEAD(&rbdc->node);
717
718         rbdc->client = ceph_create_client(ceph_opts, rbdc);
719         if (IS_ERR(rbdc->client))
720                 goto out_rbdc;
721         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722
723         ret = ceph_open_session(rbdc->client);
724         if (ret < 0)
725                 goto out_client;
726
727         spin_lock(&rbd_client_list_lock);
728         list_add_tail(&rbdc->node, &rbd_client_list);
729         spin_unlock(&rbd_client_list_lock);
730
731         dout("%s: rbdc %p\n", __func__, rbdc);
732
733         return rbdc;
734 out_client:
735         ceph_destroy_client(rbdc->client);
736 out_rbdc:
737         kfree(rbdc);
738 out_opt:
739         if (ceph_opts)
740                 ceph_destroy_options(ceph_opts);
741         dout("%s: error %d\n", __func__, ret);
742
743         return ERR_PTR(ret);
744 }
745
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748         kref_get(&rbdc->kref);
749
750         return rbdc;
751 }
752
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759         struct rbd_client *client_node;
760         bool found = false;
761
762         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
763                 return NULL;
764
765         spin_lock(&rbd_client_list_lock);
766         list_for_each_entry(client_node, &rbd_client_list, node) {
767                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
768                         __rbd_get_client(client_node);
769
770                         found = true;
771                         break;
772                 }
773         }
774         spin_unlock(&rbd_client_list_lock);
775
776         return found ? client_node : NULL;
777 }
778
779 /*
780  * (Per device) rbd map options
781  */
782 enum {
783         Opt_queue_depth,
784         Opt_alloc_size,
785         Opt_lock_timeout,
786         /* int args above */
787         Opt_pool_ns,
788         Opt_compression_hint,
789         /* string args above */
790         Opt_read_only,
791         Opt_read_write,
792         Opt_lock_on_read,
793         Opt_exclusive,
794         Opt_notrim,
795 };
796
797 enum {
798         Opt_compression_hint_none,
799         Opt_compression_hint_compressible,
800         Opt_compression_hint_incompressible,
801 };
802
803 static const struct constant_table rbd_param_compression_hint[] = {
804         {"none",                Opt_compression_hint_none},
805         {"compressible",        Opt_compression_hint_compressible},
806         {"incompressible",      Opt_compression_hint_incompressible},
807         {}
808 };
809
810 static const struct fs_parameter_spec rbd_parameters[] = {
811         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
812         fsparam_enum    ("compression_hint",            Opt_compression_hint,
813                          rbd_param_compression_hint),
814         fsparam_flag    ("exclusive",                   Opt_exclusive),
815         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
816         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
817         fsparam_flag    ("notrim",                      Opt_notrim),
818         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
819         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
820         fsparam_flag    ("read_only",                   Opt_read_only),
821         fsparam_flag    ("read_write",                  Opt_read_write),
822         fsparam_flag    ("ro",                          Opt_read_only),
823         fsparam_flag    ("rw",                          Opt_read_write),
824         {}
825 };
826
827 struct rbd_options {
828         int     queue_depth;
829         int     alloc_size;
830         unsigned long   lock_timeout;
831         bool    read_only;
832         bool    lock_on_read;
833         bool    exclusive;
834         bool    trim;
835
836         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
837 };
838
839 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
840 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
841 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
842 #define RBD_READ_ONLY_DEFAULT   false
843 #define RBD_LOCK_ON_READ_DEFAULT false
844 #define RBD_EXCLUSIVE_DEFAULT   false
845 #define RBD_TRIM_DEFAULT        true
846
847 struct rbd_parse_opts_ctx {
848         struct rbd_spec         *spec;
849         struct ceph_options     *copts;
850         struct rbd_options      *opts;
851 };
852
853 static char* obj_op_name(enum obj_operation_type op_type)
854 {
855         switch (op_type) {
856         case OBJ_OP_READ:
857                 return "read";
858         case OBJ_OP_WRITE:
859                 return "write";
860         case OBJ_OP_DISCARD:
861                 return "discard";
862         case OBJ_OP_ZEROOUT:
863                 return "zeroout";
864         default:
865                 return "???";
866         }
867 }
868
869 /*
870  * Destroy ceph client
871  *
872  * Caller must hold rbd_client_list_lock.
873  */
874 static void rbd_client_release(struct kref *kref)
875 {
876         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
877
878         dout("%s: rbdc %p\n", __func__, rbdc);
879         spin_lock(&rbd_client_list_lock);
880         list_del(&rbdc->node);
881         spin_unlock(&rbd_client_list_lock);
882
883         ceph_destroy_client(rbdc->client);
884         kfree(rbdc);
885 }
886
887 /*
888  * Drop reference to ceph client node. If it's not referenced anymore, release
889  * it.
890  */
891 static void rbd_put_client(struct rbd_client *rbdc)
892 {
893         if (rbdc)
894                 kref_put(&rbdc->kref, rbd_client_release);
895 }
896
897 /*
898  * Get a ceph client with specific addr and configuration, if one does
899  * not exist create it.  Either way, ceph_opts is consumed by this
900  * function.
901  */
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
903 {
904         struct rbd_client *rbdc;
905         int ret;
906
907         mutex_lock(&client_mutex);
908         rbdc = rbd_client_find(ceph_opts);
909         if (rbdc) {
910                 ceph_destroy_options(ceph_opts);
911
912                 /*
913                  * Using an existing client.  Make sure ->pg_pools is up to
914                  * date before we look up the pool id in do_rbd_add().
915                  */
916                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
917                                         rbdc->client->options->mount_timeout);
918                 if (ret) {
919                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
920                         rbd_put_client(rbdc);
921                         rbdc = ERR_PTR(ret);
922                 }
923         } else {
924                 rbdc = rbd_client_create(ceph_opts);
925         }
926         mutex_unlock(&client_mutex);
927
928         return rbdc;
929 }
930
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933         return image_format == 1 || image_format == 2;
934 }
935
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938         size_t size;
939         u32 snap_count;
940
941         /* The header has to start with the magic rbd header text */
942         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943                 return false;
944
945         /* The bio layer requires at least sector-sized I/O */
946
947         if (ondisk->options.order < SECTOR_SHIFT)
948                 return false;
949
950         /* If we use u64 in a few spots we may be able to loosen this */
951
952         if (ondisk->options.order > 8 * sizeof (int) - 1)
953                 return false;
954
955         /*
956          * The size of a snapshot header has to fit in a size_t, and
957          * that limits the number of snapshots.
958          */
959         snap_count = le32_to_cpu(ondisk->snap_count);
960         size = SIZE_MAX - sizeof (struct ceph_snap_context);
961         if (snap_count > size / sizeof (__le64))
962                 return false;
963
964         /*
965          * Not only that, but the size of the entire the snapshot
966          * header must also be representable in a size_t.
967          */
968         size -= snap_count * sizeof (__le64);
969         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970                 return false;
971
972         return true;
973 }
974
975 /*
976  * returns the size of an object in the image
977  */
978 static u32 rbd_obj_bytes(struct rbd_image_header *header)
979 {
980         return 1U << header->obj_order;
981 }
982
983 static void rbd_init_layout(struct rbd_device *rbd_dev)
984 {
985         if (rbd_dev->header.stripe_unit == 0 ||
986             rbd_dev->header.stripe_count == 0) {
987                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
988                 rbd_dev->header.stripe_count = 1;
989         }
990
991         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
992         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
993         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
994         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
995                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
996         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
997 }
998
999 /*
1000  * Fill an rbd image header with information from the given format 1
1001  * on-disk header.
1002  */
1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1004                                  struct rbd_image_header_ondisk *ondisk)
1005 {
1006         struct rbd_image_header *header = &rbd_dev->header;
1007         bool first_time = header->object_prefix == NULL;
1008         struct ceph_snap_context *snapc;
1009         char *object_prefix = NULL;
1010         char *snap_names = NULL;
1011         u64 *snap_sizes = NULL;
1012         u32 snap_count;
1013         int ret = -ENOMEM;
1014         u32 i;
1015
1016         /* Allocate this now to avoid having to handle failure below */
1017
1018         if (first_time) {
1019                 object_prefix = kstrndup(ondisk->object_prefix,
1020                                          sizeof(ondisk->object_prefix),
1021                                          GFP_KERNEL);
1022                 if (!object_prefix)
1023                         return -ENOMEM;
1024         }
1025
1026         /* Allocate the snapshot context and fill it in */
1027
1028         snap_count = le32_to_cpu(ondisk->snap_count);
1029         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1030         if (!snapc)
1031                 goto out_err;
1032         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1033         if (snap_count) {
1034                 struct rbd_image_snap_ondisk *snaps;
1035                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1036
1037                 /* We'll keep a copy of the snapshot names... */
1038
1039                 if (snap_names_len > (u64)SIZE_MAX)
1040                         goto out_2big;
1041                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1042                 if (!snap_names)
1043                         goto out_err;
1044
1045                 /* ...as well as the array of their sizes. */
1046                 snap_sizes = kmalloc_array(snap_count,
1047                                            sizeof(*header->snap_sizes),
1048                                            GFP_KERNEL);
1049                 if (!snap_sizes)
1050                         goto out_err;
1051
1052                 /*
1053                  * Copy the names, and fill in each snapshot's id
1054                  * and size.
1055                  *
1056                  * Note that rbd_dev_v1_header_info() guarantees the
1057                  * ondisk buffer we're working with has
1058                  * snap_names_len bytes beyond the end of the
1059                  * snapshot id array, this memcpy() is safe.
1060                  */
1061                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1062                 snaps = ondisk->snaps;
1063                 for (i = 0; i < snap_count; i++) {
1064                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1065                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1066                 }
1067         }
1068
1069         /* We won't fail any more, fill in the header */
1070
1071         if (first_time) {
1072                 header->object_prefix = object_prefix;
1073                 header->obj_order = ondisk->options.order;
1074                 rbd_init_layout(rbd_dev);
1075         } else {
1076                 ceph_put_snap_context(header->snapc);
1077                 kfree(header->snap_names);
1078                 kfree(header->snap_sizes);
1079         }
1080
1081         /* The remaining fields always get updated (when we refresh) */
1082
1083         header->image_size = le64_to_cpu(ondisk->image_size);
1084         header->snapc = snapc;
1085         header->snap_names = snap_names;
1086         header->snap_sizes = snap_sizes;
1087
1088         return 0;
1089 out_2big:
1090         ret = -EIO;
1091 out_err:
1092         kfree(snap_sizes);
1093         kfree(snap_names);
1094         ceph_put_snap_context(snapc);
1095         kfree(object_prefix);
1096
1097         return ret;
1098 }
1099
1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1101 {
1102         const char *snap_name;
1103
1104         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1105
1106         /* Skip over names until we find the one we are looking for */
1107
1108         snap_name = rbd_dev->header.snap_names;
1109         while (which--)
1110                 snap_name += strlen(snap_name) + 1;
1111
1112         return kstrdup(snap_name, GFP_KERNEL);
1113 }
1114
1115 /*
1116  * Snapshot id comparison function for use with qsort()/bsearch().
1117  * Note that result is for snapshots in *descending* order.
1118  */
1119 static int snapid_compare_reverse(const void *s1, const void *s2)
1120 {
1121         u64 snap_id1 = *(u64 *)s1;
1122         u64 snap_id2 = *(u64 *)s2;
1123
1124         if (snap_id1 < snap_id2)
1125                 return 1;
1126         return snap_id1 == snap_id2 ? 0 : -1;
1127 }
1128
1129 /*
1130  * Search a snapshot context to see if the given snapshot id is
1131  * present.
1132  *
1133  * Returns the position of the snapshot id in the array if it's found,
1134  * or BAD_SNAP_INDEX otherwise.
1135  *
1136  * Note: The snapshot array is in kept sorted (by the osd) in
1137  * reverse order, highest snapshot id first.
1138  */
1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1140 {
1141         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1142         u64 *found;
1143
1144         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1145                                 sizeof (snap_id), snapid_compare_reverse);
1146
1147         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1148 }
1149
1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1151                                         u64 snap_id)
1152 {
1153         u32 which;
1154         const char *snap_name;
1155
1156         which = rbd_dev_snap_index(rbd_dev, snap_id);
1157         if (which == BAD_SNAP_INDEX)
1158                 return ERR_PTR(-ENOENT);
1159
1160         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1161         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1162 }
1163
1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1165 {
1166         if (snap_id == CEPH_NOSNAP)
1167                 return RBD_SNAP_HEAD_NAME;
1168
1169         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1170         if (rbd_dev->image_format == 1)
1171                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1172
1173         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1174 }
1175
1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1177                                 u64 *snap_size)
1178 {
1179         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1180         if (snap_id == CEPH_NOSNAP) {
1181                 *snap_size = rbd_dev->header.image_size;
1182         } else if (rbd_dev->image_format == 1) {
1183                 u32 which;
1184
1185                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1186                 if (which == BAD_SNAP_INDEX)
1187                         return -ENOENT;
1188
1189                 *snap_size = rbd_dev->header.snap_sizes[which];
1190         } else {
1191                 u64 size = 0;
1192                 int ret;
1193
1194                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1195                 if (ret)
1196                         return ret;
1197
1198                 *snap_size = size;
1199         }
1200         return 0;
1201 }
1202
1203 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1204 {
1205         u64 snap_id = rbd_dev->spec->snap_id;
1206         u64 size = 0;
1207         int ret;
1208
1209         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1210         if (ret)
1211                 return ret;
1212
1213         rbd_dev->mapping.size = size;
1214         return 0;
1215 }
1216
1217 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1218 {
1219         rbd_dev->mapping.size = 0;
1220 }
1221
1222 static void zero_bvec(struct bio_vec *bv)
1223 {
1224         void *buf;
1225         unsigned long flags;
1226
1227         buf = bvec_kmap_irq(bv, &flags);
1228         memset(buf, 0, bv->bv_len);
1229         flush_dcache_page(bv->bv_page);
1230         bvec_kunmap_irq(buf, &flags);
1231 }
1232
1233 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1234 {
1235         struct ceph_bio_iter it = *bio_pos;
1236
1237         ceph_bio_iter_advance(&it, off);
1238         ceph_bio_iter_advance_step(&it, bytes, ({
1239                 zero_bvec(&bv);
1240         }));
1241 }
1242
1243 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1244 {
1245         struct ceph_bvec_iter it = *bvec_pos;
1246
1247         ceph_bvec_iter_advance(&it, off);
1248         ceph_bvec_iter_advance_step(&it, bytes, ({
1249                 zero_bvec(&bv);
1250         }));
1251 }
1252
1253 /*
1254  * Zero a range in @obj_req data buffer defined by a bio (list) or
1255  * (private) bio_vec array.
1256  *
1257  * @off is relative to the start of the data buffer.
1258  */
1259 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1260                                u32 bytes)
1261 {
1262         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1263
1264         switch (obj_req->img_request->data_type) {
1265         case OBJ_REQUEST_BIO:
1266                 zero_bios(&obj_req->bio_pos, off, bytes);
1267                 break;
1268         case OBJ_REQUEST_BVECS:
1269         case OBJ_REQUEST_OWN_BVECS:
1270                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1271                 break;
1272         default:
1273                 BUG();
1274         }
1275 }
1276
1277 static void rbd_obj_request_destroy(struct kref *kref);
1278 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1279 {
1280         rbd_assert(obj_request != NULL);
1281         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1282                 kref_read(&obj_request->kref));
1283         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1284 }
1285
1286 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1287                                         struct rbd_obj_request *obj_request)
1288 {
1289         rbd_assert(obj_request->img_request == NULL);
1290
1291         /* Image request now owns object's original reference */
1292         obj_request->img_request = img_request;
1293         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1294 }
1295
1296 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1297                                         struct rbd_obj_request *obj_request)
1298 {
1299         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1300         list_del(&obj_request->ex.oe_item);
1301         rbd_assert(obj_request->img_request == img_request);
1302         rbd_obj_request_put(obj_request);
1303 }
1304
1305 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1306 {
1307         struct rbd_obj_request *obj_req = osd_req->r_priv;
1308
1309         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1310              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1311              obj_req->ex.oe_off, obj_req->ex.oe_len);
1312         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1313 }
1314
1315 /*
1316  * The default/initial value for all image request flags is 0.  Each
1317  * is conditionally set to 1 at image request initialization time
1318  * and currently never change thereafter.
1319  */
1320 static void img_request_layered_set(struct rbd_img_request *img_request)
1321 {
1322         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1323 }
1324
1325 static bool img_request_layered_test(struct rbd_img_request *img_request)
1326 {
1327         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1328 }
1329
1330 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1331 {
1332         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1333
1334         return !obj_req->ex.oe_off &&
1335                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1336 }
1337
1338 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1339 {
1340         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1341
1342         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1343                                         rbd_dev->layout.object_size;
1344 }
1345
1346 /*
1347  * Must be called after rbd_obj_calc_img_extents().
1348  */
1349 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1350 {
1351         if (!obj_req->num_img_extents ||
1352             (rbd_obj_is_entire(obj_req) &&
1353              !obj_req->img_request->snapc->num_snaps))
1354                 return false;
1355
1356         return true;
1357 }
1358
1359 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1360 {
1361         return ceph_file_extents_bytes(obj_req->img_extents,
1362                                        obj_req->num_img_extents);
1363 }
1364
1365 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1366 {
1367         switch (img_req->op_type) {
1368         case OBJ_OP_READ:
1369                 return false;
1370         case OBJ_OP_WRITE:
1371         case OBJ_OP_DISCARD:
1372         case OBJ_OP_ZEROOUT:
1373                 return true;
1374         default:
1375                 BUG();
1376         }
1377 }
1378
1379 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1380 {
1381         struct rbd_obj_request *obj_req = osd_req->r_priv;
1382         int result;
1383
1384         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1385              osd_req->r_result, obj_req);
1386
1387         /*
1388          * Writes aren't allowed to return a data payload.  In some
1389          * guarded write cases (e.g. stat + zero on an empty object)
1390          * a stat response makes it through, but we don't care.
1391          */
1392         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1393                 result = 0;
1394         else
1395                 result = osd_req->r_result;
1396
1397         rbd_obj_handle_request(obj_req, result);
1398 }
1399
1400 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1401 {
1402         struct rbd_obj_request *obj_request = osd_req->r_priv;
1403         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1404         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1405
1406         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1407         osd_req->r_snapid = obj_request->img_request->snap_id;
1408 }
1409
1410 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1411 {
1412         struct rbd_obj_request *obj_request = osd_req->r_priv;
1413
1414         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1415         ktime_get_real_ts64(&osd_req->r_mtime);
1416         osd_req->r_data_offset = obj_request->ex.oe_off;
1417 }
1418
1419 static struct ceph_osd_request *
1420 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1421                           struct ceph_snap_context *snapc, int num_ops)
1422 {
1423         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1424         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1425         struct ceph_osd_request *req;
1426         const char *name_format = rbd_dev->image_format == 1 ?
1427                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1428         int ret;
1429
1430         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1431         if (!req)
1432                 return ERR_PTR(-ENOMEM);
1433
1434         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1435         req->r_callback = rbd_osd_req_callback;
1436         req->r_priv = obj_req;
1437
1438         /*
1439          * Data objects may be stored in a separate pool, but always in
1440          * the same namespace in that pool as the header in its pool.
1441          */
1442         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1443         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1444
1445         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1446                                rbd_dev->header.object_prefix,
1447                                obj_req->ex.oe_objno);
1448         if (ret)
1449                 return ERR_PTR(ret);
1450
1451         return req;
1452 }
1453
1454 static struct ceph_osd_request *
1455 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1456 {
1457         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1458                                          num_ops);
1459 }
1460
1461 static struct rbd_obj_request *rbd_obj_request_create(void)
1462 {
1463         struct rbd_obj_request *obj_request;
1464
1465         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1466         if (!obj_request)
1467                 return NULL;
1468
1469         ceph_object_extent_init(&obj_request->ex);
1470         INIT_LIST_HEAD(&obj_request->osd_reqs);
1471         mutex_init(&obj_request->state_mutex);
1472         kref_init(&obj_request->kref);
1473
1474         dout("%s %p\n", __func__, obj_request);
1475         return obj_request;
1476 }
1477
1478 static void rbd_obj_request_destroy(struct kref *kref)
1479 {
1480         struct rbd_obj_request *obj_request;
1481         struct ceph_osd_request *osd_req;
1482         u32 i;
1483
1484         obj_request = container_of(kref, struct rbd_obj_request, kref);
1485
1486         dout("%s: obj %p\n", __func__, obj_request);
1487
1488         while (!list_empty(&obj_request->osd_reqs)) {
1489                 osd_req = list_first_entry(&obj_request->osd_reqs,
1490                                     struct ceph_osd_request, r_private_item);
1491                 list_del_init(&osd_req->r_private_item);
1492                 ceph_osdc_put_request(osd_req);
1493         }
1494
1495         switch (obj_request->img_request->data_type) {
1496         case OBJ_REQUEST_NODATA:
1497         case OBJ_REQUEST_BIO:
1498         case OBJ_REQUEST_BVECS:
1499                 break;          /* Nothing to do */
1500         case OBJ_REQUEST_OWN_BVECS:
1501                 kfree(obj_request->bvec_pos.bvecs);
1502                 break;
1503         default:
1504                 BUG();
1505         }
1506
1507         kfree(obj_request->img_extents);
1508         if (obj_request->copyup_bvecs) {
1509                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1510                         if (obj_request->copyup_bvecs[i].bv_page)
1511                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1512                 }
1513                 kfree(obj_request->copyup_bvecs);
1514         }
1515
1516         kmem_cache_free(rbd_obj_request_cache, obj_request);
1517 }
1518
1519 /* It's OK to call this for a device with no parent */
1520
1521 static void rbd_spec_put(struct rbd_spec *spec);
1522 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1523 {
1524         rbd_dev_remove_parent(rbd_dev);
1525         rbd_spec_put(rbd_dev->parent_spec);
1526         rbd_dev->parent_spec = NULL;
1527         rbd_dev->parent_overlap = 0;
1528 }
1529
1530 /*
1531  * Parent image reference counting is used to determine when an
1532  * image's parent fields can be safely torn down--after there are no
1533  * more in-flight requests to the parent image.  When the last
1534  * reference is dropped, cleaning them up is safe.
1535  */
1536 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1537 {
1538         int counter;
1539
1540         if (!rbd_dev->parent_spec)
1541                 return;
1542
1543         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1544         if (counter > 0)
1545                 return;
1546
1547         /* Last reference; clean up parent data structures */
1548
1549         if (!counter)
1550                 rbd_dev_unparent(rbd_dev);
1551         else
1552                 rbd_warn(rbd_dev, "parent reference underflow");
1553 }
1554
1555 /*
1556  * If an image has a non-zero parent overlap, get a reference to its
1557  * parent.
