null_blk: Allow controlling max_hw_sectors limit
[linux-2.6-microblaze.git] / drivers / block / null_blk_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
15 #define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
16 #define SECTOR_MASK             (PAGE_SECTORS - 1)
17
18 #define FREE_BATCH              16
19
20 #define TICKS_PER_SEC           50ULL
21 #define TIMER_INTERVAL          (NSEC_PER_SEC / TICKS_PER_SEC)
22
23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24 static DECLARE_FAULT_ATTR(null_timeout_attr);
25 static DECLARE_FAULT_ATTR(null_requeue_attr);
26 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
27 #endif
28
29 static inline u64 mb_per_tick(int mbps)
30 {
31         return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
32 }
33
34 /*
35  * Status flags for nullb_device.
36  *
37  * CONFIGURED:  Device has been configured and turned on. Cannot reconfigure.
38  * UP:          Device is currently on and visible in userspace.
39  * THROTTLED:   Device is being throttled.
40  * CACHE:       Device is using a write-back cache.
41  */
42 enum nullb_device_flags {
43         NULLB_DEV_FL_CONFIGURED = 0,
44         NULLB_DEV_FL_UP         = 1,
45         NULLB_DEV_FL_THROTTLED  = 2,
46         NULLB_DEV_FL_CACHE      = 3,
47 };
48
49 #define MAP_SZ          ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
50 /*
51  * nullb_page is a page in memory for nullb devices.
52  *
53  * @page:       The page holding the data.
54  * @bitmap:     The bitmap represents which sector in the page has data.
55  *              Each bit represents one block size. For example, sector 8
56  *              will use the 7th bit
57  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
58  * page is being flushing to storage. FREE means the cache page is freed and
59  * should be skipped from flushing to storage. Please see
60  * null_make_cache_space
61  */
62 struct nullb_page {
63         struct page *page;
64         DECLARE_BITMAP(bitmap, MAP_SZ);
65 };
66 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
67 #define NULLB_PAGE_FREE (MAP_SZ - 2)
68
69 static LIST_HEAD(nullb_list);
70 static struct mutex lock;
71 static int null_major;
72 static DEFINE_IDA(nullb_indexes);
73 static struct blk_mq_tag_set tag_set;
74
75 enum {
76         NULL_IRQ_NONE           = 0,
77         NULL_IRQ_SOFTIRQ        = 1,
78         NULL_IRQ_TIMER          = 2,
79 };
80
81 enum {
82         NULL_Q_BIO              = 0,
83         NULL_Q_RQ               = 1,
84         NULL_Q_MQ               = 2,
85 };
86
87 static int g_no_sched;
88 module_param_named(no_sched, g_no_sched, int, 0444);
89 MODULE_PARM_DESC(no_sched, "No io scheduler");
90
91 static int g_submit_queues = 1;
92 module_param_named(submit_queues, g_submit_queues, int, 0444);
93 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
94
95 static int g_home_node = NUMA_NO_NODE;
96 module_param_named(home_node, g_home_node, int, 0444);
97 MODULE_PARM_DESC(home_node, "Home node for the device");
98
99 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
100 /*
101  * For more details about fault injection, please refer to
102  * Documentation/fault-injection/fault-injection.rst.
103  */
104 static char g_timeout_str[80];
105 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
106 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
107
108 static char g_requeue_str[80];
109 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
110 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
111
112 static char g_init_hctx_str[80];
113 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
114 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
115 #endif
116
117 static int g_queue_mode = NULL_Q_MQ;
118
119 static int null_param_store_val(const char *str, int *val, int min, int max)
120 {
121         int ret, new_val;
122
123         ret = kstrtoint(str, 10, &new_val);
124         if (ret)
125                 return -EINVAL;
126
127         if (new_val < min || new_val > max)
128                 return -EINVAL;
129
130         *val = new_val;
131         return 0;
132 }
133
134 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
135 {
136         return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
137 }
138
139 static const struct kernel_param_ops null_queue_mode_param_ops = {
140         .set    = null_set_queue_mode,
141         .get    = param_get_int,
142 };
143
144 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
145 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
146
147 static int g_gb = 250;
148 module_param_named(gb, g_gb, int, 0444);
149 MODULE_PARM_DESC(gb, "Size in GB");
150
151 static int g_bs = 512;
152 module_param_named(bs, g_bs, int, 0444);
153 MODULE_PARM_DESC(bs, "Block size (in bytes)");
154
155 static int g_max_sectors;
156 module_param_named(max_sectors, g_max_sectors, int, 0444);
157 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
158
159 static unsigned int nr_devices = 1;
160 module_param(nr_devices, uint, 0444);
161 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
162
163 static bool g_blocking;
164 module_param_named(blocking, g_blocking, bool, 0444);
165 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
166
167 static bool shared_tags;
168 module_param(shared_tags, bool, 0444);
169 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
170
171 static bool g_shared_tag_bitmap;
172 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
173 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
174
175 static int g_irqmode = NULL_IRQ_SOFTIRQ;
176
177 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
178 {
179         return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
180                                         NULL_IRQ_TIMER);
181 }
182
183 static const struct kernel_param_ops null_irqmode_param_ops = {
184         .set    = null_set_irqmode,
185         .get    = param_get_int,
186 };
187
188 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
189 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
190
191 static unsigned long g_completion_nsec = 10000;
192 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
193 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
194
195 static int g_hw_queue_depth = 64;
196 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
197 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
198
199 static bool g_use_per_node_hctx;
200 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
201 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
202
203 static bool g_zoned;
204 module_param_named(zoned, g_zoned, bool, S_IRUGO);
205 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
206
207 static unsigned long g_zone_size = 256;
208 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
209 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
210
211 static unsigned long g_zone_capacity;
212 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
213 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
214
215 static unsigned int g_zone_nr_conv;
216 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
217 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
218
219 static unsigned int g_zone_max_open;
220 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
221 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
222
223 static unsigned int g_zone_max_active;
224 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
225 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
226
227 static struct nullb_device *null_alloc_dev(void);
228 static void null_free_dev(struct nullb_device *dev);
229 static void null_del_dev(struct nullb *nullb);
230 static int null_add_dev(struct nullb_device *dev);
231 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
232
233 static inline struct nullb_device *to_nullb_device(struct config_item *item)
234 {
235         return item ? container_of(item, struct nullb_device, item) : NULL;
236 }
237
238 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
239 {
240         return snprintf(page, PAGE_SIZE, "%u\n", val);
241 }
242
243 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
244         char *page)
245 {
246         return snprintf(page, PAGE_SIZE, "%lu\n", val);
247 }
248
249 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
250 {
251         return snprintf(page, PAGE_SIZE, "%u\n", val);
252 }
253
254 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
255         const char *page, size_t count)
256 {
257         unsigned int tmp;
258         int result;
259
260         result = kstrtouint(page, 0, &tmp);
261         if (result < 0)
262                 return result;
263
264         *val = tmp;
265         return count;
266 }
267
268 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
269         const char *page, size_t count)
270 {
271         int result;
272         unsigned long tmp;
273
274         result = kstrtoul(page, 0, &tmp);
275         if (result < 0)
276                 return result;
277
278         *val = tmp;
279         return count;
280 }
281
282 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
283         size_t count)
284 {
285         bool tmp;
286         int result;
287
288         result = kstrtobool(page,  &tmp);
289         if (result < 0)
290                 return result;
291
292         *val = tmp;
293         return count;
294 }
295
296 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
297 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)                            \
298 static ssize_t                                                          \
299 nullb_device_##NAME##_show(struct config_item *item, char *page)        \
300 {                                                                       \
301         return nullb_device_##TYPE##_attr_show(                         \
302                                 to_nullb_device(item)->NAME, page);     \
303 }                                                                       \
304 static ssize_t                                                          \
305 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
306                             size_t count)                               \
307 {                                                                       \
308         int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
309         struct nullb_device *dev = to_nullb_device(item);               \
310         TYPE new_value = 0;                                             \
311         int ret;                                                        \
312                                                                         \
313         ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
314         if (ret < 0)                                                    \
315                 return ret;                                             \
316         if (apply_fn)                                                   \
317                 ret = apply_fn(dev, new_value);                         \
318         else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags))        \
319                 ret = -EBUSY;                                           \
320         if (ret < 0)                                                    \
321                 return ret;                                             \
322         dev->NAME = new_value;                                          \
323         return count;                                                   \
324 }                                                                       \
325 CONFIGFS_ATTR(nullb_device_, NAME);
326
327 static int nullb_apply_submit_queues(struct nullb_device *dev,
328                                      unsigned int submit_queues)
329 {
330         struct nullb *nullb = dev->nullb;
331         struct blk_mq_tag_set *set;
332
333         if (!nullb)
334                 return 0;
335
336         /*
337          * Make sure that null_init_hctx() does not access nullb->queues[] past
338          * the end of that array.
