Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / block / drbd / drbd_main.c
1 /*
2    drbd.c
3
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27  */
28
29 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55 #include <linux/sched/signal.h>
56
57 #include <linux/drbd_limits.h>
58 #include "drbd_int.h"
59 #include "drbd_protocol.h"
60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
61 #include "drbd_vli.h"
62 #include "drbd_debugfs.h"
63
64 static DEFINE_MUTEX(drbd_main_mutex);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static void drbd_release(struct gendisk *gd, fmode_t mode);
67 static void md_sync_timer_fn(unsigned long data);
68 static int w_bitmap_io(struct drbd_work *w, int unused);
69
70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
71               "Lars Ellenberg <lars@linbit.com>");
72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
73 MODULE_VERSION(REL_VERSION);
74 MODULE_LICENSE("GPL");
75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
76                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
78
79 #include <linux/moduleparam.h>
80 /* allow_open_on_secondary */
81 MODULE_PARM_DESC(allow_oos, "DONT USE!");
82 /* thanks to these macros, if compiled into the kernel (not-module),
83  * this becomes the boot parameter drbd.minor_count */
84 module_param(minor_count, uint, 0444);
85 module_param(disable_sendpage, bool, 0644);
86 module_param(allow_oos, bool, 0);
87 module_param(proc_details, int, 0644);
88
89 #ifdef CONFIG_DRBD_FAULT_INJECTION
90 int enable_faults;
91 int fault_rate;
92 static int fault_count;
93 int fault_devs;
94 /* bitmap of enabled faults */
95 module_param(enable_faults, int, 0664);
96 /* fault rate % value - applies to all enabled faults */
97 module_param(fault_rate, int, 0664);
98 /* count of faults inserted */
99 module_param(fault_count, int, 0664);
100 /* bitmap of devices to insert faults on */
101 module_param(fault_devs, int, 0644);
102 #endif
103
104 /* module parameter, defined */
105 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
106 bool disable_sendpage;
107 bool allow_oos;
108 int proc_details;       /* Detail level in proc drbd*/
109
110 /* Module parameter for setting the user mode helper program
111  * to run. Default is /sbin/drbdadm */
112 char usermode_helper[80] = "/sbin/drbdadm";
113
114 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
115
116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
117  * as member "struct gendisk *vdisk;"
118  */
119 struct idr drbd_devices;
120 struct list_head drbd_resources;
121 struct mutex resources_mutex;
122
123 struct kmem_cache *drbd_request_cache;
124 struct kmem_cache *drbd_ee_cache;       /* peer requests */
125 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
126 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
127 mempool_t *drbd_request_mempool;
128 mempool_t *drbd_ee_mempool;
129 mempool_t *drbd_md_io_page_pool;
130 struct bio_set *drbd_md_io_bio_set;
131 struct bio_set *drbd_io_bio_set;
132
133 /* I do not use a standard mempool, because:
134    1) I want to hand out the pre-allocated objects first.
135    2) I want to be able to interrupt sleeping allocation with a signal.
136    Note: This is a single linked list, the next pointer is the private
137          member of struct page.
138  */
139 struct page *drbd_pp_pool;
140 spinlock_t   drbd_pp_lock;
141 int          drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147         .owner =   THIS_MODULE,
148         .open =    drbd_open,
149         .release = drbd_release,
150 };
151
152 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
153 {
154         struct bio *bio;
155
156         if (!drbd_md_io_bio_set)
157                 return bio_alloc(gfp_mask, 1);
158
159         bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
160         if (!bio)
161                 return NULL;
162         return bio;
163 }
164
165 #ifdef __CHECKER__
166 /* When checking with sparse, and this is an inline function, sparse will
167    give tons of false positives. When this is a real functions sparse works.
168  */
169 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
170 {
171         int io_allowed;
172
173         atomic_inc(&device->local_cnt);
174         io_allowed = (device->state.disk >= mins);
175         if (!io_allowed) {
176                 if (atomic_dec_and_test(&device->local_cnt))
177                         wake_up(&device->misc_wait);
178         }
179         return io_allowed;
180 }
181
182 #endif
183
184 /**
185  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
186  * @connection: DRBD connection.
187  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
188  * @set_size:   Expected number of requests before that barrier.
189  *
190  * In case the passed barrier_nr or set_size does not match the oldest
191  * epoch of not yet barrier-acked requests, this function will cause a
192  * termination of the connection.
193  */
194 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
195                 unsigned int set_size)
196 {
197         struct drbd_request *r;
198         struct drbd_request *req = NULL;
199         int expect_epoch = 0;
200         int expect_size = 0;
201
202         spin_lock_irq(&connection->resource->req_lock);
203
204         /* find oldest not yet barrier-acked write request,
205          * count writes in its epoch. */
206         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
207                 const unsigned s = r->rq_state;
208                 if (!req) {
209                         if (!(s & RQ_WRITE))
210                                 continue;
211                         if (!(s & RQ_NET_MASK))
212                                 continue;
213                         if (s & RQ_NET_DONE)
214                                 continue;
215                         req = r;
216                         expect_epoch = req->epoch;
217                         expect_size ++;
218                 } else {
219                         if (r->epoch != expect_epoch)
220                                 break;
221                         if (!(s & RQ_WRITE))
222                                 continue;
223                         /* if (s & RQ_DONE): not expected */
224                         /* if (!(s & RQ_NET_MASK)): not expected */
225                         expect_size++;
226                 }
227         }
228
229         /* first some paranoia code */
230         if (req == NULL) {
231                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
232                          barrier_nr);
233                 goto bail;
234         }
235         if (expect_epoch != barrier_nr) {
236                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
237                          barrier_nr, expect_epoch);
238                 goto bail;
239         }
240
241         if (expect_size != set_size) {
242                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
243                          barrier_nr, set_size, expect_size);
244                 goto bail;
245         }
246
247         /* Clean up list of requests processed during current epoch. */
248         /* this extra list walk restart is paranoia,
249          * to catch requests being barrier-acked "unexpectedly".
250          * It usually should find the same req again, or some READ preceding it. */
251         list_for_each_entry(req, &connection->transfer_log, tl_requests)
252                 if (req->epoch == expect_epoch)
253                         break;
254         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
255                 if (req->epoch != expect_epoch)
256                         break;
257                 _req_mod(req, BARRIER_ACKED);
258         }
259         spin_unlock_irq(&connection->resource->req_lock);
260
261         return;
262
263 bail:
264         spin_unlock_irq(&connection->resource->req_lock);
265         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
266 }
267
268
269 /**
270  * _tl_restart() - Walks the transfer log, and applies an action to all requests
271  * @connection: DRBD connection to operate on.
272  * @what:       The action/event to perform with all request objects
273  *
274  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
275  * RESTART_FROZEN_DISK_IO.
276  */
277 /* must hold resource->req_lock */
278 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
279 {
280         struct drbd_request *req, *r;
281
282         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
283                 _req_mod(req, what);
284 }
285
286 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
287 {
288         spin_lock_irq(&connection->resource->req_lock);
289         _tl_restart(connection, what);
290         spin_unlock_irq(&connection->resource->req_lock);
291 }
292
293 /**
294  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
295  * @device:     DRBD device.
296  *
297  * This is called after the connection to the peer was lost. The storage covered
298  * by the requests on the transfer gets marked as our of sync. Called from the
299  * receiver thread and the worker thread.
