Merge branch 'proc-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[linux-2.6-microblaze.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639                                         u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641                                 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652         rbd_assert(pending->num_pending > 0);
653
654         if (*result && !pending->result)
655                 pending->result = *result;
656         if (--pending->num_pending)
657                 return false;
658
659         *result = pending->result;
660         return true;
661 }
662
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666         bool removing = false;
667
668         spin_lock_irq(&rbd_dev->lock);
669         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670                 removing = true;
671         else
672                 rbd_dev->open_count++;
673         spin_unlock_irq(&rbd_dev->lock);
674         if (removing)
675                 return -ENOENT;
676
677         (void) get_device(&rbd_dev->dev);
678
679         return 0;
680 }
681
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684         struct rbd_device *rbd_dev = disk->private_data;
685         unsigned long open_count_before;
686
687         spin_lock_irq(&rbd_dev->lock);
688         open_count_before = rbd_dev->open_count--;
689         spin_unlock_irq(&rbd_dev->lock);
690         rbd_assert(open_count_before > 0);
691
692         put_device(&rbd_dev->dev);
693 }
694
695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
696 {
697         int ro;
698
699         if (get_user(ro, (int __user *)arg))
700                 return -EFAULT;
701
702         /*
703          * Both images mapped read-only and snapshots can't be marked
704          * read-write.
705          */
706         if (!ro) {
707                 if (rbd_is_ro(rbd_dev))
708                         return -EROFS;
709
710                 rbd_assert(!rbd_is_snap(rbd_dev));
711         }
712
713         /* Let blkdev_roset() handle it */
714         return -ENOTTY;
715 }
716
717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718                         unsigned int cmd, unsigned long arg)
719 {
720         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
721         int ret;
722
723         switch (cmd) {
724         case BLKROSET:
725                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
726                 break;
727         default:
728                 ret = -ENOTTY;
729         }
730
731         return ret;
732 }
733
734 #ifdef CONFIG_COMPAT
735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736                                 unsigned int cmd, unsigned long arg)
737 {
738         return rbd_ioctl(bdev, mode, cmd, arg);
739 }
740 #endif /* CONFIG_COMPAT */
741
742 static const struct block_device_operations rbd_bd_ops = {
743         .owner                  = THIS_MODULE,
744         .open                   = rbd_open,
745         .release                = rbd_release,
746         .ioctl                  = rbd_ioctl,
747 #ifdef CONFIG_COMPAT
748         .compat_ioctl           = rbd_compat_ioctl,
749 #endif
750 };
751
752 /*
753  * Initialize an rbd client instance.  Success or not, this function
754  * consumes ceph_opts.  Caller holds client_mutex.
755  */
756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
757 {
758         struct rbd_client *rbdc;
759         int ret = -ENOMEM;
760
761         dout("%s:\n", __func__);
762         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
763         if (!rbdc)
764                 goto out_opt;
765
766         kref_init(&rbdc->kref);
767         INIT_LIST_HEAD(&rbdc->node);
768
769         rbdc->client = ceph_create_client(ceph_opts, rbdc);
770         if (IS_ERR(rbdc->client))
771                 goto out_rbdc;
772         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
773
774         ret = ceph_open_session(rbdc->client);
775         if (ret < 0)
776                 goto out_client;
777
778         spin_lock(&rbd_client_list_lock);
779         list_add_tail(&rbdc->node, &rbd_client_list);
780         spin_unlock(&rbd_client_list_lock);
781
782         dout("%s: rbdc %p\n", __func__, rbdc);
783
784         return rbdc;
785 out_client:
786         ceph_destroy_client(rbdc->client);
787 out_rbdc:
788         kfree(rbdc);
789 out_opt:
790         if (ceph_opts)
791                 ceph_destroy_options(ceph_opts);
792         dout("%s: error %d\n", __func__, ret);
793
794         return ERR_PTR(ret);
795 }
796
797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
798 {
799         kref_get(&rbdc->kref);
800
801         return rbdc;
802 }
803
804 /*
805  * Find a ceph client with specific addr and configuration.  If
806  * found, bump its reference count.
807  */
808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
809 {
810         struct rbd_client *client_node;
811         bool found = false;
812
813         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
814                 return NULL;
815
816         spin_lock(&rbd_client_list_lock);
817         list_for_each_entry(client_node, &rbd_client_list, node) {
818                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
819                         __rbd_get_client(client_node);
820
821                         found = true;
822                         break;
823                 }
824         }
825         spin_unlock(&rbd_client_list_lock);
826
827         return found ? client_node : NULL;
828 }
829
830 /*
831  * (Per device) rbd map options
832  */
833 enum {
834         Opt_queue_depth,
835         Opt_alloc_size,
836         Opt_lock_timeout,
837         /* int args above */
838         Opt_pool_ns,
839         Opt_compression_hint,
840         /* string args above */
841         Opt_read_only,
842         Opt_read_write,
843         Opt_lock_on_read,
844         Opt_exclusive,
845         Opt_notrim,
846 };
847
848 enum {
849         Opt_compression_hint_none,
850         Opt_compression_hint_compressible,
851         Opt_compression_hint_incompressible,
852 };
853
854 static const struct constant_table rbd_param_compression_hint[] = {
855         {"none",                Opt_compression_hint_none},
856         {"compressible",        Opt_compression_hint_compressible},
857         {"incompressible",      Opt_compression_hint_incompressible},
858         {}
859 };
860
861 static const struct fs_parameter_spec rbd_parameters[] = {
862         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
863         fsparam_enum    ("compression_hint",            Opt_compression_hint,
864                          rbd_param_compression_hint),
865         fsparam_flag    ("exclusive",                   Opt_exclusive),
866         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
867         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
868         fsparam_flag    ("notrim",                      Opt_notrim),
869         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
870         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
871         fsparam_flag    ("read_only",                   Opt_read_only),
872         fsparam_flag    ("read_write",                  Opt_read_write),
873         fsparam_flag    ("ro",                          Opt_read_only),
874         fsparam_flag    ("rw",                          Opt_read_write),
875         {}
876 };
877
878 struct rbd_options {
879         int     queue_depth;
880         int     alloc_size;
881         unsigned long   lock_timeout;
882         bool    read_only;
883         bool    lock_on_read;
884         bool    exclusive;
885         bool    trim;
886
887         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
888 };
889
890 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
891 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
892 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
893 #define RBD_READ_ONLY_DEFAULT   false
894 #define RBD_LOCK_ON_READ_DEFAULT false
895 #define RBD_EXCLUSIVE_DEFAULT   false
896 #define RBD_TRIM_DEFAULT        true
897
898 struct rbd_parse_opts_ctx {
899         struct rbd_spec         *spec;
900         struct ceph_options     *copts;
901         struct rbd_options      *opts;
902 };
903
904 static char* obj_op_name(enum obj_operation_type op_type)
905 {
906         switch (op_type) {
907         case OBJ_OP_READ:
908                 return "read";
909         case OBJ_OP_WRITE:
910                 return "write";
911         case OBJ_OP_DISCARD:
912                 return "discard";
913         case OBJ_OP_ZEROOUT:
914                 return "zeroout";
915         default:
916                 return "???";
917         }
918 }
919
920 /*
921  * Destroy ceph client
922  *
923  * Caller must hold rbd_client_list_lock.
924  */
925 static void rbd_client_release(struct kref *kref)
926 {
927         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
928
929         dout("%s: rbdc %p\n", __func__, rbdc);
930         spin_lock(&rbd_client_list_lock);
931         list_del(&rbdc->node);
932         spin_unlock(&rbd_client_list_lock);
933
934         ceph_destroy_client(rbdc->client);
935         kfree(rbdc);
936 }
937
938 /*
939  * Drop reference to ceph client node. If it's not referenced anymore, release
940  * it.
941  */
942 static void rbd_put_client(struct rbd_client *rbdc)
943 {
944         if (rbdc)
945                 kref_put(&rbdc->kref, rbd_client_release);
946 }
947
948 /*
949  * Get a ceph client with specific addr and configuration, if one does
950  * not exist create it.  Either way, ceph_opts is consumed by this
951  * function.
952  */
953 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
954 {
955         struct rbd_client *rbdc;
956         int ret;
957
958         mutex_lock(&client_mutex);
959         rbdc = rbd_client_find(ceph_opts);
960         if (rbdc) {
961                 ceph_destroy_options(ceph_opts);
962
963                 /*
964                  * Using an existing client.  Make sure ->pg_pools is up to
965                  * date before we look up the pool id in do_rbd_add().
966                  */
967                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
968                                         rbdc->client->options->mount_timeout);
969                 if (ret) {
970                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
971                         rbd_put_client(rbdc);
972                         rbdc = ERR_PTR(ret);
973                 }
974         } else {
975                 rbdc = rbd_client_create(ceph_opts);
976         }
977         mutex_unlock(&client_mutex);
978
979         return rbdc;
980 }
981
982 static bool rbd_image_format_valid(u32 image_format)
983 {
984         return image_format == 1 || image_format == 2;
985 }
986
987 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
988 {
989         size_t size;
990         u32 snap_count;
991
992         /* The header has to start with the magic rbd header text */
993         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
994                 return false;
995
996         /* The bio layer requires at least sector-sized I/O */
997
998         if (ondisk->options.order < SECTOR_SHIFT)
999                 return false;
1000
1001         /* If we use u64 in a few spots we may be able to loosen this */
1002
1003         if (ondisk->options.order > 8 * sizeof (int) - 1)
1004                 return false;
1005
1006         /*
1007          * The size of a snapshot header has to fit in a size_t, and
1008          * that limits the number of snapshots.
1009          */
1010         snap_count = le32_to_cpu(ondisk->snap_count);
1011         size = SIZE_MAX - sizeof (struct ceph_snap_context);
1012         if (snap_count > size / sizeof (__le64))
1013                 return false;
1014
1015         /*
1016          * Not only that, but the size of the entire the snapshot
1017          * header must also be representable in a size_t.
1018          */
1019         size -= snap_count * sizeof (__le64);
1020         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1021                 return false;
1022
1023         return true;
1024 }
1025
1026 /*
1027  * returns the size of an object in the image
1028  */
1029 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1030 {
1031         return 1U << header->obj_order;
1032 }
1033
1034 static void rbd_init_layout(struct rbd_device *rbd_dev)
1035 {
1036         if (rbd_dev->header.stripe_unit == 0 ||
1037             rbd_dev->header.stripe_count == 0) {
1038                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1039                 rbd_dev->header.stripe_count = 1;
1040         }
1041
1042         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1043         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1044         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1045         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1046                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1047         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1048 }
1049
1050 /*
1051  * Fill an rbd image header with information from the given format 1
1052  * on-disk header.
1053  */
1054 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1055                                  struct rbd_image_header_ondisk *ondisk)
1056 {
1057         struct rbd_image_header *header = &rbd_dev->header;
1058         bool first_time = header->object_prefix == NULL;
1059         struct ceph_snap_context *snapc;
1060         char *object_prefix = NULL;
1061         char *snap_names = NULL;
1062         u64 *snap_sizes = NULL;
1063         u32 snap_count;
1064         int ret = -ENOMEM;
1065         u32 i;
1066
1067         /* Allocate this now to avoid having to handle failure below */
1068
1069         if (first_time) {
1070                 object_prefix = kstrndup(ondisk->object_prefix,
1071                                          sizeof(ondisk->object_prefix),
1072                                          GFP_KERNEL);
1073                 if (!object_prefix)
1074                         return -ENOMEM;
1075         }
1076
1077         /* Allocate the snapshot context and fill it in */
1078
1079         snap_count = le32_to_cpu(ondisk->snap_count);
1080         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1081         if (!snapc)
1082                 goto out_err;
1083         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1084         if (snap_count) {
1085                 struct rbd_image_snap_ondisk *snaps;
1086                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1087
1088                 /* We'll keep a copy of the snapshot names... */
1089
1090                 if (snap_names_len > (u64)SIZE_MAX)
1091                         goto out_2big;
1092                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1093                 if (!snap_names)
1094                         goto out_err;
1095
1096                 /* ...as well as the array of their sizes. */
1097                 snap_sizes = kmalloc_array(snap_count,
1098                                            sizeof(*header->snap_sizes),
1099                                            GFP_KERNEL);
1100                 if (!snap_sizes)
1101                         goto out_err;
1102
1103                 /*
1104                  * Copy the names, and fill in each snapshot's id
1105                  * and size.
1106                  *
1107                  * Note that rbd_dev_v1_header_info() guarantees the
1108                  * ondisk buffer we're working with has
1109                  * snap_names_len bytes beyond the end of the
1110                  * snapshot id array, this memcpy() is safe.
1111                  */
1112                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1113                 snaps = ondisk->snaps;
1114                 for (i = 0; i < snap_count; i++) {
1115                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1116                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1117                 }
1118         }
1119
1120         /* We won't fail any more, fill in the header */
1121
1122         if (first_time) {
1123                 header->object_prefix = object_prefix;
1124                 header->obj_order = ondisk->options.order;
1125                 rbd_init_layout(rbd_dev);
1126         } else {
1127                 ceph_put_snap_context(header->snapc);
1128                 kfree(header->snap_names);
1129                 kfree(header->snap_sizes);
1130         }
1131
1132         /* The remaining fields always get updated (when we refresh) */
1133
1134         header->image_size = le64_to_cpu(ondisk->image_size);
1135         header->snapc = snapc;
1136         header->snap_names = snap_names;
1137         header->snap_sizes = snap_sizes;
1138
1139         return 0;
1140 out_2big:
1141         ret = -EIO;
1142 out_err:
1143         kfree(snap_sizes);
1144         kfree(snap_names);
1145         ceph_put_snap_context(snapc);
1146         kfree(object_prefix);
1147
1148         return ret;
1149 }
1150
1151 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1152 {
1153         const char *snap_name;
1154
1155         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1156
1157         /* Skip over names until we find the one we are looking for */
1158
1159         snap_name = rbd_dev->header.snap_names;
1160         while (which--)
1161                 snap_name += strlen(snap_name) + 1;
1162
1163         return kstrdup(snap_name, GFP_KERNEL);
1164 }
1165
1166 /*
1167  * Snapshot id comparison function for use with qsort()/bsearch().
1168  * Note that result is for snapshots in *descending* order.
1169  */
1170 static int snapid_compare_reverse(const void *s1, const void *s2)
1171 {
1172         u64 snap_id1 = *(u64 *)s1;
1173         u64 snap_id2 = *(u64 *)s2;
1174
1175         if (snap_id1 < snap_id2)
1176                 return 1;
1177         return snap_id1 == snap_id2 ? 0 : -1;
1178 }
1179
1180 /*
1181  * Search a snapshot context to see if the given snapshot id is
1182  * present.
1183  *
1184  * Returns the position of the snapshot id in the array if it's found,
1185  * or BAD_SNAP_INDEX otherwise.
1186  *
1187  * Note: The snapshot array is in kept sorted (by the osd) in
1188  * reverse order, highest snapshot id first.
1189  */
1190 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1191 {
1192         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1193         u64 *found;
1194
1195         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1196                                 sizeof (snap_id), snapid_compare_reverse);
1197
1198         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1199 }
1200
1201 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1202                                         u64 snap_id)
1203 {
1204         u32 which;
1205         const char *snap_name;
1206
1207         which = rbd_dev_snap_index(rbd_dev, snap_id);
1208         if (which == BAD_SNAP_INDEX)
1209                 return ERR_PTR(-ENOENT);
1210
1211         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1212         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1213 }
1214
1215 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1216 {
1217         if (snap_id == CEPH_NOSNAP)
1218                 return RBD_SNAP_HEAD_NAME;
1219
1220         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1221         if (rbd_dev->image_format == 1)
1222                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1223
1224         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1225 }
1226
1227 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1228                                 u64 *snap_size)
1229 {
1230         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1231         if (snap_id == CEPH_NOSNAP) {
1232                 *snap_size = rbd_dev->header.image_size;
1233         } else if (rbd_dev->image_format == 1) {
1234                 u32 which;
1235
1236                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1237                 if (which == BAD_SNAP_INDEX)
1238                         return -ENOENT;
1239
1240                 *snap_size = rbd_dev->header.snap_sizes[which];
1241         } else {
1242                 u64 size = 0;
1243                 int ret;
1244
1245                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1246                 if (ret)
1247                         return ret;
1248
1249                 *snap_size = size;
1250         }
1251         return 0;
1252 }
1253
1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1255 {
1256         u64 snap_id = rbd_dev->spec->snap_id;
1257         u64 size = 0;
1258         int ret;
1259
1260         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1261         if (ret)
1262                 return ret;
1263
1264         rbd_dev->mapping.size = size;
1265         return 0;
1266 }
1267
1268 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1269 {
1270         rbd_dev->mapping.size = 0;
1271 }
1272
1273 static void zero_bvec(struct bio_vec *bv)
1274 {
1275         void *buf;
1276         unsigned long flags;
1277
1278         buf = bvec_kmap_irq(bv, &flags);
1279         memset(buf, 0, bv->bv_len);
1280         flush_dcache_page(bv->bv_page);
1281         bvec_kunmap_irq(buf, &flags);
1282 }
1283
1284 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1285 {
1286         struct ceph_bio_iter it = *bio_pos;
1287
1288         ceph_bio_iter_advance(&it, off);
1289         ceph_bio_iter_advance_step(&it, bytes, ({
1290                 zero_bvec(&bv);
1291         }));
1292 }
1293
1294 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1295 {
1296         struct ceph_bvec_iter it = *bvec_pos;
1297
1298         ceph_bvec_iter_advance(&it, off);
1299         ceph_bvec_iter_advance_step(&it, bytes, ({
1300                 zero_bvec(&bv);
1301         }));
1302 }
1303
1304 /*
1305  * Zero a range in @obj_req data buffer defined by a bio (list) or
1306  * (private) bio_vec array.
1307  *
1308  * @off is relative to the start of the data buffer.
1309  */
1310 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1311                                u32 bytes)
1312 {
1313         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1314
1315         switch (obj_req->img_request->data_type) {
1316         case OBJ_REQUEST_BIO:
1317                 zero_bios(&obj_req->bio_pos, off, bytes);
1318                 break;
1319         case OBJ_REQUEST_BVECS:
1320         case OBJ_REQUEST_OWN_BVECS:
1321                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1322                 break;
1323         default:
1324                 BUG();
1325         }
1326 }
1327
1328 static void rbd_obj_request_destroy(struct kref *kref);
1329 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1330 {
1331         rbd_assert(obj_request != NULL);
1332         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1333                 kref_read(&obj_request->kref));
1334         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1335 }
1336
1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338                                         struct rbd_obj_request *obj_request)
1339 {
1340         rbd_assert(obj_request->img_request == NULL);
1341
1342         /* Image request now owns object's original reference */
1343         obj_request->img_request = img_request;
1344         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1345 }
1346
1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348                                         struct rbd_obj_request *obj_request)
1349 {
1350         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351         list_del(&obj_request->ex.oe_item);
1352         rbd_assert(obj_request->img_request == img_request);
1353         rbd_obj_request_put(obj_request);
1354 }
1355
1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1357 {
1358         struct rbd_obj_request *obj_req = osd_req->r_priv;
1359
1360         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362              obj_req->ex.oe_off, obj_req->ex.oe_len);
1363         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1364 }
1365
1366 /*
1367  * The default/initial value for all image request flags is 0.  Each
1368  * is conditionally set to 1 at image request initialization time
1369  * and currently never change thereafter.
1370  */
1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1372 {
1373         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 }
1375
1376 static bool img_request_layered_test(struct rbd_img_request *img_request)
1377 {
1378         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1379 }
1380
1381 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1382 {
1383         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1384
1385         return !obj_req->ex.oe_off &&
1386                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1387 }
1388
1389 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1390 {
1391         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1392
1393         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1394                                         rbd_dev->layout.object_size;
1395 }
1396
1397 /*
1398  * Must be called after rbd_obj_calc_img_extents().
1399  */
1400 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1401 {
1402         if (!obj_req->num_img_extents ||
1403             (rbd_obj_is_entire(obj_req) &&
1404              !obj_req->img_request->snapc->num_snaps))
1405                 return false;
1406
1407         return true;
1408 }
1409
1410 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1411 {
1412         return ceph_file_extents_bytes(obj_req->img_extents,
1413                                        obj_req->num_img_extents);
1414 }
1415
1416 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1417 {
1418         switch (img_req->op_type) {
1419         case OBJ_OP_READ:
1420                 return false;
1421         case OBJ_OP_WRITE:
1422         case OBJ_OP_DISCARD:
1423         case OBJ_OP_ZEROOUT:
1424                 return true;
1425         default:
1426                 BUG();
1427         }
1428 }
1429
1430 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1431 {
1432         struct rbd_obj_request *obj_req = osd_req->r_priv;
1433         int result;
1434
1435         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1436              osd_req->r_result, obj_req);
1437
1438         /*
1439          * Writes aren't allowed to return a data payload.  In some
1440          * guarded write cases (e.g. stat + zero on an empty object)
1441          * a stat response makes it through, but we don't care.
1442          */
1443         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1444                 result = 0;
1445         else
1446                 result = osd_req->r_result;
1447
1448         rbd_obj_handle_request(obj_req, result);
1449 }
1450
1451 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1452 {
1453         struct rbd_obj_request *obj_request = osd_req->r_priv;
1454
1455         osd_req->r_flags = CEPH_OSD_FLAG_READ;
1456         osd_req->r_snapid = obj_request->img_request->snap_id;
1457 }
1458
1459 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1460 {
1461         struct rbd_obj_request *obj_request = osd_req->r_priv;
1462
1463         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1464         ktime_get_real_ts64(&osd_req->r_mtime);
1465         osd_req->r_data_offset = obj_request->ex.oe_off;
1466 }
1467
1468 static struct ceph_osd_request *
1469 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1470                           struct ceph_snap_context *snapc, int num_ops)
1471 {
1472         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1473         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1474         struct ceph_osd_request *req;
1475         const char *name_format = rbd_dev->image_format == 1 ?
1476                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1477         int ret;
1478
1479         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1480         if (!req)
1481                 return ERR_PTR(-ENOMEM);
1482
1483         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1484         req->r_callback = rbd_osd_req_callback;
1485         req->r_priv = obj_req;
1486
1487         /*
1488          * Data objects may be stored in a separate pool, but always in
1489          * the same namespace in that pool as the header in its pool.