339          */
340         if (submit_queues > nr_cpu_ids)
341                 return -EINVAL;
342         set = nullb->tag_set;
343         blk_mq_update_nr_hw_queues(set, submit_queues);
344         return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
345 }
346
347 NULLB_DEVICE_ATTR(size, ulong, NULL);
348 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
349 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
350 NULLB_DEVICE_ATTR(home_node, uint, NULL);
351 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
352 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
353 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
354 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
355 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
356 NULLB_DEVICE_ATTR(index, uint, NULL);
357 NULLB_DEVICE_ATTR(blocking, bool, NULL);
358 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
359 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
360 NULLB_DEVICE_ATTR(discard, bool, NULL);
361 NULLB_DEVICE_ATTR(mbps, uint, NULL);
362 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
363 NULLB_DEVICE_ATTR(zoned, bool, NULL);
364 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
365 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
366 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
367 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
368 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
369
370 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
371 {
372         return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
373 }
374
375 static ssize_t nullb_device_power_store(struct config_item *item,
376                                      const char *page, size_t count)
377 {
378         struct nullb_device *dev = to_nullb_device(item);
379         bool newp = false;
380         ssize_t ret;
381
382         ret = nullb_device_bool_attr_store(&newp, page, count);
383         if (ret < 0)
384                 return ret;
385
386         if (!dev->power && newp) {
387                 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
388                         return count;
389                 if (null_add_dev(dev)) {
390                         clear_bit(NULLB_DEV_FL_UP, &dev->flags);
391                         return -ENOMEM;
392                 }
393
394                 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
395                 dev->power = newp;
396         } else if (dev->power && !newp) {
397                 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
398                         mutex_lock(&lock);
399                         dev->power = newp;
400                         null_del_dev(dev->nullb);
401                         mutex_unlock(&lock);
402                 }
403                 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
404         }
405
406         return count;
407 }
408
409 CONFIGFS_ATTR(nullb_device_, power);
410
411 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
412 {
413         struct nullb_device *t_dev = to_nullb_device(item);
414
415         return badblocks_show(&t_dev->badblocks, page, 0);
416 }
417
418 static ssize_t nullb_device_badblocks_store(struct config_item *item,
419                                      const char *page, size_t count)
420 {
421         struct nullb_device *t_dev = to_nullb_device(item);
422         char *orig, *buf, *tmp;
423         u64 start, end;
424         int ret;
425
426         orig = kstrndup(page, count, GFP_KERNEL);
427         if (!orig)
428                 return -ENOMEM;
429
430         buf = strstrip(orig);
431
432         ret = -EINVAL;
433         if (buf[0] != '+' && buf[0] != '-')
434                 goto out;
435         tmp = strchr(&buf[1], '-');
436         if (!tmp)
437                 goto out;
438         *tmp = '\0';
439         ret = kstrtoull(buf + 1, 0, &start);
440         if (ret)
441                 goto out;
442         ret = kstrtoull(tmp + 1, 0, &end);
443         if (ret)
444                 goto out;
445         ret = -EINVAL;
446         if (start > end)
447                 goto out;
448         /* enable badblocks */
449         cmpxchg(&t_dev->badblocks.shift, -1, 0);
450         if (buf[0] == '+')
451                 ret = badblocks_set(&t_dev->badblocks, start,
452                         end - start + 1, 1);
453         else
454                 ret = badblocks_clear(&t_dev->badblocks, start,
455                         end - start + 1);
456         if (ret == 0)
457                 ret = count;
458 out:
459         kfree(orig);
460         return ret;
461 }
462 CONFIGFS_ATTR(nullb_device_, badblocks);
463
464 static struct configfs_attribute *nullb_device_attrs[] = {
465         &nullb_device_attr_size,
466         &nullb_device_attr_completion_nsec,
467         &nullb_device_attr_submit_queues,
468         &nullb_device_attr_home_node,
469         &nullb_device_attr_queue_mode,
470         &nullb_device_attr_blocksize,
471         &nullb_device_attr_max_sectors,
472         &nullb_device_attr_irqmode,
473         &nullb_device_attr_hw_queue_depth,
474         &nullb_device_attr_index,
475         &nullb_device_attr_blocking,
476         &nullb_device_attr_use_per_node_hctx,
477         &nullb_device_attr_power,
478         &nullb_device_attr_memory_backed,
479         &nullb_device_attr_discard,
480         &nullb_device_attr_mbps,
481         &nullb_device_attr_cache_size,
482         &nullb_device_attr_badblocks,
483         &nullb_device_attr_zoned,
484         &nullb_device_attr_zone_size,
485         &nullb_device_attr_zone_capacity,
486         &nullb_device_attr_zone_nr_conv,
487         &nullb_device_attr_zone_max_open,
488         &nullb_device_attr_zone_max_active,
489         NULL,
490 };
491
492 static void nullb_device_release(struct config_item *item)
493 {
494         struct nullb_device *dev = to_nullb_device(item);
495
496         null_free_device_storage(dev, false);
497         null_free_dev(dev);
498 }
499
500 static struct configfs_item_operations nullb_device_ops = {
501         .release        = nullb_device_release,
502 };
503
504 static const struct config_item_type nullb_device_type = {
505         .ct_item_ops    = &nullb_device_ops,
506         .ct_attrs       = nullb_device_attrs,
507         .ct_owner       = THIS_MODULE,
508 };
509
510 static struct
511 config_item *nullb_group_make_item(struct config_group *group, const char *name)
512 {
513         struct nullb_device *dev;
514
515         dev = null_alloc_dev();
516         if (!dev)
517                 return ERR_PTR(-ENOMEM);
518
519         config_item_init_type_name(&dev->item, name, &nullb_device_type);
520
521         return &dev->item;
522 }
523
524 static void
525 nullb_group_drop_item(struct config_group *group, struct config_item *item)
526 {
527         struct nullb_device *dev = to_nullb_device(item);
528
529         if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
530                 mutex_lock(&lock);
531                 dev->power = false;
532                 null_del_dev(dev->nullb);
533                 mutex_unlock(&lock);
534         }
535
536         config_item_put(item);
537 }
538
539 static ssize_t memb_group_features_show(struct config_item *item, char *page)
540 {
541         return snprintf(page, PAGE_SIZE,
542                         "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors\n");
543 }
544
545 CONFIGFS_ATTR_RO(memb_group_, features);
546
547 static struct configfs_attribute *nullb_group_attrs[] = {
548         &memb_group_attr_features,
549         NULL,
550 };
551
552 static struct configfs_group_operations nullb_group_ops = {
553         .make_item      = nullb_group_make_item,
554         .drop_item      = nullb_group_drop_item,
555 };
556
557 static const struct config_item_type nullb_group_type = {
558         .ct_group_ops   = &nullb_group_ops,
559         .ct_attrs       = nullb_group_attrs,
560         .ct_owner       = THIS_MODULE,
561 };
562
563 static struct configfs_subsystem nullb_subsys = {
564         .su_group = {
565                 .cg_item = {
566                         .ci_namebuf = "nullb",
567                         .ci_type = &nullb_group_type,
568                 },
569         },
570 };
571
572 static inline int null_cache_active(struct nullb *nullb)
573 {