300  */
301 void tl_clear(struct drbd_connection *connection)
302 {
303         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
304 }
305
306 /**
307  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
308  * @device:     DRBD device.
309  */
310 void tl_abort_disk_io(struct drbd_device *device)
311 {
312         struct drbd_connection *connection = first_peer_device(device)->connection;
313         struct drbd_request *req, *r;
314
315         spin_lock_irq(&connection->resource->req_lock);
316         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
317                 if (!(req->rq_state & RQ_LOCAL_PENDING))
318                         continue;
319                 if (req->device != device)
320                         continue;
321                 _req_mod(req, ABORT_DISK_IO);
322         }
323         spin_unlock_irq(&connection->resource->req_lock);
324 }
325
326 static int drbd_thread_setup(void *arg)
327 {
328         struct drbd_thread *thi = (struct drbd_thread *) arg;
329         struct drbd_resource *resource = thi->resource;
330         unsigned long flags;
331         int retval;
332
333         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
334                  thi->name[0],
335                  resource->name);
336
337 restart:
338         retval = thi->function(thi);
339
340         spin_lock_irqsave(&thi->t_lock, flags);
341
342         /* if the receiver has been "EXITING", the last thing it did
343          * was set the conn state to "StandAlone",
344          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
345          * and receiver thread will be "started".
346          * drbd_thread_start needs to set "RESTARTING" in that case.
347          * t_state check and assignment needs to be within the same spinlock,
348          * so either thread_start sees EXITING, and can remap to RESTARTING,
349          * or thread_start see NONE, and can proceed as normal.
350          */
351
352         if (thi->t_state == RESTARTING) {
353                 drbd_info(resource, "Restarting %s thread\n", thi->name);
354                 thi->t_state = RUNNING;
355                 spin_unlock_irqrestore(&thi->t_lock, flags);
356                 goto restart;
357         }
358
359         thi->task = NULL;
360         thi->t_state = NONE;
361         smp_mb();
362         complete_all(&thi->stop);
363         spin_unlock_irqrestore(&thi->t_lock, flags);
364
365         drbd_info(resource, "Terminating %s\n", current->comm);
366
367         /* Release mod reference taken when thread was started */
368
369         if (thi->connection)
370                 kref_put(&thi->connection->kref, drbd_destroy_connection);
371         kref_put(&resource->kref, drbd_destroy_resource);
372         module_put(THIS_MODULE);
373         return retval;
374 }
375
376 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
377                              int (*func) (struct drbd_thread *), const char *name)
378 {
379         spin_lock_init(&thi->t_lock);
380         thi->task    = NULL;
381         thi->t_state = NONE;
382         thi->function = func;
383         thi->resource = resource;
384         thi->connection = NULL;
385         thi->name = name;
386 }
387
388 int drbd_thread_start(struct drbd_thread *thi)
389 {
390         struct drbd_resource *resource = thi->resource;
391         struct task_struct *nt;
392         unsigned long flags;
393
394         /* is used from state engine doing drbd_thread_stop_nowait,
395          * while holding the req lock irqsave */
396         spin_lock_irqsave(&thi->t_lock, flags);
397
398         switch (thi->t_state) {
399         case NONE:
400                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
401                          thi->name, current->comm, current->pid);
402
403                 /* Get ref on module for thread - this is released when thread exits */
404                 if (!try_module_get(THIS_MODULE)) {
405                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
406                         spin_unlock_irqrestore(&thi->t_lock, flags);
407                         return false;
408                 }
409
410                 kref_get(&resource->kref);
411                 if (thi->connection)
412                         kref_get(&thi->connection->kref);
413
414                 init_completion(&thi->stop);
415                 thi->reset_cpu_mask = 1;
416                 thi->t_state = RUNNING;
417                 spin_unlock_irqrestore(&thi->t_lock, flags);
418                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
419
420                 nt = kthread_create(drbd_thread_setup, (void *) thi,
421                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
422
423                 if (IS_ERR(nt)) {
424                         drbd_err(resource, "Couldn't start thread\n");
425
426                         if (thi->connection)
427                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
428                         kref_put(&resource->kref, drbd_destroy_resource);
429                         module_put(THIS_MODULE);
430                         return false;
431                 }
432                 spin_lock_irqsave(&thi->t_lock, flags);
433                 thi->task = nt;
434                 thi->t_state = RUNNING;
435                 spin_unlock_irqrestore(&thi->t_lock, flags);
436                 wake_up_process(nt);
437                 break;
438         case EXITING:
439                 thi->t_state = RESTARTING;
440                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
441                                 thi->name, current->comm, current->pid);
442                 /* fall through */
443         case RUNNING:
444         case RESTARTING:
445         default:
446                 spin_unlock_irqrestore(&thi->t_lock, flags);
447                 break;
448         }
449
450         return true;
451 }
452
453
454 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
455 {
456         unsigned long flags;
457
458         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
459
460         /* may be called from state engine, holding the req lock irqsave */
461         spin_lock_irqsave(&thi->t_lock, flags);
462
463         if (thi->t_state == NONE) {
464                 spin_unlock_irqrestore(&thi->t_lock, flags);
465                 if (restart)
466                         drbd_thread_start(thi);
467                 return;
468         }
469
470         if (thi->t_state != ns) {
471                 if (thi->task == NULL) {
472                         spin_unlock_irqrestore(&thi->t_lock, flags);
473                         return;
474                 }
475
476                 thi->t_state = ns;
477                 smp_mb();
478                 init_completion(&thi->stop);
479                 if (thi->task != current)
480                         force_sig(DRBD_SIGKILL, thi->task);
481         }
482
483         spin_unlock_irqrestore(&thi->t_lock, flags);
484
485         if (wait)
486                 wait_for_completion(&thi->stop);
487 }
488
489 int conn_lowest_minor(struct drbd_connection *connection)
490 {
491         struct drbd_peer_device *peer_device;
492         int vnr = 0, minor = -1;
493
494         rcu_read_lock();
495         peer_device = idr_get_next(&connection->peer_devices, &vnr);
496         if (peer_device)
497                 minor = device_to_minor(peer_device->device);
498         rcu_read_unlock();
499
500         return minor;
501 }
502
503 #ifdef CONFIG_SMP
504 /**
505  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
506  *
507  * Forces all threads of a resource onto the same CPU. This is beneficial for
508  * DRBD's performance. May be overwritten by user's configuration.
509  */
510 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
511 {
512         unsigned int *resources_per_cpu, min_index = ~0;
513
514         resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
515         if (resources_per_cpu) {
516                 struct drbd_resource *resource;
517                 unsigned int cpu, min = ~0;
518
519                 rcu_read_lock();
520                 for_each_resource_rcu(resource, &drbd_resources) {
521                         for_each_cpu(cpu, resource->cpu_mask)
522                                 resources_per_cpu[cpu]++;
523                 }
524                 rcu_read_unlock();
525                 for_each_online_cpu(cpu) {
526                         if (resources_per_cpu[cpu] < min) {
527                                 min = resources_per_cpu[cpu];
528                                 min_index = cpu;
529                         }
530                 }
531                 kfree(resources_per_cpu);
532         }
533         if (min_index == ~0) {
534                 cpumask_setall(*cpu_mask);
535                 return;
536         }
537         cpumask_set_cpu(min_index, *cpu_mask);
538 }
539
540 /**
541  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
542  * @device:     DRBD device.
543  * @thi:        drbd_thread object
544  *
545  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
546  * prematurely.