1490          */
1491         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1492         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1493
1494         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1495                                rbd_dev->header.object_prefix,
1496                                obj_req->ex.oe_objno);
1497         if (ret)
1498                 return ERR_PTR(ret);
1499
1500         return req;
1501 }
1502
1503 static struct ceph_osd_request *
1504 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1505 {
1506         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1507                                          num_ops);
1508 }
1509
1510 static struct rbd_obj_request *rbd_obj_request_create(void)
1511 {
1512         struct rbd_obj_request *obj_request;
1513
1514         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1515         if (!obj_request)
1516                 return NULL;
1517
1518         ceph_object_extent_init(&obj_request->ex);
1519         INIT_LIST_HEAD(&obj_request->osd_reqs);
1520         mutex_init(&obj_request->state_mutex);
1521         kref_init(&obj_request->kref);
1522
1523         dout("%s %p\n", __func__, obj_request);
1524         return obj_request;
1525 }
1526
1527 static void rbd_obj_request_destroy(struct kref *kref)
1528 {
1529         struct rbd_obj_request *obj_request;
1530         struct ceph_osd_request *osd_req;
1531         u32 i;
1532
1533         obj_request = container_of(kref, struct rbd_obj_request, kref);
1534
1535         dout("%s: obj %p\n", __func__, obj_request);
1536
1537         while (!list_empty(&obj_request->osd_reqs)) {
1538                 osd_req = list_first_entry(&obj_request->osd_reqs,
1539                                     struct ceph_osd_request, r_private_item);
1540                 list_del_init(&osd_req->r_private_item);
1541                 ceph_osdc_put_request(osd_req);
1542         }
1543
1544         switch (obj_request->img_request->data_type) {
1545         case OBJ_REQUEST_NODATA:
1546         case OBJ_REQUEST_BIO:
1547         case OBJ_REQUEST_BVECS:
1548                 break;          /* Nothing to do */
1549         case OBJ_REQUEST_OWN_BVECS:
1550                 kfree(obj_request->bvec_pos.bvecs);
1551                 break;
1552         default:
1553                 BUG();
1554         }
1555
1556         kfree(obj_request->img_extents);
1557         if (obj_request->copyup_bvecs) {
1558                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1559                         if (obj_request->copyup_bvecs[i].bv_page)
1560                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1561                 }
1562                 kfree(obj_request->copyup_bvecs);
1563         }
1564
1565         kmem_cache_free(rbd_obj_request_cache, obj_request);
1566 }
1567
1568 /* It's OK to call this for a device with no parent */
1569
1570 static void rbd_spec_put(struct rbd_spec *spec);
1571 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1572 {
1573         rbd_dev_remove_parent(rbd_dev);
1574         rbd_spec_put(rbd_dev->parent_spec);
1575         rbd_dev->parent_spec = NULL;
1576         rbd_dev->parent_overlap = 0;
1577 }
1578
1579 /*
1580  * Parent image reference counting is used to determine when an
1581  * image's parent fields can be safely torn down--after there are no
1582  * more in-flight requests to the parent image.  When the last
1583  * reference is dropped, cleaning them up is safe.
1584  */
1585 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1586 {
1587         int counter;
1588
1589         if (!rbd_dev->parent_spec)
1590                 return;
1591
1592         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1593         if (counter > 0)
1594                 return;
1595
1596         /* Last reference; clean up parent data structures */
1597
1598         if (!counter)
1599                 rbd_dev_unparent(rbd_dev);
1600         else
1601                 rbd_warn(rbd_dev, "parent reference underflow");
1602 }
1603
1604 /*
1605  * If an image has a non-zero parent overlap, get a reference to its
1606  * parent.
1607  *
1608  * Returns true if the rbd device has a parent with a non-zero
1609  * overlap and a reference for it was successfully taken, or
1610  * false otherwise.
1611  */
1612 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1613 {
1614         int counter = 0;
1615
1616         if (!rbd_dev->parent_spec)
1617                 return false;
1618
1619         if (rbd_dev->parent_overlap)
1620                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1621
1622         if (counter < 0)
1623                 rbd_warn(rbd_dev, "parent reference overflow");
1624
1625         return counter > 0;
1626 }
1627
1628 static void rbd_img_request_init(struct rbd_img_request *img_request,
1629                                  struct rbd_device *rbd_dev,
1630                                  enum obj_operation_type op_type)
1631 {
1632         memset(img_request, 0, sizeof(*img_request));
1633
1634         img_request->rbd_dev = rbd_dev;
1635         img_request->op_type = op_type;
1636
1637         INIT_LIST_HEAD(&img_request->lock_item);
1638         INIT_LIST_HEAD(&img_request->object_extents);
1639         mutex_init(&img_request->state_mutex);
1640 }
1641
1642 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1643 {
1644         struct rbd_device *rbd_dev = img_req->rbd_dev;
1645
1646         lockdep_assert_held(&rbd_dev->header_rwsem);
1647
1648         if (rbd_img_is_write(img_req))
1649                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1650         else
1651                 img_req->snap_id = rbd_dev->spec->snap_id;
1652
1653         if (rbd_dev_parent_get(rbd_dev))
1654                 img_request_layered_set(img_req);
1655 }
1656
1657 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1658 {
1659         struct rbd_obj_request *obj_request;
1660         struct rbd_obj_request *next_obj_request;
1661
1662         dout("%s: img %p\n", __func__, img_request);
1663
1664         WARN_ON(!list_empty(&img_request->lock_item));
1665         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1666                 rbd_img_obj_request_del(img_request, obj_request);
1667
1668         if (img_request_layered_test(img_request))
1669                 rbd_dev_parent_put(img_request->rbd_dev);
1670
1671         if (rbd_img_is_write(img_request))
1672                 ceph_put_snap_context(img_request->snapc);
1673
1674         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1675                 kmem_cache_free(rbd_img_request_cache, img_request);
1676 }
1677
1678 #define BITS_PER_OBJ    2
1679 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1680 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1681
1682 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1683                                    u64 *index, u8 *shift)
1684 {
1685         u32 off;
1686
1687         rbd_assert(objno < rbd_dev->object_map_size);
1688         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1689         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1690 }
1691
1692 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1693 {
1694         u64 index;
1695         u8 shift;
1696
1697         lockdep_assert_held(&rbd_dev->object_map_lock);
1698         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1699         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1700 }
1701
1702 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1703 {
1704         u64 index;
1705         u8 shift;
1706         u8 *p;
1707
1708         lockdep_assert_held(&rbd_dev->object_map_lock);
1709         rbd_assert(!(val & ~OBJ_MASK));
1710
1711         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1712         p = &rbd_dev->object_map[index];
1713         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1714 }
1715
1716 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1717 {
1718         u8 state;
1719
1720         spin_lock(&rbd_dev->object_map_lock);
1721         state = __rbd_object_map_get(rbd_dev, objno);
1722         spin_unlock(&rbd_dev->object_map_lock);
1723         return state;
1724 }
1725
1726 static bool use_object_map(struct rbd_device *rbd_dev)
1727 {
1728         /*
1729          * An image mapped read-only can't use the object map -- it isn't
1730          * loaded because the header lock isn't acquired.  Someone else can
1731          * write to the image and update the object map behind our back.
1732          *
1733          * A snapshot can't be written to, so using the object map is always
1734          * safe.
1735          */
1736         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1737                 return false;
1738
1739         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1740                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1741 }
1742
1743 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1744 {
1745         u8 state;
1746
1747         /* fall back to default logic if object map is disabled or invalid */
1748         if (!use_object_map(rbd_dev))
1749                 return true;
1750
1751         state = rbd_object_map_get(rbd_dev, objno);
1752         return state != OBJECT_NONEXISTENT;
1753 }
1754
1755 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1756                                 struct ceph_object_id *oid)
1757 {
1758         if (snap_id == CEPH_NOSNAP)
1759                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1760                                 rbd_dev->spec->image_id);
1761         else
1762                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1763                                 rbd_dev->spec->image_id, snap_id);
1764 }
1765
1766 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1767 {
1768         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1769         CEPH_DEFINE_OID_ONSTACK(oid);
1770         u8 lock_type;
1771         char *lock_tag;
1772         struct ceph_locker *lockers;
1773         u32 num_lockers;
1774         bool broke_lock = false;
1775         int ret;
1776
1777         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1778
1779 again:
1780         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1781                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1782         if (ret != -EBUSY || broke_lock) {
1783                 if (ret == -EEXIST)
1784                         ret = 0; /* already locked by myself */
1785                 if (ret)
1786                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1787                 return ret;
1788         }
1789
1790         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1791                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1792                                  &lockers, &num_lockers);
1793         if (ret) {
1794                 if (ret == -ENOENT)
1795                         goto again;
1796
1797                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1798                 return ret;
1799         }
1800
1801         kfree(lock_tag);
1802         if (num_lockers == 0)
1803                 goto again;
1804
1805         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1806                  ENTITY_NAME(lockers[0].id.name));
1807
1808         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1809                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1810                                   &lockers[0].id.name);
1811         ceph_free_lockers(lockers, num_lockers);
1812         if (ret) {
1813                 if (ret == -ENOENT)
1814                         goto again;
1815
1816                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1817                 return ret;
1818         }
1819
1820         broke_lock = true;
1821         goto again;
1822 }
1823
1824 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1825 {
1826         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1827         CEPH_DEFINE_OID_ONSTACK(oid);
1828         int ret;
1829
1830         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1831
1832         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1833                               "");
1834         if (ret && ret != -ENOENT)
1835                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1836 }
1837
1838 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1839 {
1840         u8 struct_v;
1841         u32 struct_len;
1842         u32 header_len;
1843         void *header_end;
1844         int ret;
1845
1846         ceph_decode_32_safe(p, end, header_len, e_inval);
1847         header_end = *p + header_len;
1848
1849         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1850                                   &struct_len);
1851         if (ret)
1852                 return ret;
1853
1854         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1855
1856         *p = header_end;
1857         return 0;
1858
1859 e_inval:
1860         return -EINVAL;
1861 }
1862
1863 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1864 {
1865         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1866         CEPH_DEFINE_OID_ONSTACK(oid);
1867         struct page **pages;
1868         void *p, *end;
1869         size_t reply_len;
1870         u64 num_objects;
1871         u64 object_map_bytes;
1872         u64 object_map_size;
1873         int num_pages;
1874         int ret;
1875
1876         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1877
1878         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1879                                            rbd_dev->mapping.size);
1880         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1881                                             BITS_PER_BYTE);
1882         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1883         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1884         if (IS_ERR(pages))
1885                 return PTR_ERR(pages);
1886
1887         reply_len = num_pages * PAGE_SIZE;
1888         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1889         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1890                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1891                              NULL, 0, pages, &reply_len);
1892         if (ret)
1893                 goto out;
1894
1895         p = page_address(pages[0]);
1896         end = p + min(reply_len, (size_t)PAGE_SIZE);
1897         ret = decode_object_map_header(&p, end, &object_map_size);
1898         if (ret)
1899                 goto out;
1900
1901         if (object_map_size != num_objects) {
1902                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1903                          object_map_size, num_objects);
1904                 ret = -EINVAL;
1905                 goto out;
1906         }
1907
1908         if (offset_in_page(p) + object_map_bytes > reply_len) {
1909                 ret = -EINVAL;
1910                 goto out;
1911         }
1912
1913         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1914         if (!rbd_dev->object_map) {
1915                 ret = -ENOMEM;
1916                 goto out;
1917         }
1918
1919         rbd_dev->object_map_size = object_map_size;
1920         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1921                                    offset_in_page(p), object_map_bytes);
1922
1923 out:
1924         ceph_release_page_vector(pages, num_pages);
1925         return ret;
1926 }
1927
1928 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1929 {
1930         kvfree(rbd_dev->object_map);
1931         rbd_dev->object_map = NULL;
1932         rbd_dev->object_map_size = 0;
1933 }
1934
1935 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1936 {
1937         int ret;
1938
1939         ret = __rbd_object_map_load(rbd_dev);
1940         if (ret)
1941                 return ret;
1942
1943         ret = rbd_dev_v2_get_flags(rbd_dev);
1944         if (ret) {
1945                 rbd_object_map_free(rbd_dev);
1946                 return ret;
1947         }
1948
1949         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1950                 rbd_warn(rbd_dev, "object map is invalid");
1951
1952         return 0;
1953 }
1954
1955 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1956 {
1957         int ret;
1958
1959         ret = rbd_object_map_lock(rbd_dev);
1960         if (ret)
1961                 return ret;
1962
1963         ret = rbd_object_map_load(rbd_dev);
1964         if (ret) {
1965                 rbd_object_map_unlock(rbd_dev);
1966                 return ret;
1967         }
1968
1969         return 0;
1970 }
1971
1972 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1973 {
1974         rbd_object_map_free(rbd_dev);
1975         rbd_object_map_unlock(rbd_dev);
1976 }
1977
1978 /*
1979  * This function needs snap_id (or more precisely just something to
1980  * distinguish between HEAD and snapshot object maps), new_state and
1981  * current_state that were passed to rbd_object_map_update().
1982  *
1983  * To avoid allocating and stashing a context we piggyback on the OSD
1984  * request.  A HEAD update has two ops (assert_locked).  For new_state
1985  * and current_state we decode our own object_map_update op, encoded in
1986  * rbd_cls_object_map_update().
1987  */
1988 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1989                                         struct ceph_osd_request *osd_req)
1990 {
1991         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1992         struct ceph_osd_data *osd_data;
1993         u64 objno;
1994         u8 state, new_state, uninitialized_var(current_state);
1995         bool has_current_state;
1996         void *p;
1997
1998         if (osd_req->r_result)
1999                 return osd_req->r_result;
2000
2001         /*
2002          * Nothing to do for a snapshot object map.
2003          */
2004         if (osd_req->r_num_ops == 1)
2005                 return 0;
2006
2007         /*
2008          * Update in-memory HEAD object map.
2009          */
2010         rbd_assert(osd_req->r_num_ops == 2);
2011         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2012         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2013
2014         p = page_address(osd_data->pages[0]);
2015         objno = ceph_decode_64(&p);
2016         rbd_assert(objno == obj_req->ex.oe_objno);
2017         rbd_assert(ceph_decode_64(&p) == objno + 1);
2018         new_state = ceph_decode_8(&p);
2019         has_current_state = ceph_decode_8(&p);
2020         if (has_current_state)
2021                 current_state = ceph_decode_8(&p);
2022
2023         spin_lock(&rbd_dev->object_map_lock);
2024         state = __rbd_object_map_get(rbd_dev, objno);
2025         if (!has_current_state || current_state == state ||
2026             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2027                 __rbd_object_map_set(rbd_dev, objno, new_state);
2028         spin_unlock(&rbd_dev->object_map_lock);
2029
2030         return 0;
2031 }
2032
2033 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2034 {
2035         struct rbd_obj_request *obj_req = osd_req->r_priv;
2036         int result;
2037
2038         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2039              osd_req->r_result, obj_req);
2040
2041         result = rbd_object_map_update_finish(obj_req, osd_req);
2042         rbd_obj_handle_request(obj_req, result);
2043 }
2044
2045 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2046 {
2047         u8 state = rbd_object_map_get(rbd_dev, objno);
2048
2049         if (state == new_state ||
2050             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2051             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2052                 return false;
2053
2054         return true;
2055 }
2056
2057 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2058                                      int which, u64 objno, u8 new_state,
2059                                      const u8 *current_state)
2060 {
2061         struct page **pages;
2062         void *p, *start;
2063         int ret;
2064
2065         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2066         if (ret)
2067                 return ret;
2068
2069         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2070         if (IS_ERR(pages))
2071                 return PTR_ERR(pages);
2072
2073         p = start = page_address(pages[0]);
2074         ceph_encode_64(&p, objno);
2075         ceph_encode_64(&p, objno + 1);
2076         ceph_encode_8(&p, new_state);
2077         if (current_state) {
2078                 ceph_encode_8(&p, 1);
2079                 ceph_encode_8(&p, *current_state);
2080         } else {
2081                 ceph_encode_8(&p, 0);
2082         }
2083
2084         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2085                                           false, true);
2086         return 0;
2087 }
2088
2089 /*
2090  * Return:
2091  *   0 - object map update sent
2092  *   1 - object map update isn't needed
2093  *  <0 - error
2094  */
2095 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2096                                  u8 new_state, const u8 *current_state)
2097 {
2098         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2099         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2100         struct ceph_osd_request *req;
2101         int num_ops = 1;
2102         int which = 0;
2103         int ret;
2104
2105         if (snap_id == CEPH_NOSNAP) {
2106                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2107                         return 1;
2108
2109                 num_ops++; /* assert_locked */
2110         }
2111
2112         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2113         if (!req)
2114                 return -ENOMEM;
2115
2116         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2117         req->r_callback = rbd_object_map_callback;
2118         req->r_priv = obj_req;
2119
2120         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2121         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2122         req->r_flags = CEPH_OSD_FLAG_WRITE;
2123         ktime_get_real_ts64(&req->r_mtime);
2124
2125         if (snap_id == CEPH_NOSNAP) {
2126                 /*
2127                  * Protect against possible race conditions during lock
2128                  * ownership transitions.
2129                  */
2130                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2131                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2132                 if (ret)
2133                         return ret;
2134         }
2135
2136         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2137                                         new_state, current_state);
2138         if (ret)
2139                 return ret;
2140
2141         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2142         if (ret)
2143                 return ret;
2144
2145         ceph_osdc_start_request(osdc, req, false);
2146         return 0;
2147 }
2148
2149 static void prune_extents(struct ceph_file_extent *img_extents,
2150                           u32 *num_img_extents, u64 overlap)
2151 {
2152         u32 cnt = *num_img_extents;
2153
2154         /* drop extents completely beyond the overlap */
2155         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2156                 cnt--;
2157
2158         if (cnt) {
2159                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2160
2161                 /* trim final overlapping extent */
2162                 if (ex->fe_off + ex->fe_len > overlap)
2163                         ex->fe_len = overlap - ex->fe_off;
2164         }
2165
2166         *num_img_extents = cnt;
2167 }
2168
2169 /*
2170  * Determine the byte range(s) covered by either just the object extent
2171  * or the entire object in the parent image.
2172  */
2173 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2174                                     bool entire)
2175 {
2176         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2177         int ret;
2178
2179         if (!rbd_dev->parent_overlap)
2180                 return 0;
2181
2182         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2183                                   entire ? 0 : obj_req->ex.oe_off,
2184                                   entire ? rbd_dev->layout.object_size :
2185                                                         obj_req->ex.oe_len,
2186                                   &obj_req->img_extents,
2187                                   &obj_req->num_img_extents);
2188         if (ret)
2189                 return ret;
2190
2191         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2192                       rbd_dev->parent_overlap);
2193         return 0;
2194 }
2195
2196 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2197 {
2198         struct rbd_obj_request *obj_req = osd_req->r_priv;
2199
2200         switch (obj_req->img_request->data_type) {
2201         case OBJ_REQUEST_BIO:
2202                 osd_req_op_extent_osd_data_bio(osd_req, which,
2203                                                &obj_req->bio_pos,
2204                                                obj_req->ex.oe_len);
2205                 break;
2206         case OBJ_REQUEST_BVECS:
2207         case OBJ_REQUEST_OWN_BVECS:
2208                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2209                                                         obj_req->ex.oe_len);
2210                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2211                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2212                                                     &obj_req->bvec_pos);
2213                 break;
2214         default:
2215                 BUG();
2216         }
2217 }
2218
2219 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2220 {
2221         struct page **pages;
2222
2223         /*
2224          * The response data for a STAT call consists of:
2225          *     le64 length;
2226          *     struct {
2227          *         le32 tv_sec;
2228          *         le32 tv_nsec;
2229          *     } mtime;
2230          */
2231         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2232         if (IS_ERR(pages))
2233                 return PTR_ERR(pages);
2234
2235         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2236         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2237                                      8 + sizeof(struct ceph_timespec),
2238                                      0, false, true);
2239         return 0;
2240 }
2241
2242 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2243                                 u32 bytes)
2244 {
2245         struct rbd_obj_request *obj_req = osd_req->r_priv;
2246         int ret;
2247
2248         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2249         if (ret)
2250                 return ret;
2251
2252         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2253                                           obj_req->copyup_bvec_count, bytes);
2254         return 0;
2255 }
2256
2257 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2258 {
2259         obj_req->read_state = RBD_OBJ_READ_START;
2260         return 0;
2261 }
2262
2263 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2264                                       int which)
2265 {
2266         struct rbd_obj_request *obj_req = osd_req->r_priv;
2267         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2268         u16 opcode;
2269
2270         if (!use_object_map(rbd_dev) ||
2271             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2272                 osd_req_op_alloc_hint_init(osd_req, which++,
2273                                            rbd_dev->layout.object_size,
2274                                            rbd_dev->layout.object_size,
2275                                            rbd_dev->opts->alloc_hint_flags);
2276         }
2277
2278         if (rbd_obj_is_entire(obj_req))
2279                 opcode = CEPH_OSD_OP_WRITEFULL;
2280         else
2281                 opcode = CEPH_OSD_OP_WRITE;
2282
2283         osd_req_op_extent_init(osd_req, which, opcode,
2284                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2285         rbd_osd_setup_data(osd_req, which);
2286 }
2287
2288 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2289 {
2290         int ret;
2291
2292         /* reverse map the entire object onto the parent */
2293         ret = rbd_obj_calc_img_extents(obj_req, true);
2294         if (ret)
2295                 return ret;
2296
2297         if (rbd_obj_copyup_enabled(obj_req))
2298                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2299
2300         obj_req->write_state = RBD_OBJ_WRITE_START;
2301         return 0;
2302 }
2303
2304 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2305 {
2306         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2307                                           CEPH_OSD_OP_ZERO;
2308 }
2309
2310 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2311                                         int which)
2312 {
2313         struct rbd_obj_request *obj_req = osd_req->r_priv;
2314
2315         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2316                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2317                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2318         } else {
2319                 osd_req_op_extent_init(osd_req, which,
2320                                        truncate_or_zero_opcode(obj_req),
2321                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2322                                        0, 0);
2323         }
2324 }
2325
2326 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2327 {
2328         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2329         u64 off, next_off;
2330         int ret;
2331
2332         /*
2333          * Align the range to alloc_size boundary and punt on discards
2334          * that are too small to free up any space.
2335          *
2336          * alloc_size == object_size && is_tail() is a special case for
2337          * filestore with filestore_punch_hole = false, needed to allow
2338          * truncate (in addition to delete).