1558  *
1559  * Returns true if the rbd device has a parent with a non-zero
1560  * overlap and a reference for it was successfully taken, or
1561  * false otherwise.
1562  */
1563 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1564 {
1565         int counter = 0;
1566
1567         if (!rbd_dev->parent_spec)
1568                 return false;
1569
1570         if (rbd_dev->parent_overlap)
1571                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1572
1573         if (counter < 0)
1574                 rbd_warn(rbd_dev, "parent reference overflow");
1575
1576         return counter > 0;
1577 }
1578
1579 static void rbd_img_request_init(struct rbd_img_request *img_request,
1580                                  struct rbd_device *rbd_dev,
1581                                  enum obj_operation_type op_type)
1582 {
1583         memset(img_request, 0, sizeof(*img_request));
1584
1585         img_request->rbd_dev = rbd_dev;
1586         img_request->op_type = op_type;
1587
1588         INIT_LIST_HEAD(&img_request->lock_item);
1589         INIT_LIST_HEAD(&img_request->object_extents);
1590         mutex_init(&img_request->state_mutex);
1591 }
1592
1593 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1594 {
1595         struct rbd_device *rbd_dev = img_req->rbd_dev;
1596
1597         lockdep_assert_held(&rbd_dev->header_rwsem);
1598
1599         if (rbd_img_is_write(img_req))
1600                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1601         else
1602                 img_req->snap_id = rbd_dev->spec->snap_id;
1603
1604         if (rbd_dev_parent_get(rbd_dev))
1605                 img_request_layered_set(img_req);
1606 }
1607
1608 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1609 {
1610         struct rbd_obj_request *obj_request;
1611         struct rbd_obj_request *next_obj_request;
1612
1613         dout("%s: img %p\n", __func__, img_request);
1614
1615         WARN_ON(!list_empty(&img_request->lock_item));
1616         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1617                 rbd_img_obj_request_del(img_request, obj_request);
1618
1619         if (img_request_layered_test(img_request))
1620                 rbd_dev_parent_put(img_request->rbd_dev);
1621
1622         if (rbd_img_is_write(img_request))
1623                 ceph_put_snap_context(img_request->snapc);
1624
1625         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1626                 kmem_cache_free(rbd_img_request_cache, img_request);
1627 }
1628
1629 #define BITS_PER_OBJ    2
1630 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1631 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1632
1633 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1634                                    u64 *index, u8 *shift)
1635 {
1636         u32 off;
1637
1638         rbd_assert(objno < rbd_dev->object_map_size);
1639         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1640         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1641 }
1642
1643 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1644 {
1645         u64 index;
1646         u8 shift;
1647
1648         lockdep_assert_held(&rbd_dev->object_map_lock);
1649         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1650         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1651 }
1652
1653 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1654 {
1655         u64 index;
1656         u8 shift;
1657         u8 *p;
1658
1659         lockdep_assert_held(&rbd_dev->object_map_lock);
1660         rbd_assert(!(val & ~OBJ_MASK));
1661
1662         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1663         p = &rbd_dev->object_map[index];
1664         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1665 }
1666
1667 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1668 {
1669         u8 state;
1670
1671         spin_lock(&rbd_dev->object_map_lock);
1672         state = __rbd_object_map_get(rbd_dev, objno);
1673         spin_unlock(&rbd_dev->object_map_lock);
1674         return state;
1675 }
1676
1677 static bool use_object_map(struct rbd_device *rbd_dev)
1678 {
1679         /*
1680          * An image mapped read-only can't use the object map -- it isn't
1681          * loaded because the header lock isn't acquired.  Someone else can
1682          * write to the image and update the object map behind our back.
1683          *
1684          * A snapshot can't be written to, so using the object map is always
1685          * safe.
1686          */
1687         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1688                 return false;
1689
1690         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1691                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1692 }
1693
1694 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1695 {
1696         u8 state;
1697
1698         /* fall back to default logic if object map is disabled or invalid */
1699         if (!use_object_map(rbd_dev))
1700                 return true;
1701
1702         state = rbd_object_map_get(rbd_dev, objno);
1703         return state != OBJECT_NONEXISTENT;
1704 }
1705
1706 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1707                                 struct ceph_object_id *oid)
1708 {
1709         if (snap_id == CEPH_NOSNAP)
1710                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1711                                 rbd_dev->spec->image_id);
1712         else
1713                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1714                                 rbd_dev->spec->image_id, snap_id);
1715 }
1716
1717 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1718 {
1719         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1720         CEPH_DEFINE_OID_ONSTACK(oid);
1721         u8 lock_type;
1722         char *lock_tag;
1723         struct ceph_locker *lockers;
1724         u32 num_lockers;
1725         bool broke_lock = false;
1726         int ret;
1727
1728         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1729
1730 again:
1731         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1732                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1733         if (ret != -EBUSY || broke_lock) {
1734                 if (ret == -EEXIST)
1735                         ret = 0; /* already locked by myself */
1736                 if (ret)
1737                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1738                 return ret;
1739         }
1740
1741         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1742                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1743                                  &lockers, &num_lockers);
1744         if (ret) {
1745                 if (ret == -ENOENT)
1746                         goto again;
1747
1748                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1749                 return ret;
1750         }
1751
1752         kfree(lock_tag);
1753         if (num_lockers == 0)
1754                 goto again;
1755
1756         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1757                  ENTITY_NAME(lockers[0].id.name));
1758
1759         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1760                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1761                                   &lockers[0].id.name);
1762         ceph_free_lockers(lockers, num_lockers);
1763         if (ret) {
1764                 if (ret == -ENOENT)
1765                         goto again;
1766
1767                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1768                 return ret;
1769         }
1770
1771         broke_lock = true;
1772         goto again;
1773 }
1774
1775 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1776 {
1777         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1778         CEPH_DEFINE_OID_ONSTACK(oid);
1779         int ret;
1780
1781         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1782
1783         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1784                               "");
1785         if (ret && ret != -ENOENT)
1786                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1787 }
1788
1789 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1790 {
1791         u8 struct_v;
1792         u32 struct_len;
1793         u32 header_len;
1794         void *header_end;
1795         int ret;
1796
1797         ceph_decode_32_safe(p, end, header_len, e_inval);
1798         header_end = *p + header_len;
1799
1800         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1801                                   &struct_len);
1802         if (ret)
1803                 return ret;
1804
1805         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1806
1807         *p = header_end;
1808         return 0;
1809
1810 e_inval:
1811         return -EINVAL;
1812 }
1813
1814 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1815 {
1816         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1817         CEPH_DEFINE_OID_ONSTACK(oid);
1818         struct page **pages;
1819         void *p, *end;
1820         size_t reply_len;
1821         u64 num_objects;
1822         u64 object_map_bytes;
1823         u64 object_map_size;
1824         int num_pages;
1825         int ret;
1826
1827         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1828
1829         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1830                                            rbd_dev->mapping.size);
1831         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1832                                             BITS_PER_BYTE);
1833         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1834         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1835         if (IS_ERR(pages))
1836                 return PTR_ERR(pages);
1837
1838         reply_len = num_pages * PAGE_SIZE;
1839         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1840         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1841                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1842                              NULL, 0, pages, &reply_len);
1843         if (ret)
1844                 goto out;
1845
1846         p = page_address(pages[0]);
1847         end = p + min(reply_len, (size_t)PAGE_SIZE);
1848         ret = decode_object_map_header(&p, end, &object_map_size);
1849         if (ret)
1850                 goto out;
1851
1852         if (object_map_size != num_objects) {
1853                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1854                          object_map_size, num_objects);
1855                 ret = -EINVAL;
1856                 goto out;
1857         }
1858
1859         if (offset_in_page(p) + object_map_bytes > reply_len) {
1860                 ret = -EINVAL;
1861                 goto out;
1862         }
1863
1864         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1865         if (!rbd_dev->object_map) {
1866                 ret = -ENOMEM;
1867                 goto out;
1868         }
1869
1870         rbd_dev->object_map_size = object_map_size;
1871         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1872                                    offset_in_page(p), object_map_bytes);
1873
1874 out:
1875         ceph_release_page_vector(pages, num_pages);
1876         return ret;
1877 }
1878
1879 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1880 {
1881         kvfree(rbd_dev->object_map);
1882         rbd_dev->object_map = NULL;
1883         rbd_dev->object_map_size = 0;
1884 }
1885
1886 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1887 {
1888         int ret;
1889
1890         ret = __rbd_object_map_load(rbd_dev);
1891         if (ret)
1892                 return ret;
1893
1894         ret = rbd_dev_v2_get_flags(rbd_dev);
1895         if (ret) {
1896                 rbd_object_map_free(rbd_dev);
1897                 return ret;
1898         }
1899
1900         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1901                 rbd_warn(rbd_dev, "object map is invalid");
1902
1903         return 0;
1904 }
1905
1906 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1907 {
1908         int ret;
1909
1910         ret = rbd_object_map_lock(rbd_dev);
1911         if (ret)
1912                 return ret;
1913
1914         ret = rbd_object_map_load(rbd_dev);
1915         if (ret) {
1916                 rbd_object_map_unlock(rbd_dev);
1917                 return ret;
1918         }
1919
1920         return 0;
1921 }
1922
1923 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1924 {
1925         rbd_object_map_free(rbd_dev);
1926         rbd_object_map_unlock(rbd_dev);
1927 }
1928
1929 /*
1930  * This function needs snap_id (or more precisely just something to
1931  * distinguish between HEAD and snapshot object maps), new_state and
1932  * current_state that were passed to rbd_object_map_update().
1933  *
1934  * To avoid allocating and stashing a context we piggyback on the OSD
1935  * request.  A HEAD update has two ops (assert_locked).  For new_state
1936  * and current_state we decode our own object_map_update op, encoded in
1937  * rbd_cls_object_map_update().
1938  */
1939 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1940                                         struct ceph_osd_request *osd_req)
1941 {
1942         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1943         struct ceph_osd_data *osd_data;
1944         u64 objno;
1945         u8 state, new_state, current_state;
1946         bool has_current_state;
1947         void *p;
1948
1949         if (osd_req->r_result)
1950                 return osd_req->r_result;
1951
1952         /*
1953          * Nothing to do for a snapshot object map.
1954          */
1955         if (osd_req->r_num_ops == 1)
1956                 return 0;
1957
1958         /*
1959          * Update in-memory HEAD object map.
1960          */
1961         rbd_assert(osd_req->r_num_ops == 2);
1962         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1963         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1964
1965         p = page_address(osd_data->pages[0]);
1966         objno = ceph_decode_64(&p);
1967         rbd_assert(objno == obj_req->ex.oe_objno);
1968         rbd_assert(ceph_decode_64(&p) == objno + 1);
1969         new_state = ceph_decode_8(&p);
1970         has_current_state = ceph_decode_8(&p);
1971         if (has_current_state)
1972                 current_state = ceph_decode_8(&p);
1973
1974         spin_lock(&rbd_dev->object_map_lock);
1975         state = __rbd_object_map_get(rbd_dev, objno);
1976         if (!has_current_state || current_state == state ||
1977             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1978                 __rbd_object_map_set(rbd_dev, objno, new_state);
1979         spin_unlock(&rbd_dev->object_map_lock);
1980
1981         return 0;
1982 }
1983
1984 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1985 {
1986         struct rbd_obj_request *obj_req = osd_req->r_priv;
1987         int result;
1988
1989         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1990              osd_req->r_result, obj_req);
1991
1992         result = rbd_object_map_update_finish(obj_req, osd_req);
1993         rbd_obj_handle_request(obj_req, result);
1994 }
1995
1996 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1997 {
1998         u8 state = rbd_object_map_get(rbd_dev, objno);
1999
2000         if (state == new_state ||
2001             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2002             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2003                 return false;
2004
2005         return true;
2006 }
2007
2008 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2009                                      int which, u64 objno, u8 new_state,
2010                                      const u8 *current_state)
2011 {
2012         struct page **pages;
2013         void *p, *start;
2014         int ret;
2015
2016         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2017         if (ret)
2018                 return ret;
2019
2020         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2021         if (IS_ERR(pages))
2022                 return PTR_ERR(pages);
2023
2024         p = start = page_address(pages[0]);
2025         ceph_encode_64(&p, objno);
2026         ceph_encode_64(&p, objno + 1);
2027         ceph_encode_8(&p, new_state);
2028         if (current_state) {
2029                 ceph_encode_8(&p, 1);
2030                 ceph_encode_8(&p, *current_state);
2031         } else {
2032                 ceph_encode_8(&p, 0);
2033         }
2034
2035         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2036                                           false, true);
2037         return 0;
2038 }
2039
2040 /*
2041  * Return:
2042  *   0 - object map update sent
2043  *   1 - object map update isn't needed
2044  *  <0 - error
2045  */
2046 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2047                                  u8 new_state, const u8 *current_state)
2048 {
2049         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2050         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2051         struct ceph_osd_request *req;
2052         int num_ops = 1;
2053         int which = 0;
2054         int ret;
2055
2056         if (snap_id == CEPH_NOSNAP) {
2057                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2058                         return 1;
2059
2060                 num_ops++; /* assert_locked */
2061         }
2062
2063         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2064         if (!req)
2065                 return -ENOMEM;
2066
2067         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2068         req->r_callback = rbd_object_map_callback;
2069         req->r_priv = obj_req;
2070
2071         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2072         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2073         req->r_flags = CEPH_OSD_FLAG_WRITE;
2074         ktime_get_real_ts64(&req->r_mtime);
2075
2076         if (snap_id == CEPH_NOSNAP) {
2077                 /*
2078                  * Protect against possible race conditions during lock
2079                  * ownership transitions.
2080                  */
2081                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2082                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2083                 if (ret)
2084                         return ret;
2085         }
2086
2087         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2088                                         new_state, current_state);
2089         if (ret)
2090                 return ret;
2091
2092         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2093         if (ret)
2094                 return ret;
2095
2096         ceph_osdc_start_request(osdc, req, false);
2097         return 0;
2098 }
2099
2100 static void prune_extents(struct ceph_file_extent *img_extents,
2101                           u32 *num_img_extents, u64 overlap)
2102 {
2103         u32 cnt = *num_img_extents;
2104
2105         /* drop extents completely beyond the overlap */
2106         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2107                 cnt--;
2108
2109         if (cnt) {
2110                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2111
2112                 /* trim final overlapping extent */
2113                 if (ex->fe_off + ex->fe_len > overlap)
2114                         ex->fe_len = overlap - ex->fe_off;
2115         }
2116
2117         *num_img_extents = cnt;
2118 }
2119
2120 /*
2121  * Determine the byte range(s) covered by either just the object extent
2122  * or the entire object in the parent image.
2123  */
2124 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2125                                     bool entire)
2126 {
2127         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2128         int ret;
2129
2130         if (!rbd_dev->parent_overlap)
2131                 return 0;
2132
2133         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2134                                   entire ? 0 : obj_req->ex.oe_off,
2135                                   entire ? rbd_dev->layout.object_size :
2136                                                         obj_req->ex.oe_len,
2137                                   &obj_req->img_extents,
2138                                   &obj_req->num_img_extents);
2139         if (ret)
2140                 return ret;
2141
2142         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2143                       rbd_dev->parent_overlap);
2144         return 0;
2145 }
2146
2147 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2148 {
2149         struct rbd_obj_request *obj_req = osd_req->r_priv;
2150
2151         switch (obj_req->img_request->data_type) {
2152         case OBJ_REQUEST_BIO:
2153                 osd_req_op_extent_osd_data_bio(osd_req, which,
2154                                                &obj_req->bio_pos,
2155                                                obj_req->ex.oe_len);
2156                 break;
2157         case OBJ_REQUEST_BVECS:
2158         case OBJ_REQUEST_OWN_BVECS:
2159                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2160                                                         obj_req->ex.oe_len);
2161                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2162                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2163                                                     &obj_req->bvec_pos);
2164                 break;
2165         default:
2166                 BUG();
2167         }
2168 }
2169
2170 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2171 {
2172         struct page **pages;
2173
2174         /*
2175          * The response data for a STAT call consists of:
2176          *     le64 length;
2177          *     struct {
2178          *         le32 tv_sec;
2179          *         le32 tv_nsec;
2180          *     } mtime;
2181          */
2182         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2183         if (IS_ERR(pages))
2184                 return PTR_ERR(pages);
2185
2186         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2187         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2188                                      8 + sizeof(struct ceph_timespec),
2189                                      0, false, true);
2190         return 0;
2191 }
2192
2193 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2194                                 u32 bytes)
2195 {
2196         struct rbd_obj_request *obj_req = osd_req->r_priv;
2197         int ret;
2198
2199         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2200         if (ret)
2201                 return ret;
2202
2203         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2204                                           obj_req->copyup_bvec_count, bytes);
2205         return 0;
2206 }
2207
2208 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2209 {
2210         obj_req->read_state = RBD_OBJ_READ_START;
2211         return 0;
2212 }
2213
2214 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2215                                       int which)
2216 {
2217         struct rbd_obj_request *obj_req = osd_req->r_priv;
2218         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2219         u16 opcode;
2220
2221         if (!use_object_map(rbd_dev) ||
2222             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2223                 osd_req_op_alloc_hint_init(osd_req, which++,
2224                                            rbd_dev->layout.object_size,
2225                                            rbd_dev->layout.object_size,
2226                                            rbd_dev->opts->alloc_hint_flags);
2227         }
2228
2229         if (rbd_obj_is_entire(obj_req))
2230                 opcode = CEPH_OSD_OP_WRITEFULL;
2231         else
2232                 opcode = CEPH_OSD_OP_WRITE;
2233
2234         osd_req_op_extent_init(osd_req, which, opcode,
2235                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2236         rbd_osd_setup_data(osd_req, which);
2237 }
2238
2239 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2240 {
2241         int ret;
2242
2243         /* reverse map the entire object onto the parent */
2244         ret = rbd_obj_calc_img_extents(obj_req, true);
2245         if (ret)
2246                 return ret;
2247
2248         if (rbd_obj_copyup_enabled(obj_req))
2249                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2250
2251         obj_req->write_state = RBD_OBJ_WRITE_START;
2252         return 0;
2253 }
2254
2255 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2256 {
2257         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2258                                           CEPH_OSD_OP_ZERO;
2259 }
2260
2261 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2262                                         int which)
2263 {
2264         struct rbd_obj_request *obj_req = osd_req->r_priv;
2265
2266         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2267                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2268                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2269         } else {
2270                 osd_req_op_extent_init(osd_req, which,
2271                                        truncate_or_zero_opcode(obj_req),
2272                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2273                                        0, 0);
2274         }
2275 }
2276
2277 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2278 {
2279         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2280         u64 off, next_off;
2281         int ret;
2282
2283         /*
2284          * Align the range to alloc_size boundary and punt on discards
2285          * that are too small to free up any space.
2286          *
2287          * alloc_size == object_size && is_tail() is a special case for
2288          * filestore with filestore_punch_hole = false, needed to allow
2289          * truncate (in addition to delete).
2290          */
2291         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2292             !rbd_obj_is_tail(obj_req)) {
2293                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2294                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2295                                       rbd_dev->opts->alloc_size);
2296                 if (off >= next_off)
2297                         return 1;
2298
2299                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2300                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2301                      off, next_off - off);
2302                 obj_req->ex.oe_off = off;
2303                 obj_req->ex.oe_len = next_off - off;
2304         }
2305
2306         /* reverse map the entire object onto the parent */
2307         ret = rbd_obj_calc_img_extents(obj_req, true);
2308         if (ret)
2309                 return ret;
2310
2311         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2312         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2313                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2314
2315         obj_req->write_state = RBD_OBJ_WRITE_START;
2316         return 0;
2317 }
2318
2319 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2320                                         int which)
2321 {
2322         struct rbd_obj_request *obj_req = osd_req->r_priv;
2323         u16 opcode;
2324
2325         if (rbd_obj_is_entire(obj_req)) {
2326                 if (obj_req->num_img_extents) {
2327                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2328                                 osd_req_op_init(osd_req, which++,
2329                                                 CEPH_OSD_OP_CREATE, 0);
2330                         opcode = CEPH_OSD_OP_TRUNCATE;
2331                 } else {
2332                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2333                         osd_req_op_init(osd_req, which++,
2334                                         CEPH_OSD_OP_DELETE, 0);
2335                         opcode = 0;
2336                 }
2337         } else {
2338                 opcode = truncate_or_zero_opcode(obj_req);
2339         }
2340
2341         if (opcode)
2342                 osd_req_op_extent_init(osd_req, which, opcode,
2343                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2344                                        0, 0);
2345 }
2346
2347 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2348 {
2349         int ret;
2350
2351         /* reverse map the entire object onto the parent */
2352         ret = rbd_obj_calc_img_extents(obj_req, true);
2353         if (ret)
2354                 return ret;
2355
2356         if (rbd_obj_copyup_enabled(obj_req))
2357                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2358         if (!obj_req->num_img_extents) {
2359                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2360                 if (rbd_obj_is_entire(obj_req))
2361                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2362         }
2363
2364         obj_req->write_state = RBD_OBJ_WRITE_START;
2365         return 0;
2366 }
2367
2368 static int count_write_ops(struct rbd_obj_request *obj_req)
2369 {
2370         struct rbd_img_request *img_req = obj_req->img_request;
2371
2372         switch (img_req->op_type) {
2373         case OBJ_OP_WRITE:
2374                 if (!use_object_map(img_req->rbd_dev) ||
2375                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2376                         return 2; /* setallochint + write/writefull */
2377
2378                 return 1; /* write/writefull */
2379         case OBJ_OP_DISCARD:
2380                 return 1; /* delete/truncate/zero */
2381         case OBJ_OP_ZEROOUT:
2382                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2383                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2384                         return 2; /* create + truncate */
2385
2386                 return 1; /* delete/truncate/zero */
2387         default:
2388                 BUG();
2389         }
2390 }
2391
2392 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2393                                     int which)
2394 {
2395         struct rbd_obj_request *obj_req = osd_req->r_priv;
2396
2397         switch (obj_req->img_request->op_type) {
2398         case OBJ_OP_WRITE:
2399                 __rbd_osd_setup_write_ops(osd_req, which);
2400                 break;
2401         case OBJ_OP_DISCARD:
2402                 __rbd_osd_setup_discard_ops(osd_req, which);
2403                 break;
2404         case OBJ_OP_ZEROOUT:
2405                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2406                 break;
2407         default:
2408                 BUG();
2409         }
2410 }
2411
2412 /*
2413  * Prune the list of object requests (adjust offset and/or length, drop
2414  * redundant requests).  Prepare object request state machines and image
2415  * request state machine for execution.