547  */
548 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
549 {
550         struct drbd_resource *resource = thi->resource;
551         struct task_struct *p = current;
552
553         if (!thi->reset_cpu_mask)
554                 return;
555         thi->reset_cpu_mask = 0;
556         set_cpus_allowed_ptr(p, resource->cpu_mask);
557 }
558 #else
559 #define drbd_calc_cpu_mask(A) ({})
560 #endif
561
562 /**
563  * drbd_header_size  -  size of a packet header
564  *
565  * The header size is a multiple of 8, so any payload following the header is
566  * word aligned on 64-bit architectures.  (The bitmap send and receive code
567  * relies on this.)
568  */
569 unsigned int drbd_header_size(struct drbd_connection *connection)
570 {
571         if (connection->agreed_pro_version >= 100) {
572                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
573                 return sizeof(struct p_header100);
574         } else {
575                 BUILD_BUG_ON(sizeof(struct p_header80) !=
576                              sizeof(struct p_header95));
577                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
578                 return sizeof(struct p_header80);
579         }
580 }
581
582 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
583 {
584         h->magic   = cpu_to_be32(DRBD_MAGIC);
585         h->command = cpu_to_be16(cmd);
586         h->length  = cpu_to_be16(size);
587         return sizeof(struct p_header80);
588 }
589
590 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
591 {
592         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
593         h->command = cpu_to_be16(cmd);
594         h->length = cpu_to_be32(size);
595         return sizeof(struct p_header95);
596 }
597
598 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
599                                       int size, int vnr)
600 {
601         h->magic = cpu_to_be32(DRBD_MAGIC_100);
602         h->volume = cpu_to_be16(vnr);
603         h->command = cpu_to_be16(cmd);
604         h->length = cpu_to_be32(size);
605         h->pad = 0;
606         return sizeof(struct p_header100);
607 }
608
609 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
610                                    void *buffer, enum drbd_packet cmd, int size)
611 {
612         if (connection->agreed_pro_version >= 100)
613                 return prepare_header100(buffer, cmd, size, vnr);
614         else if (connection->agreed_pro_version >= 95 &&
615                  size > DRBD_MAX_SIZE_H80_PACKET)
616                 return prepare_header95(buffer, cmd, size);
617         else
618                 return prepare_header80(buffer, cmd, size);
619 }
620
621 static void *__conn_prepare_command(struct drbd_connection *connection,
622                                     struct drbd_socket *sock)
623 {
624         if (!sock->socket)
625                 return NULL;
626         return sock->sbuf + drbd_header_size(connection);
627 }
628
629 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
630 {
631         void *p;
632
633         mutex_lock(&sock->mutex);
634         p = __conn_prepare_command(connection, sock);
635         if (!p)
636                 mutex_unlock(&sock->mutex);
637
638         return p;
639 }
640
641 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
642 {
643         return conn_prepare_command(peer_device->connection, sock);
644 }
645
646 static int __send_command(struct drbd_connection *connection, int vnr,
647                           struct drbd_socket *sock, enum drbd_packet cmd,
648                           unsigned int header_size, void *data,
649                           unsigned int size)
650 {
651         int msg_flags;
652         int err;
653
654         /*
655          * Called with @data == NULL and the size of the data blocks in @size
656          * for commands that send data blocks.  For those commands, omit the
657          * MSG_MORE flag: this will increase the likelihood that data blocks
658          * which are page aligned on the sender will end up page aligned on the
659          * receiver.
660          */
661         msg_flags = data ? MSG_MORE : 0;
662
663         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
664                                       header_size + size);
665         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
666                             msg_flags);
667         if (data && !err)
668                 err = drbd_send_all(connection, sock->socket, data, size, 0);
669         /* DRBD protocol "pings" are latency critical.
670          * This is supposed to trigger tcp_push_pending_frames() */
671         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
672                 drbd_tcp_nodelay(sock->socket);
673
674         return err;
675 }
676
677 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
678                                enum drbd_packet cmd, unsigned int header_size,
679                                void *data, unsigned int size)
680 {
681         return __send_command(connection, 0, sock, cmd, header_size, data, size);
682 }
683
684 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
685                       enum drbd_packet cmd, unsigned int header_size,
686                       void *data, unsigned int size)
687 {
688         int err;
689
690         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
691         mutex_unlock(&sock->mutex);
692         return err;
693 }
694
695 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
696                       enum drbd_packet cmd, unsigned int header_size,
697                       void *data, unsigned int size)
698 {
699         int err;
700
701         err = __send_command(peer_device->connection, peer_device->device->vnr,
702                              sock, cmd, header_size, data, size);
703         mutex_unlock(&sock->mutex);
704         return err;
705 }
706
707 int drbd_send_ping(struct drbd_connection *connection)
708 {
709         struct drbd_socket *sock;
710
711         sock = &connection->meta;
712         if (!conn_prepare_command(connection, sock))
713                 return -EIO;
714         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
715 }
716
717 int drbd_send_ping_ack(struct drbd_connection *connection)
718 {
719         struct drbd_socket *sock;
720
721         sock = &connection->meta;
722         if (!conn_prepare_command(connection, sock))
723                 return -EIO;
724         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
725 }
726
727 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
728 {
729         struct drbd_socket *sock;
730         struct p_rs_param_95 *p;
731         int size;
732         const int apv = peer_device->connection->agreed_pro_version;
733         enum drbd_packet cmd;
734         struct net_conf *nc;
735         struct disk_conf *dc;
736
737         sock = &peer_device->connection->data;
738         p = drbd_prepare_command(peer_device, sock);
739         if (!p)
740                 return -EIO;
741
742         rcu_read_lock();
743         nc = rcu_dereference(peer_device->connection->net_conf);
744
745         size = apv <= 87 ? sizeof(struct p_rs_param)
746                 : apv == 88 ? sizeof(struct p_rs_param)
747                         + strlen(nc->verify_alg) + 1
748                 : apv <= 94 ? sizeof(struct p_rs_param_89)
749                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
750
751         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
752
753         /* initialize verify_alg and csums_alg */
754         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
755
756         if (get_ldev(peer_device->device)) {
757                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
758                 p->resync_rate = cpu_to_be32(dc->resync_rate);
759                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
760                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
761                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
762                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
763                 put_ldev(peer_device->device);
764         } else {
765                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
766                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
767                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
768                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
769                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
770         }
771
772         if (apv >= 88)
773                 strcpy(p->verify_alg, nc->verify_alg);
774         if (apv >= 89)
775                 strcpy(p->csums_alg, nc->csums_alg);
776         rcu_read_unlock();
777
778         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
779 }
780
781 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
782 {
783         struct drbd_socket *sock;
784         struct p_protocol *p;
785         struct net_conf *nc;
786         int size, cf;
787
788         sock = &connection->data;
789         p = __conn_prepare_command(connection, sock);
790         if (!p)
791                 return -EIO;
792
793         rcu_read_lock();
794         nc = rcu_dereference(connection->net_conf);
795
796         if (nc->tentative && connection->agreed_pro_version < 92) {
797                 rcu_read_unlock();