2339          */
2340         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2341             !rbd_obj_is_tail(obj_req)) {
2342                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2343                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2344                                       rbd_dev->opts->alloc_size);
2345                 if (off >= next_off)
2346                         return 1;
2347
2348                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2349                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2350                      off, next_off - off);
2351                 obj_req->ex.oe_off = off;
2352                 obj_req->ex.oe_len = next_off - off;
2353         }
2354
2355         /* reverse map the entire object onto the parent */
2356         ret = rbd_obj_calc_img_extents(obj_req, true);
2357         if (ret)
2358                 return ret;
2359
2360         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2361         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2362                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2363
2364         obj_req->write_state = RBD_OBJ_WRITE_START;
2365         return 0;
2366 }
2367
2368 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2369                                         int which)
2370 {
2371         struct rbd_obj_request *obj_req = osd_req->r_priv;
2372         u16 opcode;
2373
2374         if (rbd_obj_is_entire(obj_req)) {
2375                 if (obj_req->num_img_extents) {
2376                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2377                                 osd_req_op_init(osd_req, which++,
2378                                                 CEPH_OSD_OP_CREATE, 0);
2379                         opcode = CEPH_OSD_OP_TRUNCATE;
2380                 } else {
2381                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2382                         osd_req_op_init(osd_req, which++,
2383                                         CEPH_OSD_OP_DELETE, 0);
2384                         opcode = 0;
2385                 }
2386         } else {
2387                 opcode = truncate_or_zero_opcode(obj_req);
2388         }
2389
2390         if (opcode)
2391                 osd_req_op_extent_init(osd_req, which, opcode,
2392                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2393                                        0, 0);
2394 }
2395
2396 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2397 {
2398         int ret;
2399
2400         /* reverse map the entire object onto the parent */
2401         ret = rbd_obj_calc_img_extents(obj_req, true);
2402         if (ret)
2403                 return ret;
2404
2405         if (rbd_obj_copyup_enabled(obj_req))
2406                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2407         if (!obj_req->num_img_extents) {
2408                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2409                 if (rbd_obj_is_entire(obj_req))
2410                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2411         }
2412
2413         obj_req->write_state = RBD_OBJ_WRITE_START;
2414         return 0;
2415 }
2416
2417 static int count_write_ops(struct rbd_obj_request *obj_req)
2418 {
2419         struct rbd_img_request *img_req = obj_req->img_request;
2420
2421         switch (img_req->op_type) {
2422         case OBJ_OP_WRITE:
2423                 if (!use_object_map(img_req->rbd_dev) ||
2424                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2425                         return 2; /* setallochint + write/writefull */
2426
2427                 return 1; /* write/writefull */
2428         case OBJ_OP_DISCARD:
2429                 return 1; /* delete/truncate/zero */
2430         case OBJ_OP_ZEROOUT:
2431                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2432                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2433                         return 2; /* create + truncate */
2434
2435                 return 1; /* delete/truncate/zero */
2436         default:
2437                 BUG();
2438         }
2439 }
2440
2441 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2442                                     int which)
2443 {
2444         struct rbd_obj_request *obj_req = osd_req->r_priv;
2445
2446         switch (obj_req->img_request->op_type) {
2447         case OBJ_OP_WRITE:
2448                 __rbd_osd_setup_write_ops(osd_req, which);
2449                 break;
2450         case OBJ_OP_DISCARD:
2451                 __rbd_osd_setup_discard_ops(osd_req, which);
2452                 break;
2453         case OBJ_OP_ZEROOUT:
2454                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2455                 break;
2456         default:
2457                 BUG();
2458         }
2459 }
2460
2461 /*
2462  * Prune the list of object requests (adjust offset and/or length, drop
2463  * redundant requests).  Prepare object request state machines and image
2464  * request state machine for execution.
2465  */
2466 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2467 {
2468         struct rbd_obj_request *obj_req, *next_obj_req;
2469         int ret;
2470
2471         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2472                 switch (img_req->op_type) {
2473                 case OBJ_OP_READ:
2474                         ret = rbd_obj_init_read(obj_req);
2475                         break;
2476                 case OBJ_OP_WRITE:
2477                         ret = rbd_obj_init_write(obj_req);
2478                         break;
2479                 case OBJ_OP_DISCARD:
2480                         ret = rbd_obj_init_discard(obj_req);
2481                         break;
2482                 case OBJ_OP_ZEROOUT:
2483                         ret = rbd_obj_init_zeroout(obj_req);
2484                         break;
2485                 default:
2486                         BUG();
2487                 }
2488                 if (ret < 0)
2489                         return ret;
2490                 if (ret > 0) {
2491                         rbd_img_obj_request_del(img_req, obj_req);
2492                         continue;
2493                 }
2494         }
2495
2496         img_req->state = RBD_IMG_START;
2497         return 0;
2498 }
2499
2500 union rbd_img_fill_iter {
2501         struct ceph_bio_iter    bio_iter;
2502         struct ceph_bvec_iter   bvec_iter;
2503 };
2504
2505 struct rbd_img_fill_ctx {
2506         enum obj_request_type   pos_type;
2507         union rbd_img_fill_iter *pos;
2508         union rbd_img_fill_iter iter;
2509         ceph_object_extent_fn_t set_pos_fn;
2510         ceph_object_extent_fn_t count_fn;
2511         ceph_object_extent_fn_t copy_fn;
2512 };
2513
2514 static struct ceph_object_extent *alloc_object_extent(void *arg)
2515 {
2516         struct rbd_img_request *img_req = arg;
2517         struct rbd_obj_request *obj_req;
2518
2519         obj_req = rbd_obj_request_create();
2520         if (!obj_req)
2521                 return NULL;
2522
2523         rbd_img_obj_request_add(img_req, obj_req);
2524         return &obj_req->ex;
2525 }
2526
2527 /*
2528  * While su != os && sc == 1 is technically not fancy (it's the same
2529  * layout as su == os && sc == 1), we can't use the nocopy path for it
2530  * because ->set_pos_fn() should be called only once per object.
2531  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2532  * treat su != os && sc == 1 as fancy.
2533  */
2534 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2535 {
2536         return l->stripe_unit != l->object_size;
2537 }
2538
2539 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2540                                        struct ceph_file_extent *img_extents,
2541                                        u32 num_img_extents,
2542                                        struct rbd_img_fill_ctx *fctx)
2543 {
2544         u32 i;
2545         int ret;
2546
2547         img_req->data_type = fctx->pos_type;
2548
2549         /*
2550          * Create object requests and set each object request's starting
2551          * position in the provided bio (list) or bio_vec array.
2552          */
2553         fctx->iter = *fctx->pos;
2554         for (i = 0; i < num_img_extents; i++) {
2555                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2556                                            img_extents[i].fe_off,
2557                                            img_extents[i].fe_len,
2558                                            &img_req->object_extents,
2559                                            alloc_object_extent, img_req,
2560                                            fctx->set_pos_fn, &fctx->iter);
2561                 if (ret)
2562                         return ret;
2563         }
2564
2565         return __rbd_img_fill_request(img_req);
2566 }
2567
2568 /*
2569  * Map a list of image extents to a list of object extents, create the
2570  * corresponding object requests (normally each to a different object,
2571  * but not always) and add them to @img_req.  For each object request,
2572  * set up its data descriptor to point to the corresponding chunk(s) of
2573  * @fctx->pos data buffer.
2574  *
2575  * Because ceph_file_to_extents() will merge adjacent object extents
2576  * together, each object request's data descriptor may point to multiple
2577  * different chunks of @fctx->pos data buffer.
2578  *
2579  * @fctx->pos data buffer is assumed to be large enough.
2580  */
2581 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2582                                 struct ceph_file_extent *img_extents,
2583                                 u32 num_img_extents,
2584                                 struct rbd_img_fill_ctx *fctx)
2585 {
2586         struct rbd_device *rbd_dev = img_req->rbd_dev;
2587         struct rbd_obj_request *obj_req;
2588         u32 i;
2589         int ret;
2590
2591         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2592             !rbd_layout_is_fancy(&rbd_dev->layout))
2593                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2594                                                    num_img_extents, fctx);
2595
2596         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2597
2598         /*
2599          * Create object requests and determine ->bvec_count for each object
2600          * request.  Note that ->bvec_count sum over all object requests may
2601          * be greater than the number of bio_vecs in the provided bio (list)
2602          * or bio_vec array because when mapped, those bio_vecs can straddle
2603          * stripe unit boundaries.
2604          */
2605         fctx->iter = *fctx->pos;
2606         for (i = 0; i < num_img_extents; i++) {
2607                 ret = ceph_file_to_extents(&rbd_dev->layout,
2608                                            img_extents[i].fe_off,
2609                                            img_extents[i].fe_len,
2610                                            &img_req->object_extents,
2611                                            alloc_object_extent, img_req,
2612                                            fctx->count_fn, &fctx->iter);
2613                 if (ret)
2614                         return ret;
2615         }
2616
2617         for_each_obj_request(img_req, obj_req) {
2618                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2619                                               sizeof(*obj_req->bvec_pos.bvecs),
2620                                               GFP_NOIO);
2621                 if (!obj_req->bvec_pos.bvecs)
2622                         return -ENOMEM;
2623         }
2624
2625         /*
2626          * Fill in each object request's private bio_vec array, splitting and
2627          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2628          */
2629         fctx->iter = *fctx->pos;
2630         for (i = 0; i < num_img_extents; i++) {
2631                 ret = ceph_iterate_extents(&rbd_dev->layout,
2632                                            img_extents[i].fe_off,
2633                                            img_extents[i].fe_len,
2634                                            &img_req->object_extents,
2635                                            fctx->copy_fn, &fctx->iter);
2636                 if (ret)
2637                         return ret;
2638         }
2639
2640         return __rbd_img_fill_request(img_req);
2641 }
2642
2643 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2644                                u64 off, u64 len)
2645 {
2646         struct ceph_file_extent ex = { off, len };
2647         union rbd_img_fill_iter dummy = {};
2648         struct rbd_img_fill_ctx fctx = {
2649                 .pos_type = OBJ_REQUEST_NODATA,
2650                 .pos = &dummy,
2651         };
2652
2653         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2654 }
2655
2656 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2657 {
2658         struct rbd_obj_request *obj_req =
2659             container_of(ex, struct rbd_obj_request, ex);
2660         struct ceph_bio_iter *it = arg;
2661
2662         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2663         obj_req->bio_pos = *it;
2664         ceph_bio_iter_advance(it, bytes);
2665 }
2666
2667 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2668 {
2669         struct rbd_obj_request *obj_req =
2670             container_of(ex, struct rbd_obj_request, ex);
2671         struct ceph_bio_iter *it = arg;
2672
2673         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2674         ceph_bio_iter_advance_step(it, bytes, ({
2675                 obj_req->bvec_count++;
2676         }));
2677
2678 }
2679
2680 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2681 {
2682         struct rbd_obj_request *obj_req =
2683             container_of(ex, struct rbd_obj_request, ex);
2684         struct ceph_bio_iter *it = arg;
2685
2686         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2687         ceph_bio_iter_advance_step(it, bytes, ({
2688                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2689                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2690         }));
2691 }
2692
2693 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2694                                    struct ceph_file_extent *img_extents,
2695                                    u32 num_img_extents,
2696                                    struct ceph_bio_iter *bio_pos)
2697 {
2698         struct rbd_img_fill_ctx fctx = {
2699                 .pos_type = OBJ_REQUEST_BIO,
2700                 .pos = (union rbd_img_fill_iter *)bio_pos,
2701                 .set_pos_fn = set_bio_pos,
2702                 .count_fn = count_bio_bvecs,
2703                 .copy_fn = copy_bio_bvecs,
2704         };
2705
2706         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2707                                     &fctx);
2708 }
2709
2710 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2711                                  u64 off, u64 len, struct bio *bio)
2712 {
2713         struct ceph_file_extent ex = { off, len };
2714         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2715
2716         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2717 }
2718
2719 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2720 {
2721         struct rbd_obj_request *obj_req =
2722             container_of(ex, struct rbd_obj_request, ex);
2723         struct ceph_bvec_iter *it = arg;
2724
2725         obj_req->bvec_pos = *it;
2726         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2727         ceph_bvec_iter_advance(it, bytes);
2728 }
2729
2730 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2731 {
2732         struct rbd_obj_request *obj_req =
2733             container_of(ex, struct rbd_obj_request, ex);
2734         struct ceph_bvec_iter *it = arg;
2735
2736         ceph_bvec_iter_advance_step(it, bytes, ({
2737                 obj_req->bvec_count++;
2738         }));
2739 }
2740
2741 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2742 {
2743         struct rbd_obj_request *obj_req =
2744             container_of(ex, struct rbd_obj_request, ex);
2745         struct ceph_bvec_iter *it = arg;
2746
2747         ceph_bvec_iter_advance_step(it, bytes, ({
2748                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2749                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2750         }));
2751 }
2752
2753 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2754                                      struct ceph_file_extent *img_extents,
2755                                      u32 num_img_extents,
2756                                      struct ceph_bvec_iter *bvec_pos)
2757 {
2758         struct rbd_img_fill_ctx fctx = {
2759                 .pos_type = OBJ_REQUEST_BVECS,
2760                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2761                 .set_pos_fn = set_bvec_pos,
2762                 .count_fn = count_bvecs,
2763                 .copy_fn = copy_bvecs,
2764         };
2765
2766         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2767                                     &fctx);
2768 }
2769
2770 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2771                                    struct ceph_file_extent *img_extents,
2772                                    u32 num_img_extents,
2773                                    struct bio_vec *bvecs)
2774 {
2775         struct ceph_bvec_iter it = {
2776                 .bvecs = bvecs,
2777                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2778                                                              num_img_extents) },
2779         };
2780
2781         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2782                                          &it);
2783 }
2784
2785 static void rbd_img_handle_request_work(struct work_struct *work)
2786 {
2787         struct rbd_img_request *img_req =
2788             container_of(work, struct rbd_img_request, work);
2789
2790         rbd_img_handle_request(img_req, img_req->work_result);
2791 }
2792
2793 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2794 {
2795         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2796         img_req->work_result = result;
2797         queue_work(rbd_wq, &img_req->work);
2798 }
2799
2800 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2801 {
2802         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2803
2804         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2805                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2806                 return true;
2807         }
2808
2809         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2810              obj_req->ex.oe_objno);
2811         return false;
2812 }
2813
2814 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2815 {
2816         struct ceph_osd_request *osd_req;
2817         int ret;
2818
2819         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2820         if (IS_ERR(osd_req))
2821                 return PTR_ERR(osd_req);
2822
2823         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2824                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2825         rbd_osd_setup_data(osd_req, 0);
2826         rbd_osd_format_read(osd_req);
2827
2828         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2829         if (ret)
2830                 return ret;
2831
2832         rbd_osd_submit(osd_req);
2833         return 0;
2834 }
2835
2836 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2837 {
2838         struct rbd_img_request *img_req = obj_req->img_request;
2839         struct rbd_device *parent = img_req->rbd_dev->parent;
2840         struct rbd_img_request *child_img_req;
2841         int ret;
2842
2843         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2844         if (!child_img_req)
2845                 return -ENOMEM;
2846
2847         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2848         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2849         child_img_req->obj_request = obj_req;
2850
2851         down_read(&parent->header_rwsem);
2852         rbd_img_capture_header(child_img_req);
2853         up_read(&parent->header_rwsem);
2854
2855         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2856              obj_req);
2857
2858         if (!rbd_img_is_write(img_req)) {
2859                 switch (img_req->data_type) {
2860                 case OBJ_REQUEST_BIO:
2861                         ret = __rbd_img_fill_from_bio(child_img_req,
2862                                                       obj_req->img_extents,
2863                                                       obj_req->num_img_extents,
2864                                                       &obj_req->bio_pos);
2865                         break;
2866                 case OBJ_REQUEST_BVECS:
2867                 case OBJ_REQUEST_OWN_BVECS:
2868                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2869                                                       obj_req->img_extents,
2870                                                       obj_req->num_img_extents,
2871                                                       &obj_req->bvec_pos);
2872                         break;
2873                 default:
2874                         BUG();
2875                 }
2876         } else {
2877                 ret = rbd_img_fill_from_bvecs(child_img_req,
2878                                               obj_req->img_extents,
2879                                               obj_req->num_img_extents,
2880                                               obj_req->copyup_bvecs);
2881         }
2882         if (ret) {
2883                 rbd_img_request_destroy(child_img_req);
2884                 return ret;
2885         }
2886
2887         /* avoid parent chain recursion */
2888         rbd_img_schedule(child_img_req, 0);
2889         return 0;
2890 }
2891
2892 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2893 {
2894         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2895         int ret;
2896
2897 again:
2898         switch (obj_req->read_state) {
2899         case RBD_OBJ_READ_START:
2900                 rbd_assert(!*result);
2901
2902                 if (!rbd_obj_may_exist(obj_req)) {
2903                         *result = -ENOENT;
2904                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2905                         goto again;
2906                 }
2907
2908                 ret = rbd_obj_read_object(obj_req);
2909                 if (ret) {
2910                         *result = ret;
2911                         return true;
2912                 }
2913                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2914                 return false;
2915         case RBD_OBJ_READ_OBJECT:
2916                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2917                         /* reverse map this object extent onto the parent */
2918                         ret = rbd_obj_calc_img_extents(obj_req, false);
2919                         if (ret) {
2920                                 *result = ret;
2921                                 return true;
2922                         }
2923                         if (obj_req->num_img_extents) {
2924                                 ret = rbd_obj_read_from_parent(obj_req);
2925                                 if (ret) {
2926                                         *result = ret;
2927                                         return true;
2928                                 }
2929                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2930                                 return false;
2931                         }
2932                 }
2933
2934                 /*
2935                  * -ENOENT means a hole in the image -- zero-fill the entire
2936                  * length of the request.  A short read also implies zero-fill
2937                  * to the end of the request.
2938                  */
2939                 if (*result == -ENOENT) {
2940                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2941                         *result = 0;
2942                 } else if (*result >= 0) {
2943                         if (*result < obj_req->ex.oe_len)
2944                                 rbd_obj_zero_range(obj_req, *result,
2945                                                 obj_req->ex.oe_len - *result);
2946                         else
2947                                 rbd_assert(*result == obj_req->ex.oe_len);
2948                         *result = 0;
2949                 }
2950                 return true;
2951         case RBD_OBJ_READ_PARENT:
2952                 /*
2953                  * The parent image is read only up to the overlap -- zero-fill
2954                  * from the overlap to the end of the request.
2955                  */
2956                 if (!*result) {
2957                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2958
2959                         if (obj_overlap < obj_req->ex.oe_len)
2960                                 rbd_obj_zero_range(obj_req, obj_overlap,
2961                                             obj_req->ex.oe_len - obj_overlap);
2962                 }
2963                 return true;
2964         default:
2965                 BUG();
2966         }
2967 }
2968
2969 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2970 {
2971         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2972
2973         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2974                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2975
2976         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2977             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2978                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2979                 return true;
2980         }
2981
2982         return false;
2983 }
2984
2985 /*
2986  * Return:
2987  *   0 - object map update sent
2988  *   1 - object map update isn't needed
2989  *  <0 - error
2990  */
2991 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2992 {
2993         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2994         u8 new_state;
2995
2996         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2997                 return 1;
2998
2999         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3000                 new_state = OBJECT_PENDING;
3001         else
3002                 new_state = OBJECT_EXISTS;
3003
3004         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3005 }
3006
3007 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3008 {
3009         struct ceph_osd_request *osd_req;
3010         int num_ops = count_write_ops(obj_req);
3011         int which = 0;
3012         int ret;
3013
3014         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3015                 num_ops++; /* stat */
3016
3017         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3018         if (IS_ERR(osd_req))
3019                 return PTR_ERR(osd_req);
3020
3021         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3022                 ret = rbd_osd_setup_stat(osd_req, which++);
3023                 if (ret)
3024                         return ret;
3025         }
3026
3027         rbd_osd_setup_write_ops(osd_req, which);
3028         rbd_osd_format_write(osd_req);
3029
3030         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3031         if (ret)
3032                 return ret;
3033
3034         rbd_osd_submit(osd_req);
3035         return 0;
3036 }
3037
3038 /*
3039  * copyup_bvecs pages are never highmem pages
3040  */
3041 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3042 {
3043         struct ceph_bvec_iter it = {
3044                 .bvecs = bvecs,
3045                 .iter = { .bi_size = bytes },
3046         };
3047
3048         ceph_bvec_iter_advance_step(&it, bytes, ({
3049                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3050                                bv.bv_len))
3051                         return false;
3052         }));
3053         return true;
3054 }
3055
3056 #define MODS_ONLY       U32_MAX
3057
3058 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3059                                       u32 bytes)
3060 {
3061         struct ceph_osd_request *osd_req;
3062         int ret;
3063
3064         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3065         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3066
3067         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3068         if (IS_ERR(osd_req))
3069                 return PTR_ERR(osd_req);
3070
3071         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3072         if (ret)
3073                 return ret;
3074
3075         rbd_osd_format_write(osd_req);
3076
3077         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3078         if (ret)
3079                 return ret;
3080
3081         rbd_osd_submit(osd_req);
3082         return 0;
3083 }
3084
3085 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3086                                         u32 bytes)
3087 {
3088         struct ceph_osd_request *osd_req;
3089         int num_ops = count_write_ops(obj_req);
3090         int which = 0;
3091         int ret;
3092
3093         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3094
3095         if (bytes != MODS_ONLY)
3096                 num_ops++; /* copyup */
3097
3098         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3099         if (IS_ERR(osd_req))
3100                 return PTR_ERR(osd_req);
3101
3102         if (bytes != MODS_ONLY) {
3103                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3104                 if (ret)
3105                         return ret;
3106         }
3107
3108         rbd_osd_setup_write_ops(osd_req, which);
3109         rbd_osd_format_write(osd_req);
3110
3111         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3112         if (ret)
3113                 return ret;
3114
3115         rbd_osd_submit(osd_req);
3116         return 0;
3117 }
3118
3119 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3120 {
3121         u32 i;
3122
3123         rbd_assert(!obj_req->copyup_bvecs);
3124         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3125         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3126                                         sizeof(*obj_req->copyup_bvecs),
3127                                         GFP_NOIO);
3128         if (!obj_req->copyup_bvecs)
3129                 return -ENOMEM;
3130
3131         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3132                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3133
3134                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3135                 if (!obj_req->copyup_bvecs[i].bv_page)
3136                         return -ENOMEM;
3137
3138                 obj_req->copyup_bvecs[i].bv_offset = 0;
3139                 obj_req->copyup_bvecs[i].bv_len = len;
3140                 obj_overlap -= len;
3141         }
3142
3143         rbd_assert(!obj_overlap);
3144         return 0;
3145 }
3146
3147 /*
3148  * The target object doesn't exist.  Read the data for the entire
3149  * target object up to the overlap point (if any) from the parent,
3150  * so we can use it for a copyup.
3151  */
3152 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3153 {
3154         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3155         int ret;
3156
3157         rbd_assert(obj_req->num_img_extents);
3158         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3159                       rbd_dev->parent_overlap);
3160         if (!obj_req->num_img_extents) {
3161                 /*
3162                  * The overlap has become 0 (most likely because the
3163                  * image has been flattened).  Re-submit the original write
3164                  * request -- pass MODS_ONLY since the copyup isn't needed
3165                  * anymore.
3166                  */
3167                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3168         }
3169
3170         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3171         if (ret)
3172                 return ret;
3173
3174         return rbd_obj_read_from_parent(obj_req);
3175 }
3176
3177 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3178 {
3179         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3180         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3181         u8 new_state;
3182         u32 i;
3183         int ret;
3184
3185         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3186
3187         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3188                 return;
3189
3190         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3191                 return;
3192
3193         for (i = 0; i < snapc->num_snaps; i++) {
3194                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3195                     i + 1 < snapc->num_snaps)
3196                         new_state = OBJECT_EXISTS_CLEAN;
3197                 else
3198                         new_state = OBJECT_EXISTS;
3199
3200                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3201                                             new_state, NULL);
3202                 if (ret < 0) {
3203                         obj_req->pending.result = ret;
3204                         return;
3205                 }
3206
3207                 rbd_assert(!ret);
3208                 obj_req->pending.num_pending++;
3209         }
3210 }
3211
3212 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3213 {
3214         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3215         int ret;
3216
3217         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3218
3219         /*
3220          * Only send non-zero copyup data to save some I/O and network
3221          * bandwidth -- zero copyup data is equivalent to the object not
3222          * existing.
3223          */
3224         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3225                 bytes = 0;
3226
3227         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3228                 /*
3229                  * Send a copyup request with an empty snapshot context to
3230                  * deep-copyup the object through all existing snapshots.
3231                  * A second request with the current snapshot context will be
3232                  * sent for the actual modification.