2416  */
2417 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2418 {
2419         struct rbd_obj_request *obj_req, *next_obj_req;
2420         int ret;
2421
2422         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2423                 switch (img_req->op_type) {
2424                 case OBJ_OP_READ:
2425                         ret = rbd_obj_init_read(obj_req);
2426                         break;
2427                 case OBJ_OP_WRITE:
2428                         ret = rbd_obj_init_write(obj_req);
2429                         break;
2430                 case OBJ_OP_DISCARD:
2431                         ret = rbd_obj_init_discard(obj_req);
2432                         break;
2433                 case OBJ_OP_ZEROOUT:
2434                         ret = rbd_obj_init_zeroout(obj_req);
2435                         break;
2436                 default:
2437                         BUG();
2438                 }
2439                 if (ret < 0)
2440                         return ret;
2441                 if (ret > 0) {
2442                         rbd_img_obj_request_del(img_req, obj_req);
2443                         continue;
2444                 }
2445         }
2446
2447         img_req->state = RBD_IMG_START;
2448         return 0;
2449 }
2450
2451 union rbd_img_fill_iter {
2452         struct ceph_bio_iter    bio_iter;
2453         struct ceph_bvec_iter   bvec_iter;
2454 };
2455
2456 struct rbd_img_fill_ctx {
2457         enum obj_request_type   pos_type;
2458         union rbd_img_fill_iter *pos;
2459         union rbd_img_fill_iter iter;
2460         ceph_object_extent_fn_t set_pos_fn;
2461         ceph_object_extent_fn_t count_fn;
2462         ceph_object_extent_fn_t copy_fn;
2463 };
2464
2465 static struct ceph_object_extent *alloc_object_extent(void *arg)
2466 {
2467         struct rbd_img_request *img_req = arg;
2468         struct rbd_obj_request *obj_req;
2469
2470         obj_req = rbd_obj_request_create();
2471         if (!obj_req)
2472                 return NULL;
2473
2474         rbd_img_obj_request_add(img_req, obj_req);
2475         return &obj_req->ex;
2476 }
2477
2478 /*
2479  * While su != os && sc == 1 is technically not fancy (it's the same
2480  * layout as su == os && sc == 1), we can't use the nocopy path for it
2481  * because ->set_pos_fn() should be called only once per object.
2482  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2483  * treat su != os && sc == 1 as fancy.
2484  */
2485 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2486 {
2487         return l->stripe_unit != l->object_size;
2488 }
2489
2490 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2491                                        struct ceph_file_extent *img_extents,
2492                                        u32 num_img_extents,
2493                                        struct rbd_img_fill_ctx *fctx)
2494 {
2495         u32 i;
2496         int ret;
2497
2498         img_req->data_type = fctx->pos_type;
2499
2500         /*
2501          * Create object requests and set each object request's starting
2502          * position in the provided bio (list) or bio_vec array.
2503          */
2504         fctx->iter = *fctx->pos;
2505         for (i = 0; i < num_img_extents; i++) {
2506                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2507                                            img_extents[i].fe_off,
2508                                            img_extents[i].fe_len,
2509                                            &img_req->object_extents,
2510                                            alloc_object_extent, img_req,
2511                                            fctx->set_pos_fn, &fctx->iter);
2512                 if (ret)
2513                         return ret;
2514         }
2515
2516         return __rbd_img_fill_request(img_req);
2517 }
2518
2519 /*
2520  * Map a list of image extents to a list of object extents, create the
2521  * corresponding object requests (normally each to a different object,
2522  * but not always) and add them to @img_req.  For each object request,
2523  * set up its data descriptor to point to the corresponding chunk(s) of
2524  * @fctx->pos data buffer.
2525  *
2526  * Because ceph_file_to_extents() will merge adjacent object extents
2527  * together, each object request's data descriptor may point to multiple
2528  * different chunks of @fctx->pos data buffer.
2529  *
2530  * @fctx->pos data buffer is assumed to be large enough.
2531  */
2532 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2533                                 struct ceph_file_extent *img_extents,
2534                                 u32 num_img_extents,
2535                                 struct rbd_img_fill_ctx *fctx)
2536 {
2537         struct rbd_device *rbd_dev = img_req->rbd_dev;
2538         struct rbd_obj_request *obj_req;
2539         u32 i;
2540         int ret;
2541
2542         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2543             !rbd_layout_is_fancy(&rbd_dev->layout))
2544                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2545                                                    num_img_extents, fctx);
2546
2547         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2548
2549         /*
2550          * Create object requests and determine ->bvec_count for each object
2551          * request.  Note that ->bvec_count sum over all object requests may
2552          * be greater than the number of bio_vecs in the provided bio (list)
2553          * or bio_vec array because when mapped, those bio_vecs can straddle
2554          * stripe unit boundaries.
2555          */
2556         fctx->iter = *fctx->pos;
2557         for (i = 0; i < num_img_extents; i++) {
2558                 ret = ceph_file_to_extents(&rbd_dev->layout,
2559                                            img_extents[i].fe_off,
2560                                            img_extents[i].fe_len,
2561                                            &img_req->object_extents,
2562                                            alloc_object_extent, img_req,
2563                                            fctx->count_fn, &fctx->iter);
2564                 if (ret)
2565                         return ret;
2566         }
2567
2568         for_each_obj_request(img_req, obj_req) {
2569                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2570                                               sizeof(*obj_req->bvec_pos.bvecs),
2571                                               GFP_NOIO);
2572                 if (!obj_req->bvec_pos.bvecs)
2573                         return -ENOMEM;
2574         }
2575
2576         /*
2577          * Fill in each object request's private bio_vec array, splitting and
2578          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2579          */
2580         fctx->iter = *fctx->pos;
2581         for (i = 0; i < num_img_extents; i++) {
2582                 ret = ceph_iterate_extents(&rbd_dev->layout,
2583                                            img_extents[i].fe_off,
2584                                            img_extents[i].fe_len,
2585                                            &img_req->object_extents,
2586                                            fctx->copy_fn, &fctx->iter);
2587                 if (ret)
2588                         return ret;
2589         }
2590
2591         return __rbd_img_fill_request(img_req);
2592 }
2593
2594 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2595                                u64 off, u64 len)
2596 {
2597         struct ceph_file_extent ex = { off, len };
2598         union rbd_img_fill_iter dummy = {};
2599         struct rbd_img_fill_ctx fctx = {
2600                 .pos_type = OBJ_REQUEST_NODATA,
2601                 .pos = &dummy,
2602         };
2603
2604         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2605 }
2606
2607 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2608 {
2609         struct rbd_obj_request *obj_req =
2610             container_of(ex, struct rbd_obj_request, ex);
2611         struct ceph_bio_iter *it = arg;
2612
2613         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2614         obj_req->bio_pos = *it;
2615         ceph_bio_iter_advance(it, bytes);
2616 }
2617
2618 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2619 {
2620         struct rbd_obj_request *obj_req =
2621             container_of(ex, struct rbd_obj_request, ex);
2622         struct ceph_bio_iter *it = arg;
2623
2624         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2625         ceph_bio_iter_advance_step(it, bytes, ({
2626                 obj_req->bvec_count++;
2627         }));
2628
2629 }
2630
2631 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2632 {
2633         struct rbd_obj_request *obj_req =
2634             container_of(ex, struct rbd_obj_request, ex);
2635         struct ceph_bio_iter *it = arg;
2636
2637         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2638         ceph_bio_iter_advance_step(it, bytes, ({
2639                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2640                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2641         }));
2642 }
2643
2644 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2645                                    struct ceph_file_extent *img_extents,
2646                                    u32 num_img_extents,
2647                                    struct ceph_bio_iter *bio_pos)
2648 {
2649         struct rbd_img_fill_ctx fctx = {
2650                 .pos_type = OBJ_REQUEST_BIO,
2651                 .pos = (union rbd_img_fill_iter *)bio_pos,
2652                 .set_pos_fn = set_bio_pos,
2653                 .count_fn = count_bio_bvecs,
2654                 .copy_fn = copy_bio_bvecs,
2655         };
2656
2657         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2658                                     &fctx);
2659 }
2660
2661 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2662                                  u64 off, u64 len, struct bio *bio)
2663 {
2664         struct ceph_file_extent ex = { off, len };
2665         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2666
2667         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2668 }
2669
2670 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2671 {
2672         struct rbd_obj_request *obj_req =
2673             container_of(ex, struct rbd_obj_request, ex);
2674         struct ceph_bvec_iter *it = arg;
2675
2676         obj_req->bvec_pos = *it;
2677         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2678         ceph_bvec_iter_advance(it, bytes);
2679 }
2680
2681 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2682 {
2683         struct rbd_obj_request *obj_req =
2684             container_of(ex, struct rbd_obj_request, ex);
2685         struct ceph_bvec_iter *it = arg;
2686
2687         ceph_bvec_iter_advance_step(it, bytes, ({
2688                 obj_req->bvec_count++;
2689         }));
2690 }
2691
2692 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2693 {
2694         struct rbd_obj_request *obj_req =
2695             container_of(ex, struct rbd_obj_request, ex);
2696         struct ceph_bvec_iter *it = arg;
2697
2698         ceph_bvec_iter_advance_step(it, bytes, ({
2699                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2700                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2701         }));
2702 }
2703
2704 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2705                                      struct ceph_file_extent *img_extents,
2706                                      u32 num_img_extents,
2707                                      struct ceph_bvec_iter *bvec_pos)
2708 {
2709         struct rbd_img_fill_ctx fctx = {
2710                 .pos_type = OBJ_REQUEST_BVECS,
2711                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2712                 .set_pos_fn = set_bvec_pos,
2713                 .count_fn = count_bvecs,
2714                 .copy_fn = copy_bvecs,
2715         };
2716
2717         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2718                                     &fctx);
2719 }
2720
2721 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2722                                    struct ceph_file_extent *img_extents,
2723                                    u32 num_img_extents,
2724                                    struct bio_vec *bvecs)
2725 {
2726         struct ceph_bvec_iter it = {
2727                 .bvecs = bvecs,
2728                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2729                                                              num_img_extents) },
2730         };
2731
2732         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2733                                          &it);
2734 }
2735
2736 static void rbd_img_handle_request_work(struct work_struct *work)
2737 {
2738         struct rbd_img_request *img_req =
2739             container_of(work, struct rbd_img_request, work);
2740
2741         rbd_img_handle_request(img_req, img_req->work_result);
2742 }
2743
2744 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2745 {
2746         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2747         img_req->work_result = result;
2748         queue_work(rbd_wq, &img_req->work);
2749 }
2750
2751 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2752 {
2753         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2754
2755         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2756                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2757                 return true;
2758         }
2759
2760         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2761              obj_req->ex.oe_objno);
2762         return false;
2763 }
2764
2765 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2766 {
2767         struct ceph_osd_request *osd_req;
2768         int ret;
2769
2770         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2771         if (IS_ERR(osd_req))
2772                 return PTR_ERR(osd_req);
2773
2774         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2775                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2776         rbd_osd_setup_data(osd_req, 0);
2777         rbd_osd_format_read(osd_req);
2778
2779         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2780         if (ret)
2781                 return ret;
2782
2783         rbd_osd_submit(osd_req);
2784         return 0;
2785 }
2786
2787 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2788 {
2789         struct rbd_img_request *img_req = obj_req->img_request;
2790         struct rbd_device *parent = img_req->rbd_dev->parent;
2791         struct rbd_img_request *child_img_req;
2792         int ret;
2793
2794         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2795         if (!child_img_req)
2796                 return -ENOMEM;
2797
2798         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2799         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2800         child_img_req->obj_request = obj_req;
2801
2802         down_read(&parent->header_rwsem);
2803         rbd_img_capture_header(child_img_req);
2804         up_read(&parent->header_rwsem);
2805
2806         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2807              obj_req);
2808
2809         if (!rbd_img_is_write(img_req)) {
2810                 switch (img_req->data_type) {
2811                 case OBJ_REQUEST_BIO:
2812                         ret = __rbd_img_fill_from_bio(child_img_req,
2813                                                       obj_req->img_extents,
2814                                                       obj_req->num_img_extents,
2815                                                       &obj_req->bio_pos);
2816                         break;
2817                 case OBJ_REQUEST_BVECS:
2818                 case OBJ_REQUEST_OWN_BVECS:
2819                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2820                                                       obj_req->img_extents,
2821                                                       obj_req->num_img_extents,
2822                                                       &obj_req->bvec_pos);
2823                         break;
2824                 default:
2825                         BUG();
2826                 }
2827         } else {
2828                 ret = rbd_img_fill_from_bvecs(child_img_req,
2829                                               obj_req->img_extents,
2830                                               obj_req->num_img_extents,
2831                                               obj_req->copyup_bvecs);
2832         }
2833         if (ret) {
2834                 rbd_img_request_destroy(child_img_req);
2835                 return ret;
2836         }
2837
2838         /* avoid parent chain recursion */
2839         rbd_img_schedule(child_img_req, 0);
2840         return 0;
2841 }
2842
2843 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2844 {
2845         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2846         int ret;
2847
2848 again:
2849         switch (obj_req->read_state) {
2850         case RBD_OBJ_READ_START:
2851                 rbd_assert(!*result);
2852
2853                 if (!rbd_obj_may_exist(obj_req)) {
2854                         *result = -ENOENT;
2855                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2856                         goto again;
2857                 }
2858
2859                 ret = rbd_obj_read_object(obj_req);
2860                 if (ret) {
2861                         *result = ret;
2862                         return true;
2863                 }
2864                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2865                 return false;
2866         case RBD_OBJ_READ_OBJECT:
2867                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2868                         /* reverse map this object extent onto the parent */
2869                         ret = rbd_obj_calc_img_extents(obj_req, false);
2870                         if (ret) {
2871                                 *result = ret;
2872                                 return true;
2873                         }
2874                         if (obj_req->num_img_extents) {
2875                                 ret = rbd_obj_read_from_parent(obj_req);
2876                                 if (ret) {
2877                                         *result = ret;
2878                                         return true;
2879                                 }
2880                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2881                                 return false;
2882                         }
2883                 }
2884
2885                 /*
2886                  * -ENOENT means a hole in the image -- zero-fill the entire
2887                  * length of the request.  A short read also implies zero-fill
2888                  * to the end of the request.
2889                  */
2890                 if (*result == -ENOENT) {
2891                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2892                         *result = 0;
2893                 } else if (*result >= 0) {
2894                         if (*result < obj_req->ex.oe_len)
2895                                 rbd_obj_zero_range(obj_req, *result,
2896                                                 obj_req->ex.oe_len - *result);
2897                         else
2898                                 rbd_assert(*result == obj_req->ex.oe_len);
2899                         *result = 0;
2900                 }
2901                 return true;
2902         case RBD_OBJ_READ_PARENT:
2903                 /*
2904                  * The parent image is read only up to the overlap -- zero-fill
2905                  * from the overlap to the end of the request.
2906                  */
2907                 if (!*result) {
2908                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2909
2910                         if (obj_overlap < obj_req->ex.oe_len)
2911                                 rbd_obj_zero_range(obj_req, obj_overlap,
2912                                             obj_req->ex.oe_len - obj_overlap);
2913                 }
2914                 return true;
2915         default:
2916                 BUG();
2917         }
2918 }
2919
2920 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2921 {
2922         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2923
2924         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2925                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2926
2927         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2928             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2929                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2930                 return true;
2931         }
2932
2933         return false;
2934 }
2935
2936 /*
2937  * Return:
2938  *   0 - object map update sent
2939  *   1 - object map update isn't needed
2940  *  <0 - error
2941  */
2942 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2943 {
2944         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2945         u8 new_state;
2946
2947         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2948                 return 1;
2949
2950         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2951                 new_state = OBJECT_PENDING;
2952         else
2953                 new_state = OBJECT_EXISTS;
2954
2955         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2956 }
2957
2958 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2959 {
2960         struct ceph_osd_request *osd_req;
2961         int num_ops = count_write_ops(obj_req);
2962         int which = 0;
2963         int ret;
2964
2965         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2966                 num_ops++; /* stat */
2967
2968         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2969         if (IS_ERR(osd_req))
2970                 return PTR_ERR(osd_req);
2971
2972         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2973                 ret = rbd_osd_setup_stat(osd_req, which++);
2974                 if (ret)
2975                         return ret;
2976         }
2977
2978         rbd_osd_setup_write_ops(osd_req, which);
2979         rbd_osd_format_write(osd_req);
2980
2981         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2982         if (ret)
2983                 return ret;
2984
2985         rbd_osd_submit(osd_req);
2986         return 0;
2987 }
2988
2989 /*
2990  * copyup_bvecs pages are never highmem pages
2991  */
2992 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2993 {
2994         struct ceph_bvec_iter it = {
2995                 .bvecs = bvecs,
2996                 .iter = { .bi_size = bytes },
2997         };
2998
2999         ceph_bvec_iter_advance_step(&it, bytes, ({
3000                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3001                                bv.bv_len))
3002                         return false;
3003         }));
3004         return true;
3005 }
3006
3007 #define MODS_ONLY       U32_MAX
3008
3009 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3010                                       u32 bytes)
3011 {
3012         struct ceph_osd_request *osd_req;
3013         int ret;
3014
3015         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3016         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3017
3018         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3019         if (IS_ERR(osd_req))
3020                 return PTR_ERR(osd_req);
3021
3022         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3023         if (ret)
3024                 return ret;
3025
3026         rbd_osd_format_write(osd_req);
3027
3028         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3029         if (ret)
3030                 return ret;
3031
3032         rbd_osd_submit(osd_req);
3033         return 0;
3034 }
3035
3036 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3037                                         u32 bytes)
3038 {
3039         struct ceph_osd_request *osd_req;
3040         int num_ops = count_write_ops(obj_req);
3041         int which = 0;
3042         int ret;
3043
3044         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3045
3046         if (bytes != MODS_ONLY)
3047                 num_ops++; /* copyup */
3048
3049         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3050         if (IS_ERR(osd_req))
3051                 return PTR_ERR(osd_req);
3052
3053         if (bytes != MODS_ONLY) {
3054                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3055                 if (ret)
3056                         return ret;
3057         }
3058
3059         rbd_osd_setup_write_ops(osd_req, which);
3060         rbd_osd_format_write(osd_req);
3061
3062         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3063         if (ret)
3064                 return ret;
3065
3066         rbd_osd_submit(osd_req);
3067         return 0;
3068 }
3069
3070 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3071 {
3072         u32 i;
3073
3074         rbd_assert(!obj_req->copyup_bvecs);
3075         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3076         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3077                                         sizeof(*obj_req->copyup_bvecs),
3078                                         GFP_NOIO);
3079         if (!obj_req->copyup_bvecs)
3080                 return -ENOMEM;
3081
3082         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3083                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3084
3085                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3086                 if (!obj_req->copyup_bvecs[i].bv_page)
3087                         return -ENOMEM;
3088
3089                 obj_req->copyup_bvecs[i].bv_offset = 0;
3090                 obj_req->copyup_bvecs[i].bv_len = len;
3091                 obj_overlap -= len;
3092         }
3093
3094         rbd_assert(!obj_overlap);
3095         return 0;
3096 }
3097
3098 /*
3099  * The target object doesn't exist.  Read the data for the entire
3100  * target object up to the overlap point (if any) from the parent,
3101  * so we can use it for a copyup.
3102  */
3103 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3104 {
3105         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3106         int ret;
3107
3108         rbd_assert(obj_req->num_img_extents);
3109         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3110                       rbd_dev->parent_overlap);
3111         if (!obj_req->num_img_extents) {
3112                 /*
3113                  * The overlap has become 0 (most likely because the
3114                  * image has been flattened).  Re-submit the original write
3115                  * request -- pass MODS_ONLY since the copyup isn't needed
3116                  * anymore.
3117                  */
3118                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3119         }
3120
3121         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3122         if (ret)
3123                 return ret;
3124
3125         return rbd_obj_read_from_parent(obj_req);
3126 }
3127
3128 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3129 {
3130         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3131         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3132         u8 new_state;
3133         u32 i;
3134         int ret;
3135
3136         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3137
3138         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3139                 return;
3140
3141         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3142                 return;
3143
3144         for (i = 0; i < snapc->num_snaps; i++) {
3145                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3146                     i + 1 < snapc->num_snaps)
3147                         new_state = OBJECT_EXISTS_CLEAN;
3148                 else
3149                         new_state = OBJECT_EXISTS;
3150
3151                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3152                                             new_state, NULL);
3153                 if (ret < 0) {
3154                         obj_req->pending.result = ret;
3155                         return;
3156                 }
3157
3158                 rbd_assert(!ret);
3159                 obj_req->pending.num_pending++;
3160         }
3161 }
3162
3163 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3164 {
3165         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3166         int ret;
3167
3168         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3169
3170         /*
3171          * Only send non-zero copyup data to save some I/O and network
3172          * bandwidth -- zero copyup data is equivalent to the object not
3173          * existing.
3174          */
3175         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3176                 bytes = 0;
3177
3178         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3179                 /*
3180                  * Send a copyup request with an empty snapshot context to
3181                  * deep-copyup the object through all existing snapshots.
3182                  * A second request with the current snapshot context will be
3183                  * sent for the actual modification.