574         return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
575 }
576
577 static struct nullb_device *null_alloc_dev(void)
578 {
579         struct nullb_device *dev;
580
581         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
582         if (!dev)
583                 return NULL;
584         INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
585         INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
586         if (badblocks_init(&dev->badblocks, 0)) {
587                 kfree(dev);
588                 return NULL;
589         }
590
591         dev->size = g_gb * 1024;
592         dev->completion_nsec = g_completion_nsec;
593         dev->submit_queues = g_submit_queues;
594         dev->home_node = g_home_node;
595         dev->queue_mode = g_queue_mode;
596         dev->blocksize = g_bs;
597         dev->max_sectors = g_max_sectors;
598         dev->irqmode = g_irqmode;
599         dev->hw_queue_depth = g_hw_queue_depth;
600         dev->blocking = g_blocking;
601         dev->use_per_node_hctx = g_use_per_node_hctx;
602         dev->zoned = g_zoned;
603         dev->zone_size = g_zone_size;
604         dev->zone_capacity = g_zone_capacity;
605         dev->zone_nr_conv = g_zone_nr_conv;
606         dev->zone_max_open = g_zone_max_open;
607         dev->zone_max_active = g_zone_max_active;
608         return dev;
609 }
610
611 static void null_free_dev(struct nullb_device *dev)
612 {
613         if (!dev)
614                 return;
615
616         null_free_zoned_dev(dev);
617         badblocks_exit(&dev->badblocks);
618         kfree(dev);
619 }
620
621 static void put_tag(struct nullb_queue *nq, unsigned int tag)
622 {
623         clear_bit_unlock(tag, nq->tag_map);
624
625         if (waitqueue_active(&nq->wait))
626                 wake_up(&nq->wait);
627 }
628
629 static unsigned int get_tag(struct nullb_queue *nq)
630 {
631         unsigned int tag;
632
633         do {
634                 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
635                 if (tag >= nq->queue_depth)
636                         return -1U;
637         } while (test_and_set_bit_lock(tag, nq->tag_map));
638
639         return tag;
640 }
641
642 static void free_cmd(struct nullb_cmd *cmd)
643 {
644         put_tag(cmd->nq, cmd->tag);
645 }
646
647 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
648
649 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
650 {
651         struct nullb_cmd *cmd;
652         unsigned int tag;
653
654         tag = get_tag(nq);
655         if (tag != -1U) {
656                 cmd = &nq->cmds[tag];
657                 cmd->tag = tag;
658                 cmd->error = BLK_STS_OK;
659                 cmd->nq = nq;
660                 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
661                         hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
662                                      HRTIMER_MODE_REL);
663                         cmd->timer.function = null_cmd_timer_expired;
664                 }
665                 return cmd;
666         }
667
668         return NULL;
669 }
670
671 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
672 {
673         struct nullb_cmd *cmd;
674         DEFINE_WAIT(wait);
675
676         cmd = __alloc_cmd(nq);
677         if (cmd || !can_wait)
678                 return cmd;
679
680         do {
681                 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
682                 cmd = __alloc_cmd(nq);
683                 if (cmd)
684                         break;
685
686                 io_schedule();
687         } while (1);
688
689         finish_wait(&nq->wait, &wait);
690         return cmd;
691 }
692
693 static void end_cmd(struct nullb_cmd *cmd)
694 {
695         int queue_mode = cmd->nq->dev->queue_mode;
696
697         switch (queue_mode)  {
698         case NULL_Q_MQ:
699                 blk_mq_end_request(cmd->rq, cmd->error);
700                 return;
701         case NULL_Q_BIO:
702                 cmd->bio->bi_status = cmd->error;
703                 bio_endio(cmd->bio);
704                 break;
705         }
706
707         free_cmd(cmd);
708 }
709
710 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
711 {
712         end_cmd(container_of(timer, struct nullb_cmd, timer));
713
714         return HRTIMER_NORESTART;
715 }
716
717 static void null_cmd_end_timer(struct nullb_cmd *cmd)
718 {
719         ktime_t kt = cmd->nq->dev->completion_nsec;
720
721         hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
722 }
723
724 static void null_complete_rq(struct request *rq)
725 {
726         end_cmd(blk_mq_rq_to_pdu(rq));
727 }
728
729 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
730 {
731         struct nullb_page *t_page;
732
733         t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
734         if (!t_page)
735                 goto out;
736
737         t_page->page = alloc_pages(gfp_flags, 0);
738         if (!t_page->page)
739                 goto out_freepage;
740
741         memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
742         return t_page;
743 out_freepage:
744         kfree(t_page);
745 out:
746         return NULL;
747 }
748
749 static void null_free_page(struct nullb_page *t_page)
750 {
751         __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
752         if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
753                 return;
754         __free_page(t_page->page);
755         kfree(t_page);
756 }
757
758 static bool null_page_empty(struct nullb_page *page)
759 {
760         int size = MAP_SZ - 2;
761
762         return find_first_bit(page->bitmap, size) == size;
763 }
764
765 static void null_free_sector(struct nullb *nullb, sector_t sector,
766         bool is_cache)
767 {
768         unsigned int sector_bit;
769         u64 idx;
770         struct nullb_page *t_page, *ret;
771         struct radix_tree_root *root;
772
773         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
774         idx = sector >> PAGE_SECTORS_SHIFT;
775         sector_bit = (sector & SECTOR_MASK);
776
777         t_page = radix_tree_lookup(root, idx);
778         if (t_page) {
779                 __clear_bit(sector_bit, t_page->bitmap);
780
781                 if (null_page_empty(t_page)) {
782                         ret = radix_tree_delete_item(root, idx, t_page);
783                         WARN_ON(ret != t_page);
784                         null_free_page(ret);
785                         if (is_cache)
786                                 nullb->dev->curr_cache -= PAGE_SIZE;
787                 }
788         }
789 }
790
791 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
792         struct nullb_page *t_page, bool is_cache)
793 {
794         struct radix_tree_root *root;
795
796         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
797
798         if (radix_tree_insert(root, idx, t_page)) {
799                 null_free_page(t_page);
800                 t_page = radix_tree_lookup(root, idx);
801                 WARN_ON(!t_page || t_page->page->index != idx);
802         } else if (is_cache)
803                 nullb->dev->curr_cache += PAGE_SIZE;
804
805         return t_page;
806 }
807
808 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
809 {
810         unsigned long pos = 0;
811         int nr_pages;
812         struct nullb_page *ret, *t_pages[FREE_BATCH];
813         struct radix_tree_root *root;
814
815         root = is_cache ? &dev->cache : &dev->data;
816
817         do {
818                 int i;
819
820                 nr_pages = radix_tree_gang_lookup(root,
821                                 (void **)t_pages, pos, FREE_BATCH);
822
823                 for (i = 0; i < nr_pages; i++) {
824                         pos = t_pages[i]->page->index;
825                         ret = radix_tree_delete_item(root, pos, t_pages[i]);
826                         WARN_ON(ret != t_pages[i]);
827                         null_free_page(ret);
828                 }
829
830                 pos++;
831         } while (nr_pages == FREE_BATCH);
832
833         if (is_cache)
834                 dev->curr_cache = 0;
835 }
836
837 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
838         sector_t sector, bool for_write, bool is_cache)
839 {
840         unsigned int sector_bit;