798                 mutex_unlock(&sock->mutex);
799                 drbd_err(connection, "--dry-run is not supported by peer");
800                 return -EOPNOTSUPP;
801         }
802
803         size = sizeof(*p);
804         if (connection->agreed_pro_version >= 87)
805                 size += strlen(nc->integrity_alg) + 1;
806
807         p->protocol      = cpu_to_be32(nc->wire_protocol);
808         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
809         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
810         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
811         p->two_primaries = cpu_to_be32(nc->two_primaries);
812         cf = 0;
813         if (nc->discard_my_data)
814                 cf |= CF_DISCARD_MY_DATA;
815         if (nc->tentative)
816                 cf |= CF_DRY_RUN;
817         p->conn_flags    = cpu_to_be32(cf);
818
819         if (connection->agreed_pro_version >= 87)
820                 strcpy(p->integrity_alg, nc->integrity_alg);
821         rcu_read_unlock();
822
823         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
824 }
825
826 int drbd_send_protocol(struct drbd_connection *connection)
827 {
828         int err;
829
830         mutex_lock(&connection->data.mutex);
831         err = __drbd_send_protocol(connection, P_PROTOCOL);
832         mutex_unlock(&connection->data.mutex);
833
834         return err;
835 }
836
837 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
838 {
839         struct drbd_device *device = peer_device->device;
840         struct drbd_socket *sock;
841         struct p_uuids *p;
842         int i;
843
844         if (!get_ldev_if_state(device, D_NEGOTIATING))
845                 return 0;
846
847         sock = &peer_device->connection->data;
848         p = drbd_prepare_command(peer_device, sock);
849         if (!p) {
850                 put_ldev(device);
851                 return -EIO;
852         }
853         spin_lock_irq(&device->ldev->md.uuid_lock);
854         for (i = UI_CURRENT; i < UI_SIZE; i++)
855                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
856         spin_unlock_irq(&device->ldev->md.uuid_lock);
857
858         device->comm_bm_set = drbd_bm_total_weight(device);
859         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
860         rcu_read_lock();
861         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
862         rcu_read_unlock();
863         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
864         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
865         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
866
867         put_ldev(device);
868         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
869 }
870
871 int drbd_send_uuids(struct drbd_peer_device *peer_device)
872 {
873         return _drbd_send_uuids(peer_device, 0);
874 }
875
876 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
877 {
878         return _drbd_send_uuids(peer_device, 8);
879 }
880
881 void drbd_print_uuids(struct drbd_device *device, const char *text)
882 {
883         if (get_ldev_if_state(device, D_NEGOTIATING)) {
884                 u64 *uuid = device->ldev->md.uuid;
885                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
886                      text,
887                      (unsigned long long)uuid[UI_CURRENT],
888                      (unsigned long long)uuid[UI_BITMAP],
889                      (unsigned long long)uuid[UI_HISTORY_START],
890                      (unsigned long long)uuid[UI_HISTORY_END]);
891                 put_ldev(device);
892         } else {
893                 drbd_info(device, "%s effective data uuid: %016llX\n",
894                                 text,
895                                 (unsigned long long)device->ed_uuid);
896         }
897 }
898
899 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
900 {
901         struct drbd_device *device = peer_device->device;
902         struct drbd_socket *sock;
903         struct p_rs_uuid *p;
904         u64 uuid;
905
906         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
907
908         uuid = device->ldev->md.uuid[UI_BITMAP];
909         if (uuid && uuid != UUID_JUST_CREATED)
910                 uuid = uuid + UUID_NEW_BM_OFFSET;
911         else
912                 get_random_bytes(&uuid, sizeof(u64));
913         drbd_uuid_set(device, UI_BITMAP, uuid);
914         drbd_print_uuids(device, "updated sync UUID");
915         drbd_md_sync(device);
916
917         sock = &peer_device->connection->data;
918         p = drbd_prepare_command(peer_device, sock);
919         if (p) {
920                 p->uuid = cpu_to_be64(uuid);
921                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
922         }
923 }
924
925 /* communicated if (agreed_features & DRBD_FF_WSAME) */
926 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
927 {
928         if (q) {
929                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
930                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
931                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
932                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
933                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
934                 p->qlim->discard_enabled = blk_queue_discard(q);
935                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
936         } else {
937                 q = device->rq_queue;
938                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
939                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
940                 p->qlim->alignment_offset = 0;
941                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
942                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
943                 p->qlim->discard_enabled = 0;
944                 p->qlim->write_same_capable = 0;
945         }
946 }
947
948 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
949 {
950         struct drbd_device *device = peer_device->device;
951         struct drbd_socket *sock;
952         struct p_sizes *p;
953         sector_t d_size, u_size;
954         int q_order_type;
955         unsigned int max_bio_size;
956         unsigned int packet_size;
957
958         sock = &peer_device->connection->data;
959         p = drbd_prepare_command(peer_device, sock);
960         if (!p)
961                 return -EIO;
962
963         packet_size = sizeof(*p);
964         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
965                 packet_size += sizeof(p->qlim[0]);
966
967         memset(p, 0, packet_size);
968         if (get_ldev_if_state(device, D_NEGOTIATING)) {
969                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
970                 d_size = drbd_get_max_capacity(device->ldev);
971                 rcu_read_lock();
972                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
973                 rcu_read_unlock();
974                 q_order_type = drbd_queue_order_type(device);
975                 max_bio_size = queue_max_hw_sectors(q) << 9;
976                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
977                 assign_p_sizes_qlim(device, p, q);
978                 put_ldev(device);
979         } else {
980                 d_size = 0;
981                 u_size = 0;
982                 q_order_type = QUEUE_ORDERED_NONE;
983                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
984                 assign_p_sizes_qlim(device, p, NULL);
985         }
986
987         if (peer_device->connection->agreed_pro_version <= 94)
988                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
989         else if (peer_device->connection->agreed_pro_version < 100)
990                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
991
992         p->d_size = cpu_to_be64(d_size);
993         p->u_size = cpu_to_be64(u_size);
994         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
995         p->max_bio_size = cpu_to_be32(max_bio_size);
996         p->queue_order_type = cpu_to_be16(q_order_type);
997         p->dds_flags = cpu_to_be16(flags);
998
999         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
1000 }
1001
1002 /**
1003  * drbd_send_current_state() - Sends the drbd state to the peer
1004  * @peer_device:        DRBD peer device.
1005  */
1006 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1007 {
1008         struct drbd_socket *sock;
1009         struct p_state *p;
1010
1011         sock = &peer_device->connection->data;
1012         p = drbd_prepare_command(peer_device, sock);
1013         if (!p)
1014                 return -EIO;
1015         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1016         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1017 }
1018
1019 /**
1020  * drbd_send_state() - After a state change, sends the new state to the peer
1021  * @peer_device:      DRBD peer device.
1022  * @state:     the state to send, not necessarily the current state.
1023  *
1024  * Each state change queues an "after_state_ch" work, which will eventually
1025  * send the resulting new state to the peer. If more state changes happen
1026  * between queuing and processing of the after_state_ch work, we still
1027  * want to send each intermediary state in the order it occurred.