3233                  */
3234                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3235                 if (ret) {
3236                         obj_req->pending.result = ret;
3237                         return;
3238                 }
3239
3240                 obj_req->pending.num_pending++;
3241                 bytes = MODS_ONLY;
3242         }
3243
3244         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3245         if (ret) {
3246                 obj_req->pending.result = ret;
3247                 return;
3248         }
3249
3250         obj_req->pending.num_pending++;
3251 }
3252
3253 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3254 {
3255         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3256         int ret;
3257
3258 again:
3259         switch (obj_req->copyup_state) {
3260         case RBD_OBJ_COPYUP_START:
3261                 rbd_assert(!*result);
3262
3263                 ret = rbd_obj_copyup_read_parent(obj_req);
3264                 if (ret) {
3265                         *result = ret;
3266                         return true;
3267                 }
3268                 if (obj_req->num_img_extents)
3269                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3270                 else
3271                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3272                 return false;
3273         case RBD_OBJ_COPYUP_READ_PARENT:
3274                 if (*result)
3275                         return true;
3276
3277                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3278                                   rbd_obj_img_extents_bytes(obj_req))) {
3279                         dout("%s %p detected zeros\n", __func__, obj_req);
3280                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3281                 }
3282
3283                 rbd_obj_copyup_object_maps(obj_req);
3284                 if (!obj_req->pending.num_pending) {
3285                         *result = obj_req->pending.result;
3286                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3287                         goto again;
3288                 }
3289                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3290                 return false;
3291         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3292                 if (!pending_result_dec(&obj_req->pending, result))
3293                         return false;
3294                 /* fall through */
3295         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3296                 if (*result) {
3297                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3298                                  *result);
3299                         return true;
3300                 }
3301
3302                 rbd_obj_copyup_write_object(obj_req);
3303                 if (!obj_req->pending.num_pending) {
3304                         *result = obj_req->pending.result;
3305                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3306                         goto again;
3307                 }
3308                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3309                 return false;
3310         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3311                 if (!pending_result_dec(&obj_req->pending, result))
3312                         return false;
3313                 /* fall through */
3314         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3315                 return true;
3316         default:
3317                 BUG();
3318         }
3319 }
3320
3321 /*
3322  * Return:
3323  *   0 - object map update sent
3324  *   1 - object map update isn't needed
3325  *  <0 - error
3326  */
3327 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3328 {
3329         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3330         u8 current_state = OBJECT_PENDING;
3331
3332         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3333                 return 1;
3334
3335         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3336                 return 1;
3337
3338         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3339                                      &current_state);
3340 }
3341
3342 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3343 {
3344         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3345         int ret;
3346
3347 again:
3348         switch (obj_req->write_state) {
3349         case RBD_OBJ_WRITE_START:
3350                 rbd_assert(!*result);
3351
3352                 if (rbd_obj_write_is_noop(obj_req))
3353                         return true;
3354
3355                 ret = rbd_obj_write_pre_object_map(obj_req);
3356                 if (ret < 0) {
3357                         *result = ret;
3358                         return true;
3359                 }
3360                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3361                 if (ret > 0)
3362                         goto again;
3363                 return false;
3364         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3365                 if (*result) {
3366                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3367                                  *result);
3368                         return true;
3369                 }
3370                 ret = rbd_obj_write_object(obj_req);
3371                 if (ret) {
3372                         *result = ret;
3373                         return true;
3374                 }
3375                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3376                 return false;
3377         case RBD_OBJ_WRITE_OBJECT:
3378                 if (*result == -ENOENT) {
3379                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3380                                 *result = 0;
3381                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3382                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3383                                 goto again;
3384                         }
3385                         /*
3386                          * On a non-existent object:
3387                          *   delete - -ENOENT, truncate/zero - 0
3388                          */
3389                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3390                                 *result = 0;
3391                 }
3392                 if (*result)
3393                         return true;
3394
3395                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3396                 goto again;
3397         case __RBD_OBJ_WRITE_COPYUP:
3398                 if (!rbd_obj_advance_copyup(obj_req, result))
3399                         return false;
3400                 /* fall through */
3401         case RBD_OBJ_WRITE_COPYUP:
3402                 if (*result) {
3403                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3404                         return true;
3405                 }
3406                 ret = rbd_obj_write_post_object_map(obj_req);
3407                 if (ret < 0) {
3408                         *result = ret;
3409                         return true;
3410                 }
3411                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3412                 if (ret > 0)
3413                         goto again;
3414                 return false;
3415         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3416                 if (*result)
3417                         rbd_warn(rbd_dev, "post object map update failed: %d",
3418                                  *result);
3419                 return true;
3420         default:
3421                 BUG();
3422         }
3423 }
3424
3425 /*
3426  * Return true if @obj_req is completed.
3427  */
3428 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3429                                      int *result)
3430 {
3431         struct rbd_img_request *img_req = obj_req->img_request;
3432         struct rbd_device *rbd_dev = img_req->rbd_dev;
3433         bool done;
3434
3435         mutex_lock(&obj_req->state_mutex);
3436         if (!rbd_img_is_write(img_req))
3437                 done = rbd_obj_advance_read(obj_req, result);
3438         else
3439                 done = rbd_obj_advance_write(obj_req, result);
3440         mutex_unlock(&obj_req->state_mutex);
3441
3442         if (done && *result) {
3443                 rbd_assert(*result < 0);
3444                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3445                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3446                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3447         }
3448         return done;
3449 }
3450
3451 /*
3452  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3453  * recursion.
3454  */
3455 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3456 {
3457         if (__rbd_obj_handle_request(obj_req, &result))
3458                 rbd_img_handle_request(obj_req->img_request, result);
3459 }
3460
3461 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3462 {
3463         struct rbd_device *rbd_dev = img_req->rbd_dev;
3464
3465         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3466                 return false;
3467
3468         if (rbd_is_ro(rbd_dev))
3469                 return false;
3470
3471         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3472         if (rbd_dev->opts->lock_on_read ||
3473             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3474                 return true;
3475
3476         return rbd_img_is_write(img_req);
3477 }
3478
3479 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3480 {
3481         struct rbd_device *rbd_dev = img_req->rbd_dev;
3482         bool locked;
3483
3484         lockdep_assert_held(&rbd_dev->lock_rwsem);
3485         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3486         spin_lock(&rbd_dev->lock_lists_lock);
3487         rbd_assert(list_empty(&img_req->lock_item));
3488         if (!locked)
3489                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3490         else
3491                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3492         spin_unlock(&rbd_dev->lock_lists_lock);
3493         return locked;
3494 }
3495
3496 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3497 {
3498         struct rbd_device *rbd_dev = img_req->rbd_dev;
3499         bool need_wakeup;
3500
3501         lockdep_assert_held(&rbd_dev->lock_rwsem);
3502         spin_lock(&rbd_dev->lock_lists_lock);
3503         rbd_assert(!list_empty(&img_req->lock_item));
3504         list_del_init(&img_req->lock_item);
3505         need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3506                        list_empty(&rbd_dev->running_list));
3507         spin_unlock(&rbd_dev->lock_lists_lock);
3508         if (need_wakeup)
3509                 complete(&rbd_dev->releasing_wait);
3510 }
3511
3512 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3513 {
3514         struct rbd_device *rbd_dev = img_req->rbd_dev;
3515
3516         if (!need_exclusive_lock(img_req))
3517                 return 1;
3518
3519         if (rbd_lock_add_request(img_req))
3520                 return 1;
3521
3522         if (rbd_dev->opts->exclusive) {
3523                 WARN_ON(1); /* lock got released? */
3524                 return -EROFS;
3525         }
3526
3527         /*
3528          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3529          * and cancel_delayed_work() in wake_lock_waiters().
3530          */
3531         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3532         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3533         return 0;
3534 }
3535
3536 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3537 {
3538         struct rbd_obj_request *obj_req;
3539
3540         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3541
3542         for_each_obj_request(img_req, obj_req) {
3543                 int result = 0;
3544
3545                 if (__rbd_obj_handle_request(obj_req, &result)) {
3546                         if (result) {
3547                                 img_req->pending.result = result;
3548                                 return;
3549                         }
3550                 } else {
3551                         img_req->pending.num_pending++;
3552                 }
3553         }
3554 }
3555
3556 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3557 {
3558         struct rbd_device *rbd_dev = img_req->rbd_dev;
3559         int ret;
3560
3561 again:
3562         switch (img_req->state) {
3563         case RBD_IMG_START:
3564                 rbd_assert(!*result);
3565
3566                 ret = rbd_img_exclusive_lock(img_req);
3567                 if (ret < 0) {
3568                         *result = ret;
3569                         return true;
3570                 }
3571                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3572                 if (ret > 0)
3573                         goto again;
3574                 return false;
3575         case RBD_IMG_EXCLUSIVE_LOCK:
3576                 if (*result)
3577                         return true;
3578
3579                 rbd_assert(!need_exclusive_lock(img_req) ||
3580                            __rbd_is_lock_owner(rbd_dev));
3581
3582                 rbd_img_object_requests(img_req);
3583                 if (!img_req->pending.num_pending) {
3584                         *result = img_req->pending.result;
3585                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3586                         goto again;
3587                 }
3588                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3589                 return false;
3590         case __RBD_IMG_OBJECT_REQUESTS:
3591                 if (!pending_result_dec(&img_req->pending, result))
3592                         return false;
3593                 /* fall through */
3594         case RBD_IMG_OBJECT_REQUESTS:
3595                 return true;
3596         default:
3597                 BUG();
3598         }
3599 }
3600
3601 /*
3602  * Return true if @img_req is completed.
3603  */
3604 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3605                                      int *result)
3606 {
3607         struct rbd_device *rbd_dev = img_req->rbd_dev;
3608         bool done;
3609
3610         if (need_exclusive_lock(img_req)) {
3611                 down_read(&rbd_dev->lock_rwsem);
3612                 mutex_lock(&img_req->state_mutex);
3613                 done = rbd_img_advance(img_req, result);
3614                 if (done)
3615                         rbd_lock_del_request(img_req);
3616                 mutex_unlock(&img_req->state_mutex);
3617                 up_read(&rbd_dev->lock_rwsem);
3618         } else {
3619                 mutex_lock(&img_req->state_mutex);
3620                 done = rbd_img_advance(img_req, result);
3621                 mutex_unlock(&img_req->state_mutex);
3622         }
3623
3624         if (done && *result) {
3625                 rbd_assert(*result < 0);
3626                 rbd_warn(rbd_dev, "%s%s result %d",
3627                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3628                       obj_op_name(img_req->op_type), *result);
3629         }
3630         return done;
3631 }
3632
3633 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3634 {
3635 again:
3636         if (!__rbd_img_handle_request(img_req, &result))
3637                 return;
3638
3639         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3640                 struct rbd_obj_request *obj_req = img_req->obj_request;
3641
3642                 rbd_img_request_destroy(img_req);
3643                 if (__rbd_obj_handle_request(obj_req, &result)) {
3644                         img_req = obj_req->img_request;
3645                         goto again;
3646                 }
3647         } else {
3648                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3649
3650                 rbd_img_request_destroy(img_req);
3651                 blk_mq_end_request(rq, errno_to_blk_status(result));
3652         }
3653 }
3654
3655 static const struct rbd_client_id rbd_empty_cid;
3656
3657 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3658                           const struct rbd_client_id *rhs)
3659 {
3660         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3661 }
3662
3663 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3664 {
3665         struct rbd_client_id cid;
3666
3667         mutex_lock(&rbd_dev->watch_mutex);
3668         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3669         cid.handle = rbd_dev->watch_cookie;
3670         mutex_unlock(&rbd_dev->watch_mutex);
3671         return cid;
3672 }
3673
3674 /*
3675  * lock_rwsem must be held for write
3676  */
3677 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3678                               const struct rbd_client_id *cid)
3679 {
3680         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3681              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3682              cid->gid, cid->handle);
3683         rbd_dev->owner_cid = *cid; /* struct */
3684 }
3685
3686 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3687 {
3688         mutex_lock(&rbd_dev->watch_mutex);
3689         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3690         mutex_unlock(&rbd_dev->watch_mutex);
3691 }
3692
3693 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3694 {
3695         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3696
3697         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3698         strcpy(rbd_dev->lock_cookie, cookie);
3699         rbd_set_owner_cid(rbd_dev, &cid);
3700         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3701 }
3702
3703 /*
3704  * lock_rwsem must be held for write
3705  */
3706 static int rbd_lock(struct rbd_device *rbd_dev)
3707 {
3708         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3709         char cookie[32];
3710         int ret;
3711
3712         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3713                 rbd_dev->lock_cookie[0] != '\0');
3714
3715         format_lock_cookie(rbd_dev, cookie);
3716         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3717                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3718                             RBD_LOCK_TAG, "", 0);
3719         if (ret)
3720                 return ret;
3721
3722         __rbd_lock(rbd_dev, cookie);
3723         return 0;
3724 }
3725
3726 /*
3727  * lock_rwsem must be held for write
3728  */
3729 static void rbd_unlock(struct rbd_device *rbd_dev)
3730 {
3731         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3732         int ret;
3733
3734         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3735                 rbd_dev->lock_cookie[0] == '\0');
3736
3737         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3738                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3739         if (ret && ret != -ENOENT)
3740                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3741
3742         /* treat errors as the image is unlocked */
3743         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3744         rbd_dev->lock_cookie[0] = '\0';
3745         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3746         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3747 }
3748
3749 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3750                                 enum rbd_notify_op notify_op,
3751                                 struct page ***preply_pages,
3752                                 size_t *preply_len)
3753 {
3754         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3755         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3756         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3757         int buf_size = sizeof(buf);
3758         void *p = buf;
3759
3760         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3761
3762         /* encode *LockPayload NotifyMessage (op + ClientId) */
3763         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3764         ceph_encode_32(&p, notify_op);
3765         ceph_encode_64(&p, cid.gid);
3766         ceph_encode_64(&p, cid.handle);
3767
3768         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3769                                 &rbd_dev->header_oloc, buf, buf_size,
3770                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3771 }
3772
3773 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3774                                enum rbd_notify_op notify_op)
3775 {
3776         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3777 }
3778
3779 static void rbd_notify_acquired_lock(struct work_struct *work)
3780 {
3781         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3782                                                   acquired_lock_work);
3783
3784         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3785 }
3786
3787 static void rbd_notify_released_lock(struct work_struct *work)
3788 {
3789         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3790                                                   released_lock_work);
3791
3792         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3793 }
3794
3795 static int rbd_request_lock(struct rbd_device *rbd_dev)
3796 {
3797         struct page **reply_pages;
3798         size_t reply_len;
3799         bool lock_owner_responded = false;
3800         int ret;
3801
3802         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3803
3804         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3805                                    &reply_pages, &reply_len);
3806         if (ret && ret != -ETIMEDOUT) {
3807                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3808                 goto out;
3809         }
3810
3811         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3812                 void *p = page_address(reply_pages[0]);
3813                 void *const end = p + reply_len;
3814                 u32 n;
3815
3816                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3817                 while (n--) {
3818                         u8 struct_v;
3819                         u32 len;
3820
3821                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3822                         p += 8 + 8; /* skip gid and cookie */
3823
3824                         ceph_decode_32_safe(&p, end, len, e_inval);
3825                         if (!len)
3826                                 continue;
3827
3828                         if (lock_owner_responded) {
3829                                 rbd_warn(rbd_dev,
3830                                          "duplicate lock owners detected");
3831                                 ret = -EIO;
3832                                 goto out;
3833                         }
3834
3835                         lock_owner_responded = true;
3836                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3837                                                   &struct_v, &len);
3838                         if (ret) {
3839                                 rbd_warn(rbd_dev,
3840                                          "failed to decode ResponseMessage: %d",
3841                                          ret);
3842                                 goto e_inval;
3843                         }
3844
3845                         ret = ceph_decode_32(&p);
3846                 }
3847         }
3848
3849         if (!lock_owner_responded) {
3850                 rbd_warn(rbd_dev, "no lock owners detected");
3851                 ret = -ETIMEDOUT;
3852         }
3853
3854 out:
3855         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3856         return ret;
3857
3858 e_inval:
3859         ret = -EINVAL;
3860         goto out;
3861 }
3862
3863 /*
3864  * Either image request state machine(s) or rbd_add_acquire_lock()
3865  * (i.e. "rbd map").
3866  */
3867 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3868 {
3869         struct rbd_img_request *img_req;
3870
3871         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3872         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3873
3874         cancel_delayed_work(&rbd_dev->lock_dwork);
3875         if (!completion_done(&rbd_dev->acquire_wait)) {
3876                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3877                            list_empty(&rbd_dev->running_list));
3878                 rbd_dev->acquire_err = result;
3879                 complete_all(&rbd_dev->acquire_wait);
3880                 return;
3881         }
3882
3883         list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3884                 mutex_lock(&img_req->state_mutex);
3885                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3886                 rbd_img_schedule(img_req, result);
3887                 mutex_unlock(&img_req->state_mutex);
3888         }
3889
3890         list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3891 }
3892
3893 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3894                                struct ceph_locker **lockers, u32 *num_lockers)
3895 {
3896         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3897         u8 lock_type;
3898         char *lock_tag;
3899         int ret;
3900
3901         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3902
3903         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3904                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3905                                  &lock_type, &lock_tag, lockers, num_lockers);
3906         if (ret)
3907                 return ret;
3908
3909         if (*num_lockers == 0) {
3910                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3911                 goto out;
3912         }
3913
3914         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3915                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3916                          lock_tag);
3917                 ret = -EBUSY;
3918                 goto out;
3919         }
3920
3921         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3922                 rbd_warn(rbd_dev, "shared lock type detected");
3923                 ret = -EBUSY;
3924                 goto out;
3925         }
3926
3927         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3928                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3929                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3930                          (*lockers)[0].id.cookie);
3931                 ret = -EBUSY;
3932                 goto out;
3933         }
3934
3935 out:
3936         kfree(lock_tag);
3937         return ret;
3938 }
3939
3940 static int find_watcher(struct rbd_device *rbd_dev,
3941                         const struct ceph_locker *locker)
3942 {
3943         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3944         struct ceph_watch_item *watchers;
3945         u32 num_watchers;
3946         u64 cookie;
3947         int i;
3948         int ret;
3949
3950         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3951                                       &rbd_dev->header_oloc, &watchers,
3952                                       &num_watchers);
3953         if (ret)
3954                 return ret;
3955
3956         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3957         for (i = 0; i < num_watchers; i++) {
3958                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3959                             sizeof(locker->info.addr)) &&
3960                     watchers[i].cookie == cookie) {
3961                         struct rbd_client_id cid = {
3962                                 .gid = le64_to_cpu(watchers[i].name.num),
3963                                 .handle = cookie,
3964                         };
3965
3966                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3967                              rbd_dev, cid.gid, cid.handle);
3968                         rbd_set_owner_cid(rbd_dev, &cid);
3969                         ret = 1;
3970                         goto out;
3971                 }
3972         }
3973
3974         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3975         ret = 0;
3976 out:
3977         kfree(watchers);
3978         return ret;
3979 }
3980
3981 /*
3982  * lock_rwsem must be held for write
3983  */
3984 static int rbd_try_lock(struct rbd_device *rbd_dev)
3985 {
3986         struct ceph_client *client = rbd_dev->rbd_client->client;
3987         struct ceph_locker *lockers;
3988         u32 num_lockers;
3989         int ret;
3990
3991         for (;;) {
3992                 ret = rbd_lock(rbd_dev);
3993                 if (ret != -EBUSY)
3994                         return ret;
3995
3996                 /* determine if the current lock holder is still alive */
3997                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3998                 if (ret)
3999                         return ret;
4000
4001                 if (num_lockers == 0)
4002                         goto again;
4003
4004                 ret = find_watcher(rbd_dev, lockers);
4005                 if (ret)
4006                         goto out; /* request lock or error */
4007
4008                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4009                          ENTITY_NAME(lockers[0].id.name));
4010
4011                 ret = ceph_monc_blacklist_add(&client->monc,
4012                                               &lockers[0].info.addr);
4013                 if (ret) {
4014                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4015                                  ENTITY_NAME(lockers[0].id.name), ret);
4016                         goto out;
4017                 }
4018
4019                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4020                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4021                                           lockers[0].id.cookie,
4022                                           &lockers[0].id.name);
4023                 if (ret && ret != -ENOENT)
4024                         goto out;
4025
4026 again:
4027                 ceph_free_lockers(lockers, num_lockers);
4028         }
4029
4030 out:
4031         ceph_free_lockers(lockers, num_lockers);
4032         return ret;
4033 }
4034
4035 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4036 {
4037         int ret;
4038
4039         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4040                 ret = rbd_object_map_open(rbd_dev);
4041                 if (ret)
4042                         return ret;
4043         }
4044
4045         return 0;
4046 }
4047
4048 /*
4049  * Return:
4050  *   0 - lock acquired
4051  *   1 - caller should call rbd_request_lock()
4052  *  <0 - error
4053  */
4054 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4055 {
4056         int ret;
4057
4058         down_read(&rbd_dev->lock_rwsem);
4059         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4060              rbd_dev->lock_state);
4061         if (__rbd_is_lock_owner(rbd_dev)) {
4062                 up_read(&rbd_dev->lock_rwsem);
4063                 return 0;
4064         }
4065
4066         up_read(&rbd_dev->lock_rwsem);
4067         down_write(&rbd_dev->lock_rwsem);
4068         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4069              rbd_dev->lock_state);
4070         if (__rbd_is_lock_owner(rbd_dev)) {
4071                 up_write(&rbd_dev->lock_rwsem);
4072                 return 0;
4073         }
4074
4075         ret = rbd_try_lock(rbd_dev);
4076         if (ret < 0) {
4077                 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4078                 if (ret == -EBLACKLISTED)
4079                         goto out;
4080
4081                 ret = 1; /* request lock anyway */
4082         }
4083         if (ret > 0) {
4084                 up_write(&rbd_dev->lock_rwsem);
4085                 return ret;
4086         }
4087
4088         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4089         rbd_assert(list_empty(&rbd_dev->running_list));
4090
4091         ret = rbd_post_acquire_action(rbd_dev);
4092         if (ret) {
4093                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4094                 /*
4095                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4096                  * rbd_lock_add_request() would let the request through,
4097                  * assuming that e.g. object map is locked and loaded.
4098                  */
4099                 rbd_unlock(rbd_dev);
4100         }
4101
4102 out:
4103         wake_lock_waiters(rbd_dev, ret);
4104         up_write(&rbd_dev->lock_rwsem);
4105         return ret;
4106 }
4107
4108 static void rbd_acquire_lock(struct work_struct *work)
4109 {
4110         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4111                                             struct rbd_device, lock_dwork);
4112         int ret;
4113
4114         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4115 again:
4116         ret = rbd_try_acquire_lock(rbd_dev);
4117         if (ret <= 0) {
4118                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4119                 return;
4120         }
4121
4122         ret = rbd_request_lock(rbd_dev);
4123         if (ret == -ETIMEDOUT) {
4124                 goto again; /* treat this as a dead client */
4125         } else if (ret == -EROFS) {
4126                 rbd_warn(rbd_dev, "peer will not release lock");
4127                 down_write(&rbd_dev->lock_rwsem);
4128                 wake_lock_waiters(rbd_dev, ret);
4129                 up_write(&rbd_dev->lock_rwsem);
4130         } else if (ret < 0) {
4131                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4132                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4133                                  RBD_RETRY_DELAY);
4134         } else {
4135                 /*
4136                  * lock owner acked, but resend if we don't see them
4137                  * release the lock
4138                  */
4139                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4140                      rbd_dev);
4141                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4142                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4143         }
4144 }
4145
4146 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4147 {
4148         bool need_wait;
4149
4150         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4151         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4152
4153         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4154                 return false;
4155
4156         /*
4157          * Ensure that all in-flight IO is flushed.