841         u64 idx;
842         struct nullb_page *t_page;
843         struct radix_tree_root *root;
844
845         idx = sector >> PAGE_SECTORS_SHIFT;
846         sector_bit = (sector & SECTOR_MASK);
847
848         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
849         t_page = radix_tree_lookup(root, idx);
850         WARN_ON(t_page && t_page->page->index != idx);
851
852         if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
853                 return t_page;
854
855         return NULL;
856 }
857
858 static struct nullb_page *null_lookup_page(struct nullb *nullb,
859         sector_t sector, bool for_write, bool ignore_cache)
860 {
861         struct nullb_page *page = NULL;
862
863         if (!ignore_cache)
864                 page = __null_lookup_page(nullb, sector, for_write, true);
865         if (page)
866                 return page;
867         return __null_lookup_page(nullb, sector, for_write, false);
868 }
869
870 static struct nullb_page *null_insert_page(struct nullb *nullb,
871                                            sector_t sector, bool ignore_cache)
872         __releases(&nullb->lock)
873         __acquires(&nullb->lock)
874 {
875         u64 idx;
876         struct nullb_page *t_page;
877
878         t_page = null_lookup_page(nullb, sector, true, ignore_cache);
879         if (t_page)
880                 return t_page;
881
882         spin_unlock_irq(&nullb->lock);
883
884         t_page = null_alloc_page(GFP_NOIO);
885         if (!t_page)
886                 goto out_lock;
887
888         if (radix_tree_preload(GFP_NOIO))
889                 goto out_freepage;
890
891         spin_lock_irq(&nullb->lock);
892         idx = sector >> PAGE_SECTORS_SHIFT;
893         t_page->page->index = idx;
894         t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
895         radix_tree_preload_end();
896
897         return t_page;
898 out_freepage:
899         null_free_page(t_page);
900 out_lock:
901         spin_lock_irq(&nullb->lock);
902         return null_lookup_page(nullb, sector, true, ignore_cache);
903 }
904
905 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
906 {
907         int i;
908         unsigned int offset;
909         u64 idx;
910         struct nullb_page *t_page, *ret;
911         void *dst, *src;
912
913         idx = c_page->page->index;
914
915         t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
916
917         __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
918         if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
919                 null_free_page(c_page);
920                 if (t_page && null_page_empty(t_page)) {
921                         ret = radix_tree_delete_item(&nullb->dev->data,
922                                 idx, t_page);
923                         null_free_page(t_page);
924                 }
925                 return 0;
926         }
927
928         if (!t_page)
929                 return -ENOMEM;
930
931         src = kmap_atomic(c_page->page);
932         dst = kmap_atomic(t_page->page);
933
934         for (i = 0; i < PAGE_SECTORS;
935                         i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
936                 if (test_bit(i, c_page->bitmap)) {
937                         offset = (i << SECTOR_SHIFT);
938                         memcpy(dst + offset, src + offset,
939                                 nullb->dev->blocksize);
940                         __set_bit(i, t_page->bitmap);
941                 }
942         }
943
944         kunmap_atomic(dst);
945         kunmap_atomic(src);
946
947         ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
948         null_free_page(ret);
949         nullb->dev->curr_cache -= PAGE_SIZE;
950
951         return 0;
952 }
953
954 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
955 {
956         int i, err, nr_pages;
957         struct nullb_page *c_pages[FREE_BATCH];
958         unsigned long flushed = 0, one_round;
959
960 again:
961         if ((nullb->dev->cache_size * 1024 * 1024) >
962              nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
963                 return 0;
964
965         nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
966                         (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
967         /*
968          * nullb_flush_cache_page could unlock before using the c_pages. To
969          * avoid race, we don't allow page free
970          */
971         for (i = 0; i < nr_pages; i++) {
972                 nullb->cache_flush_pos = c_pages[i]->page->index;
973                 /*
974                  * We found the page which is being flushed to disk by other
975                  * threads
976                  */
977                 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
978                         c_pages[i] = NULL;
979                 else
980                         __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
981         }
982
983         one_round = 0;
984         for (i = 0; i < nr_pages; i++) {
985                 if (c_pages[i] == NULL)
986                         continue;
987                 err = null_flush_cache_page(nullb, c_pages[i]);
988                 if (err)
989                         return err;
990                 one_round++;
991         }
992         flushed += one_round << PAGE_SHIFT;
993
994         if (n > flushed) {
995                 if (nr_pages == 0)
996                         nullb->cache_flush_pos = 0;
997                 if (one_round == 0) {
998                         /* give other threads a chance */
999                         spin_unlock_irq(&nullb->lock);
1000                         spin_lock_irq(&nullb->lock);
1001                 }
1002                 goto again;
1003         }
1004         return 0;
1005 }
1006
1007 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1008         unsigned int off, sector_t sector, size_t n, bool is_fua)
1009 {
1010         size_t temp, count = 0;
1011         unsigned int offset;
1012         struct nullb_page *t_page;
1013         void *dst, *src;
1014
1015         while (count < n) {
1016                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1017
1018                 if (null_cache_active(nullb) && !is_fua)
1019                         null_make_cache_space(nullb, PAGE_SIZE);
1020
1021                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1022                 t_page = null_insert_page(nullb, sector,
1023                         !null_cache_active(nullb) || is_fua);
1024                 if (!t_page)
1025                         return -ENOSPC;
1026
1027                 src = kmap_atomic(source);
1028                 dst = kmap_atomic(t_page->page);
1029                 memcpy(dst + offset, src + off + count, temp);
1030                 kunmap_atomic(dst);
1031                 kunmap_atomic(src);
1032
1033                 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1034
1035                 if (is_fua)
1036                         null_free_sector(nullb, sector, true);
1037
1038                 count += temp;
1039                 sector += temp >> SECTOR_SHIFT;
1040         }
1041         return 0;
1042 }
1043
1044 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1045         unsigned int off, sector_t sector, size_t n)
1046 {
1047         size_t temp, count = 0;
1048         unsigned int offset;
1049         struct nullb_page *t_page;
1050         void *dst, *src;
1051
1052         while (count < n) {
1053                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1054
1055                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1056                 t_page = null_lookup_page(nullb, sector, false,
1057                         !null_cache_active(nullb));
1058
1059                 dst = kmap_atomic(dest);
1060                 if (!t_page) {
1061                         memset(dst + off + count, 0, temp);
1062                         goto next;
1063                 }
1064                 src = kmap_atomic(t_page->page);
1065                 memcpy(dst + off + count, src + offset, temp);
1066                 kunmap_atomic(src);
1067 next:
1068                 kunmap_atomic(dst);
1069
1070                 count += temp;
1071                 sector += temp >> SECTOR_SHIFT;