1028  */
1029 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1030 {
1031         struct drbd_socket *sock;
1032         struct p_state *p;
1033
1034         sock = &peer_device->connection->data;
1035         p = drbd_prepare_command(peer_device, sock);
1036         if (!p)
1037                 return -EIO;
1038         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1039         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1040 }
1041
1042 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1043 {
1044         struct drbd_socket *sock;
1045         struct p_req_state *p;
1046
1047         sock = &peer_device->connection->data;
1048         p = drbd_prepare_command(peer_device, sock);
1049         if (!p)
1050                 return -EIO;
1051         p->mask = cpu_to_be32(mask.i);
1052         p->val = cpu_to_be32(val.i);
1053         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1054 }
1055
1056 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1057 {
1058         enum drbd_packet cmd;
1059         struct drbd_socket *sock;
1060         struct p_req_state *p;
1061
1062         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1063         sock = &connection->data;
1064         p = conn_prepare_command(connection, sock);
1065         if (!p)
1066                 return -EIO;
1067         p->mask = cpu_to_be32(mask.i);
1068         p->val = cpu_to_be32(val.i);
1069         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1070 }
1071
1072 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1073 {
1074         struct drbd_socket *sock;
1075         struct p_req_state_reply *p;
1076
1077         sock = &peer_device->connection->meta;
1078         p = drbd_prepare_command(peer_device, sock);
1079         if (p) {
1080                 p->retcode = cpu_to_be32(retcode);
1081                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1082         }
1083 }
1084
1085 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1086 {
1087         struct drbd_socket *sock;
1088         struct p_req_state_reply *p;
1089         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1090
1091         sock = &connection->meta;
1092         p = conn_prepare_command(connection, sock);
1093         if (p) {
1094                 p->retcode = cpu_to_be32(retcode);
1095                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1096         }
1097 }
1098
1099 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1100 {
1101         BUG_ON(code & ~0xf);
1102         p->encoding = (p->encoding & ~0xf) | code;
1103 }
1104
1105 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1106 {
1107         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1108 }
1109
1110 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1111 {
1112         BUG_ON(n & ~0x7);
1113         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1114 }
1115
1116 static int fill_bitmap_rle_bits(struct drbd_device *device,
1117                          struct p_compressed_bm *p,
1118                          unsigned int size,
1119                          struct bm_xfer_ctx *c)
1120 {
1121         struct bitstream bs;
1122         unsigned long plain_bits;
1123         unsigned long tmp;
1124         unsigned long rl;
1125         unsigned len;
1126         unsigned toggle;
1127         int bits, use_rle;
1128
1129         /* may we use this feature? */
1130         rcu_read_lock();
1131         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1132         rcu_read_unlock();
1133         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1134                 return 0;
1135
1136         if (c->bit_offset >= c->bm_bits)
1137                 return 0; /* nothing to do. */
1138
1139         /* use at most thus many bytes */
1140         bitstream_init(&bs, p->code, size, 0);
1141         memset(p->code, 0, size);
1142         /* plain bits covered in this code string */
1143         plain_bits = 0;
1144
1145         /* p->encoding & 0x80 stores whether the first run length is set.
1146          * bit offset is implicit.
1147          * start with toggle == 2 to be able to tell the first iteration */
1148         toggle = 2;
1149
1150         /* see how much plain bits we can stuff into one packet
1151          * using RLE and VLI. */
1152         do {
1153                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1154                                     : _drbd_bm_find_next(device, c->bit_offset);
1155                 if (tmp == -1UL)
1156                         tmp = c->bm_bits;
1157                 rl = tmp - c->bit_offset;
1158
1159                 if (toggle == 2) { /* first iteration */
1160                         if (rl == 0) {
1161                                 /* the first checked bit was set,
1162                                  * store start value, */
1163                                 dcbp_set_start(p, 1);
1164                                 /* but skip encoding of zero run length */
1165                                 toggle = !toggle;
1166                                 continue;
1167                         }
1168                         dcbp_set_start(p, 0);
1169                 }
1170
1171                 /* paranoia: catch zero runlength.
1172                  * can only happen if bitmap is modified while we scan it. */
1173                 if (rl == 0) {
1174                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1175                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1176                         return -1;
1177                 }
1178
1179                 bits = vli_encode_bits(&bs, rl);
1180                 if (bits == -ENOBUFS) /* buffer full */
1181                         break;
1182                 if (bits <= 0) {
1183                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1184                         return 0;
1185                 }
1186
1187                 toggle = !toggle;
1188                 plain_bits += rl;
1189                 c->bit_offset = tmp;
1190         } while (c->bit_offset < c->bm_bits);
1191
1192         len = bs.cur.b - p->code + !!bs.cur.bit;
1193
1194         if (plain_bits < (len << 3)) {
1195                 /* incompressible with this method.
1196                  * we need to rewind both word and bit position. */
1197                 c->bit_offset -= plain_bits;
1198                 bm_xfer_ctx_bit_to_word_offset(c);
1199                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1200                 return 0;
1201         }
1202
1203         /* RLE + VLI was able to compress it just fine.
1204          * update c->word_offset. */
1205         bm_xfer_ctx_bit_to_word_offset(c);
1206
1207         /* store pad_bits */
1208         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1209
1210         return len;
1211 }
1212
1213 /**
1214  * send_bitmap_rle_or_plain
1215  *
1216  * Return 0 when done, 1 when another iteration is needed, and a negative error
1217  * code upon failure.
1218  */
1219 static int
1220 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1221 {
1222         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1223         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1224         struct p_compressed_bm *p = sock->sbuf + header_size;
1225         int len, err;
1226
1227         len = fill_bitmap_rle_bits(device, p,
1228                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1229         if (len < 0)
1230                 return -EIO;
1231
1232         if (len) {
1233                 dcbp_set_code(p, RLE_VLI_Bits);
1234                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1235                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1236                                      NULL, 0);
1237                 c->packets[0]++;
1238                 c->bytes[0] += header_size + sizeof(*p) + len;
1239
1240                 if (c->bit_offset >= c->bm_bits)
1241                         len = 0; /* DONE */
1242         } else {
1243                 /* was not compressible.
1244                  * send a buffer full of plain text bits instead. */
1245                 unsigned int data_size;
1246                 unsigned long num_words;
1247                 unsigned long *p = sock->sbuf + header_size;
1248
1249                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1250                 num_words = min_t(size_t, data_size / sizeof(*p),
1251                                   c->bm_words - c->word_offset);
1252                 len = num_words * sizeof(*p);
1253                 if (len)
1254                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1255                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1256                 c->word_offset += num_words;
1257                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1258
1259                 c->packets[1]++;
1260                 c->bytes[1] += header_size + len;
1261
1262                 if (c->bit_offset > c->bm_bits)
1263                         c->bit_offset = c->bm_bits;
1264         }
1265         if (!err) {
1266                 if (len == 0) {
1267                         INFO_bm_xfer_stats(device, "send", c);
1268                         return 0;
1269                 } else
1270                         return 1;
1271         }
1272         return -EIO;
1273 }
1274
1275 /* See the comment at receive_bitmap() */
1276 static int _drbd_send_bitmap(struct drbd_device *device)
1277 {
1278         struct bm_xfer_ctx c;
1279         int err;
1280
1281         if (!expect(device->bitmap))
1282                 return false;
1283
1284         if (get_ldev(device)) {
1285                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1286                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1287                         drbd_bm_set_all(device);
1288                         if (drbd_bm_write(device)) {
1289                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1290                                  * but otherwise process as per normal - need to tell other
1291                                  * side that a full resync is required! */
1292                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1293                         } else {
1294                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1295                                 drbd_md_sync(device);
1296                         }
1297                 }
1298                 put_ldev(device);
1299         }
1300
1301         c = (struct bm_xfer_ctx) {
1302                 .bm_bits = drbd_bm_bits(device),
1303                 .bm_words = drbd_bm_words(device),
1304         };
1305
1306         do {
1307                 err = send_bitmap_rle_or_plain(device, &c);
1308         } while (err > 0);
1309
1310         return err == 0;
1311 }
1312
1313 int drbd_send_bitmap(struct drbd_device *device)
1314 {
1315         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1316         int err = -1;
1317
1318         mutex_lock(&sock->mutex);
1319         if (sock->socket)
1320                 err = !_drbd_send_bitmap(device);
1321         mutex_unlock(&sock->mutex);
1322         return err;
1323 }
1324
1325 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1326 {
1327         struct drbd_socket *sock;
1328         struct p_barrier_ack *p;
1329
1330         if (connection->cstate < C_WF_REPORT_PARAMS)
1331                 return;
1332
1333         sock = &connection->meta;
1334         p = conn_prepare_command(connection, sock);
1335         if (!p)
1336                 return;
1337         p->barrier = barrier_nr;
1338         p->set_size = cpu_to_be32(set_size);
1339         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1340 }
1341
1342 /**
1343  * _drbd_send_ack() - Sends an ack packet
1344  * @device:     DRBD device.