4158          */
4159         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4160         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4161         need_wait = !list_empty(&rbd_dev->running_list);
4162         downgrade_write(&rbd_dev->lock_rwsem);
4163         if (need_wait)
4164                 wait_for_completion(&rbd_dev->releasing_wait);
4165         up_read(&rbd_dev->lock_rwsem);
4166
4167         down_write(&rbd_dev->lock_rwsem);
4168         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4169                 return false;
4170
4171         rbd_assert(list_empty(&rbd_dev->running_list));
4172         return true;
4173 }
4174
4175 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4176 {
4177         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4178                 rbd_object_map_close(rbd_dev);
4179 }
4180
4181 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4182 {
4183         rbd_assert(list_empty(&rbd_dev->running_list));
4184
4185         rbd_pre_release_action(rbd_dev);
4186         rbd_unlock(rbd_dev);
4187 }
4188
4189 /*
4190  * lock_rwsem must be held for write
4191  */
4192 static void rbd_release_lock(struct rbd_device *rbd_dev)
4193 {
4194         if (!rbd_quiesce_lock(rbd_dev))
4195                 return;
4196
4197         __rbd_release_lock(rbd_dev);
4198
4199         /*
4200          * Give others a chance to grab the lock - we would re-acquire
4201          * almost immediately if we got new IO while draining the running
4202          * list otherwise.  We need to ack our own notifications, so this
4203          * lock_dwork will be requeued from rbd_handle_released_lock() by
4204          * way of maybe_kick_acquire().
4205          */
4206         cancel_delayed_work(&rbd_dev->lock_dwork);
4207 }
4208
4209 static void rbd_release_lock_work(struct work_struct *work)
4210 {
4211         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4212                                                   unlock_work);
4213
4214         down_write(&rbd_dev->lock_rwsem);
4215         rbd_release_lock(rbd_dev);
4216         up_write(&rbd_dev->lock_rwsem);
4217 }
4218
4219 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4220 {
4221         bool have_requests;
4222
4223         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4224         if (__rbd_is_lock_owner(rbd_dev))
4225                 return;
4226
4227         spin_lock(&rbd_dev->lock_lists_lock);
4228         have_requests = !list_empty(&rbd_dev->acquiring_list);
4229         spin_unlock(&rbd_dev->lock_lists_lock);
4230         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4231                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4232                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4233         }
4234 }
4235
4236 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4237                                      void **p)
4238 {
4239         struct rbd_client_id cid = { 0 };
4240
4241         if (struct_v >= 2) {
4242                 cid.gid = ceph_decode_64(p);
4243                 cid.handle = ceph_decode_64(p);
4244         }
4245
4246         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4247              cid.handle);
4248         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4249                 down_write(&rbd_dev->lock_rwsem);
4250                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4251                         /*
4252                          * we already know that the remote client is
4253                          * the owner
4254                          */
4255                         up_write(&rbd_dev->lock_rwsem);
4256                         return;
4257                 }
4258
4259                 rbd_set_owner_cid(rbd_dev, &cid);
4260                 downgrade_write(&rbd_dev->lock_rwsem);
4261         } else {
4262                 down_read(&rbd_dev->lock_rwsem);
4263         }
4264
4265         maybe_kick_acquire(rbd_dev);
4266         up_read(&rbd_dev->lock_rwsem);
4267 }
4268
4269 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4270                                      void **p)
4271 {
4272         struct rbd_client_id cid = { 0 };
4273
4274         if (struct_v >= 2) {
4275                 cid.gid = ceph_decode_64(p);
4276                 cid.handle = ceph_decode_64(p);
4277         }
4278
4279         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4280              cid.handle);
4281         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4282                 down_write(&rbd_dev->lock_rwsem);
4283                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4284                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4285                              __func__, rbd_dev, cid.gid, cid.handle,
4286                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4287                         up_write(&rbd_dev->lock_rwsem);
4288                         return;
4289                 }
4290
4291                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4292                 downgrade_write(&rbd_dev->lock_rwsem);
4293         } else {
4294                 down_read(&rbd_dev->lock_rwsem);
4295         }
4296
4297         maybe_kick_acquire(rbd_dev);
4298         up_read(&rbd_dev->lock_rwsem);
4299 }
4300
4301 /*
4302  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4303  * ResponseMessage is needed.
4304  */
4305 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4306                                    void **p)
4307 {
4308         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4309         struct rbd_client_id cid = { 0 };
4310         int result = 1;
4311
4312         if (struct_v >= 2) {
4313                 cid.gid = ceph_decode_64(p);
4314                 cid.handle = ceph_decode_64(p);
4315         }
4316
4317         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4318              cid.handle);
4319         if (rbd_cid_equal(&cid, &my_cid))
4320                 return result;
4321
4322         down_read(&rbd_dev->lock_rwsem);
4323         if (__rbd_is_lock_owner(rbd_dev)) {
4324                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4325                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4326                         goto out_unlock;
4327
4328                 /*
4329                  * encode ResponseMessage(0) so the peer can detect
4330                  * a missing owner
4331                  */
4332                 result = 0;
4333
4334                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4335                         if (!rbd_dev->opts->exclusive) {
4336                                 dout("%s rbd_dev %p queueing unlock_work\n",
4337                                      __func__, rbd_dev);
4338                                 queue_work(rbd_dev->task_wq,
4339                                            &rbd_dev->unlock_work);
4340                         } else {
4341                                 /* refuse to release the lock */
4342                                 result = -EROFS;
4343                         }
4344                 }
4345         }
4346
4347 out_unlock:
4348         up_read(&rbd_dev->lock_rwsem);
4349         return result;
4350 }
4351
4352 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4353                                      u64 notify_id, u64 cookie, s32 *result)
4354 {
4355         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4356         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4357         int buf_size = sizeof(buf);
4358         int ret;
4359
4360         if (result) {
4361                 void *p = buf;
4362
4363                 /* encode ResponseMessage */
4364                 ceph_start_encoding(&p, 1, 1,
4365                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4366                 ceph_encode_32(&p, *result);
4367         } else {
4368                 buf_size = 0;
4369         }
4370
4371         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4372                                    &rbd_dev->header_oloc, notify_id, cookie,
4373                                    buf, buf_size);
4374         if (ret)
4375                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4376 }
4377
4378 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4379                                    u64 cookie)
4380 {
4381         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4382         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4383 }
4384
4385 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4386                                           u64 notify_id, u64 cookie, s32 result)
4387 {
4388         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4389         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4390 }
4391
4392 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4393                          u64 notifier_id, void *data, size_t data_len)
4394 {
4395         struct rbd_device *rbd_dev = arg;
4396         void *p = data;
4397         void *const end = p + data_len;
4398         u8 struct_v = 0;
4399         u32 len;
4400         u32 notify_op;
4401         int ret;
4402
4403         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4404              __func__, rbd_dev, cookie, notify_id, data_len);
4405         if (data_len) {
4406                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4407                                           &struct_v, &len);
4408                 if (ret) {
4409                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4410                                  ret);
4411                         return;
4412                 }
4413
4414                 notify_op = ceph_decode_32(&p);
4415         } else {
4416                 /* legacy notification for header updates */
4417                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4418                 len = 0;
4419         }
4420
4421         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4422         switch (notify_op) {
4423         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4424                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4425                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4426                 break;
4427         case RBD_NOTIFY_OP_RELEASED_LOCK:
4428                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4429                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4430                 break;
4431         case RBD_NOTIFY_OP_REQUEST_LOCK:
4432                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4433                 if (ret <= 0)
4434                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4435                                                       cookie, ret);
4436                 else
4437                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4438                 break;
4439         case RBD_NOTIFY_OP_HEADER_UPDATE:
4440                 ret = rbd_dev_refresh(rbd_dev);
4441                 if (ret)
4442                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4443
4444                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445                 break;
4446         default:
4447                 if (rbd_is_lock_owner(rbd_dev))
4448                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4449                                                       cookie, -EOPNOTSUPP);
4450                 else
4451                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4452                 break;
4453         }
4454 }
4455
4456 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4457
4458 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4459 {
4460         struct rbd_device *rbd_dev = arg;
4461
4462         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4463
4464         down_write(&rbd_dev->lock_rwsem);
4465         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4466         up_write(&rbd_dev->lock_rwsem);
4467
4468         mutex_lock(&rbd_dev->watch_mutex);
4469         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4470                 __rbd_unregister_watch(rbd_dev);
4471                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4472
4473                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4474         }
4475         mutex_unlock(&rbd_dev->watch_mutex);
4476 }
4477
4478 /*
4479  * watch_mutex must be locked
4480  */
4481 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4482 {
4483         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4484         struct ceph_osd_linger_request *handle;
4485
4486         rbd_assert(!rbd_dev->watch_handle);
4487         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4488
4489         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4490                                  &rbd_dev->header_oloc, rbd_watch_cb,
4491                                  rbd_watch_errcb, rbd_dev);
4492         if (IS_ERR(handle))
4493                 return PTR_ERR(handle);
4494
4495         rbd_dev->watch_handle = handle;
4496         return 0;
4497 }
4498
4499 /*
4500  * watch_mutex must be locked
4501  */
4502 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4503 {
4504         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4505         int ret;
4506
4507         rbd_assert(rbd_dev->watch_handle);
4508         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4509
4510         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4511         if (ret)
4512                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4513
4514         rbd_dev->watch_handle = NULL;
4515 }
4516
4517 static int rbd_register_watch(struct rbd_device *rbd_dev)
4518 {
4519         int ret;
4520
4521         mutex_lock(&rbd_dev->watch_mutex);
4522         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4523         ret = __rbd_register_watch(rbd_dev);
4524         if (ret)
4525                 goto out;
4526
4527         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4528         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4529
4530 out:
4531         mutex_unlock(&rbd_dev->watch_mutex);
4532         return ret;
4533 }
4534
4535 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4536 {
4537         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4538
4539         cancel_work_sync(&rbd_dev->acquired_lock_work);
4540         cancel_work_sync(&rbd_dev->released_lock_work);
4541         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4542         cancel_work_sync(&rbd_dev->unlock_work);
4543 }
4544
4545 /*
4546  * header_rwsem must not be held to avoid a deadlock with
4547  * rbd_dev_refresh() when flushing notifies.
4548  */
4549 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4550 {
4551         cancel_tasks_sync(rbd_dev);
4552
4553         mutex_lock(&rbd_dev->watch_mutex);
4554         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4555                 __rbd_unregister_watch(rbd_dev);
4556         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4557         mutex_unlock(&rbd_dev->watch_mutex);
4558
4559         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4560         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4561 }
4562
4563 /*
4564  * lock_rwsem must be held for write
4565  */
4566 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4567 {
4568         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4569         char cookie[32];
4570         int ret;
4571
4572         if (!rbd_quiesce_lock(rbd_dev))
4573                 return;
4574
4575         format_lock_cookie(rbd_dev, cookie);
4576         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4577                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4578                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4579                                   RBD_LOCK_TAG, cookie);
4580         if (ret) {
4581                 if (ret != -EOPNOTSUPP)
4582                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4583                                  ret);
4584
4585                 /*
4586                  * Lock cookie cannot be updated on older OSDs, so do
4587                  * a manual release and queue an acquire.
4588                  */
4589                 __rbd_release_lock(rbd_dev);
4590                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4591         } else {
4592                 __rbd_lock(rbd_dev, cookie);
4593                 wake_lock_waiters(rbd_dev, 0);
4594         }
4595 }
4596
4597 static void rbd_reregister_watch(struct work_struct *work)
4598 {
4599         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4600                                             struct rbd_device, watch_dwork);
4601         int ret;
4602
4603         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4604
4605         mutex_lock(&rbd_dev->watch_mutex);
4606         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4607                 mutex_unlock(&rbd_dev->watch_mutex);
4608                 return;
4609         }
4610
4611         ret = __rbd_register_watch(rbd_dev);
4612         if (ret) {
4613                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4614                 if (ret != -EBLACKLISTED && ret != -ENOENT) {
4615                         queue_delayed_work(rbd_dev->task_wq,
4616                                            &rbd_dev->watch_dwork,
4617                                            RBD_RETRY_DELAY);
4618                         mutex_unlock(&rbd_dev->watch_mutex);
4619                         return;
4620                 }
4621
4622                 mutex_unlock(&rbd_dev->watch_mutex);
4623                 down_write(&rbd_dev->lock_rwsem);
4624                 wake_lock_waiters(rbd_dev, ret);
4625                 up_write(&rbd_dev->lock_rwsem);
4626                 return;
4627         }
4628
4629         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4630         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4631         mutex_unlock(&rbd_dev->watch_mutex);
4632
4633         down_write(&rbd_dev->lock_rwsem);
4634         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4635                 rbd_reacquire_lock(rbd_dev);
4636         up_write(&rbd_dev->lock_rwsem);
4637
4638         ret = rbd_dev_refresh(rbd_dev);
4639         if (ret)
4640                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4641 }
4642
4643 /*
4644  * Synchronous osd object method call.  Returns the number of bytes
4645  * returned in the outbound buffer, or a negative error code.
4646  */
4647 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4648                              struct ceph_object_id *oid,
4649                              struct ceph_object_locator *oloc,
4650                              const char *method_name,
4651                              const void *outbound,
4652                              size_t outbound_size,
4653                              void *inbound,
4654                              size_t inbound_size)
4655 {
4656         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4657         struct page *req_page = NULL;
4658         struct page *reply_page;
4659         int ret;
4660
4661         /*
4662          * Method calls are ultimately read operations.  The result
4663          * should placed into the inbound buffer provided.  They
4664          * also supply outbound data--parameters for the object
4665          * method.  Currently if this is present it will be a
4666          * snapshot id.
4667          */
4668         if (outbound) {
4669                 if (outbound_size > PAGE_SIZE)
4670                         return -E2BIG;
4671
4672                 req_page = alloc_page(GFP_KERNEL);
4673                 if (!req_page)
4674                         return -ENOMEM;
4675
4676                 memcpy(page_address(req_page), outbound, outbound_size);
4677         }
4678
4679         reply_page = alloc_page(GFP_KERNEL);
4680         if (!reply_page) {
4681                 if (req_page)
4682                         __free_page(req_page);
4683                 return -ENOMEM;
4684         }
4685
4686         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4687                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4688                              &reply_page, &inbound_size);
4689         if (!ret) {
4690                 memcpy(inbound, page_address(reply_page), inbound_size);
4691                 ret = inbound_size;
4692         }
4693
4694         if (req_page)
4695                 __free_page(req_page);
4696         __free_page(reply_page);
4697         return ret;
4698 }
4699
4700 static void rbd_queue_workfn(struct work_struct *work)
4701 {
4702         struct rbd_img_request *img_request =
4703             container_of(work, struct rbd_img_request, work);
4704         struct rbd_device *rbd_dev = img_request->rbd_dev;
4705         enum obj_operation_type op_type = img_request->op_type;
4706         struct request *rq = blk_mq_rq_from_pdu(img_request);
4707         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4708         u64 length = blk_rq_bytes(rq);
4709         u64 mapping_size;
4710         int result;
4711
4712         /* Ignore/skip any zero-length requests */
4713         if (!length) {
4714                 dout("%s: zero-length request\n", __func__);
4715                 result = 0;
4716                 goto err_img_request;
4717         }
4718
4719         blk_mq_start_request(rq);
4720
4721         down_read(&rbd_dev->header_rwsem);
4722         mapping_size = rbd_dev->mapping.size;
4723         rbd_img_capture_header(img_request);
4724         up_read(&rbd_dev->header_rwsem);
4725
4726         if (offset + length > mapping_size) {
4727                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4728                          length, mapping_size);
4729                 result = -EIO;
4730                 goto err_img_request;
4731         }
4732
4733         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4734              img_request, obj_op_name(op_type), offset, length);
4735
4736         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4737                 result = rbd_img_fill_nodata(img_request, offset, length);
4738         else
4739                 result = rbd_img_fill_from_bio(img_request, offset, length,
4740                                                rq->bio);
4741         if (result)
4742                 goto err_img_request;
4743
4744         rbd_img_handle_request(img_request, 0);
4745         return;
4746
4747 err_img_request:
4748         rbd_img_request_destroy(img_request);
4749         if (result)
4750                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4751                          obj_op_name(op_type), length, offset, result);
4752         blk_mq_end_request(rq, errno_to_blk_status(result));
4753 }
4754
4755 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4756                 const struct blk_mq_queue_data *bd)
4757 {
4758         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4759         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4760         enum obj_operation_type op_type;
4761
4762         switch (req_op(bd->rq)) {
4763         case REQ_OP_DISCARD:
4764                 op_type = OBJ_OP_DISCARD;
4765                 break;
4766         case REQ_OP_WRITE_ZEROES:
4767                 op_type = OBJ_OP_ZEROOUT;
4768                 break;
4769         case REQ_OP_WRITE:
4770                 op_type = OBJ_OP_WRITE;
4771                 break;
4772         case REQ_OP_READ:
4773                 op_type = OBJ_OP_READ;
4774                 break;
4775         default:
4776                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4777                 return BLK_STS_IOERR;
4778         }
4779
4780         rbd_img_request_init(img_req, rbd_dev, op_type);
4781
4782         if (rbd_img_is_write(img_req)) {
4783                 if (rbd_is_ro(rbd_dev)) {
4784                         rbd_warn(rbd_dev, "%s on read-only mapping",
4785                                  obj_op_name(img_req->op_type));
4786                         return BLK_STS_IOERR;
4787                 }
4788                 rbd_assert(!rbd_is_snap(rbd_dev));
4789         }
4790
4791         INIT_WORK(&img_req->work, rbd_queue_workfn);
4792         queue_work(rbd_wq, &img_req->work);
4793         return BLK_STS_OK;
4794 }
4795
4796 static void rbd_free_disk(struct rbd_device *rbd_dev)
4797 {
4798         blk_cleanup_queue(rbd_dev->disk->queue);
4799         blk_mq_free_tag_set(&rbd_dev->tag_set);
4800         put_disk(rbd_dev->disk);
4801         rbd_dev->disk = NULL;
4802 }
4803
4804 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4805                              struct ceph_object_id *oid,
4806                              struct ceph_object_locator *oloc,
4807                              void *buf, int buf_len)
4808
4809 {
4810         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4811         struct ceph_osd_request *req;
4812         struct page **pages;
4813         int num_pages = calc_pages_for(0, buf_len);
4814         int ret;
4815
4816         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4817         if (!req)
4818                 return -ENOMEM;
4819
4820         ceph_oid_copy(&req->r_base_oid, oid);
4821         ceph_oloc_copy(&req->r_base_oloc, oloc);
4822         req->r_flags = CEPH_OSD_FLAG_READ;
4823
4824         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4825         if (IS_ERR(pages)) {
4826                 ret = PTR_ERR(pages);
4827                 goto out_req;
4828         }
4829
4830         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4831         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4832                                          true);
4833
4834         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4835         if (ret)
4836                 goto out_req;
4837
4838         ceph_osdc_start_request(osdc, req, false);
4839         ret = ceph_osdc_wait_request(osdc, req);
4840         if (ret >= 0)
4841                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4842
4843 out_req:
4844         ceph_osdc_put_request(req);
4845         return ret;
4846 }
4847
4848 /*
4849  * Read the complete header for the given rbd device.  On successful
4850  * return, the rbd_dev->header field will contain up-to-date
4851  * information about the image.
4852  */
4853 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4854 {
4855         struct rbd_image_header_ondisk *ondisk = NULL;
4856         u32 snap_count = 0;
4857         u64 names_size = 0;
4858         u32 want_count;
4859         int ret;
4860
4861         /*
4862          * The complete header will include an array of its 64-bit
4863          * snapshot ids, followed by the names of those snapshots as
4864          * a contiguous block of NUL-terminated strings.  Note that
4865          * the number of snapshots could change by the time we read
4866          * it in, in which case we re-read it.
4867          */
4868         do {
4869                 size_t size;
4870
4871                 kfree(ondisk);
4872
4873                 size = sizeof (*ondisk);
4874                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4875                 size += names_size;
4876                 ondisk = kmalloc(size, GFP_KERNEL);
4877                 if (!ondisk)
4878                         return -ENOMEM;
4879
4880                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4881                                         &rbd_dev->header_oloc, ondisk, size);
4882                 if (ret < 0)
4883                         goto out;
4884                 if ((size_t)ret < size) {
4885                         ret = -ENXIO;
4886                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4887                                 size, ret);
4888                         goto out;
4889                 }
4890                 if (!rbd_dev_ondisk_valid(ondisk)) {
4891                         ret = -ENXIO;
4892                         rbd_warn(rbd_dev, "invalid header");
4893                         goto out;
4894                 }
4895
4896                 names_size = le64_to_cpu(ondisk->snap_names_len);
4897                 want_count = snap_count;
4898                 snap_count = le32_to_cpu(ondisk->snap_count);
4899         } while (snap_count != want_count);
4900
4901         ret = rbd_header_from_disk(rbd_dev, ondisk);
4902 out:
4903         kfree(ondisk);
4904
4905         return ret;
4906 }
4907
4908 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4909 {
4910         sector_t size;
4911
4912         /*
4913          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4914          * try to update its size.  If REMOVING is set, updating size
4915          * is just useless work since the device can't be opened.
4916          */
4917         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4918             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4919                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4920                 dout("setting size to %llu sectors", (unsigned long long)size);
4921                 set_capacity(rbd_dev->disk, size);
4922                 revalidate_disk(rbd_dev->disk);
4923         }
4924 }
4925
4926 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4927 {
4928         u64 mapping_size;
4929         int ret;
4930
4931         down_write(&rbd_dev->header_rwsem);
4932         mapping_size = rbd_dev->mapping.size;
4933
4934         ret = rbd_dev_header_info(rbd_dev);
4935         if (ret)
4936                 goto out;
4937
4938         /*
4939          * If there is a parent, see if it has disappeared due to the
4940          * mapped image getting flattened.
4941          */
4942         if (rbd_dev->parent) {
4943                 ret = rbd_dev_v2_parent_info(rbd_dev);
4944                 if (ret)
4945                         goto out;
4946         }
4947
4948         rbd_assert(!rbd_is_snap(rbd_dev));
4949         rbd_dev->mapping.size = rbd_dev->header.image_size;
4950
4951 out:
4952         up_write(&rbd_dev->header_rwsem);
4953         if (!ret && mapping_size != rbd_dev->mapping.size)
4954                 rbd_dev_update_size(rbd_dev);
4955
4956         return ret;
4957 }
4958
4959 static const struct blk_mq_ops rbd_mq_ops = {
4960         .queue_rq       = rbd_queue_rq,
4961 };
4962
4963 static int rbd_init_disk(struct rbd_device *rbd_dev)
4964 {
4965         struct gendisk *disk;
4966         struct request_queue *q;
4967         unsigned int objset_bytes =
4968             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4969         int err;
4970
4971         /* create gendisk info */
4972         disk = alloc_disk(single_major ?