1072         }
1073         return 0;
1074 }
1075
1076 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1077                                unsigned int len, unsigned int off)
1078 {
1079         void *dst;
1080
1081         dst = kmap_atomic(page);
1082         memset(dst + off, 0xFF, len);
1083         kunmap_atomic(dst);
1084 }
1085
1086 blk_status_t null_handle_discard(struct nullb_device *dev,
1087                                  sector_t sector, sector_t nr_sectors)
1088 {
1089         struct nullb *nullb = dev->nullb;
1090         size_t n = nr_sectors << SECTOR_SHIFT;
1091         size_t temp;
1092
1093         spin_lock_irq(&nullb->lock);
1094         while (n > 0) {
1095                 temp = min_t(size_t, n, dev->blocksize);
1096                 null_free_sector(nullb, sector, false);
1097                 if (null_cache_active(nullb))
1098                         null_free_sector(nullb, sector, true);
1099                 sector += temp >> SECTOR_SHIFT;
1100                 n -= temp;
1101         }
1102         spin_unlock_irq(&nullb->lock);
1103
1104         return BLK_STS_OK;
1105 }
1106
1107 static int null_handle_flush(struct nullb *nullb)
1108 {
1109         int err;
1110
1111         if (!null_cache_active(nullb))
1112                 return 0;
1113
1114         spin_lock_irq(&nullb->lock);
1115         while (true) {
1116                 err = null_make_cache_space(nullb,
1117                         nullb->dev->cache_size * 1024 * 1024);
1118                 if (err || nullb->dev->curr_cache == 0)
1119                         break;
1120         }
1121
1122         WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1123         spin_unlock_irq(&nullb->lock);
1124         return err;
1125 }
1126
1127 static int null_transfer(struct nullb *nullb, struct page *page,
1128         unsigned int len, unsigned int off, bool is_write, sector_t sector,
1129         bool is_fua)
1130 {
1131         struct nullb_device *dev = nullb->dev;
1132         unsigned int valid_len = len;
1133         int err = 0;
1134
1135         if (!is_write) {
1136                 if (dev->zoned)
1137                         valid_len = null_zone_valid_read_len(nullb,
1138                                 sector, len);
1139
1140                 if (valid_len) {
1141                         err = copy_from_nullb(nullb, page, off,
1142                                 sector, valid_len);
1143                         off += valid_len;
1144                         len -= valid_len;
1145                 }
1146
1147                 if (len)
1148                         nullb_fill_pattern(nullb, page, len, off);
1149                 flush_dcache_page(page);
1150         } else {
1151                 flush_dcache_page(page);
1152                 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1153         }
1154
1155         return err;
1156 }
1157
1158 static int null_handle_rq(struct nullb_cmd *cmd)
1159 {
1160         struct request *rq = cmd->rq;
1161         struct nullb *nullb = cmd->nq->dev->nullb;
1162         int err;
1163         unsigned int len;
1164         sector_t sector = blk_rq_pos(rq);
1165         struct req_iterator iter;
1166         struct bio_vec bvec;
1167
1168         spin_lock_irq(&nullb->lock);
1169         rq_for_each_segment(bvec, rq, iter) {
1170                 len = bvec.bv_len;
1171                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1172                                      op_is_write(req_op(rq)), sector,
1173                                      rq->cmd_flags & REQ_FUA);
1174                 if (err) {
1175                         spin_unlock_irq(&nullb->lock);
1176                         return err;
1177                 }
1178                 sector += len >> SECTOR_SHIFT;
1179         }
1180         spin_unlock_irq(&nullb->lock);
1181
1182         return 0;
1183 }
1184
1185 static int null_handle_bio(struct nullb_cmd *cmd)
1186 {
1187         struct bio *bio = cmd->bio;
1188         struct nullb *nullb = cmd->nq->dev->nullb;
1189         int err;
1190         unsigned int len;
1191         sector_t sector = bio->bi_iter.bi_sector;
1192         struct bio_vec bvec;
1193         struct bvec_iter iter;
1194
1195         spin_lock_irq(&nullb->lock);
1196         bio_for_each_segment(bvec, bio, iter) {
1197                 len = bvec.bv_len;
1198                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1199                                      op_is_write(bio_op(bio)), sector,
1200                                      bio->bi_opf & REQ_FUA);
1201                 if (err) {
1202                         spin_unlock_irq(&nullb->lock);
1203                         return err;
1204                 }
1205                 sector += len >> SECTOR_SHIFT;
1206         }
1207         spin_unlock_irq(&nullb->lock);
1208         return 0;
1209 }
1210
1211 static void null_stop_queue(struct nullb *nullb)
1212 {
1213         struct request_queue *q = nullb->q;
1214
1215         if (nullb->dev->queue_mode == NULL_Q_MQ)
1216                 blk_mq_stop_hw_queues(q);
1217 }
1218
1219 static void null_restart_queue_async(struct nullb *nullb)
1220 {
1221         struct request_queue *q = nullb->q;
1222
1223         if (nullb->dev->queue_mode == NULL_Q_MQ)
1224                 blk_mq_start_stopped_hw_queues(q, true);
1225 }
1226
1227 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1228 {
1229         struct nullb_device *dev = cmd->nq->dev;
1230         struct nullb *nullb = dev->nullb;
1231         blk_status_t sts = BLK_STS_OK;
1232         struct request *rq = cmd->rq;
1233
1234         if (!hrtimer_active(&nullb->bw_timer))
1235                 hrtimer_restart(&nullb->bw_timer);
1236
1237         if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1238                 null_stop_queue(nullb);
1239                 /* race with timer */
1240                 if (atomic_long_read(&nullb->cur_bytes) > 0)
1241                         null_restart_queue_async(nullb);
1242                 /* requeue request */
1243                 sts = BLK_STS_DEV_RESOURCE;
1244         }
1245         return sts;
1246 }
1247
1248 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1249                                                  sector_t sector,
1250                                                  sector_t nr_sectors)
1251 {
1252         struct badblocks *bb = &cmd->nq->dev->badblocks;
1253         sector_t first_bad;
1254         int bad_sectors;
1255
1256         if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1257                 return BLK_STS_IOERR;
1258
1259         return BLK_STS_OK;
1260 }
1261
1262 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1263                                                      enum req_opf op,
1264                                                      sector_t sector,
1265                                                      sector_t nr_sectors)
1266 {
1267         struct nullb_device *dev = cmd->nq->dev;
1268         int err;
1269
1270         if (op == REQ_OP_DISCARD)
1271                 return null_handle_discard(dev, sector, nr_sectors);
1272
1273         if (dev->queue_mode == NULL_Q_BIO)
1274                 err = null_handle_bio(cmd);
1275         else
1276                 err = null_handle_rq(cmd);
1277
1278         return errno_to_blk_status(err);
1279 }
1280
1281 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1282 {
1283         struct nullb_device *dev = cmd->nq->dev;
1284         struct bio *bio;
1285
1286         if (dev->memory_backed)
1287                 return;
1288
1289         if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1290                 zero_fill_bio(cmd->bio);
1291         } else if (req_op(cmd->rq) == REQ_OP_READ) {
1292                 __rq_for_each_bio(bio, cmd->rq)
1293                         zero_fill_bio(bio);
1294         }
1295 }
1296
1297 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1298 {
1299         /*
1300          * Since root privileges are required to configure the null_blk
1301          * driver, it is fine that this driver does not initialize the
1302          * data buffers of read commands. Zero-initialize these buffers
1303          * anyway if KMSAN is enabled to prevent that KMSAN complains
1304          * about null_blk not initializing read data buffers.