3184                  */
3185                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3186                 if (ret) {
3187                         obj_req->pending.result = ret;
3188                         return;
3189                 }
3190
3191                 obj_req->pending.num_pending++;
3192                 bytes = MODS_ONLY;
3193         }
3194
3195         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3196         if (ret) {
3197                 obj_req->pending.result = ret;
3198                 return;
3199         }
3200
3201         obj_req->pending.num_pending++;
3202 }
3203
3204 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3205 {
3206         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3207         int ret;
3208
3209 again:
3210         switch (obj_req->copyup_state) {
3211         case RBD_OBJ_COPYUP_START:
3212                 rbd_assert(!*result);
3213
3214                 ret = rbd_obj_copyup_read_parent(obj_req);
3215                 if (ret) {
3216                         *result = ret;
3217                         return true;
3218                 }
3219                 if (obj_req->num_img_extents)
3220                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3221                 else
3222                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3223                 return false;
3224         case RBD_OBJ_COPYUP_READ_PARENT:
3225                 if (*result)
3226                         return true;
3227
3228                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3229                                   rbd_obj_img_extents_bytes(obj_req))) {
3230                         dout("%s %p detected zeros\n", __func__, obj_req);
3231                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3232                 }
3233
3234                 rbd_obj_copyup_object_maps(obj_req);
3235                 if (!obj_req->pending.num_pending) {
3236                         *result = obj_req->pending.result;
3237                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3238                         goto again;
3239                 }
3240                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3241                 return false;
3242         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3243                 if (!pending_result_dec(&obj_req->pending, result))
3244                         return false;
3245                 fallthrough;
3246         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3247                 if (*result) {
3248                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3249                                  *result);
3250                         return true;
3251                 }
3252
3253                 rbd_obj_copyup_write_object(obj_req);
3254                 if (!obj_req->pending.num_pending) {
3255                         *result = obj_req->pending.result;
3256                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3257                         goto again;
3258                 }
3259                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3260                 return false;
3261         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3262                 if (!pending_result_dec(&obj_req->pending, result))
3263                         return false;
3264                 fallthrough;
3265         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3266                 return true;
3267         default:
3268                 BUG();
3269         }
3270 }
3271
3272 /*
3273  * Return:
3274  *   0 - object map update sent
3275  *   1 - object map update isn't needed
3276  *  <0 - error
3277  */
3278 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3279 {
3280         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3281         u8 current_state = OBJECT_PENDING;
3282
3283         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3284                 return 1;
3285
3286         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3287                 return 1;
3288
3289         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3290                                      &current_state);
3291 }
3292
3293 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3294 {
3295         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3296         int ret;
3297
3298 again:
3299         switch (obj_req->write_state) {
3300         case RBD_OBJ_WRITE_START:
3301                 rbd_assert(!*result);
3302
3303                 if (rbd_obj_write_is_noop(obj_req))
3304                         return true;
3305
3306                 ret = rbd_obj_write_pre_object_map(obj_req);
3307                 if (ret < 0) {
3308                         *result = ret;
3309                         return true;
3310                 }
3311                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3312                 if (ret > 0)
3313                         goto again;
3314                 return false;
3315         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3316                 if (*result) {
3317                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3318                                  *result);
3319                         return true;
3320                 }
3321                 ret = rbd_obj_write_object(obj_req);
3322                 if (ret) {
3323                         *result = ret;
3324                         return true;
3325                 }
3326                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3327                 return false;
3328         case RBD_OBJ_WRITE_OBJECT:
3329                 if (*result == -ENOENT) {
3330                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3331                                 *result = 0;
3332                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3333                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3334                                 goto again;
3335                         }
3336                         /*
3337                          * On a non-existent object:
3338                          *   delete - -ENOENT, truncate/zero - 0
3339                          */
3340                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3341                                 *result = 0;
3342                 }
3343                 if (*result)
3344                         return true;
3345
3346                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3347                 goto again;
3348         case __RBD_OBJ_WRITE_COPYUP:
3349                 if (!rbd_obj_advance_copyup(obj_req, result))
3350                         return false;
3351                 fallthrough;
3352         case RBD_OBJ_WRITE_COPYUP:
3353                 if (*result) {
3354                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3355                         return true;
3356                 }
3357                 ret = rbd_obj_write_post_object_map(obj_req);
3358                 if (ret < 0) {
3359                         *result = ret;
3360                         return true;
3361                 }
3362                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3363                 if (ret > 0)
3364                         goto again;
3365                 return false;
3366         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3367                 if (*result)
3368                         rbd_warn(rbd_dev, "post object map update failed: %d",
3369                                  *result);
3370                 return true;
3371         default:
3372                 BUG();
3373         }
3374 }
3375
3376 /*
3377  * Return true if @obj_req is completed.
3378  */
3379 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3380                                      int *result)
3381 {
3382         struct rbd_img_request *img_req = obj_req->img_request;
3383         struct rbd_device *rbd_dev = img_req->rbd_dev;
3384         bool done;
3385
3386         mutex_lock(&obj_req->state_mutex);
3387         if (!rbd_img_is_write(img_req))
3388                 done = rbd_obj_advance_read(obj_req, result);
3389         else
3390                 done = rbd_obj_advance_write(obj_req, result);
3391         mutex_unlock(&obj_req->state_mutex);
3392
3393         if (done && *result) {
3394                 rbd_assert(*result < 0);
3395                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3396                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3397                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3398         }
3399         return done;
3400 }
3401
3402 /*
3403  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3404  * recursion.
3405  */
3406 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3407 {
3408         if (__rbd_obj_handle_request(obj_req, &result))
3409                 rbd_img_handle_request(obj_req->img_request, result);
3410 }
3411
3412 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3413 {
3414         struct rbd_device *rbd_dev = img_req->rbd_dev;
3415
3416         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3417                 return false;
3418
3419         if (rbd_is_ro(rbd_dev))
3420                 return false;
3421
3422         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3423         if (rbd_dev->opts->lock_on_read ||
3424             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3425                 return true;
3426
3427         return rbd_img_is_write(img_req);
3428 }
3429
3430 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3431 {
3432         struct rbd_device *rbd_dev = img_req->rbd_dev;
3433         bool locked;
3434
3435         lockdep_assert_held(&rbd_dev->lock_rwsem);
3436         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3437         spin_lock(&rbd_dev->lock_lists_lock);
3438         rbd_assert(list_empty(&img_req->lock_item));
3439         if (!locked)
3440                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3441         else
3442                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3443         spin_unlock(&rbd_dev->lock_lists_lock);
3444         return locked;
3445 }
3446
3447 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3448 {
3449         struct rbd_device *rbd_dev = img_req->rbd_dev;
3450         bool need_wakeup;
3451
3452         lockdep_assert_held(&rbd_dev->lock_rwsem);
3453         spin_lock(&rbd_dev->lock_lists_lock);
3454         rbd_assert(!list_empty(&img_req->lock_item));
3455         list_del_init(&img_req->lock_item);
3456         need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3457                        list_empty(&rbd_dev->running_list));
3458         spin_unlock(&rbd_dev->lock_lists_lock);
3459         if (need_wakeup)
3460                 complete(&rbd_dev->releasing_wait);
3461 }
3462
3463 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465         struct rbd_device *rbd_dev = img_req->rbd_dev;
3466
3467         if (!need_exclusive_lock(img_req))
3468                 return 1;
3469
3470         if (rbd_lock_add_request(img_req))
3471                 return 1;
3472
3473         if (rbd_dev->opts->exclusive) {
3474                 WARN_ON(1); /* lock got released? */
3475                 return -EROFS;
3476         }
3477
3478         /*
3479          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3480          * and cancel_delayed_work() in wake_lock_waiters().
3481          */
3482         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3483         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3484         return 0;
3485 }
3486
3487 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3488 {
3489         struct rbd_obj_request *obj_req;
3490
3491         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3492
3493         for_each_obj_request(img_req, obj_req) {
3494                 int result = 0;
3495
3496                 if (__rbd_obj_handle_request(obj_req, &result)) {
3497                         if (result) {
3498                                 img_req->pending.result = result;
3499                                 return;
3500                         }
3501                 } else {
3502                         img_req->pending.num_pending++;
3503                 }
3504         }
3505 }
3506
3507 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3508 {
3509         struct rbd_device *rbd_dev = img_req->rbd_dev;
3510         int ret;
3511
3512 again:
3513         switch (img_req->state) {
3514         case RBD_IMG_START:
3515                 rbd_assert(!*result);
3516
3517                 ret = rbd_img_exclusive_lock(img_req);
3518                 if (ret < 0) {
3519                         *result = ret;
3520                         return true;
3521                 }
3522                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3523                 if (ret > 0)
3524                         goto again;
3525                 return false;
3526         case RBD_IMG_EXCLUSIVE_LOCK:
3527                 if (*result)
3528                         return true;
3529
3530                 rbd_assert(!need_exclusive_lock(img_req) ||
3531                            __rbd_is_lock_owner(rbd_dev));
3532
3533                 rbd_img_object_requests(img_req);
3534                 if (!img_req->pending.num_pending) {
3535                         *result = img_req->pending.result;
3536                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3537                         goto again;
3538                 }
3539                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3540                 return false;
3541         case __RBD_IMG_OBJECT_REQUESTS:
3542                 if (!pending_result_dec(&img_req->pending, result))
3543                         return false;
3544                 fallthrough;
3545         case RBD_IMG_OBJECT_REQUESTS:
3546                 return true;
3547         default:
3548                 BUG();
3549         }
3550 }
3551
3552 /*
3553  * Return true if @img_req is completed.
3554  */
3555 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3556                                      int *result)
3557 {
3558         struct rbd_device *rbd_dev = img_req->rbd_dev;
3559         bool done;
3560
3561         if (need_exclusive_lock(img_req)) {
3562                 down_read(&rbd_dev->lock_rwsem);
3563                 mutex_lock(&img_req->state_mutex);
3564                 done = rbd_img_advance(img_req, result);
3565                 if (done)
3566                         rbd_lock_del_request(img_req);
3567                 mutex_unlock(&img_req->state_mutex);
3568                 up_read(&rbd_dev->lock_rwsem);
3569         } else {
3570                 mutex_lock(&img_req->state_mutex);
3571                 done = rbd_img_advance(img_req, result);
3572                 mutex_unlock(&img_req->state_mutex);
3573         }
3574
3575         if (done && *result) {
3576                 rbd_assert(*result < 0);
3577                 rbd_warn(rbd_dev, "%s%s result %d",
3578                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3579                       obj_op_name(img_req->op_type), *result);
3580         }
3581         return done;
3582 }
3583
3584 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3585 {
3586 again:
3587         if (!__rbd_img_handle_request(img_req, &result))
3588                 return;
3589
3590         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3591                 struct rbd_obj_request *obj_req = img_req->obj_request;
3592
3593                 rbd_img_request_destroy(img_req);
3594                 if (__rbd_obj_handle_request(obj_req, &result)) {
3595                         img_req = obj_req->img_request;
3596                         goto again;
3597                 }
3598         } else {
3599                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3600
3601                 rbd_img_request_destroy(img_req);
3602                 blk_mq_end_request(rq, errno_to_blk_status(result));
3603         }
3604 }
3605
3606 static const struct rbd_client_id rbd_empty_cid;
3607
3608 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3609                           const struct rbd_client_id *rhs)
3610 {
3611         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3612 }
3613
3614 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3615 {
3616         struct rbd_client_id cid;
3617
3618         mutex_lock(&rbd_dev->watch_mutex);
3619         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3620         cid.handle = rbd_dev->watch_cookie;
3621         mutex_unlock(&rbd_dev->watch_mutex);
3622         return cid;
3623 }
3624
3625 /*
3626  * lock_rwsem must be held for write
3627  */
3628 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3629                               const struct rbd_client_id *cid)
3630 {
3631         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3632              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3633              cid->gid, cid->handle);
3634         rbd_dev->owner_cid = *cid; /* struct */
3635 }
3636
3637 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3638 {
3639         mutex_lock(&rbd_dev->watch_mutex);
3640         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3641         mutex_unlock(&rbd_dev->watch_mutex);
3642 }
3643
3644 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3645 {
3646         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3647
3648         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3649         strcpy(rbd_dev->lock_cookie, cookie);
3650         rbd_set_owner_cid(rbd_dev, &cid);
3651         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3652 }
3653
3654 /*
3655  * lock_rwsem must be held for write
3656  */
3657 static int rbd_lock(struct rbd_device *rbd_dev)
3658 {
3659         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3660         char cookie[32];
3661         int ret;
3662
3663         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3664                 rbd_dev->lock_cookie[0] != '\0');
3665
3666         format_lock_cookie(rbd_dev, cookie);
3667         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3668                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3669                             RBD_LOCK_TAG, "", 0);
3670         if (ret)
3671                 return ret;
3672
3673         __rbd_lock(rbd_dev, cookie);
3674         return 0;
3675 }
3676
3677 /*
3678  * lock_rwsem must be held for write
3679  */
3680 static void rbd_unlock(struct rbd_device *rbd_dev)
3681 {
3682         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3683         int ret;
3684
3685         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3686                 rbd_dev->lock_cookie[0] == '\0');
3687
3688         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3689                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3690         if (ret && ret != -ENOENT)
3691                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3692
3693         /* treat errors as the image is unlocked */
3694         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3695         rbd_dev->lock_cookie[0] = '\0';
3696         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3697         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3698 }
3699
3700 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3701                                 enum rbd_notify_op notify_op,
3702                                 struct page ***preply_pages,
3703                                 size_t *preply_len)
3704 {
3705         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3706         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3707         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3708         int buf_size = sizeof(buf);
3709         void *p = buf;
3710
3711         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3712
3713         /* encode *LockPayload NotifyMessage (op + ClientId) */
3714         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3715         ceph_encode_32(&p, notify_op);
3716         ceph_encode_64(&p, cid.gid);
3717         ceph_encode_64(&p, cid.handle);
3718
3719         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3720                                 &rbd_dev->header_oloc, buf, buf_size,
3721                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3722 }
3723
3724 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3725                                enum rbd_notify_op notify_op)
3726 {
3727         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3728 }
3729
3730 static void rbd_notify_acquired_lock(struct work_struct *work)
3731 {
3732         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3733                                                   acquired_lock_work);
3734
3735         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3736 }
3737
3738 static void rbd_notify_released_lock(struct work_struct *work)
3739 {
3740         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741                                                   released_lock_work);
3742
3743         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3744 }
3745
3746 static int rbd_request_lock(struct rbd_device *rbd_dev)
3747 {
3748         struct page **reply_pages;
3749         size_t reply_len;
3750         bool lock_owner_responded = false;
3751         int ret;
3752
3753         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3754
3755         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3756                                    &reply_pages, &reply_len);
3757         if (ret && ret != -ETIMEDOUT) {
3758                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3759                 goto out;
3760         }
3761
3762         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3763                 void *p = page_address(reply_pages[0]);
3764                 void *const end = p + reply_len;
3765                 u32 n;
3766
3767                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3768                 while (n--) {
3769                         u8 struct_v;
3770                         u32 len;
3771
3772                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3773                         p += 8 + 8; /* skip gid and cookie */
3774
3775                         ceph_decode_32_safe(&p, end, len, e_inval);
3776                         if (!len)
3777                                 continue;
3778
3779                         if (lock_owner_responded) {
3780                                 rbd_warn(rbd_dev,
3781                                          "duplicate lock owners detected");
3782                                 ret = -EIO;
3783                                 goto out;
3784                         }
3785
3786                         lock_owner_responded = true;
3787                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3788                                                   &struct_v, &len);
3789                         if (ret) {
3790                                 rbd_warn(rbd_dev,
3791                                          "failed to decode ResponseMessage: %d",
3792                                          ret);
3793                                 goto e_inval;
3794                         }
3795
3796                         ret = ceph_decode_32(&p);
3797                 }
3798         }
3799
3800         if (!lock_owner_responded) {
3801                 rbd_warn(rbd_dev, "no lock owners detected");
3802                 ret = -ETIMEDOUT;
3803         }
3804
3805 out:
3806         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3807         return ret;
3808
3809 e_inval:
3810         ret = -EINVAL;
3811         goto out;
3812 }
3813
3814 /*
3815  * Either image request state machine(s) or rbd_add_acquire_lock()
3816  * (i.e. "rbd map").
3817  */
3818 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3819 {
3820         struct rbd_img_request *img_req;
3821
3822         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3823         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3824
3825         cancel_delayed_work(&rbd_dev->lock_dwork);
3826         if (!completion_done(&rbd_dev->acquire_wait)) {
3827                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3828                            list_empty(&rbd_dev->running_list));
3829                 rbd_dev->acquire_err = result;
3830                 complete_all(&rbd_dev->acquire_wait);
3831                 return;
3832         }
3833
3834         list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3835                 mutex_lock(&img_req->state_mutex);
3836                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3837                 rbd_img_schedule(img_req, result);
3838                 mutex_unlock(&img_req->state_mutex);
3839         }
3840
3841         list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3842 }
3843
3844 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3845                                struct ceph_locker **lockers, u32 *num_lockers)
3846 {
3847         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848         u8 lock_type;
3849         char *lock_tag;
3850         int ret;
3851
3852         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3853
3854         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3855                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3856                                  &lock_type, &lock_tag, lockers, num_lockers);
3857         if (ret)
3858                 return ret;
3859
3860         if (*num_lockers == 0) {
3861                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3862                 goto out;
3863         }
3864
3865         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3866                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3867                          lock_tag);
3868                 ret = -EBUSY;
3869                 goto out;
3870         }
3871
3872         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3873                 rbd_warn(rbd_dev, "shared lock type detected");
3874                 ret = -EBUSY;
3875                 goto out;
3876         }
3877
3878         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3879                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3880                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3881                          (*lockers)[0].id.cookie);
3882                 ret = -EBUSY;
3883                 goto out;
3884         }
3885
3886 out:
3887         kfree(lock_tag);
3888         return ret;
3889 }
3890
3891 static int find_watcher(struct rbd_device *rbd_dev,
3892                         const struct ceph_locker *locker)
3893 {
3894         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3895         struct ceph_watch_item *watchers;
3896         u32 num_watchers;
3897         u64 cookie;
3898         int i;
3899         int ret;
3900
3901         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3902                                       &rbd_dev->header_oloc, &watchers,
3903                                       &num_watchers);
3904         if (ret)
3905                 return ret;
3906
3907         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3908         for (i = 0; i < num_watchers; i++) {
3909                 /*
3910                  * Ignore addr->type while comparing.  This mimics
3911                  * entity_addr_t::get_legacy_str() + strcmp().
3912                  */
3913                 if (ceph_addr_equal_no_type(&watchers[i].addr,
3914                                             &locker->info.addr) &&
3915                     watchers[i].cookie == cookie) {
3916                         struct rbd_client_id cid = {
3917                                 .gid = le64_to_cpu(watchers[i].name.num),
3918                                 .handle = cookie,
3919                         };
3920
3921                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3922                              rbd_dev, cid.gid, cid.handle);
3923                         rbd_set_owner_cid(rbd_dev, &cid);
3924                         ret = 1;
3925                         goto out;
3926                 }
3927         }
3928
3929         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3930         ret = 0;
3931 out:
3932         kfree(watchers);
3933         return ret;
3934 }
3935
3936 /*
3937  * lock_rwsem must be held for write
3938  */
3939 static int rbd_try_lock(struct rbd_device *rbd_dev)
3940 {
3941         struct ceph_client *client = rbd_dev->rbd_client->client;
3942         struct ceph_locker *lockers;
3943         u32 num_lockers;
3944         int ret;
3945
3946         for (;;) {
3947                 ret = rbd_lock(rbd_dev);
3948                 if (ret != -EBUSY)
3949                         return ret;
3950
3951                 /* determine if the current lock holder is still alive */
3952                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3953                 if (ret)
3954                         return ret;
3955
3956                 if (num_lockers == 0)
3957                         goto again;
3958
3959                 ret = find_watcher(rbd_dev, lockers);
3960                 if (ret)
3961                         goto out; /* request lock or error */
3962
3963                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3964                          ENTITY_NAME(lockers[0].id.name));
3965
3966                 ret = ceph_monc_blocklist_add(&client->monc,
3967                                               &lockers[0].info.addr);
3968                 if (ret) {
3969                         rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3970                                  ENTITY_NAME(lockers[0].id.name), ret);
3971                         goto out;
3972                 }
3973
3974                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3975                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3976                                           lockers[0].id.cookie,
3977                                           &lockers[0].id.name);
3978                 if (ret && ret != -ENOENT)
3979                         goto out;
3980
3981 again:
3982                 ceph_free_lockers(lockers, num_lockers);
3983         }
3984
3985 out:
3986         ceph_free_lockers(lockers, num_lockers);
3987         return ret;
3988 }
3989
3990 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3991 {
3992         int ret;
3993
3994         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3995                 ret = rbd_object_map_open(rbd_dev);
3996                 if (ret)
3997                         return ret;
3998         }
3999
4000         return 0;
4001 }
4002
4003 /*
4004  * Return:
4005  *   0 - lock acquired
4006  *   1 - caller should call rbd_request_lock()
4007  *  <0 - error
4008  */
4009 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4010 {
4011         int ret;
4012
4013         down_read(&rbd_dev->lock_rwsem);
4014         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4015              rbd_dev->lock_state);
4016         if (__rbd_is_lock_owner(rbd_dev)) {
4017                 up_read(&rbd_dev->lock_rwsem);
4018                 return 0;
4019         }
4020
4021         up_read(&rbd_dev->lock_rwsem);
4022         down_write(&rbd_dev->lock_rwsem);
4023         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4024              rbd_dev->lock_state);
4025         if (__rbd_is_lock_owner(rbd_dev)) {
4026                 up_write(&rbd_dev->lock_rwsem);
4027                 return 0;
4028         }
4029
4030         ret = rbd_try_lock(rbd_dev);
4031         if (ret < 0) {
4032                 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4033                 if (ret == -EBLOCKLISTED)
4034                         goto out;
4035
4036                 ret = 1; /* request lock anyway */
4037         }
4038         if (ret > 0) {
4039                 up_write(&rbd_dev->lock_rwsem);
4040                 return ret;
4041         }
4042
4043         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4044         rbd_assert(list_empty(&rbd_dev->running_list));
4045
4046         ret = rbd_post_acquire_action(rbd_dev);
4047         if (ret) {
4048                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4049                 /*
4050                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4051                  * rbd_lock_add_request() would let the request through,
4052                  * assuming that e.g. object map is locked and loaded.
4053                  */
4054                 rbd_unlock(rbd_dev);
4055         }
4056
4057 out:
4058         wake_lock_waiters(rbd_dev, ret);
4059         up_write(&rbd_dev->lock_rwsem);
4060         return ret;
4061 }
4062
4063 static void rbd_acquire_lock(struct work_struct *work)
4064 {
4065         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4066                                             struct rbd_device, lock_dwork);
4067         int ret;
4068
4069         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4070 again:
4071         ret = rbd_try_acquire_lock(rbd_dev);
4072         if (ret <= 0) {
4073                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4074                 return;
4075         }
4076
4077         ret = rbd_request_lock(rbd_dev);
4078         if (ret == -ETIMEDOUT) {
4079                 goto again; /* treat this as a dead client */
4080         } else if (ret == -EROFS) {
4081                 rbd_warn(rbd_dev, "peer will not release lock");
4082                 down_write(&rbd_dev->lock_rwsem);
4083                 wake_lock_waiters(rbd_dev, ret);
4084                 up_write(&rbd_dev->lock_rwsem);
4085         } else if (ret < 0) {
4086                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4087                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4088                                  RBD_RETRY_DELAY);
4089         } else {
4090                 /*
4091                  * lock owner acked, but resend if we don't see them
4092                  * release the lock
4093                  */
4094                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4095                      rbd_dev);
4096                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4097                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4098         }
4099 }
4100
4101 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4102 {
4103         bool need_wait;
4104
4105         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4106         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4107
4108         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4109                 return false;
4110
4111         /*
4112          * Ensure that all in-flight IO is flushed.
4113          */
4114         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4115         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4116         need_wait = !list_empty(&rbd_dev->running_list);
4117         downgrade_write(&rbd_dev->lock_rwsem);
4118         if (need_wait)
4119                 wait_for_completion(&rbd_dev->releasing_wait);
4120         up_read(&rbd_dev->lock_rwsem);
4121
4122         down_write(&rbd_dev->lock_rwsem);
4123         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4124                 return false;
4125
4126         rbd_assert(list_empty(&rbd_dev->running_list));
4127         return true;
4128 }
4129
4130 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4131 {
4132         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4133                 rbd_object_map_close(rbd_dev);
4134 }
4135
4136 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4137 {
4138         rbd_assert(list_empty(&rbd_dev->running_list));
4139
4140         rbd_pre_release_action(rbd_dev);
4141         rbd_unlock(rbd_dev);
4142 }
4143
4144 /*
4145  * lock_rwsem must be held for write
4146  */
4147 static void rbd_release_lock(struct rbd_device *rbd_dev)
4148 {
4149         if (!rbd_quiesce_lock(rbd_dev))
4150                 return;
4151
4152         __rbd_release_lock(rbd_dev);
4153
4154         /*
4155          * Give others a chance to grab the lock - we would re-acquire
4156          * almost immediately if we got new IO while draining the running
4157          * list otherwise.  We need to ack our own notifications, so this
4158          * lock_dwork will be requeued from rbd_handle_released_lock() by
4159          * way of maybe_kick_acquire().