4973                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4974                           RBD_MINORS_PER_MAJOR);
4975         if (!disk)
4976                 return -ENOMEM;
4977
4978         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4979                  rbd_dev->dev_id);
4980         disk->major = rbd_dev->major;
4981         disk->first_minor = rbd_dev->minor;
4982         if (single_major)
4983                 disk->flags |= GENHD_FL_EXT_DEVT;
4984         disk->fops = &rbd_bd_ops;
4985         disk->private_data = rbd_dev;
4986
4987         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4988         rbd_dev->tag_set.ops = &rbd_mq_ops;
4989         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4990         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4991         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4992         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4993         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4994
4995         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4996         if (err)
4997                 goto out_disk;
4998
4999         q = blk_mq_init_queue(&rbd_dev->tag_set);
5000         if (IS_ERR(q)) {
5001                 err = PTR_ERR(q);
5002                 goto out_tag_set;
5003         }
5004
5005         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5006         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5007
5008         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5009         q->limits.max_sectors = queue_max_hw_sectors(q);
5010         blk_queue_max_segments(q, USHRT_MAX);
5011         blk_queue_max_segment_size(q, UINT_MAX);
5012         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5013         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5014
5015         if (rbd_dev->opts->trim) {
5016                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5017                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5018                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5019                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5020         }
5021
5022         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5023                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5024
5025         /*
5026          * disk_release() expects a queue ref from add_disk() and will
5027          * put it.  Hold an extra ref until add_disk() is called.
5028          */
5029         WARN_ON(!blk_get_queue(q));
5030         disk->queue = q;
5031         q->queuedata = rbd_dev;
5032
5033         rbd_dev->disk = disk;
5034
5035         return 0;
5036 out_tag_set:
5037         blk_mq_free_tag_set(&rbd_dev->tag_set);
5038 out_disk:
5039         put_disk(disk);
5040         return err;
5041 }
5042
5043 /*
5044   sysfs
5045 */
5046
5047 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5048 {
5049         return container_of(dev, struct rbd_device, dev);
5050 }
5051
5052 static ssize_t rbd_size_show(struct device *dev,
5053                              struct device_attribute *attr, char *buf)
5054 {
5055         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5056
5057         return sprintf(buf, "%llu\n",
5058                 (unsigned long long)rbd_dev->mapping.size);
5059 }
5060
5061 static ssize_t rbd_features_show(struct device *dev,
5062                              struct device_attribute *attr, char *buf)
5063 {
5064         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065
5066         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5067 }
5068
5069 static ssize_t rbd_major_show(struct device *dev,
5070                               struct device_attribute *attr, char *buf)
5071 {
5072         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5073
5074         if (rbd_dev->major)
5075                 return sprintf(buf, "%d\n", rbd_dev->major);
5076
5077         return sprintf(buf, "(none)\n");
5078 }
5079
5080 static ssize_t rbd_minor_show(struct device *dev,
5081                               struct device_attribute *attr, char *buf)
5082 {
5083         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084
5085         return sprintf(buf, "%d\n", rbd_dev->minor);
5086 }
5087
5088 static ssize_t rbd_client_addr_show(struct device *dev,
5089                                     struct device_attribute *attr, char *buf)
5090 {
5091         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5092         struct ceph_entity_addr *client_addr =
5093             ceph_client_addr(rbd_dev->rbd_client->client);
5094
5095         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5096                        le32_to_cpu(client_addr->nonce));
5097 }
5098
5099 static ssize_t rbd_client_id_show(struct device *dev,
5100                                   struct device_attribute *attr, char *buf)
5101 {
5102         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5103
5104         return sprintf(buf, "client%lld\n",
5105                        ceph_client_gid(rbd_dev->rbd_client->client));
5106 }
5107
5108 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5109                                      struct device_attribute *attr, char *buf)
5110 {
5111         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112
5113         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5114 }
5115
5116 static ssize_t rbd_config_info_show(struct device *dev,
5117                                     struct device_attribute *attr, char *buf)
5118 {
5119         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5120
5121         return sprintf(buf, "%s\n", rbd_dev->config_info);
5122 }
5123
5124 static ssize_t rbd_pool_show(struct device *dev,
5125                              struct device_attribute *attr, char *buf)
5126 {
5127         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128
5129         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5130 }
5131
5132 static ssize_t rbd_pool_id_show(struct device *dev,
5133                              struct device_attribute *attr, char *buf)
5134 {
5135         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5136
5137         return sprintf(buf, "%llu\n",
5138                         (unsigned long long) rbd_dev->spec->pool_id);
5139 }
5140
5141 static ssize_t rbd_pool_ns_show(struct device *dev,
5142                                 struct device_attribute *attr, char *buf)
5143 {
5144         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5145
5146         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5147 }
5148
5149 static ssize_t rbd_name_show(struct device *dev,
5150                              struct device_attribute *attr, char *buf)
5151 {
5152         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153
5154         if (rbd_dev->spec->image_name)
5155                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5156
5157         return sprintf(buf, "(unknown)\n");
5158 }
5159
5160 static ssize_t rbd_image_id_show(struct device *dev,
5161                              struct device_attribute *attr, char *buf)
5162 {
5163         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5164
5165         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5166 }
5167
5168 /*
5169  * Shows the name of the currently-mapped snapshot (or
5170  * RBD_SNAP_HEAD_NAME for the base image).
5171  */
5172 static ssize_t rbd_snap_show(struct device *dev,
5173                              struct device_attribute *attr,
5174                              char *buf)
5175 {
5176         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5177
5178         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5179 }
5180
5181 static ssize_t rbd_snap_id_show(struct device *dev,
5182                                 struct device_attribute *attr, char *buf)
5183 {
5184         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5185
5186         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5187 }
5188
5189 /*
5190  * For a v2 image, shows the chain of parent images, separated by empty
5191  * lines.  For v1 images or if there is no parent, shows "(no parent
5192  * image)".
5193  */
5194 static ssize_t rbd_parent_show(struct device *dev,
5195                                struct device_attribute *attr,
5196                                char *buf)
5197 {
5198         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5199         ssize_t count = 0;
5200
5201         if (!rbd_dev->parent)
5202                 return sprintf(buf, "(no parent image)\n");
5203
5204         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5205                 struct rbd_spec *spec = rbd_dev->parent_spec;
5206
5207                 count += sprintf(&buf[count], "%s"
5208                             "pool_id %llu\npool_name %s\n"
5209                             "pool_ns %s\n"
5210                             "image_id %s\nimage_name %s\n"
5211                             "snap_id %llu\nsnap_name %s\n"
5212                             "overlap %llu\n",
5213                             !count ? "" : "\n", /* first? */
5214                             spec->pool_id, spec->pool_name,
5215                             spec->pool_ns ?: "",
5216                             spec->image_id, spec->image_name ?: "(unknown)",
5217                             spec->snap_id, spec->snap_name,
5218                             rbd_dev->parent_overlap);
5219         }
5220
5221         return count;
5222 }
5223
5224 static ssize_t rbd_image_refresh(struct device *dev,
5225                                  struct device_attribute *attr,
5226                                  const char *buf,
5227                                  size_t size)
5228 {
5229         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5230         int ret;
5231
5232         ret = rbd_dev_refresh(rbd_dev);
5233         if (ret)
5234                 return ret;
5235
5236         return size;
5237 }
5238
5239 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5240 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5241 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5242 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5243 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5244 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5245 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5246 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5247 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5248 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5249 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5250 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5251 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5252 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5253 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5254 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5255 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5256
5257 static struct attribute *rbd_attrs[] = {
5258         &dev_attr_size.attr,
5259         &dev_attr_features.attr,
5260         &dev_attr_major.attr,
5261         &dev_attr_minor.attr,
5262         &dev_attr_client_addr.attr,
5263         &dev_attr_client_id.attr,
5264         &dev_attr_cluster_fsid.attr,
5265         &dev_attr_config_info.attr,
5266         &dev_attr_pool.attr,
5267         &dev_attr_pool_id.attr,
5268         &dev_attr_pool_ns.attr,
5269         &dev_attr_name.attr,
5270         &dev_attr_image_id.attr,
5271         &dev_attr_current_snap.attr,
5272         &dev_attr_snap_id.attr,
5273         &dev_attr_parent.attr,
5274         &dev_attr_refresh.attr,
5275         NULL
5276 };
5277
5278 static struct attribute_group rbd_attr_group = {
5279         .attrs = rbd_attrs,
5280 };
5281
5282 static const struct attribute_group *rbd_attr_groups[] = {
5283         &rbd_attr_group,
5284         NULL
5285 };
5286
5287 static void rbd_dev_release(struct device *dev);
5288
5289 static const struct device_type rbd_device_type = {
5290         .name           = "rbd",
5291         .groups         = rbd_attr_groups,
5292         .release        = rbd_dev_release,
5293 };
5294
5295 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5296 {
5297         kref_get(&spec->kref);
5298
5299         return spec;
5300 }
5301
5302 static void rbd_spec_free(struct kref *kref);
5303 static void rbd_spec_put(struct rbd_spec *spec)
5304 {
5305         if (spec)
5306                 kref_put(&spec->kref, rbd_spec_free);
5307 }
5308
5309 static struct rbd_spec *rbd_spec_alloc(void)
5310 {
5311         struct rbd_spec *spec;
5312
5313         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5314         if (!spec)
5315                 return NULL;
5316
5317         spec->pool_id = CEPH_NOPOOL;
5318         spec->snap_id = CEPH_NOSNAP;
5319         kref_init(&spec->kref);
5320
5321         return spec;
5322 }
5323
5324 static void rbd_spec_free(struct kref *kref)
5325 {
5326         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5327
5328         kfree(spec->pool_name);
5329         kfree(spec->pool_ns);
5330         kfree(spec->image_id);
5331         kfree(spec->image_name);
5332         kfree(spec->snap_name);
5333         kfree(spec);
5334 }
5335
5336 static void rbd_dev_free(struct rbd_device *rbd_dev)
5337 {
5338         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5339         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5340
5341         ceph_oid_destroy(&rbd_dev->header_oid);
5342         ceph_oloc_destroy(&rbd_dev->header_oloc);
5343         kfree(rbd_dev->config_info);
5344
5345         rbd_put_client(rbd_dev->rbd_client);
5346         rbd_spec_put(rbd_dev->spec);
5347         kfree(rbd_dev->opts);
5348         kfree(rbd_dev);
5349 }
5350
5351 static void rbd_dev_release(struct device *dev)
5352 {
5353         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5354         bool need_put = !!rbd_dev->opts;
5355
5356         if (need_put) {
5357                 destroy_workqueue(rbd_dev->task_wq);
5358                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5359         }
5360
5361         rbd_dev_free(rbd_dev);
5362
5363         /*
5364          * This is racy, but way better than putting module outside of
5365          * the release callback.  The race window is pretty small, so
5366          * doing something similar to dm (dm-builtin.c) is overkill.
5367          */
5368         if (need_put)
5369                 module_put(THIS_MODULE);
5370 }
5371
5372 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5373                                            struct rbd_spec *spec)
5374 {
5375         struct rbd_device *rbd_dev;
5376
5377         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5378         if (!rbd_dev)
5379                 return NULL;
5380
5381         spin_lock_init(&rbd_dev->lock);
5382         INIT_LIST_HEAD(&rbd_dev->node);
5383         init_rwsem(&rbd_dev->header_rwsem);
5384
5385         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5386         ceph_oid_init(&rbd_dev->header_oid);
5387         rbd_dev->header_oloc.pool = spec->pool_id;
5388         if (spec->pool_ns) {
5389                 WARN_ON(!*spec->pool_ns);
5390                 rbd_dev->header_oloc.pool_ns =
5391                     ceph_find_or_create_string(spec->pool_ns,
5392                                                strlen(spec->pool_ns));
5393         }
5394
5395         mutex_init(&rbd_dev->watch_mutex);
5396         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5397         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5398
5399         init_rwsem(&rbd_dev->lock_rwsem);
5400         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5401         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5402         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5403         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5404         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5405         spin_lock_init(&rbd_dev->lock_lists_lock);
5406         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5407         INIT_LIST_HEAD(&rbd_dev->running_list);
5408         init_completion(&rbd_dev->acquire_wait);
5409         init_completion(&rbd_dev->releasing_wait);
5410
5411         spin_lock_init(&rbd_dev->object_map_lock);
5412
5413         rbd_dev->dev.bus = &rbd_bus_type;
5414         rbd_dev->dev.type = &rbd_device_type;
5415         rbd_dev->dev.parent = &rbd_root_dev;
5416         device_initialize(&rbd_dev->dev);
5417
5418         rbd_dev->rbd_client = rbdc;
5419         rbd_dev->spec = spec;
5420
5421         return rbd_dev;
5422 }
5423
5424 /*
5425  * Create a mapping rbd_dev.
5426  */
5427 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5428                                          struct rbd_spec *spec,
5429                                          struct rbd_options *opts)
5430 {
5431         struct rbd_device *rbd_dev;
5432
5433         rbd_dev = __rbd_dev_create(rbdc, spec);
5434         if (!rbd_dev)
5435                 return NULL;
5436
5437         rbd_dev->opts = opts;
5438
5439         /* get an id and fill in device name */
5440         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5441                                          minor_to_rbd_dev_id(1 << MINORBITS),
5442                                          GFP_KERNEL);
5443         if (rbd_dev->dev_id < 0)
5444                 goto fail_rbd_dev;
5445
5446         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5447         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5448                                                    rbd_dev->name);
5449         if (!rbd_dev->task_wq)
5450                 goto fail_dev_id;
5451
5452         /* we have a ref from do_rbd_add() */
5453         __module_get(THIS_MODULE);
5454
5455         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5456         return rbd_dev;
5457
5458 fail_dev_id:
5459         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5460 fail_rbd_dev:
5461         rbd_dev_free(rbd_dev);
5462         return NULL;
5463 }
5464
5465 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5466 {
5467         if (rbd_dev)
5468                 put_device(&rbd_dev->dev);
5469 }
5470
5471 /*
5472  * Get the size and object order for an image snapshot, or if
5473  * snap_id is CEPH_NOSNAP, gets this information for the base
5474  * image.
5475  */
5476 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5477                                 u8 *order, u64 *snap_size)
5478 {
5479         __le64 snapid = cpu_to_le64(snap_id);
5480         int ret;
5481         struct {
5482                 u8 order;
5483                 __le64 size;
5484         } __attribute__ ((packed)) size_buf = { 0 };
5485
5486         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5487                                   &rbd_dev->header_oloc, "get_size",
5488                                   &snapid, sizeof(snapid),
5489                                   &size_buf, sizeof(size_buf));
5490         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5491         if (ret < 0)
5492                 return ret;
5493         if (ret < sizeof (size_buf))
5494                 return -ERANGE;
5495
5496         if (order) {
5497                 *order = size_buf.order;
5498                 dout("  order %u", (unsigned int)*order);
5499         }
5500         *snap_size = le64_to_cpu(size_buf.size);
5501
5502         dout("  snap_id 0x%016llx snap_size = %llu\n",
5503                 (unsigned long long)snap_id,
5504                 (unsigned long long)*snap_size);
5505
5506         return 0;
5507 }
5508
5509 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5510 {
5511         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5512                                         &rbd_dev->header.obj_order,
5513                                         &rbd_dev->header.image_size);
5514 }
5515
5516 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5517 {
5518         size_t size;
5519         void *reply_buf;
5520         int ret;
5521         void *p;
5522
5523         /* Response will be an encoded string, which includes a length */
5524         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5525         reply_buf = kzalloc(size, GFP_KERNEL);
5526         if (!reply_buf)
5527                 return -ENOMEM;
5528
5529         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5530                                   &rbd_dev->header_oloc, "get_object_prefix",
5531                                   NULL, 0, reply_buf, size);
5532         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5533         if (ret < 0)
5534                 goto out;
5535
5536         p = reply_buf;
5537         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5538                                                 p + ret, NULL, GFP_NOIO);
5539         ret = 0;
5540
5541         if (IS_ERR(rbd_dev->header.object_prefix)) {
5542                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5543                 rbd_dev->header.object_prefix = NULL;
5544         } else {
5545                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5546         }
5547 out:
5548         kfree(reply_buf);
5549
5550         return ret;
5551 }
5552
5553 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5554                                      bool read_only, u64 *snap_features)
5555 {
5556         struct {
5557                 __le64 snap_id;
5558                 u8 read_only;
5559         } features_in;
5560         struct {
5561                 __le64 features;
5562                 __le64 incompat;
5563         } __attribute__ ((packed)) features_buf = { 0 };
5564         u64 unsup;
5565         int ret;
5566
5567         features_in.snap_id = cpu_to_le64(snap_id);
5568         features_in.read_only = read_only;
5569
5570         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5571                                   &rbd_dev->header_oloc, "get_features",
5572                                   &features_in, sizeof(features_in),
5573                                   &features_buf, sizeof(features_buf));
5574         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5575         if (ret < 0)
5576                 return ret;
5577         if (ret < sizeof (features_buf))
5578                 return -ERANGE;
5579
5580         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5581         if (unsup) {
5582                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5583                          unsup);
5584                 return -ENXIO;
5585         }
5586
5587         *snap_features = le64_to_cpu(features_buf.features);
5588
5589         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5590                 (unsigned long long)snap_id,
5591                 (unsigned long long)*snap_features,
5592                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5593
5594         return 0;
5595 }
5596
5597 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5598 {
5599         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5600                                          rbd_is_ro(rbd_dev),
5601                                          &rbd_dev->header.features);
5602 }
5603
5604 /*
5605  * These are generic image flags, but since they are used only for
5606  * object map, store them in rbd_dev->object_map_flags.
5607  *
5608  * For the same reason, this function is called only on object map
5609  * (re)load and not on header refresh.
5610  */
5611 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5612 {
5613         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5614         __le64 flags;
5615         int ret;
5616
5617         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5618                                   &rbd_dev->header_oloc, "get_flags",
5619                                   &snapid, sizeof(snapid),
5620                                   &flags, sizeof(flags));
5621         if (ret < 0)
5622                 return ret;
5623         if (ret < sizeof(flags))
5624                 return -EBADMSG;
5625
5626         rbd_dev->object_map_flags = le64_to_cpu(flags);
5627         return 0;
5628 }
5629
5630 struct parent_image_info {
5631         u64             pool_id;
5632         const char      *pool_ns;
5633         const char      *image_id;
5634         u64             snap_id;
5635
5636         bool            has_overlap;
5637         u64             overlap;
5638 };
5639
5640 /*
5641  * The caller is responsible for @pii.
5642  */
5643 static int decode_parent_image_spec(void **p, void *end,
5644                                     struct parent_image_info *pii)
5645 {
5646         u8 struct_v;
5647         u32 struct_len;
5648         int ret;
5649
5650         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5651                                   &struct_v, &struct_len);
5652         if (ret)
5653                 return ret;
5654
5655         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5656         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5657         if (IS_ERR(pii->pool_ns)) {
5658                 ret = PTR_ERR(pii->pool_ns);
5659                 pii->pool_ns = NULL;
5660                 return ret;
5661         }
5662         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5663         if (IS_ERR(pii->image_id)) {
5664                 ret = PTR_ERR(pii->image_id);
5665                 pii->image_id = NULL;
5666                 return ret;
5667         }
5668         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5669         return 0;
5670
5671 e_inval:
5672         return -EINVAL;
5673 }
5674
5675 static int __get_parent_info(struct rbd_device *rbd_dev,
5676                              struct page *req_page,
5677                              struct page *reply_page,
5678                              struct parent_image_info *pii)
5679 {
5680         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5681         size_t reply_len = PAGE_SIZE;
5682         void *p, *end;
5683         int ret;
5684
5685         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5686                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5687                              req_page, sizeof(u64), &reply_page, &reply_len);
5688         if (ret)
5689                 return ret == -EOPNOTSUPP ? 1 : ret;
5690
5691         p = page_address(reply_page);
5692         end = p + reply_len;
5693         ret = decode_parent_image_spec(&p, end, pii);
5694         if (ret)
5695                 return ret;
5696
5697         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5698                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5699                              req_page, sizeof(u64), &reply_page, &reply_len);
5700         if (ret)
5701                 return ret;
5702
5703         p = page_address(reply_page);
5704         end = p + reply_len;
5705         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5706         if (pii->has_overlap)
5707                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5708
5709         return 0;
5710
5711 e_inval:
5712         return -EINVAL;
5713 }
5714
5715 /*
5716  * The caller is responsible for @pii.
5717  */
5718 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5719                                     struct page *req_page,
5720                                     struct page *reply_page,
5721                                     struct parent_image_info *pii)
5722 {
5723         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5724         size_t reply_len = PAGE_SIZE;
5725         void *p, *end;
5726         int ret;
5727
5728         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5729                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5730                              req_page, sizeof(u64), &reply_page, &reply_len);
5731         if (ret)
5732                 return ret;
5733
5734         p = page_address(reply_page);
5735         end = p + reply_len;
5736         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5737         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5738         if (IS_ERR(pii->image_id)) {
5739                 ret = PTR_ERR(pii->image_id);
5740                 pii->image_id = NULL;
5741                 return ret;
5742         }
5743         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5744         pii->has_overlap = true;
5745         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5746
5747         return 0;
5748
5749 e_inval:
5750         return -EINVAL;
5751 }
5752
5753 static int get_parent_info(struct rbd_device *rbd_dev,
5754                            struct parent_image_info *pii)
5755 {
5756         struct page *req_page, *reply_page;
5757         void *p;
5758         int ret;
5759
5760         req_page = alloc_page(GFP_KERNEL);
5761         if (!req_page)
5762                 return -ENOMEM;
5763
5764         reply_page = alloc_page(GFP_KERNEL);
5765         if (!reply_page) {
5766                 __free_page(req_page);
5767                 return -ENOMEM;
5768         }
5769
5770         p = page_address(req_page);
5771         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5772         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5773         if (ret > 0)
5774                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5775                                                pii);
5776
5777         __free_page(req_page);
5778         __free_page(reply_page);
5779         return ret;
5780 }
5781
5782 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5783 {
5784         struct rbd_spec *parent_spec;
5785         struct parent_image_info pii = { 0 };
5786         int ret;
5787
5788         parent_spec = rbd_spec_alloc();
5789         if (!parent_spec)
5790                 return -ENOMEM;
5791
5792         ret = get_parent_info(rbd_dev, &pii);
5793         if (ret)
5794                 goto out_err;
5795
5796         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5797              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5798              pii.has_overlap, pii.overlap);
5799
5800         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5801                 /*
5802                  * Either the parent never existed, or we have
5803                  * record of it but the image got flattened so it no
5804                  * longer has a parent.  When the parent of a
5805                  * layered image disappears we immediately set the
5806                  * overlap to 0.  The effect of this is that all new
5807                  * requests will be treated as if the image had no
5808                  * parent.
5809                  *
5810                  * If !pii.has_overlap, the parent image spec is not
5811                  * applicable.  It's there to avoid duplication in each
5812                  * snapshot record.