1305          */
1306         if (IS_ENABLED(CONFIG_KMSAN))
1307                 nullb_zero_read_cmd_buffer(cmd);
1308
1309         /* Complete IO by inline, softirq or timer */
1310         switch (cmd->nq->dev->irqmode) {
1311         case NULL_IRQ_SOFTIRQ:
1312                 switch (cmd->nq->dev->queue_mode) {
1313                 case NULL_Q_MQ:
1314                         if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1315                                 blk_mq_complete_request(cmd->rq);
1316                         break;
1317                 case NULL_Q_BIO:
1318                         /*
1319                          * XXX: no proper submitting cpu information available.
1320                          */
1321                         end_cmd(cmd);
1322                         break;
1323                 }
1324                 break;
1325         case NULL_IRQ_NONE:
1326                 end_cmd(cmd);
1327                 break;
1328         case NULL_IRQ_TIMER:
1329                 null_cmd_end_timer(cmd);
1330                 break;
1331         }
1332 }
1333
1334 blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1335                               enum req_opf op, sector_t sector,
1336                               unsigned int nr_sectors)
1337 {
1338         struct nullb_device *dev = cmd->nq->dev;
1339         blk_status_t ret;
1340
1341         if (dev->badblocks.shift != -1) {
1342                 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1343                 if (ret != BLK_STS_OK)
1344                         return ret;
1345         }
1346
1347         if (dev->memory_backed)
1348                 return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1349
1350         return BLK_STS_OK;
1351 }
1352
1353 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1354                                     sector_t nr_sectors, enum req_opf op)
1355 {
1356         struct nullb_device *dev = cmd->nq->dev;
1357         struct nullb *nullb = dev->nullb;
1358         blk_status_t sts;
1359
1360         if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1361                 sts = null_handle_throttled(cmd);
1362                 if (sts != BLK_STS_OK)
1363                         return sts;
1364         }
1365
1366         if (op == REQ_OP_FLUSH) {
1367                 cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1368                 goto out;
1369         }
1370
1371         if (dev->zoned)
1372                 cmd->error = null_process_zoned_cmd(cmd, op,
1373                                                     sector, nr_sectors);
1374         else
1375                 cmd->error = null_process_cmd(cmd, op, sector, nr_sectors);
1376
1377 out:
1378         nullb_complete_cmd(cmd);
1379         return BLK_STS_OK;
1380 }
1381
1382 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1383 {
1384         struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1385         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1386         unsigned int mbps = nullb->dev->mbps;
1387
1388         if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1389                 return HRTIMER_NORESTART;
1390
1391         atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1392         null_restart_queue_async(nullb);
1393
1394         hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1395
1396         return HRTIMER_RESTART;
1397 }
1398
1399 static void nullb_setup_bwtimer(struct nullb *nullb)
1400 {
1401         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1402
1403         hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1404         nullb->bw_timer.function = nullb_bwtimer_fn;
1405         atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1406         hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1407 }
1408
1409 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1410 {
1411         int index = 0;
1412
1413         if (nullb->nr_queues != 1)
1414                 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1415
1416         return &nullb->queues[index];
1417 }
1418
1419 static blk_qc_t null_submit_bio(struct bio *bio)
1420 {
1421         sector_t sector = bio->bi_iter.bi_sector;
1422         sector_t nr_sectors = bio_sectors(bio);
1423         struct nullb *nullb = bio->bi_disk->private_data;
1424         struct nullb_queue *nq = nullb_to_queue(nullb);
1425         struct nullb_cmd *cmd;
1426
1427         cmd = alloc_cmd(nq, 1);
1428         cmd->bio = bio;
1429
1430         null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1431         return BLK_QC_T_NONE;
1432 }
1433
1434 static bool should_timeout_request(struct request *rq)
1435 {
1436 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1437         if (g_timeout_str[0])
1438                 return should_fail(&null_timeout_attr, 1);
1439 #endif
1440         return false;
1441 }
1442
1443 static bool should_requeue_request(struct request *rq)
1444 {
1445 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1446         if (g_requeue_str[0])
1447                 return should_fail(&null_requeue_attr, 1);
1448 #endif
1449         return false;
1450 }
1451
1452 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1453 {
1454         pr_info("rq %p timed out\n", rq);
1455         blk_mq_complete_request(rq);
1456         return BLK_EH_DONE;
1457 }
1458
1459 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1460                          const struct blk_mq_queue_data *bd)
1461 {
1462         struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1463         struct nullb_queue *nq = hctx->driver_data;
1464         sector_t nr_sectors = blk_rq_sectors(bd->rq);
1465         sector_t sector = blk_rq_pos(bd->rq);
1466
1467         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1468
1469         if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1470                 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1471                 cmd->timer.function = null_cmd_timer_expired;
1472         }
1473         cmd->rq = bd->rq;
1474         cmd->error = BLK_STS_OK;
1475         cmd->nq = nq;
1476
1477         blk_mq_start_request(bd->rq);
1478
1479         if (should_requeue_request(bd->rq)) {
1480                 /*
1481                  * Alternate between hitting the core BUSY path, and the
1482                  * driver driven requeue path
1483                  */
1484                 nq->requeue_selection++;
1485                 if (nq->requeue_selection & 1)
1486                         return BLK_STS_RESOURCE;
1487                 else {
1488                         blk_mq_requeue_request(bd->rq, true);
1489                         return BLK_STS_OK;
1490                 }
1491         }
1492         if (should_timeout_request(bd->rq))
1493                 return BLK_STS_OK;
1494
1495         return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1496 }
1497
1498 static void cleanup_queue(struct nullb_queue *nq)
1499 {
1500         kfree(nq->tag_map);
1501         kfree(nq->cmds);
1502 }
1503
1504 static void cleanup_queues(struct nullb *nullb)
1505 {
1506         int i;
1507
1508         for (i = 0; i < nullb->nr_queues; i++)
1509                 cleanup_queue(&nullb->queues[i]);
1510
1511         kfree(nullb->queues);
1512 }
1513
1514 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1515 {
1516         struct nullb_queue *nq = hctx->driver_data;
1517         struct nullb *nullb = nq->dev->nullb;
1518
1519         nullb->nr_queues--;
1520 }
1521
1522 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1523 {
1524         init_waitqueue_head(&nq->wait);
1525         nq->queue_depth = nullb->queue_depth;
1526         nq->dev = nullb->dev;
1527 }
1528
1529 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1530                           unsigned int hctx_idx)
1531 {
1532         struct nullb *nullb = hctx->queue->queuedata;
1533         struct nullb_queue *nq;
1534
1535 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1536         if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1537                 return -EFAULT;
1538 #endif
1539
1540         nq = &nullb->queues[hctx_idx];
1541         hctx->driver_data = nq;
1542         null_init_queue(nullb, nq);
1543         nullb->nr_queues++;
1544
1545         return 0;
1546 }
1547
1548 static const struct blk_mq_ops null_mq_ops = {
1549         .queue_rq       = null_queue_rq,
1550         .complete       = null_complete_rq,