1345  * @cmd:        Packet command code.
1346  * @sector:     sector, needs to be in big endian byte order
1347  * @blksize:    size in byte, needs to be in big endian byte order
1348  * @block_id:   Id, big endian byte order
1349  */
1350 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1351                           u64 sector, u32 blksize, u64 block_id)
1352 {
1353         struct drbd_socket *sock;
1354         struct p_block_ack *p;
1355
1356         if (peer_device->device->state.conn < C_CONNECTED)
1357                 return -EIO;
1358
1359         sock = &peer_device->connection->meta;
1360         p = drbd_prepare_command(peer_device, sock);
1361         if (!p)
1362                 return -EIO;
1363         p->sector = sector;
1364         p->block_id = block_id;
1365         p->blksize = blksize;
1366         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1367         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1368 }
1369
1370 /* dp->sector and dp->block_id already/still in network byte order,
1371  * data_size is payload size according to dp->head,
1372  * and may need to be corrected for digest size. */
1373 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1374                       struct p_data *dp, int data_size)
1375 {
1376         if (peer_device->connection->peer_integrity_tfm)
1377                 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1378         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1379                        dp->block_id);
1380 }
1381
1382 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1383                       struct p_block_req *rp)
1384 {
1385         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1386 }
1387
1388 /**
1389  * drbd_send_ack() - Sends an ack packet
1390  * @device:     DRBD device
1391  * @cmd:        packet command code
1392  * @peer_req:   peer request
1393  */
1394 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1395                   struct drbd_peer_request *peer_req)
1396 {
1397         return _drbd_send_ack(peer_device, cmd,
1398                               cpu_to_be64(peer_req->i.sector),
1399                               cpu_to_be32(peer_req->i.size),
1400                               peer_req->block_id);
1401 }
1402
1403 /* This function misuses the block_id field to signal if the blocks
1404  * are is sync or not. */
1405 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1406                      sector_t sector, int blksize, u64 block_id)
1407 {
1408         return _drbd_send_ack(peer_device, cmd,
1409                               cpu_to_be64(sector),
1410                               cpu_to_be32(blksize),
1411                               cpu_to_be64(block_id));
1412 }
1413
1414 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1415                              struct drbd_peer_request *peer_req)
1416 {
1417         struct drbd_socket *sock;
1418         struct p_block_desc *p;
1419
1420         sock = &peer_device->connection->data;
1421         p = drbd_prepare_command(peer_device, sock);
1422         if (!p)
1423                 return -EIO;
1424         p->sector = cpu_to_be64(peer_req->i.sector);
1425         p->blksize = cpu_to_be32(peer_req->i.size);
1426         p->pad = 0;
1427         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1428 }
1429
1430 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1431                        sector_t sector, int size, u64 block_id)
1432 {
1433         struct drbd_socket *sock;
1434         struct p_block_req *p;
1435
1436         sock = &peer_device->connection->data;
1437         p = drbd_prepare_command(peer_device, sock);
1438         if (!p)
1439                 return -EIO;
1440         p->sector = cpu_to_be64(sector);
1441         p->block_id = block_id;
1442         p->blksize = cpu_to_be32(size);
1443         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1444 }
1445
1446 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1447                             void *digest, int digest_size, enum drbd_packet cmd)
1448 {
1449         struct drbd_socket *sock;
1450         struct p_block_req *p;
1451
1452         /* FIXME: Put the digest into the preallocated socket buffer.  */
1453
1454         sock = &peer_device->connection->data;
1455         p = drbd_prepare_command(peer_device, sock);
1456         if (!p)
1457                 return -EIO;
1458         p->sector = cpu_to_be64(sector);
1459         p->block_id = ID_SYNCER /* unused */;
1460         p->blksize = cpu_to_be32(size);
1461         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1462 }
1463
1464 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1465 {
1466         struct drbd_socket *sock;
1467         struct p_block_req *p;
1468
1469         sock = &peer_device->connection->data;
1470         p = drbd_prepare_command(peer_device, sock);
1471         if (!p)
1472                 return -EIO;
1473         p->sector = cpu_to_be64(sector);
1474         p->block_id = ID_SYNCER /* unused */;
1475         p->blksize = cpu_to_be32(size);
1476         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1477 }
1478
1479 /* called on sndtimeo
1480  * returns false if we should retry,
1481  * true if we think connection is dead
1482  */
1483 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1484 {
1485         int drop_it;
1486         /* long elapsed = (long)(jiffies - device->last_received); */
1487
1488         drop_it =   connection->meta.socket == sock
1489                 || !connection->ack_receiver.task
1490                 || get_t_state(&connection->ack_receiver) != RUNNING
1491                 || connection->cstate < C_WF_REPORT_PARAMS;
1492
1493         if (drop_it)
1494                 return true;
1495
1496         drop_it = !--connection->ko_count;
1497         if (!drop_it) {
1498                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1499                          current->comm, current->pid, connection->ko_count);
1500                 request_ping(connection);
1501         }
1502
1503         return drop_it; /* && (device->state == R_PRIMARY) */;
1504 }
1505
1506 static void drbd_update_congested(struct drbd_connection *connection)
1507 {
1508         struct sock *sk = connection->data.socket->sk;
1509         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1510                 set_bit(NET_CONGESTED, &connection->flags);
1511 }
1512
1513 /* The idea of sendpage seems to be to put some kind of reference
1514  * to the page into the skb, and to hand it over to the NIC. In
1515  * this process get_page() gets called.
1516  *
1517  * As soon as the page was really sent over the network put_page()
1518  * gets called by some part of the network layer. [ NIC driver? ]
1519  *
1520  * [ get_page() / put_page() increment/decrement the count. If count
1521  *   reaches 0 the page will be freed. ]
1522  *
1523  * This works nicely with pages from FSs.
1524  * But this means that in protocol A we might signal IO completion too early!
1525  *
1526  * In order not to corrupt data during a resync we must make sure
1527  * that we do not reuse our own buffer pages (EEs) to early, therefore
1528  * we have the net_ee list.
1529  *
1530  * XFS seems to have problems, still, it submits pages with page_count == 0!
1531  * As a workaround, we disable sendpage on pages
1532  * with page_count == 0 or PageSlab.
1533  */
1534 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1535                               int offset, size_t size, unsigned msg_flags)
1536 {
1537         struct socket *socket;
1538         void *addr;
1539         int err;
1540
1541         socket = peer_device->connection->data.socket;
1542         addr = kmap(page) + offset;
1543         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1544         kunmap(page);
1545         if (!err)
1546                 peer_device->device->send_cnt += size >> 9;
1547         return err;
1548 }
1549
1550 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1551                     int offset, size_t size, unsigned msg_flags)
1552 {
1553         struct socket *socket = peer_device->connection->data.socket;
1554         int len = size;
1555         int err = -EIO;
1556
1557         /* e.g. XFS meta- & log-data is in slab pages, which have a
1558          * page_count of 0 and/or have PageSlab() set.