5813                  */
5814                 if (rbd_dev->parent_overlap) {
5815                         rbd_dev->parent_overlap = 0;
5816                         rbd_dev_parent_put(rbd_dev);
5817                         pr_info("%s: clone image has been flattened\n",
5818                                 rbd_dev->disk->disk_name);
5819                 }
5820
5821                 goto out;       /* No parent?  No problem. */
5822         }
5823
5824         /* The ceph file layout needs to fit pool id in 32 bits */
5825
5826         ret = -EIO;
5827         if (pii.pool_id > (u64)U32_MAX) {
5828                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5829                         (unsigned long long)pii.pool_id, U32_MAX);
5830                 goto out_err;
5831         }
5832
5833         /*
5834          * The parent won't change (except when the clone is
5835          * flattened, already handled that).  So we only need to
5836          * record the parent spec we have not already done so.
5837          */
5838         if (!rbd_dev->parent_spec) {
5839                 parent_spec->pool_id = pii.pool_id;
5840                 if (pii.pool_ns && *pii.pool_ns) {
5841                         parent_spec->pool_ns = pii.pool_ns;
5842                         pii.pool_ns = NULL;
5843                 }
5844                 parent_spec->image_id = pii.image_id;
5845                 pii.image_id = NULL;
5846                 parent_spec->snap_id = pii.snap_id;
5847
5848                 rbd_dev->parent_spec = parent_spec;
5849                 parent_spec = NULL;     /* rbd_dev now owns this */
5850         }
5851
5852         /*
5853          * We always update the parent overlap.  If it's zero we issue
5854          * a warning, as we will proceed as if there was no parent.
5855          */
5856         if (!pii.overlap) {
5857                 if (parent_spec) {
5858                         /* refresh, careful to warn just once */
5859                         if (rbd_dev->parent_overlap)
5860                                 rbd_warn(rbd_dev,
5861                                     "clone now standalone (overlap became 0)");
5862                 } else {
5863                         /* initial probe */
5864                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5865                 }
5866         }
5867         rbd_dev->parent_overlap = pii.overlap;
5868
5869 out:
5870         ret = 0;
5871 out_err:
5872         kfree(pii.pool_ns);
5873         kfree(pii.image_id);
5874         rbd_spec_put(parent_spec);
5875         return ret;
5876 }
5877
5878 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5879 {
5880         struct {
5881                 __le64 stripe_unit;
5882                 __le64 stripe_count;
5883         } __attribute__ ((packed)) striping_info_buf = { 0 };
5884         size_t size = sizeof (striping_info_buf);
5885         void *p;
5886         int ret;
5887
5888         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5889                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5890                                 NULL, 0, &striping_info_buf, size);
5891         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5892         if (ret < 0)
5893                 return ret;
5894         if (ret < size)
5895                 return -ERANGE;
5896
5897         p = &striping_info_buf;
5898         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5899         rbd_dev->header.stripe_count = ceph_decode_64(&p);
5900         return 0;
5901 }
5902
5903 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5904 {
5905         __le64 data_pool_id;
5906         int ret;
5907
5908         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5909                                   &rbd_dev->header_oloc, "get_data_pool",
5910                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5911         if (ret < 0)
5912                 return ret;
5913         if (ret < sizeof(data_pool_id))
5914                 return -EBADMSG;
5915
5916         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5917         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5918         return 0;
5919 }
5920
5921 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5922 {
5923         CEPH_DEFINE_OID_ONSTACK(oid);
5924         size_t image_id_size;
5925         char *image_id;
5926         void *p;
5927         void *end;
5928         size_t size;
5929         void *reply_buf = NULL;
5930         size_t len = 0;
5931         char *image_name = NULL;
5932         int ret;
5933
5934         rbd_assert(!rbd_dev->spec->image_name);
5935
5936         len = strlen(rbd_dev->spec->image_id);
5937         image_id_size = sizeof (__le32) + len;
5938         image_id = kmalloc(image_id_size, GFP_KERNEL);
5939         if (!image_id)
5940                 return NULL;
5941
5942         p = image_id;
5943         end = image_id + image_id_size;
5944         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5945
5946         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5947         reply_buf = kmalloc(size, GFP_KERNEL);
5948         if (!reply_buf)
5949                 goto out;
5950
5951         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5952         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5953                                   "dir_get_name", image_id, image_id_size,
5954                                   reply_buf, size);
5955         if (ret < 0)
5956                 goto out;
5957         p = reply_buf;
5958         end = reply_buf + ret;
5959
5960         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5961         if (IS_ERR(image_name))
5962                 image_name = NULL;
5963         else
5964                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5965 out:
5966         kfree(reply_buf);
5967         kfree(image_id);
5968
5969         return image_name;
5970 }
5971
5972 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5973 {
5974         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5975         const char *snap_name;
5976         u32 which = 0;
5977
5978         /* Skip over names until we find the one we are looking for */
5979
5980         snap_name = rbd_dev->header.snap_names;
5981         while (which < snapc->num_snaps) {
5982                 if (!strcmp(name, snap_name))
5983                         return snapc->snaps[which];
5984                 snap_name += strlen(snap_name) + 1;
5985                 which++;
5986         }
5987         return CEPH_NOSNAP;
5988 }
5989
5990 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5991 {
5992         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5993         u32 which;
5994         bool found = false;
5995         u64 snap_id;
5996
5997         for (which = 0; !found && which < snapc->num_snaps; which++) {
5998                 const char *snap_name;
5999
6000                 snap_id = snapc->snaps[which];
6001                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6002                 if (IS_ERR(snap_name)) {
6003                         /* ignore no-longer existing snapshots */
6004                         if (PTR_ERR(snap_name) == -ENOENT)
6005                                 continue;
6006                         else
6007                                 break;
6008                 }
6009                 found = !strcmp(name, snap_name);
6010                 kfree(snap_name);
6011         }
6012         return found ? snap_id : CEPH_NOSNAP;
6013 }
6014
6015 /*
6016  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6017  * no snapshot by that name is found, or if an error occurs.
6018  */
6019 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6020 {
6021         if (rbd_dev->image_format == 1)
6022                 return rbd_v1_snap_id_by_name(rbd_dev, name);
6023
6024         return rbd_v2_snap_id_by_name(rbd_dev, name);
6025 }
6026
6027 /*
6028  * An image being mapped will have everything but the snap id.
6029  */
6030 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6031 {
6032         struct rbd_spec *spec = rbd_dev->spec;
6033
6034         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6035         rbd_assert(spec->image_id && spec->image_name);
6036         rbd_assert(spec->snap_name);
6037
6038         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6039                 u64 snap_id;
6040
6041                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6042                 if (snap_id == CEPH_NOSNAP)
6043                         return -ENOENT;
6044
6045                 spec->snap_id = snap_id;
6046         } else {
6047                 spec->snap_id = CEPH_NOSNAP;
6048         }
6049
6050         return 0;
6051 }
6052
6053 /*
6054  * A parent image will have all ids but none of the names.
6055  *
6056  * All names in an rbd spec are dynamically allocated.  It's OK if we
6057  * can't figure out the name for an image id.
6058  */
6059 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6060 {
6061         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6062         struct rbd_spec *spec = rbd_dev->spec;
6063         const char *pool_name;
6064         const char *image_name;
6065         const char *snap_name;
6066         int ret;
6067
6068         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6069         rbd_assert(spec->image_id);
6070         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6071
6072         /* Get the pool name; we have to make our own copy of this */
6073
6074         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6075         if (!pool_name) {
6076                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6077                 return -EIO;
6078         }
6079         pool_name = kstrdup(pool_name, GFP_KERNEL);
6080         if (!pool_name)
6081                 return -ENOMEM;
6082
6083         /* Fetch the image name; tolerate failure here */
6084
6085         image_name = rbd_dev_image_name(rbd_dev);
6086         if (!image_name)
6087                 rbd_warn(rbd_dev, "unable to get image name");
6088
6089         /* Fetch the snapshot name */
6090
6091         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6092         if (IS_ERR(snap_name)) {
6093                 ret = PTR_ERR(snap_name);
6094                 goto out_err;
6095         }
6096
6097         spec->pool_name = pool_name;
6098         spec->image_name = image_name;
6099         spec->snap_name = snap_name;
6100
6101         return 0;
6102
6103 out_err:
6104         kfree(image_name);
6105         kfree(pool_name);
6106         return ret;
6107 }
6108
6109 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6110 {
6111         size_t size;
6112         int ret;
6113         void *reply_buf;
6114         void *p;
6115         void *end;
6116         u64 seq;
6117         u32 snap_count;
6118         struct ceph_snap_context *snapc;
6119         u32 i;
6120
6121         /*
6122          * We'll need room for the seq value (maximum snapshot id),
6123          * snapshot count, and array of that many snapshot ids.
6124          * For now we have a fixed upper limit on the number we're
6125          * prepared to receive.
6126          */
6127         size = sizeof (__le64) + sizeof (__le32) +
6128                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6129         reply_buf = kzalloc(size, GFP_KERNEL);
6130         if (!reply_buf)
6131                 return -ENOMEM;
6132
6133         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6134                                   &rbd_dev->header_oloc, "get_snapcontext",
6135                                   NULL, 0, reply_buf, size);
6136         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6137         if (ret < 0)
6138                 goto out;
6139
6140         p = reply_buf;
6141         end = reply_buf + ret;
6142         ret = -ERANGE;
6143         ceph_decode_64_safe(&p, end, seq, out);
6144         ceph_decode_32_safe(&p, end, snap_count, out);
6145
6146         /*
6147          * Make sure the reported number of snapshot ids wouldn't go
6148          * beyond the end of our buffer.  But before checking that,
6149          * make sure the computed size of the snapshot context we
6150          * allocate is representable in a size_t.
6151          */
6152         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6153                                  / sizeof (u64)) {
6154                 ret = -EINVAL;
6155                 goto out;
6156         }
6157         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6158                 goto out;
6159         ret = 0;
6160
6161         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6162         if (!snapc) {
6163                 ret = -ENOMEM;
6164                 goto out;
6165         }
6166         snapc->seq = seq;
6167         for (i = 0; i < snap_count; i++)
6168                 snapc->snaps[i] = ceph_decode_64(&p);
6169
6170         ceph_put_snap_context(rbd_dev->header.snapc);
6171         rbd_dev->header.snapc = snapc;
6172
6173         dout("  snap context seq = %llu, snap_count = %u\n",
6174                 (unsigned long long)seq, (unsigned int)snap_count);
6175 out:
6176         kfree(reply_buf);
6177
6178         return ret;
6179 }
6180
6181 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6182                                         u64 snap_id)
6183 {
6184         size_t size;
6185         void *reply_buf;
6186         __le64 snapid;
6187         int ret;
6188         void *p;
6189         void *end;
6190         char *snap_name;
6191
6192         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6193         reply_buf = kmalloc(size, GFP_KERNEL);
6194         if (!reply_buf)
6195                 return ERR_PTR(-ENOMEM);
6196
6197         snapid = cpu_to_le64(snap_id);
6198         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6199                                   &rbd_dev->header_oloc, "get_snapshot_name",
6200                                   &snapid, sizeof(snapid), reply_buf, size);
6201         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6202         if (ret < 0) {
6203                 snap_name = ERR_PTR(ret);
6204                 goto out;
6205         }
6206
6207         p = reply_buf;
6208         end = reply_buf + ret;
6209         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6210         if (IS_ERR(snap_name))
6211                 goto out;
6212
6213         dout("  snap_id 0x%016llx snap_name = %s\n",
6214                 (unsigned long long)snap_id, snap_name);
6215 out:
6216         kfree(reply_buf);
6217
6218         return snap_name;
6219 }
6220
6221 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6222 {
6223         bool first_time = rbd_dev->header.object_prefix == NULL;
6224         int ret;
6225
6226         ret = rbd_dev_v2_image_size(rbd_dev);
6227         if (ret)
6228                 return ret;
6229
6230         if (first_time) {
6231                 ret = rbd_dev_v2_header_onetime(rbd_dev);
6232                 if (ret)
6233                         return ret;
6234         }
6235
6236         ret = rbd_dev_v2_snap_context(rbd_dev);
6237         if (ret && first_time) {
6238                 kfree(rbd_dev->header.object_prefix);
6239                 rbd_dev->header.object_prefix = NULL;
6240         }
6241
6242         return ret;
6243 }
6244
6245 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6246 {
6247         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6248
6249         if (rbd_dev->image_format == 1)
6250                 return rbd_dev_v1_header_info(rbd_dev);
6251
6252         return rbd_dev_v2_header_info(rbd_dev);
6253 }
6254
6255 /*
6256  * Skips over white space at *buf, and updates *buf to point to the
6257  * first found non-space character (if any). Returns the length of
6258  * the token (string of non-white space characters) found.  Note
6259  * that *buf must be terminated with '\0'.
6260  */
6261 static inline size_t next_token(const char **buf)
6262 {
6263         /*
6264         * These are the characters that produce nonzero for
6265         * isspace() in the "C" and "POSIX" locales.
6266         */
6267         const char *spaces = " \f\n\r\t\v";
6268
6269         *buf += strspn(*buf, spaces);   /* Find start of token */
6270
6271         return strcspn(*buf, spaces);   /* Return token length */
6272 }
6273
6274 /*
6275  * Finds the next token in *buf, dynamically allocates a buffer big
6276  * enough to hold a copy of it, and copies the token into the new
6277  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6278  * that a duplicate buffer is created even for a zero-length token.
6279  *
6280  * Returns a pointer to the newly-allocated duplicate, or a null
6281  * pointer if memory for the duplicate was not available.  If
6282  * the lenp argument is a non-null pointer, the length of the token
6283  * (not including the '\0') is returned in *lenp.
6284  *
6285  * If successful, the *buf pointer will be updated to point beyond
6286  * the end of the found token.
6287  *
6288  * Note: uses GFP_KERNEL for allocation.
6289  */
6290 static inline char *dup_token(const char **buf, size_t *lenp)
6291 {
6292         char *dup;
6293         size_t len;
6294
6295         len = next_token(buf);
6296         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6297         if (!dup)
6298                 return NULL;
6299         *(dup + len) = '\0';
6300         *buf += len;
6301
6302         if (lenp)
6303                 *lenp = len;
6304
6305         return dup;
6306 }
6307
6308 static int rbd_parse_param(struct fs_parameter *param,
6309                             struct rbd_parse_opts_ctx *pctx)
6310 {
6311         struct rbd_options *opt = pctx->opts;
6312         struct fs_parse_result result;
6313         struct p_log log = {.prefix = "rbd"};
6314         int token, ret;
6315
6316         ret = ceph_parse_param(param, pctx->copts, NULL);
6317         if (ret != -ENOPARAM)
6318                 return ret;
6319
6320         token = __fs_parse(&log, rbd_parameters, param, &result);
6321         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6322         if (token < 0) {
6323                 if (token == -ENOPARAM)
6324                         return inval_plog(&log, "Unknown parameter '%s'",
6325                                           param->key);
6326                 return token;
6327         }
6328
6329         switch (token) {
6330         case Opt_queue_depth:
6331                 if (result.uint_32 < 1)
6332                         goto out_of_range;
6333                 opt->queue_depth = result.uint_32;
6334                 break;
6335         case Opt_alloc_size:
6336                 if (result.uint_32 < SECTOR_SIZE)
6337                         goto out_of_range;
6338                 if (!is_power_of_2(result.uint_32))
6339                         return inval_plog(&log, "alloc_size must be a power of 2");
6340                 opt->alloc_size = result.uint_32;
6341                 break;
6342         case Opt_lock_timeout:
6343                 /* 0 is "wait forever" (i.e. infinite timeout) */
6344                 if (result.uint_32 > INT_MAX / 1000)
6345                         goto out_of_range;
6346                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6347                 break;
6348         case Opt_pool_ns:
6349                 kfree(pctx->spec->pool_ns);
6350                 pctx->spec->pool_ns = param->string;
6351                 param->string = NULL;
6352                 break;
6353         case Opt_compression_hint:
6354                 switch (result.uint_32) {
6355                 case Opt_compression_hint_none:
6356                         opt->alloc_hint_flags &=
6357                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6358                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6359                         break;
6360                 case Opt_compression_hint_compressible:
6361                         opt->alloc_hint_flags |=
6362                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6363                         opt->alloc_hint_flags &=
6364                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6365                         break;
6366                 case Opt_compression_hint_incompressible:
6367                         opt->alloc_hint_flags |=
6368                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6369                         opt->alloc_hint_flags &=
6370                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6371                         break;
6372                 default:
6373                         BUG();
6374                 }
6375                 break;
6376         case Opt_read_only:
6377                 opt->read_only = true;
6378                 break;
6379         case Opt_read_write:
6380                 opt->read_only = false;
6381                 break;
6382         case Opt_lock_on_read:
6383                 opt->lock_on_read = true;
6384                 break;
6385         case Opt_exclusive:
6386                 opt->exclusive = true;
6387                 break;
6388         case Opt_notrim:
6389                 opt->trim = false;
6390                 break;
6391         default:
6392                 BUG();
6393         }
6394
6395         return 0;
6396
6397 out_of_range:
6398         return inval_plog(&log, "%s out of range", param->key);
6399 }
6400
6401 /*
6402  * This duplicates most of generic_parse_monolithic(), untying it from
6403  * fs_context and skipping standard superblock and security options.
6404  */
6405 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6406 {
6407         char *key;
6408         int ret = 0;
6409
6410         dout("%s '%s'\n", __func__, options);
6411         while ((key = strsep(&options, ",")) != NULL) {
6412                 if (*key) {
6413                         struct fs_parameter param = {
6414                                 .key    = key,
6415                                 .type   = fs_value_is_flag,
6416                         };
6417                         char *value = strchr(key, '=');
6418                         size_t v_len = 0;
6419
6420                         if (value) {
6421                                 if (value == key)
6422                                         continue;
6423                                 *value++ = 0;
6424                                 v_len = strlen(value);
6425                                 param.string = kmemdup_nul(value, v_len,
6426                                                            GFP_KERNEL);
6427                                 if (!param.string)
6428                                         return -ENOMEM;
6429                                 param.type = fs_value_is_string;
6430                         }
6431                         param.size = v_len;
6432
6433                         ret = rbd_parse_param(&param, pctx);
6434                         kfree(param.string);
6435                         if (ret)
6436                                 break;
6437                 }
6438         }
6439
6440         return ret;
6441 }
6442
6443 /*
6444  * Parse the options provided for an "rbd add" (i.e., rbd image
6445  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6446  * and the data written is passed here via a NUL-terminated buffer.
6447  * Returns 0 if successful or an error code otherwise.
6448  *
6449  * The information extracted from these options is recorded in
6450  * the other parameters which return dynamically-allocated
6451  * structures:
6452  *  ceph_opts
6453  *      The address of a pointer that will refer to a ceph options
6454  *      structure.  Caller must release the returned pointer using
6455  *      ceph_destroy_options() when it is no longer needed.
6456  *  rbd_opts
6457  *      Address of an rbd options pointer.  Fully initialized by
6458  *      this function; caller must release with kfree().
6459  *  spec
6460  *      Address of an rbd image specification pointer.  Fully
6461  *      initialized by this function based on parsed options.
6462  *      Caller must release with rbd_spec_put().
6463  *
6464  * The options passed take this form:
6465  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6466  * where:
6467  *  <mon_addrs>
6468  *      A comma-separated list of one or more monitor addresses.
6469  *      A monitor address is an ip address, optionally followed
6470  *      by a port number (separated by a colon).
6471  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6472  *  <options>
6473  *      A comma-separated list of ceph and/or rbd options.
6474  *  <pool_name>
6475  *      The name of the rados pool containing the rbd image.
6476  *  <image_name>
6477  *      The name of the image in that pool to map.
6478  *  <snap_id>
6479  *      An optional snapshot id.  If provided, the mapping will
6480  *      present data from the image at the time that snapshot was
6481  *      created.  The image head is used if no snapshot id is
6482  *      provided.  Snapshot mappings are always read-only.
6483  */
6484 static int rbd_add_parse_args(const char *buf,
6485                                 struct ceph_options **ceph_opts,
6486                                 struct rbd_options **opts,
6487                                 struct rbd_spec **rbd_spec)
6488 {
6489         size_t len;
6490         char *options;
6491         const char *mon_addrs;
6492         char *snap_name;
6493         size_t mon_addrs_size;
6494         struct rbd_parse_opts_ctx pctx = { 0 };
6495         int ret;
6496
6497         /* The first four tokens are required */
6498
6499         len = next_token(&buf);
6500         if (!len) {
6501                 rbd_warn(NULL, "no monitor address(es) provided");
6502                 return -EINVAL;
6503         }
6504         mon_addrs = buf;
6505         mon_addrs_size = len;
6506         buf += len;
6507
6508         ret = -EINVAL;
6509         options = dup_token(&buf, NULL);
6510         if (!options)
6511                 return -ENOMEM;
6512         if (!*options) {
6513                 rbd_warn(NULL, "no options provided");
6514                 goto out_err;
6515         }
6516
6517         pctx.spec = rbd_spec_alloc();
6518         if (!pctx.spec)
6519                 goto out_mem;
6520
6521         pctx.spec->pool_name = dup_token(&buf, NULL);
6522         if (!pctx.spec->pool_name)
6523                 goto out_mem;
6524         if (!*pctx.spec->pool_name) {
6525                 rbd_warn(NULL, "no pool name provided");
6526                 goto out_err;
6527         }
6528
6529         pctx.spec->image_name = dup_token(&buf, NULL);
6530         if (!pctx.spec->image_name)
6531                 goto out_mem;
6532         if (!*pctx.spec->image_name) {
6533                 rbd_warn(NULL, "no image name provided");
6534                 goto out_err;
6535         }
6536
6537         /*
6538          * Snapshot name is optional; default is to use "-"
6539          * (indicating the head/no snapshot).
6540          */
6541         len = next_token(&buf);
6542         if (!len) {
6543                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6544                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6545         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6546                 ret = -ENAMETOOLONG;
6547                 goto out_err;
6548         }
6549         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6550         if (!snap_name)
6551                 goto out_mem;
6552         *(snap_name + len) = '\0';
6553         pctx.spec->snap_name = snap_name;
6554
6555         pctx.copts = ceph_alloc_options();
6556         if (!pctx.copts)
6557                 goto out_mem;
6558
6559         /* Initialize all rbd options to the defaults */
6560
6561         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6562         if (!pctx.opts)
6563                 goto out_mem;
6564
6565         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6566         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6567         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6568         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6569         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6570         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6571         pctx.opts->trim = RBD_TRIM_DEFAULT;
6572
6573         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6574         if (ret)
6575                 goto out_err;
6576
6577         ret = rbd_parse_options(options, &pctx);
6578         if (ret)
6579                 goto out_err;
6580
6581         *ceph_opts = pctx.copts;
6582         *opts = pctx.opts;
6583         *rbd_spec = pctx.spec;
6584         kfree(options);
6585         return 0;
6586
6587 out_mem:
6588         ret = -ENOMEM;
6589 out_err:
6590         kfree(pctx.opts);
6591         ceph_destroy_options(pctx.copts);
6592         rbd_spec_put(pctx.spec);
6593         kfree(options);
6594         return ret;
6595 }
6596
6597 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6598 {
6599         down_write(&rbd_dev->lock_rwsem);
6600         if (__rbd_is_lock_owner(rbd_dev))
6601                 __rbd_release_lock(rbd_dev);
6602         up_write(&rbd_dev->lock_rwsem);
6603 }
6604
6605 /*
6606  * If the wait is interrupted, an error is returned even if the lock
6607  * was successfully acquired.  rbd_dev_image_unlock() will release it
6608  * if needed.