4160          */
4161         cancel_delayed_work(&rbd_dev->lock_dwork);
4162 }
4163
4164 static void rbd_release_lock_work(struct work_struct *work)
4165 {
4166         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4167                                                   unlock_work);
4168
4169         down_write(&rbd_dev->lock_rwsem);
4170         rbd_release_lock(rbd_dev);
4171         up_write(&rbd_dev->lock_rwsem);
4172 }
4173
4174 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4175 {
4176         bool have_requests;
4177
4178         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4179         if (__rbd_is_lock_owner(rbd_dev))
4180                 return;
4181
4182         spin_lock(&rbd_dev->lock_lists_lock);
4183         have_requests = !list_empty(&rbd_dev->acquiring_list);
4184         spin_unlock(&rbd_dev->lock_lists_lock);
4185         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4186                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4187                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4188         }
4189 }
4190
4191 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4192                                      void **p)
4193 {
4194         struct rbd_client_id cid = { 0 };
4195
4196         if (struct_v >= 2) {
4197                 cid.gid = ceph_decode_64(p);
4198                 cid.handle = ceph_decode_64(p);
4199         }
4200
4201         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4202              cid.handle);
4203         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4204                 down_write(&rbd_dev->lock_rwsem);
4205                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4206                         /*
4207                          * we already know that the remote client is
4208                          * the owner
4209                          */
4210                         up_write(&rbd_dev->lock_rwsem);
4211                         return;
4212                 }
4213
4214                 rbd_set_owner_cid(rbd_dev, &cid);
4215                 downgrade_write(&rbd_dev->lock_rwsem);
4216         } else {
4217                 down_read(&rbd_dev->lock_rwsem);
4218         }
4219
4220         maybe_kick_acquire(rbd_dev);
4221         up_read(&rbd_dev->lock_rwsem);
4222 }
4223
4224 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4225                                      void **p)
4226 {
4227         struct rbd_client_id cid = { 0 };
4228
4229         if (struct_v >= 2) {
4230                 cid.gid = ceph_decode_64(p);
4231                 cid.handle = ceph_decode_64(p);
4232         }
4233
4234         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4235              cid.handle);
4236         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4237                 down_write(&rbd_dev->lock_rwsem);
4238                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4239                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4240                              __func__, rbd_dev, cid.gid, cid.handle,
4241                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4242                         up_write(&rbd_dev->lock_rwsem);
4243                         return;
4244                 }
4245
4246                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4247                 downgrade_write(&rbd_dev->lock_rwsem);
4248         } else {
4249                 down_read(&rbd_dev->lock_rwsem);
4250         }
4251
4252         maybe_kick_acquire(rbd_dev);
4253         up_read(&rbd_dev->lock_rwsem);
4254 }
4255
4256 /*
4257  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4258  * ResponseMessage is needed.
4259  */
4260 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4261                                    void **p)
4262 {
4263         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4264         struct rbd_client_id cid = { 0 };
4265         int result = 1;
4266
4267         if (struct_v >= 2) {
4268                 cid.gid = ceph_decode_64(p);
4269                 cid.handle = ceph_decode_64(p);
4270         }
4271
4272         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4273              cid.handle);
4274         if (rbd_cid_equal(&cid, &my_cid))
4275                 return result;
4276
4277         down_read(&rbd_dev->lock_rwsem);
4278         if (__rbd_is_lock_owner(rbd_dev)) {
4279                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4280                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4281                         goto out_unlock;
4282
4283                 /*
4284                  * encode ResponseMessage(0) so the peer can detect
4285                  * a missing owner
4286                  */
4287                 result = 0;
4288
4289                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4290                         if (!rbd_dev->opts->exclusive) {
4291                                 dout("%s rbd_dev %p queueing unlock_work\n",
4292                                      __func__, rbd_dev);
4293                                 queue_work(rbd_dev->task_wq,
4294                                            &rbd_dev->unlock_work);
4295                         } else {
4296                                 /* refuse to release the lock */
4297                                 result = -EROFS;
4298                         }
4299                 }
4300         }
4301
4302 out_unlock:
4303         up_read(&rbd_dev->lock_rwsem);
4304         return result;
4305 }
4306
4307 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4308                                      u64 notify_id, u64 cookie, s32 *result)
4309 {
4310         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4311         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4312         int buf_size = sizeof(buf);
4313         int ret;
4314
4315         if (result) {
4316                 void *p = buf;
4317
4318                 /* encode ResponseMessage */
4319                 ceph_start_encoding(&p, 1, 1,
4320                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4321                 ceph_encode_32(&p, *result);
4322         } else {
4323                 buf_size = 0;
4324         }
4325
4326         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4327                                    &rbd_dev->header_oloc, notify_id, cookie,
4328                                    buf, buf_size);
4329         if (ret)
4330                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4331 }
4332
4333 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4334                                    u64 cookie)
4335 {
4336         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4337         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4338 }
4339
4340 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4341                                           u64 notify_id, u64 cookie, s32 result)
4342 {
4343         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4344         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4345 }
4346
4347 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4348                          u64 notifier_id, void *data, size_t data_len)
4349 {
4350         struct rbd_device *rbd_dev = arg;
4351         void *p = data;
4352         void *const end = p + data_len;
4353         u8 struct_v = 0;
4354         u32 len;
4355         u32 notify_op;
4356         int ret;
4357
4358         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4359              __func__, rbd_dev, cookie, notify_id, data_len);
4360         if (data_len) {
4361                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4362                                           &struct_v, &len);
4363                 if (ret) {
4364                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4365                                  ret);
4366                         return;
4367                 }
4368
4369                 notify_op = ceph_decode_32(&p);
4370         } else {
4371                 /* legacy notification for header updates */
4372                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4373                 len = 0;
4374         }
4375
4376         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4377         switch (notify_op) {
4378         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4379                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4380                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4381                 break;
4382         case RBD_NOTIFY_OP_RELEASED_LOCK:
4383                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4384                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4385                 break;
4386         case RBD_NOTIFY_OP_REQUEST_LOCK:
4387                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4388                 if (ret <= 0)
4389                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4390                                                       cookie, ret);
4391                 else
4392                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4393                 break;
4394         case RBD_NOTIFY_OP_HEADER_UPDATE:
4395                 ret = rbd_dev_refresh(rbd_dev);
4396                 if (ret)
4397                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4398
4399                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4400                 break;
4401         default:
4402                 if (rbd_is_lock_owner(rbd_dev))
4403                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4404                                                       cookie, -EOPNOTSUPP);
4405                 else
4406                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4407                 break;
4408         }
4409 }
4410
4411 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4412
4413 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4414 {
4415         struct rbd_device *rbd_dev = arg;
4416
4417         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4418
4419         down_write(&rbd_dev->lock_rwsem);
4420         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4421         up_write(&rbd_dev->lock_rwsem);
4422
4423         mutex_lock(&rbd_dev->watch_mutex);
4424         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4425                 __rbd_unregister_watch(rbd_dev);
4426                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4427
4428                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4429         }
4430         mutex_unlock(&rbd_dev->watch_mutex);
4431 }
4432
4433 /*
4434  * watch_mutex must be locked
4435  */
4436 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4437 {
4438         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4439         struct ceph_osd_linger_request *handle;
4440
4441         rbd_assert(!rbd_dev->watch_handle);
4442         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4443
4444         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4445                                  &rbd_dev->header_oloc, rbd_watch_cb,
4446                                  rbd_watch_errcb, rbd_dev);
4447         if (IS_ERR(handle))
4448                 return PTR_ERR(handle);
4449
4450         rbd_dev->watch_handle = handle;
4451         return 0;
4452 }
4453
4454 /*
4455  * watch_mutex must be locked
4456  */
4457 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4458 {
4459         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4460         int ret;
4461
4462         rbd_assert(rbd_dev->watch_handle);
4463         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4464
4465         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4466         if (ret)
4467                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4468
4469         rbd_dev->watch_handle = NULL;
4470 }
4471
4472 static int rbd_register_watch(struct rbd_device *rbd_dev)
4473 {
4474         int ret;
4475
4476         mutex_lock(&rbd_dev->watch_mutex);
4477         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4478         ret = __rbd_register_watch(rbd_dev);
4479         if (ret)
4480                 goto out;
4481
4482         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4483         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4484
4485 out:
4486         mutex_unlock(&rbd_dev->watch_mutex);
4487         return ret;
4488 }
4489
4490 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4491 {
4492         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4493
4494         cancel_work_sync(&rbd_dev->acquired_lock_work);
4495         cancel_work_sync(&rbd_dev->released_lock_work);
4496         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4497         cancel_work_sync(&rbd_dev->unlock_work);
4498 }
4499
4500 /*
4501  * header_rwsem must not be held to avoid a deadlock with
4502  * rbd_dev_refresh() when flushing notifies.
4503  */
4504 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4505 {
4506         cancel_tasks_sync(rbd_dev);
4507
4508         mutex_lock(&rbd_dev->watch_mutex);
4509         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4510                 __rbd_unregister_watch(rbd_dev);
4511         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4512         mutex_unlock(&rbd_dev->watch_mutex);
4513
4514         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4515         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4516 }
4517
4518 /*
4519  * lock_rwsem must be held for write
4520  */
4521 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4522 {
4523         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4524         char cookie[32];
4525         int ret;
4526
4527         if (!rbd_quiesce_lock(rbd_dev))
4528                 return;
4529
4530         format_lock_cookie(rbd_dev, cookie);
4531         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4532                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4533                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4534                                   RBD_LOCK_TAG, cookie);
4535         if (ret) {
4536                 if (ret != -EOPNOTSUPP)
4537                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4538                                  ret);
4539
4540                 /*
4541                  * Lock cookie cannot be updated on older OSDs, so do
4542                  * a manual release and queue an acquire.
4543                  */
4544                 __rbd_release_lock(rbd_dev);
4545                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4546         } else {
4547                 __rbd_lock(rbd_dev, cookie);
4548                 wake_lock_waiters(rbd_dev, 0);
4549         }
4550 }
4551
4552 static void rbd_reregister_watch(struct work_struct *work)
4553 {
4554         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4555                                             struct rbd_device, watch_dwork);
4556         int ret;
4557
4558         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4559
4560         mutex_lock(&rbd_dev->watch_mutex);
4561         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4562                 mutex_unlock(&rbd_dev->watch_mutex);
4563                 return;
4564         }
4565
4566         ret = __rbd_register_watch(rbd_dev);
4567         if (ret) {
4568                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4569                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4570                         queue_delayed_work(rbd_dev->task_wq,
4571                                            &rbd_dev->watch_dwork,
4572                                            RBD_RETRY_DELAY);
4573                         mutex_unlock(&rbd_dev->watch_mutex);
4574                         return;
4575                 }
4576
4577                 mutex_unlock(&rbd_dev->watch_mutex);
4578                 down_write(&rbd_dev->lock_rwsem);
4579                 wake_lock_waiters(rbd_dev, ret);
4580                 up_write(&rbd_dev->lock_rwsem);
4581                 return;
4582         }
4583
4584         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4585         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4586         mutex_unlock(&rbd_dev->watch_mutex);
4587
4588         down_write(&rbd_dev->lock_rwsem);
4589         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4590                 rbd_reacquire_lock(rbd_dev);
4591         up_write(&rbd_dev->lock_rwsem);
4592
4593         ret = rbd_dev_refresh(rbd_dev);
4594         if (ret)
4595                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4596 }
4597
4598 /*
4599  * Synchronous osd object method call.  Returns the number of bytes
4600  * returned in the outbound buffer, or a negative error code.
4601  */
4602 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4603                              struct ceph_object_id *oid,
4604                              struct ceph_object_locator *oloc,
4605                              const char *method_name,
4606                              const void *outbound,
4607                              size_t outbound_size,
4608                              void *inbound,
4609                              size_t inbound_size)
4610 {
4611         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4612         struct page *req_page = NULL;
4613         struct page *reply_page;
4614         int ret;
4615
4616         /*
4617          * Method calls are ultimately read operations.  The result
4618          * should placed into the inbound buffer provided.  They
4619          * also supply outbound data--parameters for the object
4620          * method.  Currently if this is present it will be a
4621          * snapshot id.
4622          */
4623         if (outbound) {
4624                 if (outbound_size > PAGE_SIZE)
4625                         return -E2BIG;
4626
4627                 req_page = alloc_page(GFP_KERNEL);
4628                 if (!req_page)
4629                         return -ENOMEM;
4630
4631                 memcpy(page_address(req_page), outbound, outbound_size);
4632         }
4633
4634         reply_page = alloc_page(GFP_KERNEL);
4635         if (!reply_page) {
4636                 if (req_page)
4637                         __free_page(req_page);
4638                 return -ENOMEM;
4639         }
4640
4641         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4642                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4643                              &reply_page, &inbound_size);
4644         if (!ret) {
4645                 memcpy(inbound, page_address(reply_page), inbound_size);
4646                 ret = inbound_size;
4647         }
4648
4649         if (req_page)
4650                 __free_page(req_page);
4651         __free_page(reply_page);
4652         return ret;
4653 }
4654
4655 static void rbd_queue_workfn(struct work_struct *work)
4656 {
4657         struct rbd_img_request *img_request =
4658             container_of(work, struct rbd_img_request, work);
4659         struct rbd_device *rbd_dev = img_request->rbd_dev;
4660         enum obj_operation_type op_type = img_request->op_type;
4661         struct request *rq = blk_mq_rq_from_pdu(img_request);
4662         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4663         u64 length = blk_rq_bytes(rq);
4664         u64 mapping_size;
4665         int result;
4666
4667         /* Ignore/skip any zero-length requests */
4668         if (!length) {
4669                 dout("%s: zero-length request\n", __func__);
4670                 result = 0;
4671                 goto err_img_request;
4672         }
4673
4674         blk_mq_start_request(rq);
4675
4676         down_read(&rbd_dev->header_rwsem);
4677         mapping_size = rbd_dev->mapping.size;
4678         rbd_img_capture_header(img_request);
4679         up_read(&rbd_dev->header_rwsem);
4680
4681         if (offset + length > mapping_size) {
4682                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4683                          length, mapping_size);
4684                 result = -EIO;
4685                 goto err_img_request;
4686         }
4687
4688         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4689              img_request, obj_op_name(op_type), offset, length);
4690
4691         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4692                 result = rbd_img_fill_nodata(img_request, offset, length);
4693         else
4694                 result = rbd_img_fill_from_bio(img_request, offset, length,
4695                                                rq->bio);
4696         if (result)
4697                 goto err_img_request;
4698
4699         rbd_img_handle_request(img_request, 0);
4700         return;
4701
4702 err_img_request:
4703         rbd_img_request_destroy(img_request);
4704         if (result)
4705                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4706                          obj_op_name(op_type), length, offset, result);
4707         blk_mq_end_request(rq, errno_to_blk_status(result));
4708 }
4709
4710 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4711                 const struct blk_mq_queue_data *bd)
4712 {
4713         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4714         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4715         enum obj_operation_type op_type;
4716
4717         switch (req_op(bd->rq)) {
4718         case REQ_OP_DISCARD:
4719                 op_type = OBJ_OP_DISCARD;
4720                 break;
4721         case REQ_OP_WRITE_ZEROES:
4722                 op_type = OBJ_OP_ZEROOUT;
4723                 break;
4724         case REQ_OP_WRITE:
4725                 op_type = OBJ_OP_WRITE;
4726                 break;
4727         case REQ_OP_READ:
4728                 op_type = OBJ_OP_READ;
4729                 break;
4730         default:
4731                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4732                 return BLK_STS_IOERR;
4733         }
4734
4735         rbd_img_request_init(img_req, rbd_dev, op_type);
4736
4737         if (rbd_img_is_write(img_req)) {
4738                 if (rbd_is_ro(rbd_dev)) {
4739                         rbd_warn(rbd_dev, "%s on read-only mapping",
4740                                  obj_op_name(img_req->op_type));
4741                         return BLK_STS_IOERR;
4742                 }
4743                 rbd_assert(!rbd_is_snap(rbd_dev));
4744         }
4745
4746         INIT_WORK(&img_req->work, rbd_queue_workfn);
4747         queue_work(rbd_wq, &img_req->work);
4748         return BLK_STS_OK;
4749 }
4750
4751 static void rbd_free_disk(struct rbd_device *rbd_dev)
4752 {
4753         blk_cleanup_disk(rbd_dev->disk);
4754         blk_mq_free_tag_set(&rbd_dev->tag_set);
4755         rbd_dev->disk = NULL;
4756 }
4757
4758 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4759                              struct ceph_object_id *oid,
4760                              struct ceph_object_locator *oloc,
4761                              void *buf, int buf_len)
4762
4763 {
4764         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4765         struct ceph_osd_request *req;
4766         struct page **pages;
4767         int num_pages = calc_pages_for(0, buf_len);
4768         int ret;
4769
4770         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4771         if (!req)
4772                 return -ENOMEM;
4773
4774         ceph_oid_copy(&req->r_base_oid, oid);
4775         ceph_oloc_copy(&req->r_base_oloc, oloc);
4776         req->r_flags = CEPH_OSD_FLAG_READ;
4777
4778         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4779         if (IS_ERR(pages)) {
4780                 ret = PTR_ERR(pages);
4781                 goto out_req;
4782         }
4783
4784         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4785         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4786                                          true);
4787
4788         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4789         if (ret)
4790                 goto out_req;
4791
4792         ceph_osdc_start_request(osdc, req, false);
4793         ret = ceph_osdc_wait_request(osdc, req);
4794         if (ret >= 0)
4795                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4796
4797 out_req:
4798         ceph_osdc_put_request(req);
4799         return ret;
4800 }
4801
4802 /*
4803  * Read the complete header for the given rbd device.  On successful
4804  * return, the rbd_dev->header field will contain up-to-date
4805  * information about the image.
4806  */
4807 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4808 {
4809         struct rbd_image_header_ondisk *ondisk = NULL;
4810         u32 snap_count = 0;
4811         u64 names_size = 0;
4812         u32 want_count;
4813         int ret;
4814
4815         /*
4816          * The complete header will include an array of its 64-bit
4817          * snapshot ids, followed by the names of those snapshots as
4818          * a contiguous block of NUL-terminated strings.  Note that
4819          * the number of snapshots could change by the time we read
4820          * it in, in which case we re-read it.
4821          */
4822         do {
4823                 size_t size;
4824
4825                 kfree(ondisk);
4826
4827                 size = sizeof (*ondisk);
4828                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4829                 size += names_size;
4830                 ondisk = kmalloc(size, GFP_KERNEL);
4831                 if (!ondisk)
4832                         return -ENOMEM;
4833
4834                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4835                                         &rbd_dev->header_oloc, ondisk, size);
4836                 if (ret < 0)
4837                         goto out;
4838                 if ((size_t)ret < size) {
4839                         ret = -ENXIO;
4840                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4841                                 size, ret);
4842                         goto out;
4843                 }
4844                 if (!rbd_dev_ondisk_valid(ondisk)) {
4845                         ret = -ENXIO;
4846                         rbd_warn(rbd_dev, "invalid header");
4847                         goto out;
4848                 }
4849
4850                 names_size = le64_to_cpu(ondisk->snap_names_len);
4851                 want_count = snap_count;
4852                 snap_count = le32_to_cpu(ondisk->snap_count);
4853         } while (snap_count != want_count);
4854
4855         ret = rbd_header_from_disk(rbd_dev, ondisk);
4856 out:
4857         kfree(ondisk);
4858
4859         return ret;
4860 }
4861
4862 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4863 {
4864         sector_t size;
4865
4866         /*
4867          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4868          * try to update its size.  If REMOVING is set, updating size
4869          * is just useless work since the device can't be opened.
4870          */
4871         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4872             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4873                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4874                 dout("setting size to %llu sectors", (unsigned long long)size);
4875                 set_capacity_and_notify(rbd_dev->disk, size);
4876         }
4877 }
4878
4879 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4880 {
4881         u64 mapping_size;
4882         int ret;
4883
4884         down_write(&rbd_dev->header_rwsem);
4885         mapping_size = rbd_dev->mapping.size;
4886
4887         ret = rbd_dev_header_info(rbd_dev);
4888         if (ret)
4889                 goto out;
4890
4891         /*
4892          * If there is a parent, see if it has disappeared due to the
4893          * mapped image getting flattened.