1559          * we cannot use send_page for those, as that does get_page();
1560          * put_page(); and would cause either a VM_BUG directly, or
1561          * __page_cache_release a page that would actually still be referenced
1562          * by someone, leading to some obscure delayed Oops somewhere else. */
1563         if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1564                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1565
1566         msg_flags |= MSG_NOSIGNAL;
1567         drbd_update_congested(peer_device->connection);
1568         do {
1569                 int sent;
1570
1571                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1572                 if (sent <= 0) {
1573                         if (sent == -EAGAIN) {
1574                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1575                                         break;
1576                                 continue;
1577                         }
1578                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1579                              __func__, (int)size, len, sent);
1580                         if (sent < 0)
1581                                 err = sent;
1582                         break;
1583                 }
1584                 len    -= sent;
1585                 offset += sent;
1586         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1587         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1588
1589         if (len == 0) {
1590                 err = 0;
1591                 peer_device->device->send_cnt += size >> 9;
1592         }
1593         return err;
1594 }
1595
1596 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1597 {
1598         struct bio_vec bvec;
1599         struct bvec_iter iter;
1600
1601         /* hint all but last page with MSG_MORE */
1602         bio_for_each_segment(bvec, bio, iter) {
1603                 int err;
1604
1605                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1606                                          bvec.bv_offset, bvec.bv_len,
1607                                          bio_iter_last(bvec, iter)
1608                                          ? 0 : MSG_MORE);
1609                 if (err)
1610                         return err;
1611                 /* REQ_OP_WRITE_SAME has only one segment */
1612                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1613                         break;
1614         }
1615         return 0;
1616 }
1617
1618 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1619 {
1620         struct bio_vec bvec;
1621         struct bvec_iter iter;
1622
1623         /* hint all but last page with MSG_MORE */
1624         bio_for_each_segment(bvec, bio, iter) {
1625                 int err;
1626
1627                 err = _drbd_send_page(peer_device, bvec.bv_page,
1628                                       bvec.bv_offset, bvec.bv_len,
1629                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1630                 if (err)
1631                         return err;
1632                 /* REQ_OP_WRITE_SAME has only one segment */
1633                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1634                         break;
1635         }
1636         return 0;
1637 }
1638
1639 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1640                             struct drbd_peer_request *peer_req)
1641 {
1642         struct page *page = peer_req->pages;
1643         unsigned len = peer_req->i.size;
1644         int err;
1645
1646         /* hint all but last page with MSG_MORE */
1647         page_chain_for_each(page) {
1648                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1649
1650                 err = _drbd_send_page(peer_device, page, 0, l,
1651                                       page_chain_next(page) ? MSG_MORE : 0);
1652                 if (err)
1653                         return err;
1654                 len -= l;
1655         }
1656         return 0;
1657 }
1658
1659 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1660                              struct bio *bio)
1661 {
1662         if (connection->agreed_pro_version >= 95)
1663                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1664                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1665                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1666                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1667                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1668                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0);
1669         else
1670                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1671 }
1672
1673 /* Used to send write or TRIM aka REQ_DISCARD requests
1674  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1675  */
1676 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1677 {
1678         struct drbd_device *device = peer_device->device;
1679         struct drbd_socket *sock;
1680         struct p_data *p;
1681         struct p_wsame *wsame = NULL;
1682         void *digest_out;
1683         unsigned int dp_flags = 0;
1684         int digest_size;
1685         int err;
1686
1687         sock = &peer_device->connection->data;
1688         p = drbd_prepare_command(peer_device, sock);
1689         digest_size = peer_device->connection->integrity_tfm ?
1690                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1691
1692         if (!p)
1693                 return -EIO;
1694         p->sector = cpu_to_be64(req->i.sector);
1695         p->block_id = (unsigned long)req;
1696         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1697         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1698         if (device->state.conn >= C_SYNC_SOURCE &&
1699             device->state.conn <= C_PAUSED_SYNC_T)
1700                 dp_flags |= DP_MAY_SET_IN_SYNC;
1701         if (peer_device->connection->agreed_pro_version >= 100) {
1702                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1703                         dp_flags |= DP_SEND_RECEIVE_ACK;
1704                 /* During resync, request an explicit write ack,
1705                  * even in protocol != C */
1706                 if (req->rq_state & RQ_EXP_WRITE_ACK
1707                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1708                         dp_flags |= DP_SEND_WRITE_ACK;
1709         }
1710         p->dp_flags = cpu_to_be32(dp_flags);
1711
1712         if (dp_flags & DP_DISCARD) {
1713                 struct p_trim *t = (struct p_trim*)p;
1714                 t->size = cpu_to_be32(req->i.size);
1715                 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1716                 goto out;
1717         }
1718         if (dp_flags & DP_WSAME) {
1719                 /* this will only work if DRBD_FF_WSAME is set AND the
1720                  * handshake agreed that all nodes and backend devices are
1721                  * WRITE_SAME capable and agree on logical_block_size */
1722                 wsame = (struct p_wsame*)p;
1723                 digest_out = wsame + 1;
1724                 wsame->size = cpu_to_be32(req->i.size);
1725         } else
1726                 digest_out = p + 1;
1727
1728         /* our digest is still only over the payload.
1729          * TRIM does not carry any payload. */
1730         if (digest_size)
1731                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1732         if (wsame) {
1733                 err =
1734                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1735                                    sizeof(*wsame) + digest_size, NULL,
1736                                    bio_iovec(req->master_bio).bv_len);
1737         } else
1738                 err =
1739                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1740                                    sizeof(*p) + digest_size, NULL, req->i.size);
1741         if (!err) {
1742                 /* For protocol A, we have to memcpy the payload into
1743                  * socket buffers, as we may complete right away
1744                  * as soon as we handed it over to tcp, at which point the data
1745                  * pages may become invalid.
1746                  *
1747                  * For data-integrity enabled, we copy it as well, so we can be
1748                  * sure that even if the bio pages may still be modified, it
1749                  * won't change the data on the wire, thus if the digest checks
1750                  * out ok after sending on this side, but does not fit on the
1751                  * receiving side, we sure have detected corruption elsewhere.
1752                  */
1753                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1754                         err = _drbd_send_bio(peer_device, req->master_bio);
1755                 else
1756                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1757
1758                 /* double check digest, sometimes buffers have been modified in flight. */
1759                 if (digest_size > 0 && digest_size <= 64) {
1760                         /* 64 byte, 512 bit, is the largest digest size
1761                          * currently supported in kernel crypto. */
1762                         unsigned char digest[64];
1763                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1764                         if (memcmp(p + 1, digest, digest_size)) {
1765                                 drbd_warn(device,
1766                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1767                                         (unsigned long long)req->i.sector, req->i.size);
1768                         }
1769                 } /* else if (digest_size > 64) {
1770                      ... Be noisy about digest too large ...