6609  */
6610 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6611 {
6612         long ret;
6613
6614         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6615                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6616                         return 0;
6617
6618                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6619                 return -EINVAL;
6620         }
6621
6622         if (rbd_is_ro(rbd_dev))
6623                 return 0;
6624
6625         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6626         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6627         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6628                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6629         if (ret > 0) {
6630                 ret = rbd_dev->acquire_err;
6631         } else {
6632                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6633                 if (!ret)
6634                         ret = -ETIMEDOUT;
6635         }
6636
6637         if (ret) {
6638                 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6639                 return ret;
6640         }
6641
6642         /*
6643          * The lock may have been released by now, unless automatic lock
6644          * transitions are disabled.
6645          */
6646         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6647         return 0;
6648 }
6649
6650 /*
6651  * An rbd format 2 image has a unique identifier, distinct from the
6652  * name given to it by the user.  Internally, that identifier is
6653  * what's used to specify the names of objects related to the image.
6654  *
6655  * A special "rbd id" object is used to map an rbd image name to its
6656  * id.  If that object doesn't exist, then there is no v2 rbd image
6657  * with the supplied name.
6658  *
6659  * This function will record the given rbd_dev's image_id field if
6660  * it can be determined, and in that case will return 0.  If any
6661  * errors occur a negative errno will be returned and the rbd_dev's
6662  * image_id field will be unchanged (and should be NULL).
6663  */
6664 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6665 {
6666         int ret;
6667         size_t size;
6668         CEPH_DEFINE_OID_ONSTACK(oid);
6669         void *response;
6670         char *image_id;
6671
6672         /*
6673          * When probing a parent image, the image id is already
6674          * known (and the image name likely is not).  There's no
6675          * need to fetch the image id again in this case.  We
6676          * do still need to set the image format though.
6677          */
6678         if (rbd_dev->spec->image_id) {
6679                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6680
6681                 return 0;
6682         }
6683
6684         /*
6685          * First, see if the format 2 image id file exists, and if
6686          * so, get the image's persistent id from it.
6687          */
6688         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6689                                rbd_dev->spec->image_name);
6690         if (ret)
6691                 return ret;
6692
6693         dout("rbd id object name is %s\n", oid.name);
6694
6695         /* Response will be an encoded string, which includes a length */
6696         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6697         response = kzalloc(size, GFP_NOIO);
6698         if (!response) {
6699                 ret = -ENOMEM;
6700                 goto out;
6701         }
6702
6703         /* If it doesn't exist we'll assume it's a format 1 image */
6704
6705         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6706                                   "get_id", NULL, 0,
6707                                   response, size);
6708         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6709         if (ret == -ENOENT) {
6710                 image_id = kstrdup("", GFP_KERNEL);
6711                 ret = image_id ? 0 : -ENOMEM;
6712                 if (!ret)
6713                         rbd_dev->image_format = 1;
6714         } else if (ret >= 0) {
6715                 void *p = response;
6716
6717                 image_id = ceph_extract_encoded_string(&p, p + ret,
6718                                                 NULL, GFP_NOIO);
6719                 ret = PTR_ERR_OR_ZERO(image_id);
6720                 if (!ret)
6721                         rbd_dev->image_format = 2;
6722         }
6723
6724         if (!ret) {
6725                 rbd_dev->spec->image_id = image_id;
6726                 dout("image_id is %s\n", image_id);
6727         }
6728 out:
6729         kfree(response);
6730         ceph_oid_destroy(&oid);
6731         return ret;
6732 }
6733
6734 /*
6735  * Undo whatever state changes are made by v1 or v2 header info
6736  * call.
6737  */
6738 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6739 {
6740         struct rbd_image_header *header;
6741
6742         rbd_dev_parent_put(rbd_dev);
6743         rbd_object_map_free(rbd_dev);
6744         rbd_dev_mapping_clear(rbd_dev);
6745
6746         /* Free dynamic fields from the header, then zero it out */
6747
6748         header = &rbd_dev->header;
6749         ceph_put_snap_context(header->snapc);
6750         kfree(header->snap_sizes);
6751         kfree(header->snap_names);
6752         kfree(header->object_prefix);
6753         memset(header, 0, sizeof (*header));
6754 }
6755
6756 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6757 {
6758         int ret;
6759
6760         ret = rbd_dev_v2_object_prefix(rbd_dev);
6761         if (ret)
6762                 goto out_err;
6763
6764         /*
6765          * Get the and check features for the image.  Currently the
6766          * features are assumed to never change.
6767          */
6768         ret = rbd_dev_v2_features(rbd_dev);
6769         if (ret)
6770                 goto out_err;
6771
6772         /* If the image supports fancy striping, get its parameters */
6773
6774         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6775                 ret = rbd_dev_v2_striping_info(rbd_dev);
6776                 if (ret < 0)
6777                         goto out_err;
6778         }
6779
6780         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6781                 ret = rbd_dev_v2_data_pool(rbd_dev);
6782                 if (ret)
6783                         goto out_err;
6784         }
6785
6786         rbd_init_layout(rbd_dev);
6787         return 0;
6788
6789 out_err:
6790         rbd_dev->header.features = 0;
6791         kfree(rbd_dev->header.object_prefix);
6792         rbd_dev->header.object_prefix = NULL;
6793         return ret;
6794 }
6795
6796 /*
6797  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6798  * rbd_dev_image_probe() recursion depth, which means it's also the
6799  * length of the already discovered part of the parent chain.
6800  */
6801 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6802 {
6803         struct rbd_device *parent = NULL;
6804         int ret;
6805
6806         if (!rbd_dev->parent_spec)
6807                 return 0;
6808
6809         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6810                 pr_info("parent chain is too long (%d)\n", depth);
6811                 ret = -EINVAL;
6812                 goto out_err;
6813         }
6814
6815         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6816         if (!parent) {
6817                 ret = -ENOMEM;
6818                 goto out_err;
6819         }
6820
6821         /*
6822          * Images related by parent/child relationships always share
6823          * rbd_client and spec/parent_spec, so bump their refcounts.
6824          */
6825         __rbd_get_client(rbd_dev->rbd_client);
6826         rbd_spec_get(rbd_dev->parent_spec);
6827
6828         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6829
6830         ret = rbd_dev_image_probe(parent, depth);
6831         if (ret < 0)
6832                 goto out_err;
6833
6834         rbd_dev->parent = parent;
6835         atomic_set(&rbd_dev->parent_ref, 1);
6836         return 0;
6837
6838 out_err:
6839         rbd_dev_unparent(rbd_dev);
6840         rbd_dev_destroy(parent);
6841         return ret;
6842 }
6843
6844 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6845 {
6846         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6847         rbd_free_disk(rbd_dev);
6848         if (!single_major)
6849                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6850 }
6851
6852 /*
6853  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6854  * upon return.
6855  */
6856 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6857 {
6858         int ret;
6859
6860         /* Record our major and minor device numbers. */
6861
6862         if (!single_major) {
6863                 ret = register_blkdev(0, rbd_dev->name);
6864                 if (ret < 0)
6865                         goto err_out_unlock;
6866
6867                 rbd_dev->major = ret;
6868                 rbd_dev->minor = 0;
6869         } else {
6870                 rbd_dev->major = rbd_major;
6871                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6872         }
6873
6874         /* Set up the blkdev mapping. */
6875
6876         ret = rbd_init_disk(rbd_dev);
6877         if (ret)
6878                 goto err_out_blkdev;
6879
6880         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6881         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6882
6883         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6884         if (ret)
6885                 goto err_out_disk;
6886
6887         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6888         up_write(&rbd_dev->header_rwsem);
6889         return 0;
6890
6891 err_out_disk:
6892         rbd_free_disk(rbd_dev);
6893 err_out_blkdev:
6894         if (!single_major)
6895                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6896 err_out_unlock:
6897         up_write(&rbd_dev->header_rwsem);
6898         return ret;
6899 }
6900
6901 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6902 {
6903         struct rbd_spec *spec = rbd_dev->spec;
6904         int ret;
6905
6906         /* Record the header object name for this rbd image. */
6907
6908         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6909         if (rbd_dev->image_format == 1)
6910                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6911                                        spec->image_name, RBD_SUFFIX);
6912         else
6913                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6914                                        RBD_HEADER_PREFIX, spec->image_id);
6915
6916         return ret;
6917 }
6918
6919 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6920 {
6921         if (!is_snap) {
6922                 pr_info("image %s/%s%s%s does not exist\n",
6923                         rbd_dev->spec->pool_name,
6924                         rbd_dev->spec->pool_ns ?: "",
6925                         rbd_dev->spec->pool_ns ? "/" : "",
6926                         rbd_dev->spec->image_name);
6927         } else {
6928                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6929                         rbd_dev->spec->pool_name,
6930                         rbd_dev->spec->pool_ns ?: "",
6931                         rbd_dev->spec->pool_ns ? "/" : "",
6932                         rbd_dev->spec->image_name,
6933                         rbd_dev->spec->snap_name);
6934         }
6935 }
6936
6937 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6938 {
6939         if (!rbd_is_ro(rbd_dev))
6940                 rbd_unregister_watch(rbd_dev);
6941
6942         rbd_dev_unprobe(rbd_dev);
6943         rbd_dev->image_format = 0;
6944         kfree(rbd_dev->spec->image_id);
6945         rbd_dev->spec->image_id = NULL;
6946 }
6947
6948 /*
6949  * Probe for the existence of the header object for the given rbd
6950  * device.  If this image is the one being mapped (i.e., not a
6951  * parent), initiate a watch on its header object before using that
6952  * object to get detailed information about the rbd image.
6953  *
6954  * On success, returns with header_rwsem held for write if called
6955  * with @depth == 0.
6956  */
6957 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6958 {
6959         bool need_watch = !rbd_is_ro(rbd_dev);
6960         int ret;
6961
6962         /*
6963          * Get the id from the image id object.  Unless there's an
6964          * error, rbd_dev->spec->image_id will be filled in with
6965          * a dynamically-allocated string, and rbd_dev->image_format
6966          * will be set to either 1 or 2.
6967          */
6968         ret = rbd_dev_image_id(rbd_dev);
6969         if (ret)
6970                 return ret;
6971
6972         ret = rbd_dev_header_name(rbd_dev);
6973         if (ret)
6974                 goto err_out_format;
6975
6976         if (need_watch) {
6977                 ret = rbd_register_watch(rbd_dev);
6978                 if (ret) {
6979                         if (ret == -ENOENT)
6980                                 rbd_print_dne(rbd_dev, false);
6981                         goto err_out_format;
6982                 }
6983         }
6984
6985         if (!depth)
6986                 down_write(&rbd_dev->header_rwsem);
6987
6988         ret = rbd_dev_header_info(rbd_dev);
6989         if (ret) {
6990                 if (ret == -ENOENT && !need_watch)
6991                         rbd_print_dne(rbd_dev, false);
6992                 goto err_out_probe;
6993         }
6994
6995         /*
6996          * If this image is the one being mapped, we have pool name and
6997          * id, image name and id, and snap name - need to fill snap id.
6998          * Otherwise this is a parent image, identified by pool, image
6999          * and snap ids - need to fill in names for those ids.
7000          */
7001         if (!depth)
7002                 ret = rbd_spec_fill_snap_id(rbd_dev);
7003         else
7004                 ret = rbd_spec_fill_names(rbd_dev);
7005         if (ret) {
7006                 if (ret == -ENOENT)
7007                         rbd_print_dne(rbd_dev, true);
7008                 goto err_out_probe;
7009         }
7010
7011         ret = rbd_dev_mapping_set(rbd_dev);
7012         if (ret)
7013                 goto err_out_probe;
7014
7015         if (rbd_is_snap(rbd_dev) &&
7016             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7017                 ret = rbd_object_map_load(rbd_dev);
7018                 if (ret)
7019                         goto err_out_probe;
7020         }
7021
7022         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7023                 ret = rbd_dev_v2_parent_info(rbd_dev);
7024                 if (ret)
7025                         goto err_out_probe;
7026         }
7027
7028         ret = rbd_dev_probe_parent(rbd_dev, depth);
7029         if (ret)
7030                 goto err_out_probe;
7031
7032         dout("discovered format %u image, header name is %s\n",
7033                 rbd_dev->image_format, rbd_dev->header_oid.name);
7034         return 0;
7035
7036 err_out_probe:
7037         if (!depth)
7038                 up_write(&rbd_dev->header_rwsem);
7039         if (need_watch)
7040                 rbd_unregister_watch(rbd_dev);
7041         rbd_dev_unprobe(rbd_dev);
7042 err_out_format:
7043         rbd_dev->image_format = 0;
7044         kfree(rbd_dev->spec->image_id);
7045         rbd_dev->spec->image_id = NULL;
7046         return ret;
7047 }
7048
7049 static ssize_t do_rbd_add(struct bus_type *bus,
7050                           const char *buf,
7051                           size_t count)
7052 {
7053         struct rbd_device *rbd_dev = NULL;
7054         struct ceph_options *ceph_opts = NULL;
7055         struct rbd_options *rbd_opts = NULL;
7056         struct rbd_spec *spec = NULL;
7057         struct rbd_client *rbdc;
7058         int rc;
7059
7060         if (!try_module_get(THIS_MODULE))
7061                 return -ENODEV;
7062
7063         /* parse add command */
7064         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7065         if (rc < 0)
7066                 goto out;
7067
7068         rbdc = rbd_get_client(ceph_opts);
7069         if (IS_ERR(rbdc)) {
7070                 rc = PTR_ERR(rbdc);
7071                 goto err_out_args;
7072         }
7073
7074         /* pick the pool */
7075         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7076         if (rc < 0) {
7077                 if (rc == -ENOENT)
7078                         pr_info("pool %s does not exist\n", spec->pool_name);
7079                 goto err_out_client;
7080         }
7081         spec->pool_id = (u64)rc;
7082
7083         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7084         if (!rbd_dev) {
7085                 rc = -ENOMEM;
7086                 goto err_out_client;
7087         }
7088         rbdc = NULL;            /* rbd_dev now owns this */
7089         spec = NULL;            /* rbd_dev now owns this */
7090         rbd_opts = NULL;        /* rbd_dev now owns this */
7091
7092         /* if we are mapping a snapshot it will be a read-only mapping */
7093         if (rbd_dev->opts->read_only ||
7094             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7095                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7096
7097         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7098         if (!rbd_dev->config_info) {
7099                 rc = -ENOMEM;
7100                 goto err_out_rbd_dev;
7101         }
7102
7103         rc = rbd_dev_image_probe(rbd_dev, 0);
7104         if (rc < 0)
7105                 goto err_out_rbd_dev;
7106
7107         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7108                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7109                          rbd_dev->layout.object_size);
7110                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7111         }
7112
7113         rc = rbd_dev_device_setup(rbd_dev);
7114         if (rc)
7115                 goto err_out_image_probe;
7116
7117         rc = rbd_add_acquire_lock(rbd_dev);
7118         if (rc)
7119                 goto err_out_image_lock;
7120
7121         /* Everything's ready.  Announce the disk to the world. */
7122
7123         rc = device_add(&rbd_dev->dev);
7124         if (rc)
7125                 goto err_out_image_lock;
7126
7127         device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7128         /* see rbd_init_disk() */
7129         blk_put_queue(rbd_dev->disk->queue);
7130
7131         spin_lock(&rbd_dev_list_lock);
7132         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7133         spin_unlock(&rbd_dev_list_lock);
7134
7135         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7136                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7137                 rbd_dev->header.features);
7138         rc = count;
7139 out:
7140         module_put(THIS_MODULE);
7141         return rc;
7142
7143 err_out_image_lock:
7144         rbd_dev_image_unlock(rbd_dev);
7145         rbd_dev_device_release(rbd_dev);
7146 err_out_image_probe:
7147         rbd_dev_image_release(rbd_dev);
7148 err_out_rbd_dev:
7149         rbd_dev_destroy(rbd_dev);
7150 err_out_client:
7151         rbd_put_client(rbdc);
7152 err_out_args:
7153         rbd_spec_put(spec);
7154         kfree(rbd_opts);
7155         goto out;
7156 }
7157
7158 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7159 {
7160         if (single_major)
7161                 return -EINVAL;
7162
7163         return do_rbd_add(bus, buf, count);
7164 }
7165
7166 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7167                                       size_t count)
7168 {
7169         return do_rbd_add(bus, buf, count);
7170 }
7171
7172 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7173 {
7174         while (rbd_dev->parent) {
7175                 struct rbd_device *first = rbd_dev;
7176                 struct rbd_device *second = first->parent;
7177                 struct rbd_device *third;
7178
7179                 /*
7180                  * Follow to the parent with no grandparent and
7181                  * remove it.
7182                  */
7183                 while (second && (third = second->parent)) {
7184                         first = second;
7185                         second = third;
7186                 }
7187                 rbd_assert(second);
7188                 rbd_dev_image_release(second);
7189                 rbd_dev_destroy(second);
7190                 first->parent = NULL;
7191                 first->parent_overlap = 0;
7192
7193                 rbd_assert(first->parent_spec);
7194                 rbd_spec_put(first->parent_spec);
7195                 first->parent_spec = NULL;
7196         }
7197 }
7198
7199 static ssize_t do_rbd_remove(struct bus_type *bus,
7200                              const char *buf,
7201                              size_t count)
7202 {
7203         struct rbd_device *rbd_dev = NULL;
7204         struct list_head *tmp;
7205         int dev_id;
7206         char opt_buf[6];
7207         bool force = false;
7208         int ret;
7209
7210         dev_id = -1;
7211         opt_buf[0] = '\0';
7212         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7213         if (dev_id < 0) {
7214                 pr_err("dev_id out of range\n");
7215                 return -EINVAL;
7216         }
7217         if (opt_buf[0] != '\0') {
7218                 if (!strcmp(opt_buf, "force")) {
7219                         force = true;
7220                 } else {
7221                         pr_err("bad remove option at '%s'\n", opt_buf);
7222                         return -EINVAL;
7223                 }
7224         }
7225
7226         ret = -ENOENT;
7227         spin_lock(&rbd_dev_list_lock);
7228         list_for_each(tmp, &rbd_dev_list) {
7229                 rbd_dev = list_entry(tmp, struct rbd_device, node);
7230                 if (rbd_dev->dev_id == dev_id) {
7231                         ret = 0;
7232                         break;
7233                 }
7234         }
7235         if (!ret) {
7236                 spin_lock_irq(&rbd_dev->lock);
7237                 if (rbd_dev->open_count && !force)
7238                         ret = -EBUSY;
7239                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7240                                           &rbd_dev->flags))
7241                         ret = -EINPROGRESS;
7242                 spin_unlock_irq(&rbd_dev->lock);
7243         }
7244         spin_unlock(&rbd_dev_list_lock);
7245         if (ret)
7246                 return ret;
7247
7248         if (force) {
7249                 /*
7250                  * Prevent new IO from being queued and wait for existing
7251                  * IO to complete/fail.
7252                  */
7253                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7254                 blk_set_queue_dying(rbd_dev->disk->queue);
7255         }
7256
7257         del_gendisk(rbd_dev->disk);
7258         spin_lock(&rbd_dev_list_lock);
7259         list_del_init(&rbd_dev->node);
7260         spin_unlock(&rbd_dev_list_lock);
7261         device_del(&rbd_dev->dev);
7262
7263         rbd_dev_image_unlock(rbd_dev);
7264         rbd_dev_device_release(rbd_dev);
7265         rbd_dev_image_release(rbd_dev);
7266         rbd_dev_destroy(rbd_dev);
7267         return count;
7268 }
7269
7270 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7271 {
7272         if (single_major)
7273                 return -EINVAL;
7274
7275         return do_rbd_remove(bus, buf, count);
7276 }
7277
7278 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7279                                          size_t count)
7280 {
7281         return do_rbd_remove(bus, buf, count);
7282 }
7283
7284 /*
7285  * create control files in sysfs
7286  * /sys/bus/rbd/...
7287  */
7288 static int __init rbd_sysfs_init(void)
7289 {
7290         int ret;
7291
7292         ret = device_register(&rbd_root_dev);
7293         if (ret < 0)
7294                 return ret;
7295
7296         ret = bus_register(&rbd_bus_type);
7297         if (ret < 0)
7298                 device_unregister(&rbd_root_dev);
7299
7300         return ret;
7301 }
7302
7303 static void __exit rbd_sysfs_cleanup(void)
7304 {
7305         bus_unregister(&rbd_bus_type);
7306         device_unregister(&rbd_root_dev);
7307 }
7308
7309 static int __init rbd_slab_init(void)
7310 {
7311         rbd_assert(!rbd_img_request_cache);
7312         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7313         if (!rbd_img_request_cache)
7314                 return -ENOMEM;
7315
7316         rbd_assert(!rbd_obj_request_cache);
7317         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7318         if (!rbd_obj_request_cache)
7319                 goto out_err;
7320
7321         return 0;
7322
7323 out_err:
7324         kmem_cache_destroy(rbd_img_request_cache);
7325         rbd_img_request_cache = NULL;
7326         return -ENOMEM;
7327 }
7328
7329 static void rbd_slab_exit(void)
7330 {
7331         rbd_assert(rbd_obj_request_cache);
7332         kmem_cache_destroy(rbd_obj_request_cache);
7333         rbd_obj_request_cache = NULL;
7334
7335         rbd_assert(rbd_img_request_cache);
7336         kmem_cache_destroy(rbd_img_request_cache);
7337         rbd_img_request_cache = NULL;
7338 }
7339
7340 static int __init rbd_init(void)
7341 {
7342         int rc;
7343
7344         if (!libceph_compatible(NULL)) {
7345                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7346                 return -EINVAL;
7347         }
7348
7349         rc = rbd_slab_init();
7350         if (rc)
7351                 return rc;
7352
7353         /*
7354          * The number of active work items is limited by the number of
7355          * rbd devices * queue depth, so leave @max_active at default.
7356          */
7357         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7358         if (!rbd_wq) {
7359                 rc = -ENOMEM;
7360                 goto err_out_slab;
7361         }
7362
7363         if (single_major) {
7364                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7365                 if (rbd_major < 0) {
7366                         rc = rbd_major;
7367                         goto err_out_wq;
7368                 }
7369         }
7370
7371         rc = rbd_sysfs_init();
7372         if (rc)
7373                 goto err_out_blkdev;
7374
7375         if (single_major)
7376                 pr_info("loaded (major %d)\n", rbd_major);
7377         else
7378                 pr_info("loaded\n");
7379
7380         return 0;
7381
7382 err_out_blkdev:
7383         if (single_major)
7384                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7385 err_out_wq:
7386         destroy_workqueue(rbd_wq);
7387 err_out_slab:
7388         rbd_slab_exit();
7389         return rc;
7390 }
7391
7392 static void __exit rbd_exit(void)
7393 {
7394         ida_destroy(&rbd_dev_id_ida);
7395         rbd_sysfs_cleanup();
7396         if (single_major)
7397                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7398         destroy_workqueue(rbd_wq);
7399         rbd_slab_exit();
7400 }
7401
7402 module_init(rbd_init);
7403 module_exit(rbd_exit);
7404
7405 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7406 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7407 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7408 /* following authorship retained from original osdblk.c */
7409 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7410
7411 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7412 MODULE_LICENSE("GPL");