4894          */
4895         if (rbd_dev->parent) {
4896                 ret = rbd_dev_v2_parent_info(rbd_dev);
4897                 if (ret)
4898                         goto out;
4899         }
4900
4901         rbd_assert(!rbd_is_snap(rbd_dev));
4902         rbd_dev->mapping.size = rbd_dev->header.image_size;
4903
4904 out:
4905         up_write(&rbd_dev->header_rwsem);
4906         if (!ret && mapping_size != rbd_dev->mapping.size)
4907                 rbd_dev_update_size(rbd_dev);
4908
4909         return ret;
4910 }
4911
4912 static const struct blk_mq_ops rbd_mq_ops = {
4913         .queue_rq       = rbd_queue_rq,
4914 };
4915
4916 static int rbd_init_disk(struct rbd_device *rbd_dev)
4917 {
4918         struct gendisk *disk;
4919         struct request_queue *q;
4920         unsigned int objset_bytes =
4921             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4922         int err;
4923
4924         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4925         rbd_dev->tag_set.ops = &rbd_mq_ops;
4926         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4927         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4928         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4929         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4930         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4931
4932         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4933         if (err)
4934                 return err;
4935
4936         disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4937         if (IS_ERR(disk)) {
4938                 err = PTR_ERR(disk);
4939                 goto out_tag_set;
4940         }
4941         q = disk->queue;
4942
4943         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4944                  rbd_dev->dev_id);
4945         disk->major = rbd_dev->major;
4946         disk->first_minor = rbd_dev->minor;
4947         if (single_major) {
4948                 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4949                 disk->flags |= GENHD_FL_EXT_DEVT;
4950         } else {
4951                 disk->minors = RBD_MINORS_PER_MAJOR;
4952         }
4953         disk->fops = &rbd_bd_ops;
4954
4955         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4956         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4957
4958         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4959         q->limits.max_sectors = queue_max_hw_sectors(q);
4960         blk_queue_max_segments(q, USHRT_MAX);
4961         blk_queue_max_segment_size(q, UINT_MAX);
4962         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4963         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4964
4965         if (rbd_dev->opts->trim) {
4966                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4967                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4968                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4969                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4970         }
4971
4972         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4973                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4974
4975         rbd_dev->disk = disk;
4976
4977         return 0;
4978 out_tag_set:
4979         blk_mq_free_tag_set(&rbd_dev->tag_set);
4980         return err;
4981 }
4982
4983 /*
4984   sysfs
4985 */
4986
4987 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4988 {
4989         return container_of(dev, struct rbd_device, dev);
4990 }
4991
4992 static ssize_t rbd_size_show(struct device *dev,
4993                              struct device_attribute *attr, char *buf)
4994 {
4995         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4996
4997         return sprintf(buf, "%llu\n",
4998                 (unsigned long long)rbd_dev->mapping.size);
4999 }
5000
5001 static ssize_t rbd_features_show(struct device *dev,
5002                              struct device_attribute *attr, char *buf)
5003 {
5004         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5005
5006         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5007 }
5008
5009 static ssize_t rbd_major_show(struct device *dev,
5010                               struct device_attribute *attr, char *buf)
5011 {
5012         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5013
5014         if (rbd_dev->major)
5015                 return sprintf(buf, "%d\n", rbd_dev->major);
5016
5017         return sprintf(buf, "(none)\n");
5018 }
5019
5020 static ssize_t rbd_minor_show(struct device *dev,
5021                               struct device_attribute *attr, char *buf)
5022 {
5023         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5024
5025         return sprintf(buf, "%d\n", rbd_dev->minor);
5026 }
5027
5028 static ssize_t rbd_client_addr_show(struct device *dev,
5029                                     struct device_attribute *attr, char *buf)
5030 {
5031         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5032         struct ceph_entity_addr *client_addr =
5033             ceph_client_addr(rbd_dev->rbd_client->client);
5034
5035         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5036                        le32_to_cpu(client_addr->nonce));
5037 }
5038
5039 static ssize_t rbd_client_id_show(struct device *dev,
5040                                   struct device_attribute *attr, char *buf)
5041 {
5042         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5043
5044         return sprintf(buf, "client%lld\n",
5045                        ceph_client_gid(rbd_dev->rbd_client->client));
5046 }
5047
5048 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5049                                      struct device_attribute *attr, char *buf)
5050 {
5051         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5052
5053         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5054 }
5055
5056 static ssize_t rbd_config_info_show(struct device *dev,
5057                                     struct device_attribute *attr, char *buf)
5058 {
5059         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5060
5061         if (!capable(CAP_SYS_ADMIN))
5062                 return -EPERM;
5063
5064         return sprintf(buf, "%s\n", rbd_dev->config_info);
5065 }
5066
5067 static ssize_t rbd_pool_show(struct device *dev,
5068                              struct device_attribute *attr, char *buf)
5069 {
5070         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5071
5072         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5073 }
5074
5075 static ssize_t rbd_pool_id_show(struct device *dev,
5076                              struct device_attribute *attr, char *buf)
5077 {
5078         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5079
5080         return sprintf(buf, "%llu\n",
5081                         (unsigned long long) rbd_dev->spec->pool_id);
5082 }
5083
5084 static ssize_t rbd_pool_ns_show(struct device *dev,
5085                                 struct device_attribute *attr, char *buf)
5086 {
5087         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5088
5089         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5090 }
5091
5092 static ssize_t rbd_name_show(struct device *dev,
5093                              struct device_attribute *attr, char *buf)
5094 {
5095         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096
5097         if (rbd_dev->spec->image_name)
5098                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5099
5100         return sprintf(buf, "(unknown)\n");
5101 }
5102
5103 static ssize_t rbd_image_id_show(struct device *dev,
5104                              struct device_attribute *attr, char *buf)
5105 {
5106         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5107
5108         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5109 }
5110
5111 /*
5112  * Shows the name of the currently-mapped snapshot (or
5113  * RBD_SNAP_HEAD_NAME for the base image).
5114  */
5115 static ssize_t rbd_snap_show(struct device *dev,
5116                              struct device_attribute *attr,
5117                              char *buf)
5118 {
5119         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5120
5121         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5122 }
5123
5124 static ssize_t rbd_snap_id_show(struct device *dev,
5125                                 struct device_attribute *attr, char *buf)
5126 {
5127         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128
5129         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5130 }
5131
5132 /*
5133  * For a v2 image, shows the chain of parent images, separated by empty
5134  * lines.  For v1 images or if there is no parent, shows "(no parent
5135  * image)".
5136  */
5137 static ssize_t rbd_parent_show(struct device *dev,
5138                                struct device_attribute *attr,
5139                                char *buf)
5140 {
5141         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5142         ssize_t count = 0;
5143
5144         if (!rbd_dev->parent)
5145                 return sprintf(buf, "(no parent image)\n");
5146
5147         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5148                 struct rbd_spec *spec = rbd_dev->parent_spec;
5149
5150                 count += sprintf(&buf[count], "%s"
5151                             "pool_id %llu\npool_name %s\n"
5152                             "pool_ns %s\n"
5153                             "image_id %s\nimage_name %s\n"
5154                             "snap_id %llu\nsnap_name %s\n"
5155                             "overlap %llu\n",
5156                             !count ? "" : "\n", /* first? */
5157                             spec->pool_id, spec->pool_name,
5158                             spec->pool_ns ?: "",
5159                             spec->image_id, spec->image_name ?: "(unknown)",
5160                             spec->snap_id, spec->snap_name,
5161                             rbd_dev->parent_overlap);
5162         }
5163
5164         return count;
5165 }
5166
5167 static ssize_t rbd_image_refresh(struct device *dev,
5168                                  struct device_attribute *attr,
5169                                  const char *buf,
5170                                  size_t size)
5171 {
5172         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5173         int ret;
5174
5175         if (!capable(CAP_SYS_ADMIN))
5176                 return -EPERM;
5177
5178         ret = rbd_dev_refresh(rbd_dev);
5179         if (ret)
5180                 return ret;
5181
5182         return size;
5183 }
5184
5185 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5186 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5187 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5188 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5189 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5190 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5191 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5192 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5193 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5194 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5195 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5196 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5197 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5198 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5199 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5200 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5201 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5202
5203 static struct attribute *rbd_attrs[] = {
5204         &dev_attr_size.attr,
5205         &dev_attr_features.attr,
5206         &dev_attr_major.attr,
5207         &dev_attr_minor.attr,
5208         &dev_attr_client_addr.attr,
5209         &dev_attr_client_id.attr,
5210         &dev_attr_cluster_fsid.attr,
5211         &dev_attr_config_info.attr,
5212         &dev_attr_pool.attr,
5213         &dev_attr_pool_id.attr,
5214         &dev_attr_pool_ns.attr,
5215         &dev_attr_name.attr,
5216         &dev_attr_image_id.attr,
5217         &dev_attr_current_snap.attr,
5218         &dev_attr_snap_id.attr,
5219         &dev_attr_parent.attr,
5220         &dev_attr_refresh.attr,
5221         NULL
5222 };
5223
5224 static struct attribute_group rbd_attr_group = {
5225         .attrs = rbd_attrs,
5226 };
5227
5228 static const struct attribute_group *rbd_attr_groups[] = {
5229         &rbd_attr_group,
5230         NULL
5231 };
5232
5233 static void rbd_dev_release(struct device *dev);
5234
5235 static const struct device_type rbd_device_type = {
5236         .name           = "rbd",
5237         .groups         = rbd_attr_groups,
5238         .release        = rbd_dev_release,
5239 };
5240
5241 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5242 {
5243         kref_get(&spec->kref);
5244
5245         return spec;
5246 }
5247
5248 static void rbd_spec_free(struct kref *kref);
5249 static void rbd_spec_put(struct rbd_spec *spec)
5250 {
5251         if (spec)
5252                 kref_put(&spec->kref, rbd_spec_free);
5253 }
5254
5255 static struct rbd_spec *rbd_spec_alloc(void)
5256 {
5257         struct rbd_spec *spec;
5258
5259         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5260         if (!spec)
5261                 return NULL;
5262
5263         spec->pool_id = CEPH_NOPOOL;
5264         spec->snap_id = CEPH_NOSNAP;
5265         kref_init(&spec->kref);
5266
5267         return spec;
5268 }
5269
5270 static void rbd_spec_free(struct kref *kref)
5271 {
5272         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5273
5274         kfree(spec->pool_name);
5275         kfree(spec->pool_ns);
5276         kfree(spec->image_id);
5277         kfree(spec->image_name);
5278         kfree(spec->snap_name);
5279         kfree(spec);
5280 }
5281
5282 static void rbd_dev_free(struct rbd_device *rbd_dev)
5283 {
5284         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5285         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5286
5287         ceph_oid_destroy(&rbd_dev->header_oid);
5288         ceph_oloc_destroy(&rbd_dev->header_oloc);
5289         kfree(rbd_dev->config_info);
5290
5291         rbd_put_client(rbd_dev->rbd_client);
5292         rbd_spec_put(rbd_dev->spec);
5293         kfree(rbd_dev->opts);
5294         kfree(rbd_dev);
5295 }
5296
5297 static void rbd_dev_release(struct device *dev)
5298 {
5299         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5300         bool need_put = !!rbd_dev->opts;
5301
5302         if (need_put) {
5303                 destroy_workqueue(rbd_dev->task_wq);
5304                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5305         }
5306
5307         rbd_dev_free(rbd_dev);
5308
5309         /*
5310          * This is racy, but way better than putting module outside of
5311          * the release callback.  The race window is pretty small, so
5312          * doing something similar to dm (dm-builtin.c) is overkill.
5313          */
5314         if (need_put)
5315                 module_put(THIS_MODULE);
5316 }
5317
5318 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5319                                            struct rbd_spec *spec)
5320 {
5321         struct rbd_device *rbd_dev;
5322
5323         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5324         if (!rbd_dev)
5325                 return NULL;
5326
5327         spin_lock_init(&rbd_dev->lock);
5328         INIT_LIST_HEAD(&rbd_dev->node);
5329         init_rwsem(&rbd_dev->header_rwsem);
5330
5331         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5332         ceph_oid_init(&rbd_dev->header_oid);
5333         rbd_dev->header_oloc.pool = spec->pool_id;
5334         if (spec->pool_ns) {
5335                 WARN_ON(!*spec->pool_ns);
5336                 rbd_dev->header_oloc.pool_ns =
5337                     ceph_find_or_create_string(spec->pool_ns,
5338                                                strlen(spec->pool_ns));
5339         }
5340
5341         mutex_init(&rbd_dev->watch_mutex);
5342         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5343         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5344
5345         init_rwsem(&rbd_dev->lock_rwsem);
5346         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5347         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5348         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5349         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5350         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5351         spin_lock_init(&rbd_dev->lock_lists_lock);
5352         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5353         INIT_LIST_HEAD(&rbd_dev->running_list);
5354         init_completion(&rbd_dev->acquire_wait);
5355         init_completion(&rbd_dev->releasing_wait);
5356
5357         spin_lock_init(&rbd_dev->object_map_lock);
5358
5359         rbd_dev->dev.bus = &rbd_bus_type;
5360         rbd_dev->dev.type = &rbd_device_type;
5361         rbd_dev->dev.parent = &rbd_root_dev;
5362         device_initialize(&rbd_dev->dev);
5363
5364         rbd_dev->rbd_client = rbdc;
5365         rbd_dev->spec = spec;
5366
5367         return rbd_dev;
5368 }
5369
5370 /*
5371  * Create a mapping rbd_dev.
5372  */
5373 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5374                                          struct rbd_spec *spec,
5375                                          struct rbd_options *opts)
5376 {
5377         struct rbd_device *rbd_dev;
5378
5379         rbd_dev = __rbd_dev_create(rbdc, spec);
5380         if (!rbd_dev)
5381                 return NULL;
5382
5383         rbd_dev->opts = opts;
5384
5385         /* get an id and fill in device name */
5386         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5387                                          minor_to_rbd_dev_id(1 << MINORBITS),
5388                                          GFP_KERNEL);
5389         if (rbd_dev->dev_id < 0)
5390                 goto fail_rbd_dev;
5391
5392         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5393         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5394                                                    rbd_dev->name);
5395         if (!rbd_dev->task_wq)
5396                 goto fail_dev_id;
5397
5398         /* we have a ref from do_rbd_add() */
5399         __module_get(THIS_MODULE);
5400
5401         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5402         return rbd_dev;
5403
5404 fail_dev_id:
5405         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5406 fail_rbd_dev:
5407         rbd_dev_free(rbd_dev);
5408         return NULL;
5409 }
5410
5411 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5412 {
5413         if (rbd_dev)
5414                 put_device(&rbd_dev->dev);
5415 }
5416
5417 /*
5418  * Get the size and object order for an image snapshot, or if
5419  * snap_id is CEPH_NOSNAP, gets this information for the base
5420  * image.
5421  */
5422 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5423                                 u8 *order, u64 *snap_size)
5424 {
5425         __le64 snapid = cpu_to_le64(snap_id);
5426         int ret;
5427         struct {
5428                 u8 order;
5429                 __le64 size;
5430         } __attribute__ ((packed)) size_buf = { 0 };
5431
5432         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5433                                   &rbd_dev->header_oloc, "get_size",
5434                                   &snapid, sizeof(snapid),
5435                                   &size_buf, sizeof(size_buf));
5436         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5437         if (ret < 0)
5438                 return ret;
5439         if (ret < sizeof (size_buf))
5440                 return -ERANGE;
5441
5442         if (order) {
5443                 *order = size_buf.order;
5444                 dout("  order %u", (unsigned int)*order);
5445         }
5446         *snap_size = le64_to_cpu(size_buf.size);
5447
5448         dout("  snap_id 0x%016llx snap_size = %llu\n",
5449                 (unsigned long long)snap_id,
5450                 (unsigned long long)*snap_size);
5451
5452         return 0;
5453 }
5454
5455 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5456 {
5457         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5458                                         &rbd_dev->header.obj_order,
5459                                         &rbd_dev->header.image_size);
5460 }
5461
5462 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5463 {
5464         size_t size;
5465         void *reply_buf;
5466         int ret;
5467         void *p;
5468
5469         /* Response will be an encoded string, which includes a length */
5470         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5471         reply_buf = kzalloc(size, GFP_KERNEL);
5472         if (!reply_buf)
5473                 return -ENOMEM;
5474
5475         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5476                                   &rbd_dev->header_oloc, "get_object_prefix",
5477                                   NULL, 0, reply_buf, size);
5478         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5479         if (ret < 0)
5480                 goto out;
5481
5482         p = reply_buf;
5483         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5484                                                 p + ret, NULL, GFP_NOIO);
5485         ret = 0;
5486
5487         if (IS_ERR(rbd_dev->header.object_prefix)) {
5488                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5489                 rbd_dev->header.object_prefix = NULL;
5490         } else {
5491                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5492         }
5493 out:
5494         kfree(reply_buf);
5495
5496         return ret;
5497 }
5498
5499 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5500                                      bool read_only, u64 *snap_features)
5501 {
5502         struct {
5503                 __le64 snap_id;
5504                 u8 read_only;
5505         } features_in;
5506         struct {
5507                 __le64 features;
5508                 __le64 incompat;
5509         } __attribute__ ((packed)) features_buf = { 0 };
5510         u64 unsup;
5511         int ret;
5512
5513         features_in.snap_id = cpu_to_le64(snap_id);
5514         features_in.read_only = read_only;
5515
5516         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5517                                   &rbd_dev->header_oloc, "get_features",
5518                                   &features_in, sizeof(features_in),
5519                                   &features_buf, sizeof(features_buf));
5520         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5521         if (ret < 0)
5522                 return ret;
5523         if (ret < sizeof (features_buf))
5524                 return -ERANGE;
5525
5526         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5527         if (unsup) {
5528                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5529                          unsup);
5530                 return -ENXIO;
5531         }
5532
5533         *snap_features = le64_to_cpu(features_buf.features);
5534
5535         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5536                 (unsigned long long)snap_id,
5537                 (unsigned long long)*snap_features,
5538                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5539
5540         return 0;
5541 }
5542
5543 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5544 {
5545         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5546                                          rbd_is_ro(rbd_dev),
5547                                          &rbd_dev->header.features);
5548 }
5549
5550 /*
5551  * These are generic image flags, but since they are used only for
5552  * object map, store them in rbd_dev->object_map_flags.
5553  *
5554  * For the same reason, this function is called only on object map
5555  * (re)load and not on header refresh.
5556  */
5557 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5558 {
5559         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5560         __le64 flags;
5561         int ret;
5562
5563         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5564                                   &rbd_dev->header_oloc, "get_flags",
5565                                   &snapid, sizeof(snapid),
5566                                   &flags, sizeof(flags));
5567         if (ret < 0)
5568                 return ret;
5569         if (ret < sizeof(flags))
5570                 return -EBADMSG;
5571
5572         rbd_dev->object_map_flags = le64_to_cpu(flags);
5573         return 0;
5574 }
5575
5576 struct parent_image_info {
5577         u64             pool_id;
5578         const char      *pool_ns;
5579         const char      *image_id;
5580         u64             snap_id;
5581
5582         bool            has_overlap;
5583         u64             overlap;
5584 };
5585
5586 /*
5587  * The caller is responsible for @pii.
5588  */
5589 static int decode_parent_image_spec(void **p, void *end,
5590                                     struct parent_image_info *pii)
5591 {
5592         u8 struct_v;
5593         u32 struct_len;
5594         int ret;
5595
5596         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5597                                   &struct_v, &struct_len);
5598         if (ret)
5599                 return ret;
5600
5601         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5602         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5603         if (IS_ERR(pii->pool_ns)) {
5604                 ret = PTR_ERR(pii->pool_ns);
5605                 pii->pool_ns = NULL;
5606                 return ret;
5607         }
5608         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5609         if (IS_ERR(pii->image_id)) {
5610                 ret = PTR_ERR(pii->image_id);
5611                 pii->image_id = NULL;
5612                 return ret;
5613         }
5614         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5615         return 0;
5616
5617 e_inval:
5618         return -EINVAL;
5619 }
5620
5621 static int __get_parent_info(struct rbd_device *rbd_dev,
5622                              struct page *req_page,
5623                              struct page *reply_page,
5624                              struct parent_image_info *pii)
5625 {
5626         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5627         size_t reply_len = PAGE_SIZE;
5628         void *p, *end;
5629         int ret;
5630
5631         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5632                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5633                              req_page, sizeof(u64), &reply_page, &reply_len);
5634         if (ret)
5635                 return ret == -EOPNOTSUPP ? 1 : ret;
5636
5637         p = page_address(reply_page);
5638         end = p + reply_len;
5639         ret = decode_parent_image_spec(&p, end, pii);
5640         if (ret)
5641                 return ret;
5642
5643         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5644                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5645                              req_page, sizeof(u64), &reply_page, &reply_len);
5646         if (ret)
5647                 return ret;
5648
5649         p = page_address(reply_page);
5650         end = p + reply_len;
5651         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5652         if (pii->has_overlap)
5653                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5654
5655         return 0;
5656
5657 e_inval:
5658         return -EINVAL;
5659 }
5660
5661 /*
5662  * The caller is responsible for @pii.
5663  */
5664 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5665                                     struct page *req_page,
5666                                     struct page *reply_page,
5667                                     struct parent_image_info *pii)
5668 {
5669         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5670         size_t reply_len = PAGE_SIZE;
5671         void *p, *end;
5672         int ret;
5673
5674         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5675                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5676                              req_page, sizeof(u64), &reply_page, &reply_len);
5677         if (ret)
5678                 return ret;
5679
5680         p = page_address(reply_page);
5681         end = p + reply_len;
5682         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5683         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5684         if (IS_ERR(pii->image_id)) {
5685                 ret = PTR_ERR(pii->image_id);
5686                 pii->image_id = NULL;
5687                 return ret;
5688         }
5689         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5690         pii->has_overlap = true;
5691         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5692
5693         return 0;
5694
5695 e_inval:
5696         return -EINVAL;
5697 }
5698
5699 static int get_parent_info(struct rbd_device *rbd_dev,
5700                            struct parent_image_info *pii)
5701 {
5702         struct page *req_page, *reply_page;
5703         void *p;
5704         int ret;
5705
5706         req_page = alloc_page(GFP_KERNEL);
5707         if (!req_page)
5708                 return -ENOMEM;
5709
5710         reply_page = alloc_page(GFP_KERNEL);
5711         if (!reply_page) {
5712                 __free_page(req_page);
5713                 return -ENOMEM;
5714         }
5715
5716         p = page_address(req_page);
5717         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5718         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5719         if (ret > 0)
5720                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5721                                                pii);
5722
5723         __free_page(req_page);
5724         __free_page(reply_page);
5725         return ret;
5726 }
5727
5728 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5729 {
5730         struct rbd_spec *parent_spec;
5731         struct parent_image_info pii = { 0 };
5732         int ret;
5733
5734         parent_spec = rbd_spec_alloc();
5735         if (!parent_spec)
5736                 return -ENOMEM;
5737
5738         ret = get_parent_info(rbd_dev, &pii);
5739         if (ret)
5740                 goto out_err;
5741
5742         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5743              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5744              pii.has_overlap, pii.overlap);
5745
5746         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5747                 /*
5748                  * Either the parent never existed, or we have
5749                  * record of it but the image got flattened so it no
5750                  * longer has a parent.  When the parent of a
5751                  * layered image disappears we immediately set the
5752                  * overlap to 0.  The effect of this is that all new
5753                  * requests will be treated as if the image had no
5754                  * parent.
5755                  *
5756                  * If !pii.has_overlap, the parent image spec is not
5757                  * applicable.  It's there to avoid duplication in each
5758                  * snapshot record.
5759                  */
5760                 if (rbd_dev->parent_overlap) {
5761                         rbd_dev->parent_overlap = 0;
5762                         rbd_dev_parent_put(rbd_dev);
5763                         pr_info("%s: clone image has been flattened\n",
5764                                 rbd_dev->disk->disk_name);
5765                 }
5766
5767                 goto out;       /* No parent?  No problem. */
5768         }
5769
5770         /* The ceph file layout needs to fit pool id in 32 bits */
5771
5772         ret = -EIO;
5773         if (pii.pool_id > (u64)U32_MAX) {
5774                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5775                         (unsigned long long)pii.pool_id, U32_MAX);
5776                 goto out_err;
5777         }
5778
5779         /*
5780          * The parent won't change (except when the clone is
5781          * flattened, already handled that).  So we only need to
5782          * record the parent spec we have not already done so.