1551         .timeout        = null_timeout_rq,
1552         .init_hctx      = null_init_hctx,
1553         .exit_hctx      = null_exit_hctx,
1554 };
1555
1556 static void null_del_dev(struct nullb *nullb)
1557 {
1558         struct nullb_device *dev;
1559
1560         if (!nullb)
1561                 return;
1562
1563         dev = nullb->dev;
1564
1565         ida_simple_remove(&nullb_indexes, nullb->index);
1566
1567         list_del_init(&nullb->list);
1568
1569         del_gendisk(nullb->disk);
1570
1571         if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1572                 hrtimer_cancel(&nullb->bw_timer);
1573                 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1574                 null_restart_queue_async(nullb);
1575         }
1576
1577         blk_cleanup_queue(nullb->q);
1578         if (dev->queue_mode == NULL_Q_MQ &&
1579             nullb->tag_set == &nullb->__tag_set)
1580                 blk_mq_free_tag_set(nullb->tag_set);
1581         put_disk(nullb->disk);
1582         cleanup_queues(nullb);
1583         if (null_cache_active(nullb))
1584                 null_free_device_storage(nullb->dev, true);
1585         kfree(nullb);
1586         dev->nullb = NULL;
1587 }
1588
1589 static void null_config_discard(struct nullb *nullb)
1590 {
1591         if (nullb->dev->discard == false)
1592                 return;
1593
1594         if (!nullb->dev->memory_backed) {
1595                 nullb->dev->discard = false;
1596                 pr_info("discard option is ignored without memory backing\n");
1597                 return;
1598         }
1599
1600         if (nullb->dev->zoned) {
1601                 nullb->dev->discard = false;
1602                 pr_info("discard option is ignored in zoned mode\n");
1603                 return;
1604         }
1605
1606         nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1607         nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1608         blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1609         blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1610 }
1611
1612 static const struct block_device_operations null_bio_ops = {
1613         .owner          = THIS_MODULE,
1614         .submit_bio     = null_submit_bio,
1615         .report_zones   = null_report_zones,
1616 };
1617
1618 static const struct block_device_operations null_rq_ops = {
1619         .owner          = THIS_MODULE,
1620         .report_zones   = null_report_zones,
1621 };
1622
1623 static int setup_commands(struct nullb_queue *nq)
1624 {
1625         struct nullb_cmd *cmd;
1626         int i, tag_size;
1627
1628         nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1629         if (!nq->cmds)
1630                 return -ENOMEM;
1631
1632         tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1633         nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1634         if (!nq->tag_map) {
1635                 kfree(nq->cmds);
1636                 return -ENOMEM;
1637         }
1638
1639         for (i = 0; i < nq->queue_depth; i++) {
1640                 cmd = &nq->cmds[i];
1641                 cmd->tag = -1U;
1642         }
1643
1644         return 0;
1645 }
1646
1647 static int setup_queues(struct nullb *nullb)
1648 {
1649         nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1650                                 GFP_KERNEL);
1651         if (!nullb->queues)
1652                 return -ENOMEM;
1653
1654         nullb->queue_depth = nullb->dev->hw_queue_depth;
1655
1656         return 0;
1657 }
1658
1659 static int init_driver_queues(struct nullb *nullb)
1660 {
1661         struct nullb_queue *nq;
1662         int i, ret = 0;
1663
1664         for (i = 0; i < nullb->dev->submit_queues; i++) {
1665                 nq = &nullb->queues[i];
1666
1667                 null_init_queue(nullb, nq);
1668
1669                 ret = setup_commands(nq);
1670                 if (ret)
1671                         return ret;
1672                 nullb->nr_queues++;
1673         }
1674         return 0;
1675 }
1676
1677 static int null_gendisk_register(struct nullb *nullb)
1678 {
1679         sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1680         struct gendisk *disk;
1681
1682         disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1683         if (!disk)
1684                 return -ENOMEM;
1685         set_capacity(disk, size);
1686
1687         disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1688         disk->major             = null_major;
1689         disk->first_minor       = nullb->index;
1690         if (queue_is_mq(nullb->q))
1691                 disk->fops              = &null_rq_ops;
1692         else
1693                 disk->fops              = &null_bio_ops;
1694         disk->private_data      = nullb;
1695         disk->queue             = nullb->q;
1696         strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1697
1698         if (nullb->dev->zoned) {
1699                 int ret = null_register_zoned_dev(nullb);
1700
1701                 if (ret)
1702                         return ret;
1703         }
1704
1705         add_disk(disk);
1706         return 0;
1707 }
1708
1709 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1710 {
1711         set->ops = &null_mq_ops;
1712         set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1713                                                 g_submit_queues;
1714         set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1715                                                 g_hw_queue_depth;
1716         set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1717         set->cmd_size   = sizeof(struct nullb_cmd);
1718         set->flags = BLK_MQ_F_SHOULD_MERGE;
1719         if (g_no_sched)
1720                 set->flags |= BLK_MQ_F_NO_SCHED;
1721         if (g_shared_tag_bitmap)
1722                 set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1723         set->driver_data = NULL;
1724
1725         if ((nullb && nullb->dev->blocking) || g_blocking)
1726                 set->flags |= BLK_MQ_F_BLOCKING;
1727
1728         return blk_mq_alloc_tag_set(set);
1729 }
1730
1731 static int null_validate_conf(struct nullb_device *dev)
1732 {
1733         dev->blocksize = round_down(dev->blocksize, 512);
1734         dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1735
1736         if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1737                 if (dev->submit_queues != nr_online_nodes)
1738                         dev->submit_queues = nr_online_nodes;
1739         } else if (dev->submit_queues > nr_cpu_ids)
1740                 dev->submit_queues = nr_cpu_ids;
1741         else if (dev->submit_queues == 0)
1742                 dev->submit_queues = 1;
1743
1744         dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1745         dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1746
1747         /* Do memory allocation, so set blocking */
1748         if (dev->memory_backed)
1749                 dev->blocking = true;
1750         else /* cache is meaningless */
1751                 dev->cache_size = 0;
1752         dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1753                                                 dev->cache_size);
1754         dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1755         /* can not stop a queue */
1756         if (dev->queue_mode == NULL_Q_BIO)
1757                 dev->mbps = 0;
1758
1759         if (dev->zoned &&
1760             (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1761                 pr_err("zone_size must be power-of-two\n");
1762                 return -EINVAL;
1763         }
1764
1765         return 0;
1766 }
1767
1768 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1769 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1770 {
1771         if (!str[0])
1772                 return true;
1773
1774         if (!setup_fault_attr(attr, str))
1775                 return false;
1776
1777         attr->verbose = 0;
1778         return true;
1779 }
1780 #endif
1781
1782 static bool null_setup_fault(void)
1783 {
1784 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1785         if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1786                 return false;
1787         if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1788                 return false;
1789         if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1790                 return false;