5783          */
5784         if (!rbd_dev->parent_spec) {
5785                 parent_spec->pool_id = pii.pool_id;
5786                 if (pii.pool_ns && *pii.pool_ns) {
5787                         parent_spec->pool_ns = pii.pool_ns;
5788                         pii.pool_ns = NULL;
5789                 }
5790                 parent_spec->image_id = pii.image_id;
5791                 pii.image_id = NULL;
5792                 parent_spec->snap_id = pii.snap_id;
5793
5794                 rbd_dev->parent_spec = parent_spec;
5795                 parent_spec = NULL;     /* rbd_dev now owns this */
5796         }
5797
5798         /*
5799          * We always update the parent overlap.  If it's zero we issue
5800          * a warning, as we will proceed as if there was no parent.
5801          */
5802         if (!pii.overlap) {
5803                 if (parent_spec) {
5804                         /* refresh, careful to warn just once */
5805                         if (rbd_dev->parent_overlap)
5806                                 rbd_warn(rbd_dev,
5807                                     "clone now standalone (overlap became 0)");
5808                 } else {
5809                         /* initial probe */
5810                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5811                 }
5812         }
5813         rbd_dev->parent_overlap = pii.overlap;
5814
5815 out:
5816         ret = 0;
5817 out_err:
5818         kfree(pii.pool_ns);
5819         kfree(pii.image_id);
5820         rbd_spec_put(parent_spec);
5821         return ret;
5822 }
5823
5824 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5825 {
5826         struct {
5827                 __le64 stripe_unit;
5828                 __le64 stripe_count;
5829         } __attribute__ ((packed)) striping_info_buf = { 0 };
5830         size_t size = sizeof (striping_info_buf);
5831         void *p;
5832         int ret;
5833
5834         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5835                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5836                                 NULL, 0, &striping_info_buf, size);
5837         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5838         if (ret < 0)
5839                 return ret;
5840         if (ret < size)
5841                 return -ERANGE;
5842
5843         p = &striping_info_buf;
5844         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5845         rbd_dev->header.stripe_count = ceph_decode_64(&p);
5846         return 0;
5847 }
5848
5849 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5850 {
5851         __le64 data_pool_id;
5852         int ret;
5853
5854         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5855                                   &rbd_dev->header_oloc, "get_data_pool",
5856                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5857         if (ret < 0)
5858                 return ret;
5859         if (ret < sizeof(data_pool_id))
5860                 return -EBADMSG;
5861
5862         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5863         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5864         return 0;
5865 }
5866
5867 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5868 {
5869         CEPH_DEFINE_OID_ONSTACK(oid);
5870         size_t image_id_size;
5871         char *image_id;
5872         void *p;
5873         void *end;
5874         size_t size;
5875         void *reply_buf = NULL;
5876         size_t len = 0;
5877         char *image_name = NULL;
5878         int ret;
5879
5880         rbd_assert(!rbd_dev->spec->image_name);
5881
5882         len = strlen(rbd_dev->spec->image_id);
5883         image_id_size = sizeof (__le32) + len;
5884         image_id = kmalloc(image_id_size, GFP_KERNEL);
5885         if (!image_id)
5886                 return NULL;
5887
5888         p = image_id;
5889         end = image_id + image_id_size;
5890         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5891
5892         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5893         reply_buf = kmalloc(size, GFP_KERNEL);
5894         if (!reply_buf)
5895                 goto out;
5896
5897         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5898         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5899                                   "dir_get_name", image_id, image_id_size,
5900                                   reply_buf, size);
5901         if (ret < 0)
5902                 goto out;
5903         p = reply_buf;
5904         end = reply_buf + ret;
5905
5906         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5907         if (IS_ERR(image_name))
5908                 image_name = NULL;
5909         else
5910                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5911 out:
5912         kfree(reply_buf);
5913         kfree(image_id);
5914
5915         return image_name;
5916 }
5917
5918 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5919 {
5920         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5921         const char *snap_name;
5922         u32 which = 0;
5923
5924         /* Skip over names until we find the one we are looking for */
5925
5926         snap_name = rbd_dev->header.snap_names;
5927         while (which < snapc->num_snaps) {
5928                 if (!strcmp(name, snap_name))
5929                         return snapc->snaps[which];
5930                 snap_name += strlen(snap_name) + 1;
5931                 which++;
5932         }
5933         return CEPH_NOSNAP;
5934 }
5935
5936 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5937 {
5938         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5939         u32 which;
5940         bool found = false;
5941         u64 snap_id;
5942
5943         for (which = 0; !found && which < snapc->num_snaps; which++) {
5944                 const char *snap_name;
5945
5946                 snap_id = snapc->snaps[which];
5947                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5948                 if (IS_ERR(snap_name)) {
5949                         /* ignore no-longer existing snapshots */
5950                         if (PTR_ERR(snap_name) == -ENOENT)
5951                                 continue;
5952                         else
5953                                 break;
5954                 }
5955                 found = !strcmp(name, snap_name);
5956                 kfree(snap_name);
5957         }
5958         return found ? snap_id : CEPH_NOSNAP;
5959 }
5960
5961 /*
5962  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5963  * no snapshot by that name is found, or if an error occurs.
5964  */
5965 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5966 {
5967         if (rbd_dev->image_format == 1)
5968                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5969
5970         return rbd_v2_snap_id_by_name(rbd_dev, name);
5971 }
5972
5973 /*
5974  * An image being mapped will have everything but the snap id.
5975  */
5976 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5977 {
5978         struct rbd_spec *spec = rbd_dev->spec;
5979
5980         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5981         rbd_assert(spec->image_id && spec->image_name);
5982         rbd_assert(spec->snap_name);
5983
5984         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5985                 u64 snap_id;
5986
5987                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5988                 if (snap_id == CEPH_NOSNAP)
5989                         return -ENOENT;
5990
5991                 spec->snap_id = snap_id;
5992         } else {
5993                 spec->snap_id = CEPH_NOSNAP;
5994         }
5995
5996         return 0;
5997 }
5998
5999 /*
6000  * A parent image will have all ids but none of the names.
6001  *
6002  * All names in an rbd spec are dynamically allocated.  It's OK if we
6003  * can't figure out the name for an image id.
6004  */
6005 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6006 {
6007         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6008         struct rbd_spec *spec = rbd_dev->spec;
6009         const char *pool_name;
6010         const char *image_name;
6011         const char *snap_name;
6012         int ret;
6013
6014         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6015         rbd_assert(spec->image_id);
6016         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6017
6018         /* Get the pool name; we have to make our own copy of this */
6019
6020         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6021         if (!pool_name) {
6022                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6023                 return -EIO;
6024         }
6025         pool_name = kstrdup(pool_name, GFP_KERNEL);
6026         if (!pool_name)
6027                 return -ENOMEM;
6028
6029         /* Fetch the image name; tolerate failure here */
6030
6031         image_name = rbd_dev_image_name(rbd_dev);
6032         if (!image_name)
6033                 rbd_warn(rbd_dev, "unable to get image name");
6034
6035         /* Fetch the snapshot name */
6036
6037         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6038         if (IS_ERR(snap_name)) {
6039                 ret = PTR_ERR(snap_name);
6040                 goto out_err;
6041         }
6042
6043         spec->pool_name = pool_name;
6044         spec->image_name = image_name;
6045         spec->snap_name = snap_name;
6046
6047         return 0;
6048
6049 out_err:
6050         kfree(image_name);
6051         kfree(pool_name);
6052         return ret;
6053 }
6054
6055 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6056 {
6057         size_t size;
6058         int ret;
6059         void *reply_buf;
6060         void *p;
6061         void *end;
6062         u64 seq;
6063         u32 snap_count;
6064         struct ceph_snap_context *snapc;
6065         u32 i;
6066
6067         /*
6068          * We'll need room for the seq value (maximum snapshot id),
6069          * snapshot count, and array of that many snapshot ids.
6070          * For now we have a fixed upper limit on the number we're
6071          * prepared to receive.
6072          */
6073         size = sizeof (__le64) + sizeof (__le32) +
6074                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6075         reply_buf = kzalloc(size, GFP_KERNEL);
6076         if (!reply_buf)
6077                 return -ENOMEM;
6078
6079         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6080                                   &rbd_dev->header_oloc, "get_snapcontext",
6081                                   NULL, 0, reply_buf, size);
6082         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6083         if (ret < 0)
6084                 goto out;
6085
6086         p = reply_buf;
6087         end = reply_buf + ret;
6088         ret = -ERANGE;
6089         ceph_decode_64_safe(&p, end, seq, out);
6090         ceph_decode_32_safe(&p, end, snap_count, out);
6091
6092         /*
6093          * Make sure the reported number of snapshot ids wouldn't go
6094          * beyond the end of our buffer.  But before checking that,
6095          * make sure the computed size of the snapshot context we
6096          * allocate is representable in a size_t.
6097          */
6098         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6099                                  / sizeof (u64)) {
6100                 ret = -EINVAL;
6101                 goto out;
6102         }
6103         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6104                 goto out;
6105         ret = 0;
6106
6107         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6108         if (!snapc) {
6109                 ret = -ENOMEM;
6110                 goto out;
6111         }
6112         snapc->seq = seq;
6113         for (i = 0; i < snap_count; i++)
6114                 snapc->snaps[i] = ceph_decode_64(&p);
6115
6116         ceph_put_snap_context(rbd_dev->header.snapc);
6117         rbd_dev->header.snapc = snapc;
6118
6119         dout("  snap context seq = %llu, snap_count = %u\n",
6120                 (unsigned long long)seq, (unsigned int)snap_count);
6121 out:
6122         kfree(reply_buf);
6123
6124         return ret;
6125 }
6126
6127 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6128                                         u64 snap_id)
6129 {
6130         size_t size;
6131         void *reply_buf;
6132         __le64 snapid;
6133         int ret;
6134         void *p;
6135         void *end;
6136         char *snap_name;
6137
6138         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6139         reply_buf = kmalloc(size, GFP_KERNEL);
6140         if (!reply_buf)
6141                 return ERR_PTR(-ENOMEM);
6142
6143         snapid = cpu_to_le64(snap_id);
6144         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6145                                   &rbd_dev->header_oloc, "get_snapshot_name",
6146                                   &snapid, sizeof(snapid), reply_buf, size);
6147         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6148         if (ret < 0) {
6149                 snap_name = ERR_PTR(ret);
6150                 goto out;
6151         }
6152
6153         p = reply_buf;
6154         end = reply_buf + ret;
6155         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6156         if (IS_ERR(snap_name))
6157                 goto out;
6158
6159         dout("  snap_id 0x%016llx snap_name = %s\n",
6160                 (unsigned long long)snap_id, snap_name);
6161 out:
6162         kfree(reply_buf);
6163
6164         return snap_name;
6165 }
6166
6167 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6168 {
6169         bool first_time = rbd_dev->header.object_prefix == NULL;
6170         int ret;
6171
6172         ret = rbd_dev_v2_image_size(rbd_dev);
6173         if (ret)
6174                 return ret;
6175
6176         if (first_time) {
6177                 ret = rbd_dev_v2_header_onetime(rbd_dev);
6178                 if (ret)
6179                         return ret;
6180         }
6181
6182         ret = rbd_dev_v2_snap_context(rbd_dev);
6183         if (ret && first_time) {
6184                 kfree(rbd_dev->header.object_prefix);
6185                 rbd_dev->header.object_prefix = NULL;
6186         }
6187
6188         return ret;
6189 }
6190
6191 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6192 {
6193         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6194
6195         if (rbd_dev->image_format == 1)
6196                 return rbd_dev_v1_header_info(rbd_dev);
6197
6198         return rbd_dev_v2_header_info(rbd_dev);
6199 }
6200
6201 /*
6202  * Skips over white space at *buf, and updates *buf to point to the
6203  * first found non-space character (if any). Returns the length of
6204  * the token (string of non-white space characters) found.  Note
6205  * that *buf must be terminated with '\0'.
6206  */
6207 static inline size_t next_token(const char **buf)
6208 {
6209         /*
6210         * These are the characters that produce nonzero for
6211         * isspace() in the "C" and "POSIX" locales.
6212         */
6213         const char *spaces = " \f\n\r\t\v";
6214
6215         *buf += strspn(*buf, spaces);   /* Find start of token */
6216
6217         return strcspn(*buf, spaces);   /* Return token length */
6218 }
6219
6220 /*
6221  * Finds the next token in *buf, dynamically allocates a buffer big
6222  * enough to hold a copy of it, and copies the token into the new
6223  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6224  * that a duplicate buffer is created even for a zero-length token.
6225  *
6226  * Returns a pointer to the newly-allocated duplicate, or a null
6227  * pointer if memory for the duplicate was not available.  If
6228  * the lenp argument is a non-null pointer, the length of the token
6229  * (not including the '\0') is returned in *lenp.
6230  *
6231  * If successful, the *buf pointer will be updated to point beyond
6232  * the end of the found token.
6233  *
6234  * Note: uses GFP_KERNEL for allocation.
6235  */
6236 static inline char *dup_token(const char **buf, size_t *lenp)
6237 {
6238         char *dup;
6239         size_t len;
6240
6241         len = next_token(buf);
6242         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6243         if (!dup)
6244                 return NULL;
6245         *(dup + len) = '\0';
6246         *buf += len;
6247
6248         if (lenp)
6249                 *lenp = len;
6250
6251         return dup;
6252 }
6253
6254 static int rbd_parse_param(struct fs_parameter *param,
6255                             struct rbd_parse_opts_ctx *pctx)
6256 {
6257         struct rbd_options *opt = pctx->opts;
6258         struct fs_parse_result result;
6259         struct p_log log = {.prefix = "rbd"};
6260         int token, ret;
6261
6262         ret = ceph_parse_param(param, pctx->copts, NULL);
6263         if (ret != -ENOPARAM)
6264                 return ret;
6265
6266         token = __fs_parse(&log, rbd_parameters, param, &result);
6267         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6268         if (token < 0) {
6269                 if (token == -ENOPARAM)
6270                         return inval_plog(&log, "Unknown parameter '%s'",
6271                                           param->key);
6272                 return token;
6273         }
6274
6275         switch (token) {
6276         case Opt_queue_depth:
6277                 if (result.uint_32 < 1)
6278                         goto out_of_range;
6279                 opt->queue_depth = result.uint_32;
6280                 break;
6281         case Opt_alloc_size:
6282                 if (result.uint_32 < SECTOR_SIZE)
6283                         goto out_of_range;
6284                 if (!is_power_of_2(result.uint_32))
6285                         return inval_plog(&log, "alloc_size must be a power of 2");
6286                 opt->alloc_size = result.uint_32;
6287                 break;
6288         case Opt_lock_timeout:
6289                 /* 0 is "wait forever" (i.e. infinite timeout) */
6290                 if (result.uint_32 > INT_MAX / 1000)
6291                         goto out_of_range;
6292                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6293                 break;
6294         case Opt_pool_ns:
6295                 kfree(pctx->spec->pool_ns);
6296                 pctx->spec->pool_ns = param->string;
6297                 param->string = NULL;
6298                 break;
6299         case Opt_compression_hint:
6300                 switch (result.uint_32) {
6301                 case Opt_compression_hint_none:
6302                         opt->alloc_hint_flags &=
6303                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6304                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6305                         break;
6306                 case Opt_compression_hint_compressible:
6307                         opt->alloc_hint_flags |=
6308                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6309                         opt->alloc_hint_flags &=
6310                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6311                         break;
6312                 case Opt_compression_hint_incompressible:
6313                         opt->alloc_hint_flags |=
6314                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6315                         opt->alloc_hint_flags &=
6316                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6317                         break;
6318                 default:
6319                         BUG();
6320                 }
6321                 break;
6322         case Opt_read_only:
6323                 opt->read_only = true;
6324                 break;
6325         case Opt_read_write:
6326                 opt->read_only = false;
6327                 break;
6328         case Opt_lock_on_read:
6329                 opt->lock_on_read = true;
6330                 break;
6331         case Opt_exclusive:
6332                 opt->exclusive = true;
6333                 break;
6334         case Opt_notrim:
6335                 opt->trim = false;
6336                 break;
6337         default:
6338                 BUG();
6339         }
6340
6341         return 0;
6342
6343 out_of_range:
6344         return inval_plog(&log, "%s out of range", param->key);
6345 }
6346
6347 /*
6348  * This duplicates most of generic_parse_monolithic(), untying it from
6349  * fs_context and skipping standard superblock and security options.
6350  */
6351 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6352 {
6353         char *key;
6354         int ret = 0;
6355
6356         dout("%s '%s'\n", __func__, options);
6357         while ((key = strsep(&options, ",")) != NULL) {
6358                 if (*key) {
6359                         struct fs_parameter param = {
6360                                 .key    = key,
6361                                 .type   = fs_value_is_flag,
6362                         };
6363                         char *value = strchr(key, '=');
6364                         size_t v_len = 0;
6365
6366                         if (value) {
6367                                 if (value == key)
6368                                         continue;
6369                                 *value++ = 0;
6370                                 v_len = strlen(value);
6371                                 param.string = kmemdup_nul(value, v_len,
6372                                                            GFP_KERNEL);
6373                                 if (!param.string)
6374                                         return -ENOMEM;
6375                                 param.type = fs_value_is_string;
6376                         }
6377                         param.size = v_len;
6378
6379                         ret = rbd_parse_param(&param, pctx);
6380                         kfree(param.string);
6381                         if (ret)
6382                                 break;
6383                 }
6384         }
6385
6386         return ret;
6387 }
6388
6389 /*
6390  * Parse the options provided for an "rbd add" (i.e., rbd image
6391  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6392  * and the data written is passed here via a NUL-terminated buffer.
6393  * Returns 0 if successful or an error code otherwise.
6394  *
6395  * The information extracted from these options is recorded in
6396  * the other parameters which return dynamically-allocated
6397  * structures:
6398  *  ceph_opts
6399  *      The address of a pointer that will refer to a ceph options
6400  *      structure.  Caller must release the returned pointer using
6401  *      ceph_destroy_options() when it is no longer needed.
6402  *  rbd_opts
6403  *      Address of an rbd options pointer.  Fully initialized by
6404  *      this function; caller must release with kfree().
6405  *  spec
6406  *      Address of an rbd image specification pointer.  Fully
6407  *      initialized by this function based on parsed options.
6408  *      Caller must release with rbd_spec_put().
6409  *
6410  * The options passed take this form:
6411  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6412  * where:
6413  *  <mon_addrs>
6414  *      A comma-separated list of one or more monitor addresses.
6415  *      A monitor address is an ip address, optionally followed
6416  *      by a port number (separated by a colon).
6417  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6418  *  <options>
6419  *      A comma-separated list of ceph and/or rbd options.
6420  *  <pool_name>
6421  *      The name of the rados pool containing the rbd image.
6422  *  <image_name>
6423  *      The name of the image in that pool to map.
6424  *  <snap_id>
6425  *      An optional snapshot id.  If provided, the mapping will
6426  *      present data from the image at the time that snapshot was
6427  *      created.  The image head is used if no snapshot id is
6428  *      provided.  Snapshot mappings are always read-only.
6429  */
6430 static int rbd_add_parse_args(const char *buf,
6431                                 struct ceph_options **ceph_opts,
6432                                 struct rbd_options **opts,
6433                                 struct rbd_spec **rbd_spec)
6434 {
6435         size_t len;
6436         char *options;
6437         const char *mon_addrs;
6438         char *snap_name;
6439         size_t mon_addrs_size;
6440         struct rbd_parse_opts_ctx pctx = { 0 };
6441         int ret;
6442
6443         /* The first four tokens are required */
6444
6445         len = next_token(&buf);
6446         if (!len) {
6447                 rbd_warn(NULL, "no monitor address(es) provided");
6448                 return -EINVAL;
6449         }
6450         mon_addrs = buf;
6451         mon_addrs_size = len;
6452         buf += len;
6453
6454         ret = -EINVAL;
6455         options = dup_token(&buf, NULL);
6456         if (!options)
6457                 return -ENOMEM;
6458         if (!*options) {
6459                 rbd_warn(NULL, "no options provided");
6460                 goto out_err;
6461         }
6462
6463         pctx.spec = rbd_spec_alloc();
6464         if (!pctx.spec)
6465                 goto out_mem;
6466
6467         pctx.spec->pool_name = dup_token(&buf, NULL);
6468         if (!pctx.spec->pool_name)
6469                 goto out_mem;
6470         if (!*pctx.spec->pool_name) {
6471                 rbd_warn(NULL, "no pool name provided");
6472                 goto out_err;
6473         }
6474
6475         pctx.spec->image_name = dup_token(&buf, NULL);
6476         if (!pctx.spec->image_name)
6477                 goto out_mem;
6478         if (!*pctx.spec->image_name) {
6479                 rbd_warn(NULL, "no image name provided");
6480                 goto out_err;
6481         }
6482
6483         /*
6484          * Snapshot name is optional; default is to use "-"
6485          * (indicating the head/no snapshot).
6486          */
6487         len = next_token(&buf);
6488         if (!len) {
6489                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6490                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6491         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6492                 ret = -ENAMETOOLONG;
6493                 goto out_err;
6494         }
6495         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6496         if (!snap_name)
6497                 goto out_mem;
6498         *(snap_name + len) = '\0';
6499         pctx.spec->snap_name = snap_name;
6500
6501         pctx.copts = ceph_alloc_options();
6502         if (!pctx.copts)
6503                 goto out_mem;
6504
6505         /* Initialize all rbd options to the defaults */
6506
6507         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6508         if (!pctx.opts)
6509                 goto out_mem;
6510
6511         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6512         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6513         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6514         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6515         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6516         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6517         pctx.opts->trim = RBD_TRIM_DEFAULT;
6518
6519         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6520         if (ret)
6521                 goto out_err;
6522
6523         ret = rbd_parse_options(options, &pctx);
6524         if (ret)
6525                 goto out_err;
6526
6527         *ceph_opts = pctx.copts;
6528         *opts = pctx.opts;
6529         *rbd_spec = pctx.spec;
6530         kfree(options);
6531         return 0;
6532
6533 out_mem:
6534         ret = -ENOMEM;
6535 out_err:
6536         kfree(pctx.opts);
6537         ceph_destroy_options(pctx.copts);
6538         rbd_spec_put(pctx.spec);
6539         kfree(options);
6540         return ret;
6541 }
6542
6543 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6544 {
6545         down_write(&rbd_dev->lock_rwsem);
6546         if (__rbd_is_lock_owner(rbd_dev))
6547                 __rbd_release_lock(rbd_dev);
6548         up_write(&rbd_dev->lock_rwsem);
6549 }
6550
6551 /*
6552  * If the wait is interrupted, an error is returned even if the lock
6553  * was successfully acquired.  rbd_dev_image_unlock() will release it
6554  * if needed.
6555  */
6556 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6557 {
6558         long ret;
6559
6560         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6561                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6562                         return 0;
6563
6564                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6565                 return -EINVAL;
6566         }
6567
6568         if (rbd_is_ro(rbd_dev))
6569                 return 0;
6570
6571         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6572         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6573         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6574                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6575         if (ret > 0) {
6576                 ret = rbd_dev->acquire_err;
6577         } else {
6578                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6579                 if (!ret)
6580                         ret = -ETIMEDOUT;
6581         }
6582
6583         if (ret) {
6584                 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6585                 return ret;
6586         }
6587
6588         /*
6589          * The lock may have been released by now, unless automatic lock
6590          * transitions are disabled.