1791 #endif
1792         return true;
1793 }
1794
1795 static int null_add_dev(struct nullb_device *dev)
1796 {
1797         struct nullb *nullb;
1798         int rv;
1799
1800         rv = null_validate_conf(dev);
1801         if (rv)
1802                 return rv;
1803
1804         nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1805         if (!nullb) {
1806                 rv = -ENOMEM;
1807                 goto out;
1808         }
1809         nullb->dev = dev;
1810         dev->nullb = nullb;
1811
1812         spin_lock_init(&nullb->lock);
1813
1814         rv = setup_queues(nullb);
1815         if (rv)
1816                 goto out_free_nullb;
1817
1818         if (dev->queue_mode == NULL_Q_MQ) {
1819                 if (shared_tags) {
1820                         nullb->tag_set = &tag_set;
1821                         rv = 0;
1822                 } else {
1823                         nullb->tag_set = &nullb->__tag_set;
1824                         rv = null_init_tag_set(nullb, nullb->tag_set);
1825                 }
1826
1827                 if (rv)
1828                         goto out_cleanup_queues;
1829
1830                 if (!null_setup_fault())
1831                         goto out_cleanup_queues;
1832
1833                 nullb->tag_set->timeout = 5 * HZ;
1834                 nullb->q = blk_mq_init_queue_data(nullb->tag_set, nullb);
1835                 if (IS_ERR(nullb->q)) {
1836                         rv = -ENOMEM;
1837                         goto out_cleanup_tags;
1838                 }
1839         } else if (dev->queue_mode == NULL_Q_BIO) {
1840                 nullb->q = blk_alloc_queue(dev->home_node);
1841                 if (!nullb->q) {
1842                         rv = -ENOMEM;
1843                         goto out_cleanup_queues;
1844                 }
1845                 rv = init_driver_queues(nullb);
1846                 if (rv)
1847                         goto out_cleanup_blk_queue;
1848         }
1849
1850         if (dev->mbps) {
1851                 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1852                 nullb_setup_bwtimer(nullb);
1853         }
1854
1855         if (dev->cache_size > 0) {
1856                 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1857                 blk_queue_write_cache(nullb->q, true, true);
1858         }
1859
1860         if (dev->zoned) {
1861                 rv = null_init_zoned_dev(dev, nullb->q);
1862                 if (rv)
1863                         goto out_cleanup_blk_queue;
1864         }
1865
1866         nullb->q->queuedata = nullb;
1867         blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1868         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1869
1870         mutex_lock(&lock);
1871         nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1872         dev->index = nullb->index;
1873         mutex_unlock(&lock);
1874
1875         blk_queue_logical_block_size(nullb->q, dev->blocksize);
1876         blk_queue_physical_block_size(nullb->q, dev->blocksize);
1877         if (!dev->max_sectors)
1878                 dev->max_sectors = queue_max_hw_sectors(nullb->q);
1879         dev->max_sectors = min_t(unsigned int, dev->max_sectors,
1880                                  BLK_DEF_MAX_SECTORS);
1881         blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
1882
1883         null_config_discard(nullb);
1884
1885         sprintf(nullb->disk_name, "nullb%d", nullb->index);
1886
1887         rv = null_gendisk_register(nullb);
1888         if (rv)
1889                 goto out_cleanup_zone;
1890
1891         mutex_lock(&lock);
1892         list_add_tail(&nullb->list, &nullb_list);
1893         mutex_unlock(&lock);
1894
1895         return 0;
1896 out_cleanup_zone:
1897         null_free_zoned_dev(dev);
1898 out_cleanup_blk_queue:
1899         blk_cleanup_queue(nullb->q);
1900 out_cleanup_tags:
1901         if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1902                 blk_mq_free_tag_set(nullb->tag_set);
1903 out_cleanup_queues:
1904         cleanup_queues(nullb);
1905 out_free_nullb:
1906         kfree(nullb);
1907         dev->nullb = NULL;
1908 out:
1909         return rv;
1910 }
1911
1912 static int __init null_init(void)
1913 {
1914         int ret = 0;
1915         unsigned int i;
1916         struct nullb *nullb;
1917         struct nullb_device *dev;
1918
1919         if (g_bs > PAGE_SIZE) {
1920                 pr_warn("invalid block size\n");
1921                 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1922                 g_bs = PAGE_SIZE;
1923         }
1924
1925         if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
1926                 pr_warn("invalid max sectors\n");
1927                 pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
1928                 g_max_sectors = BLK_DEF_MAX_SECTORS;
1929         }
1930
1931         if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1932                 pr_err("invalid home_node value\n");
1933                 g_home_node = NUMA_NO_NODE;
1934         }
1935
1936         if (g_queue_mode == NULL_Q_RQ) {
1937                 pr_err("legacy IO path no longer available\n");
1938                 return -EINVAL;
1939         }
1940         if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1941                 if (g_submit_queues != nr_online_nodes) {
1942                         pr_warn("submit_queues param is set to %u.\n",
1943                                                         nr_online_nodes);
1944                         g_submit_queues = nr_online_nodes;
1945                 }
1946         } else if (g_submit_queues > nr_cpu_ids)
1947                 g_submit_queues = nr_cpu_ids;
1948         else if (g_submit_queues <= 0)
1949                 g_submit_queues = 1;
1950
1951         if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1952                 ret = null_init_tag_set(NULL, &tag_set);
1953                 if (ret)
1954                         return ret;
1955         }
1956
1957         config_group_init(&nullb_subsys.su_group);
1958         mutex_init(&nullb_subsys.su_mutex);
1959
1960         ret = configfs_register_subsystem(&nullb_subsys);
1961         if (ret)
1962                 goto err_tagset;
1963
1964         mutex_init(&lock);
1965
1966         null_major = register_blkdev(0, "nullb");
1967         if (null_major < 0) {
1968                 ret = null_major;
1969                 goto err_conf;
1970         }
1971
1972         for (i = 0; i < nr_devices; i++) {
1973                 dev = null_alloc_dev();
1974                 if (!dev) {
1975                         ret = -ENOMEM;
1976                         goto err_dev;
1977                 }
1978                 ret = null_add_dev(dev);
1979                 if (ret) {
1980                         null_free_dev(dev);
1981                         goto err_dev;
1982                 }
1983         }
1984
1985         pr_info("module loaded\n");
1986         return 0;
1987
1988 err_dev:
1989         while (!list_empty(&nullb_list)) {
1990                 nullb = list_entry(nullb_list.next, struct nullb, list);
1991                 dev = nullb->dev;
1992                 null_del_dev(nullb);
1993                 null_free_dev(dev);
1994         }
1995         unregister_blkdev(null_major, "nullb");
1996 err_conf:
1997         configfs_unregister_subsystem(&nullb_subsys);
1998 err_tagset:
1999         if (g_queue_mode == NULL_Q_MQ && shared_tags)
2000                 blk_mq_free_tag_set(&tag_set);
2001         return ret;
2002 }
2003
2004 static void __exit null_exit(void)
2005 {
2006         struct nullb *nullb;
2007
2008         configfs_unregister_subsystem(&nullb_subsys);
2009
2010         unregister_blkdev(null_major, "nullb");
2011
2012         mutex_lock(&lock);
2013         while (!list_empty(&nullb_list)) {
2014                 struct nullb_device *dev;
2015
2016                 nullb = list_entry(nullb_list.next, struct nullb, list);
2017                 dev = nullb->dev;
2018                 null_del_dev(nullb);
2019                 null_free_dev(dev);
2020         }
2021         mutex_unlock(&lock);
2022
2023         if (g_queue_mode == NULL_Q_MQ && shared_tags)
2024                 blk_mq_free_tag_set(&tag_set);
2025 }
2026
2027 module_init(null_init);
2028 module_exit(null_exit);
2029
2030 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2031 MODULE_LICENSE("GPL");