6591          */
6592         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6593         return 0;
6594 }
6595
6596 /*
6597  * An rbd format 2 image has a unique identifier, distinct from the
6598  * name given to it by the user.  Internally, that identifier is
6599  * what's used to specify the names of objects related to the image.
6600  *
6601  * A special "rbd id" object is used to map an rbd image name to its
6602  * id.  If that object doesn't exist, then there is no v2 rbd image
6603  * with the supplied name.
6604  *
6605  * This function will record the given rbd_dev's image_id field if
6606  * it can be determined, and in that case will return 0.  If any
6607  * errors occur a negative errno will be returned and the rbd_dev's
6608  * image_id field will be unchanged (and should be NULL).
6609  */
6610 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6611 {
6612         int ret;
6613         size_t size;
6614         CEPH_DEFINE_OID_ONSTACK(oid);
6615         void *response;
6616         char *image_id;
6617
6618         /*
6619          * When probing a parent image, the image id is already
6620          * known (and the image name likely is not).  There's no
6621          * need to fetch the image id again in this case.  We
6622          * do still need to set the image format though.
6623          */
6624         if (rbd_dev->spec->image_id) {
6625                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6626
6627                 return 0;
6628         }
6629
6630         /*
6631          * First, see if the format 2 image id file exists, and if
6632          * so, get the image's persistent id from it.
6633          */
6634         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6635                                rbd_dev->spec->image_name);
6636         if (ret)
6637                 return ret;
6638
6639         dout("rbd id object name is %s\n", oid.name);
6640
6641         /* Response will be an encoded string, which includes a length */
6642         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6643         response = kzalloc(size, GFP_NOIO);
6644         if (!response) {
6645                 ret = -ENOMEM;
6646                 goto out;
6647         }
6648
6649         /* If it doesn't exist we'll assume it's a format 1 image */
6650
6651         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6652                                   "get_id", NULL, 0,
6653                                   response, size);
6654         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6655         if (ret == -ENOENT) {
6656                 image_id = kstrdup("", GFP_KERNEL);
6657                 ret = image_id ? 0 : -ENOMEM;
6658                 if (!ret)
6659                         rbd_dev->image_format = 1;
6660         } else if (ret >= 0) {
6661                 void *p = response;
6662
6663                 image_id = ceph_extract_encoded_string(&p, p + ret,
6664                                                 NULL, GFP_NOIO);
6665                 ret = PTR_ERR_OR_ZERO(image_id);
6666                 if (!ret)
6667                         rbd_dev->image_format = 2;
6668         }
6669
6670         if (!ret) {
6671                 rbd_dev->spec->image_id = image_id;
6672                 dout("image_id is %s\n", image_id);
6673         }
6674 out:
6675         kfree(response);
6676         ceph_oid_destroy(&oid);
6677         return ret;
6678 }
6679
6680 /*
6681  * Undo whatever state changes are made by v1 or v2 header info
6682  * call.
6683  */
6684 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6685 {
6686         struct rbd_image_header *header;
6687
6688         rbd_dev_parent_put(rbd_dev);
6689         rbd_object_map_free(rbd_dev);
6690         rbd_dev_mapping_clear(rbd_dev);
6691
6692         /* Free dynamic fields from the header, then zero it out */
6693
6694         header = &rbd_dev->header;
6695         ceph_put_snap_context(header->snapc);
6696         kfree(header->snap_sizes);
6697         kfree(header->snap_names);
6698         kfree(header->object_prefix);
6699         memset(header, 0, sizeof (*header));
6700 }
6701
6702 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6703 {
6704         int ret;
6705
6706         ret = rbd_dev_v2_object_prefix(rbd_dev);
6707         if (ret)
6708                 goto out_err;
6709
6710         /*
6711          * Get the and check features for the image.  Currently the
6712          * features are assumed to never change.
6713          */
6714         ret = rbd_dev_v2_features(rbd_dev);
6715         if (ret)
6716                 goto out_err;
6717
6718         /* If the image supports fancy striping, get its parameters */
6719
6720         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6721                 ret = rbd_dev_v2_striping_info(rbd_dev);
6722                 if (ret < 0)
6723                         goto out_err;
6724         }
6725
6726         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6727                 ret = rbd_dev_v2_data_pool(rbd_dev);
6728                 if (ret)
6729                         goto out_err;
6730         }
6731
6732         rbd_init_layout(rbd_dev);
6733         return 0;
6734
6735 out_err:
6736         rbd_dev->header.features = 0;
6737         kfree(rbd_dev->header.object_prefix);
6738         rbd_dev->header.object_prefix = NULL;
6739         return ret;
6740 }
6741
6742 /*
6743  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6744  * rbd_dev_image_probe() recursion depth, which means it's also the
6745  * length of the already discovered part of the parent chain.
6746  */
6747 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6748 {
6749         struct rbd_device *parent = NULL;
6750         int ret;
6751
6752         if (!rbd_dev->parent_spec)
6753                 return 0;
6754
6755         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6756                 pr_info("parent chain is too long (%d)\n", depth);
6757                 ret = -EINVAL;
6758                 goto out_err;
6759         }
6760
6761         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6762         if (!parent) {
6763                 ret = -ENOMEM;
6764                 goto out_err;
6765         }
6766
6767         /*
6768          * Images related by parent/child relationships always share
6769          * rbd_client and spec/parent_spec, so bump their refcounts.
6770          */
6771         __rbd_get_client(rbd_dev->rbd_client);
6772         rbd_spec_get(rbd_dev->parent_spec);
6773
6774         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6775
6776         ret = rbd_dev_image_probe(parent, depth);
6777         if (ret < 0)
6778                 goto out_err;
6779
6780         rbd_dev->parent = parent;
6781         atomic_set(&rbd_dev->parent_ref, 1);
6782         return 0;
6783
6784 out_err:
6785         rbd_dev_unparent(rbd_dev);
6786         rbd_dev_destroy(parent);
6787         return ret;
6788 }
6789
6790 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6791 {
6792         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6793         rbd_free_disk(rbd_dev);
6794         if (!single_major)
6795                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6796 }
6797
6798 /*
6799  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6800  * upon return.
6801  */
6802 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6803 {
6804         int ret;
6805
6806         /* Record our major and minor device numbers. */
6807
6808         if (!single_major) {
6809                 ret = register_blkdev(0, rbd_dev->name);
6810                 if (ret < 0)
6811                         goto err_out_unlock;
6812
6813                 rbd_dev->major = ret;
6814                 rbd_dev->minor = 0;
6815         } else {
6816                 rbd_dev->major = rbd_major;
6817                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6818         }
6819
6820         /* Set up the blkdev mapping. */
6821
6822         ret = rbd_init_disk(rbd_dev);
6823         if (ret)
6824                 goto err_out_blkdev;
6825
6826         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6827         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6828
6829         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6830         if (ret)
6831                 goto err_out_disk;
6832
6833         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6834         up_write(&rbd_dev->header_rwsem);
6835         return 0;
6836
6837 err_out_disk:
6838         rbd_free_disk(rbd_dev);
6839 err_out_blkdev:
6840         if (!single_major)
6841                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6842 err_out_unlock:
6843         up_write(&rbd_dev->header_rwsem);
6844         return ret;
6845 }
6846
6847 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6848 {
6849         struct rbd_spec *spec = rbd_dev->spec;
6850         int ret;
6851
6852         /* Record the header object name for this rbd image. */
6853
6854         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6855         if (rbd_dev->image_format == 1)
6856                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6857                                        spec->image_name, RBD_SUFFIX);
6858         else
6859                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6860                                        RBD_HEADER_PREFIX, spec->image_id);
6861
6862         return ret;
6863 }
6864
6865 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6866 {
6867         if (!is_snap) {
6868                 pr_info("image %s/%s%s%s does not exist\n",
6869                         rbd_dev->spec->pool_name,
6870                         rbd_dev->spec->pool_ns ?: "",
6871                         rbd_dev->spec->pool_ns ? "/" : "",
6872                         rbd_dev->spec->image_name);
6873         } else {
6874                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6875                         rbd_dev->spec->pool_name,
6876                         rbd_dev->spec->pool_ns ?: "",
6877                         rbd_dev->spec->pool_ns ? "/" : "",
6878                         rbd_dev->spec->image_name,
6879                         rbd_dev->spec->snap_name);
6880         }
6881 }
6882
6883 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6884 {
6885         if (!rbd_is_ro(rbd_dev))
6886                 rbd_unregister_watch(rbd_dev);
6887
6888         rbd_dev_unprobe(rbd_dev);
6889         rbd_dev->image_format = 0;
6890         kfree(rbd_dev->spec->image_id);
6891         rbd_dev->spec->image_id = NULL;
6892 }
6893
6894 /*
6895  * Probe for the existence of the header object for the given rbd
6896  * device.  If this image is the one being mapped (i.e., not a
6897  * parent), initiate a watch on its header object before using that
6898  * object to get detailed information about the rbd image.
6899  *
6900  * On success, returns with header_rwsem held for write if called
6901  * with @depth == 0.
6902  */
6903 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6904 {
6905         bool need_watch = !rbd_is_ro(rbd_dev);
6906         int ret;
6907
6908         /*
6909          * Get the id from the image id object.  Unless there's an
6910          * error, rbd_dev->spec->image_id will be filled in with
6911          * a dynamically-allocated string, and rbd_dev->image_format
6912          * will be set to either 1 or 2.
6913          */
6914         ret = rbd_dev_image_id(rbd_dev);
6915         if (ret)
6916                 return ret;
6917
6918         ret = rbd_dev_header_name(rbd_dev);
6919         if (ret)
6920                 goto err_out_format;
6921
6922         if (need_watch) {
6923                 ret = rbd_register_watch(rbd_dev);
6924                 if (ret) {
6925                         if (ret == -ENOENT)
6926                                 rbd_print_dne(rbd_dev, false);
6927                         goto err_out_format;
6928                 }
6929         }
6930
6931         if (!depth)
6932                 down_write(&rbd_dev->header_rwsem);
6933
6934         ret = rbd_dev_header_info(rbd_dev);
6935         if (ret) {
6936                 if (ret == -ENOENT && !need_watch)
6937                         rbd_print_dne(rbd_dev, false);
6938                 goto err_out_probe;
6939         }
6940
6941         /*
6942          * If this image is the one being mapped, we have pool name and
6943          * id, image name and id, and snap name - need to fill snap id.
6944          * Otherwise this is a parent image, identified by pool, image
6945          * and snap ids - need to fill in names for those ids.
6946          */
6947         if (!depth)
6948                 ret = rbd_spec_fill_snap_id(rbd_dev);
6949         else
6950                 ret = rbd_spec_fill_names(rbd_dev);
6951         if (ret) {
6952                 if (ret == -ENOENT)
6953                         rbd_print_dne(rbd_dev, true);
6954                 goto err_out_probe;
6955         }
6956
6957         ret = rbd_dev_mapping_set(rbd_dev);
6958         if (ret)
6959                 goto err_out_probe;
6960
6961         if (rbd_is_snap(rbd_dev) &&
6962             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6963                 ret = rbd_object_map_load(rbd_dev);
6964                 if (ret)
6965                         goto err_out_probe;
6966         }
6967
6968         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6969                 ret = rbd_dev_v2_parent_info(rbd_dev);
6970                 if (ret)
6971                         goto err_out_probe;
6972         }
6973
6974         ret = rbd_dev_probe_parent(rbd_dev, depth);
6975         if (ret)
6976                 goto err_out_probe;
6977
6978         dout("discovered format %u image, header name is %s\n",
6979                 rbd_dev->image_format, rbd_dev->header_oid.name);
6980         return 0;
6981
6982 err_out_probe:
6983         if (!depth)
6984                 up_write(&rbd_dev->header_rwsem);
6985         if (need_watch)
6986                 rbd_unregister_watch(rbd_dev);
6987         rbd_dev_unprobe(rbd_dev);
6988 err_out_format:
6989         rbd_dev->image_format = 0;
6990         kfree(rbd_dev->spec->image_id);
6991         rbd_dev->spec->image_id = NULL;
6992         return ret;
6993 }
6994
6995 static ssize_t do_rbd_add(struct bus_type *bus,
6996                           const char *buf,
6997                           size_t count)
6998 {
6999         struct rbd_device *rbd_dev = NULL;
7000         struct ceph_options *ceph_opts = NULL;
7001         struct rbd_options *rbd_opts = NULL;
7002         struct rbd_spec *spec = NULL;
7003         struct rbd_client *rbdc;
7004         int rc;
7005
7006         if (!capable(CAP_SYS_ADMIN))
7007                 return -EPERM;
7008
7009         if (!try_module_get(THIS_MODULE))
7010                 return -ENODEV;
7011
7012         /* parse add command */
7013         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7014         if (rc < 0)
7015                 goto out;
7016
7017         rbdc = rbd_get_client(ceph_opts);
7018         if (IS_ERR(rbdc)) {
7019                 rc = PTR_ERR(rbdc);
7020                 goto err_out_args;
7021         }
7022
7023         /* pick the pool */
7024         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7025         if (rc < 0) {
7026                 if (rc == -ENOENT)
7027                         pr_info("pool %s does not exist\n", spec->pool_name);
7028                 goto err_out_client;
7029         }
7030         spec->pool_id = (u64)rc;
7031
7032         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7033         if (!rbd_dev) {
7034                 rc = -ENOMEM;
7035                 goto err_out_client;
7036         }
7037         rbdc = NULL;            /* rbd_dev now owns this */
7038         spec = NULL;            /* rbd_dev now owns this */
7039         rbd_opts = NULL;        /* rbd_dev now owns this */
7040
7041         /* if we are mapping a snapshot it will be a read-only mapping */
7042         if (rbd_dev->opts->read_only ||
7043             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7044                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7045
7046         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7047         if (!rbd_dev->config_info) {
7048                 rc = -ENOMEM;
7049                 goto err_out_rbd_dev;
7050         }
7051
7052         rc = rbd_dev_image_probe(rbd_dev, 0);
7053         if (rc < 0)
7054                 goto err_out_rbd_dev;
7055
7056         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7057                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7058                          rbd_dev->layout.object_size);
7059                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7060         }
7061
7062         rc = rbd_dev_device_setup(rbd_dev);
7063         if (rc)
7064                 goto err_out_image_probe;
7065
7066         rc = rbd_add_acquire_lock(rbd_dev);
7067         if (rc)
7068                 goto err_out_image_lock;
7069
7070         /* Everything's ready.  Announce the disk to the world. */
7071
7072         rc = device_add(&rbd_dev->dev);
7073         if (rc)
7074                 goto err_out_image_lock;
7075
7076         device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7077
7078         spin_lock(&rbd_dev_list_lock);
7079         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7080         spin_unlock(&rbd_dev_list_lock);
7081
7082         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7083                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7084                 rbd_dev->header.features);
7085         rc = count;
7086 out:
7087         module_put(THIS_MODULE);
7088         return rc;
7089
7090 err_out_image_lock:
7091         rbd_dev_image_unlock(rbd_dev);
7092         rbd_dev_device_release(rbd_dev);
7093 err_out_image_probe:
7094         rbd_dev_image_release(rbd_dev);
7095 err_out_rbd_dev:
7096         rbd_dev_destroy(rbd_dev);
7097 err_out_client:
7098         rbd_put_client(rbdc);
7099 err_out_args:
7100         rbd_spec_put(spec);
7101         kfree(rbd_opts);
7102         goto out;
7103 }
7104
7105 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7106 {
7107         if (single_major)
7108                 return -EINVAL;
7109
7110         return do_rbd_add(bus, buf, count);
7111 }
7112
7113 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7114                                       size_t count)
7115 {
7116         return do_rbd_add(bus, buf, count);
7117 }
7118
7119 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7120 {
7121         while (rbd_dev->parent) {
7122                 struct rbd_device *first = rbd_dev;
7123                 struct rbd_device *second = first->parent;
7124                 struct rbd_device *third;
7125
7126                 /*
7127                  * Follow to the parent with no grandparent and
7128                  * remove it.
7129                  */
7130                 while (second && (third = second->parent)) {
7131                         first = second;
7132                         second = third;
7133                 }
7134                 rbd_assert(second);
7135                 rbd_dev_image_release(second);
7136                 rbd_dev_destroy(second);
7137                 first->parent = NULL;
7138                 first->parent_overlap = 0;
7139
7140                 rbd_assert(first->parent_spec);
7141                 rbd_spec_put(first->parent_spec);
7142                 first->parent_spec = NULL;
7143         }
7144 }
7145
7146 static ssize_t do_rbd_remove(struct bus_type *bus,
7147                              const char *buf,
7148                              size_t count)
7149 {
7150         struct rbd_device *rbd_dev = NULL;
7151         struct list_head *tmp;
7152         int dev_id;
7153         char opt_buf[6];
7154         bool force = false;
7155         int ret;
7156
7157         if (!capable(CAP_SYS_ADMIN))
7158                 return -EPERM;
7159
7160         dev_id = -1;
7161         opt_buf[0] = '\0';
7162         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7163         if (dev_id < 0) {
7164                 pr_err("dev_id out of range\n");
7165                 return -EINVAL;
7166         }
7167         if (opt_buf[0] != '\0') {
7168                 if (!strcmp(opt_buf, "force")) {
7169                         force = true;
7170                 } else {
7171                         pr_err("bad remove option at '%s'\n", opt_buf);
7172                         return -EINVAL;
7173                 }
7174         }
7175
7176         ret = -ENOENT;
7177         spin_lock(&rbd_dev_list_lock);
7178         list_for_each(tmp, &rbd_dev_list) {
7179                 rbd_dev = list_entry(tmp, struct rbd_device, node);
7180                 if (rbd_dev->dev_id == dev_id) {
7181                         ret = 0;
7182                         break;
7183                 }
7184         }
7185         if (!ret) {
7186                 spin_lock_irq(&rbd_dev->lock);
7187                 if (rbd_dev->open_count && !force)
7188                         ret = -EBUSY;
7189                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7190                                           &rbd_dev->flags))
7191                         ret = -EINPROGRESS;
7192                 spin_unlock_irq(&rbd_dev->lock);
7193         }
7194         spin_unlock(&rbd_dev_list_lock);
7195         if (ret)
7196                 return ret;
7197
7198         if (force) {
7199                 /*
7200                  * Prevent new IO from being queued and wait for existing
7201                  * IO to complete/fail.
7202                  */
7203                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7204                 blk_set_queue_dying(rbd_dev->disk->queue);
7205         }
7206
7207         del_gendisk(rbd_dev->disk);
7208         spin_lock(&rbd_dev_list_lock);
7209         list_del_init(&rbd_dev->node);
7210         spin_unlock(&rbd_dev_list_lock);
7211         device_del(&rbd_dev->dev);
7212
7213         rbd_dev_image_unlock(rbd_dev);
7214         rbd_dev_device_release(rbd_dev);
7215         rbd_dev_image_release(rbd_dev);
7216         rbd_dev_destroy(rbd_dev);
7217         return count;
7218 }
7219
7220 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7221 {
7222         if (single_major)
7223                 return -EINVAL;
7224
7225         return do_rbd_remove(bus, buf, count);
7226 }
7227
7228 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7229                                          size_t count)
7230 {
7231         return do_rbd_remove(bus, buf, count);
7232 }
7233
7234 /*
7235  * create control files in sysfs
7236  * /sys/bus/rbd/...
7237  */
7238 static int __init rbd_sysfs_init(void)
7239 {
7240         int ret;
7241
7242         ret = device_register(&rbd_root_dev);
7243         if (ret < 0)
7244                 return ret;
7245
7246         ret = bus_register(&rbd_bus_type);
7247         if (ret < 0)
7248                 device_unregister(&rbd_root_dev);
7249
7250         return ret;
7251 }
7252
7253 static void __exit rbd_sysfs_cleanup(void)
7254 {
7255         bus_unregister(&rbd_bus_type);
7256         device_unregister(&rbd_root_dev);
7257 }
7258
7259 static int __init rbd_slab_init(void)
7260 {
7261         rbd_assert(!rbd_img_request_cache);
7262         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7263         if (!rbd_img_request_cache)
7264                 return -ENOMEM;
7265
7266         rbd_assert(!rbd_obj_request_cache);
7267         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7268         if (!rbd_obj_request_cache)
7269                 goto out_err;
7270
7271         return 0;
7272
7273 out_err:
7274         kmem_cache_destroy(rbd_img_request_cache);
7275         rbd_img_request_cache = NULL;
7276         return -ENOMEM;
7277 }
7278
7279 static void rbd_slab_exit(void)
7280 {
7281         rbd_assert(rbd_obj_request_cache);
7282         kmem_cache_destroy(rbd_obj_request_cache);
7283         rbd_obj_request_cache = NULL;
7284
7285         rbd_assert(rbd_img_request_cache);
7286         kmem_cache_destroy(rbd_img_request_cache);
7287         rbd_img_request_cache = NULL;
7288 }
7289
7290 static int __init rbd_init(void)
7291 {
7292         int rc;
7293
7294         if (!libceph_compatible(NULL)) {
7295                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7296                 return -EINVAL;
7297         }
7298
7299         rc = rbd_slab_init();
7300         if (rc)
7301                 return rc;
7302
7303         /*
7304          * The number of active work items is limited by the number of
7305          * rbd devices * queue depth, so leave @max_active at default.
7306          */
7307         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7308         if (!rbd_wq) {
7309                 rc = -ENOMEM;
7310                 goto err_out_slab;
7311         }
7312
7313         if (single_major) {
7314                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7315                 if (rbd_major < 0) {
7316                         rc = rbd_major;
7317                         goto err_out_wq;
7318                 }
7319         }
7320
7321         rc = rbd_sysfs_init();
7322         if (rc)
7323                 goto err_out_blkdev;
7324
7325         if (single_major)
7326                 pr_info("loaded (major %d)\n", rbd_major);
7327         else
7328                 pr_info("loaded\n");
7329
7330         return 0;
7331
7332 err_out_blkdev:
7333         if (single_major)
7334                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7335 err_out_wq:
7336         destroy_workqueue(rbd_wq);
7337 err_out_slab:
7338         rbd_slab_exit();
7339         return rc;
7340 }
7341
7342 static void __exit rbd_exit(void)
7343 {
7344         ida_destroy(&rbd_dev_id_ida);
7345         rbd_sysfs_cleanup();
7346         if (single_major)
7347                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7348         destroy_workqueue(rbd_wq);
7349         rbd_slab_exit();
7350 }
7351
7352 module_init(rbd_init);
7353 module_exit(rbd_exit);
7354
7355 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7356 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7357 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7358 /* following authorship retained from original osdblk.c */
7359 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7360
7361 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7362 MODULE_LICENSE("GPL");