1771                 } */
1772         }
1773 out:
1774         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1775
1776         return err;
1777 }
1778
1779 /* answer packet, used to send data back for read requests:
1780  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1781  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1782  */
1783 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1784                     struct drbd_peer_request *peer_req)
1785 {
1786         struct drbd_device *device = peer_device->device;
1787         struct drbd_socket *sock;
1788         struct p_data *p;
1789         int err;
1790         int digest_size;
1791
1792         sock = &peer_device->connection->data;
1793         p = drbd_prepare_command(peer_device, sock);
1794
1795         digest_size = peer_device->connection->integrity_tfm ?
1796                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1797
1798         if (!p)
1799                 return -EIO;
1800         p->sector = cpu_to_be64(peer_req->i.sector);
1801         p->block_id = peer_req->block_id;
1802         p->seq_num = 0;  /* unused */
1803         p->dp_flags = 0;
1804         if (digest_size)
1805                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1806         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1807         if (!err)
1808                 err = _drbd_send_zc_ee(peer_device, peer_req);
1809         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1810
1811         return err;
1812 }
1813
1814 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1815 {
1816         struct drbd_socket *sock;
1817         struct p_block_desc *p;
1818
1819         sock = &peer_device->connection->data;
1820         p = drbd_prepare_command(peer_device, sock);
1821         if (!p)
1822                 return -EIO;
1823         p->sector = cpu_to_be64(req->i.sector);
1824         p->blksize = cpu_to_be32(req->i.size);
1825         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1826 }
1827
1828 /*
1829   drbd_send distinguishes two cases:
1830
1831   Packets sent via the data socket "sock"
1832   and packets sent via the meta data socket "msock"
1833
1834                     sock                      msock
1835   -----------------+-------------------------+------------------------------
1836   timeout           conf.timeout / 2          conf.timeout / 2
1837   timeout action    send a ping via msock     Abort communication
1838                                               and close all sockets
1839 */
1840
1841 /*
1842  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1843  */
1844 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1845               void *buf, size_t size, unsigned msg_flags)
1846 {
1847         struct kvec iov = {.iov_base = buf, .iov_len = size};
1848         struct msghdr msg;
1849         int rv, sent = 0;
1850
1851         if (!sock)
1852                 return -EBADR;
1853
1854         /* THINK  if (signal_pending) return ... ? */
1855
1856         msg.msg_name       = NULL;
1857         msg.msg_namelen    = 0;
1858         msg.msg_control    = NULL;
1859         msg.msg_controllen = 0;
1860         msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1861
1862         iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
1863
1864         if (sock == connection->data.socket) {
1865                 rcu_read_lock();
1866                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1867                 rcu_read_unlock();
1868                 drbd_update_congested(connection);
1869         }
1870         do {
1871                 rv = sock_sendmsg(sock, &msg);
1872                 if (rv == -EAGAIN) {
1873                         if (we_should_drop_the_connection(connection, sock))
1874                                 break;
1875                         else
1876                                 continue;
1877                 }
1878                 if (rv == -EINTR) {
1879                         flush_signals(current);
1880                         rv = 0;
1881                 }
1882                 if (rv < 0)
1883                         break;
1884                 sent += rv;
1885         } while (sent < size);
1886
1887         if (sock == connection->data.socket)
1888                 clear_bit(NET_CONGESTED, &connection->flags);
1889
1890         if (rv <= 0) {
1891                 if (rv != -EAGAIN) {
1892                         drbd_err(connection, "%s_sendmsg returned %d\n",
1893                                  sock == connection->meta.socket ? "msock" : "sock",
1894                                  rv);
1895                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1896                 } else
1897                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1898         }
1899
1900         return sent;
1901 }
1902
1903 /**
1904  * drbd_send_all  -  Send an entire buffer
1905  *
1906  * Returns 0 upon success and a negative error value otherwise.
1907  */
1908 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1909                   size_t size, unsigned msg_flags)
1910 {
1911         int err;
1912
1913         err = drbd_send(connection, sock, buffer, size, msg_flags);
1914         if (err < 0)
1915                 return err;
1916         if (err != size)
1917                 return -EIO;
1918         return 0;
1919 }
1920
1921 static int drbd_open(struct block_device *bdev, fmode_t mode)
1922 {
1923         struct drbd_device *device = bdev->bd_disk->private_data;
1924         unsigned long flags;
1925         int rv = 0;
1926
1927         mutex_lock(&drbd_main_mutex);
1928         spin_lock_irqsave(&device->resource->req_lock, flags);
1929         /* to have a stable device->state.role
1930          * and no race with updating open_cnt */
1931
1932         if (device->state.role != R_PRIMARY) {
1933                 if (mode & FMODE_WRITE)
1934                         rv = -EROFS;
1935                 else if (!allow_oos)
1936                         rv = -EMEDIUMTYPE;
1937         }
1938
1939         if (!rv)
1940                 device->open_cnt++;
1941         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1942         mutex_unlock(&drbd_main_mutex);
1943
1944         return rv;
1945 }
1946
1947 static void drbd_release(struct gendisk *gd, fmode_t mode)
1948 {
1949         struct drbd_device *device = gd->private_data;
1950         mutex_lock(&drbd_main_mutex);
1951         device->open_cnt--;
1952         mutex_unlock(&drbd_main_mutex);
1953 }
1954
1955 static void drbd_set_defaults(struct drbd_device *device)
1956 {
1957         /* Beware! The actual layout differs
1958          * between big endian and little endian */
1959         device->state = (union drbd_dev_state) {
1960                 { .role = R_SECONDARY,
1961                   .peer = R_UNKNOWN,
1962                   .conn = C_STANDALONE,
1963                   .disk = D_DISKLESS,
1964                   .pdsk = D_UNKNOWN,
1965                 } };
1966 }
1967
1968 void drbd_init_set_defaults(struct drbd_device *device)
1969 {
1970         /* the memset(,0,) did most of this.
1971          * note: only assignments, no allocation in here */
1972
1973         drbd_set_defaults(device);
1974
1975         atomic_set(&device->ap_bio_cnt, 0);
1976         atomic_set(&device->ap_actlog_cnt, 0);
1977         atomic_set(&device->ap_pending_cnt, 0);
1978         atomic_set(&device->rs_pending_cnt, 0);
1979         atomic_set(&device->unacked_cnt, 0);
1980         atomic_set(&device->local_cnt, 0);
1981         atomic_set(&device->pp_in_use_by_net, 0);
1982         atomic_set(&device->rs_sect_in, 0);
1983         atomic_set(&device->rs_sect_ev, 0);
1984         atomic_set(&device->ap_in_flight, 0);
1985         atomic_set(&device->md_io.in_use, 0);
1986
1987         mutex_init(&device->own_state_mutex);
1988         device->state_mutex = &device->own_state_mutex;
1989
1990         spin_lock_init(&device->al_lock);
1991         spin_lock_init(&device->peer_seq_lock);
1992
1993         INIT_LIST_HEAD(&device->active_ee);
1994         INIT_LIST_HEAD(&device->sync_ee);
1995         INIT_LIST_HEAD(&device->done_ee);
1996         INIT_LIST_HEAD(&device->read_ee);
1997         INIT_LIST_HEAD(&device->net_ee);
1998         INIT_LIST_HEAD(&device->resync_reads);
1999         INIT_LIST_HEAD(&device->resync_work.list);
2000         INIT_LIST_HEAD(&device->unplug_work.list);
2001         INIT_LIST_HEAD(&device->bm_io_work.w.list);
2002         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2003         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2004         INIT_LIST_HEAD(&device->pending_completion[0]);
2005         INIT_LIST_HEAD(&device->pending_completion[1]);
2006
2007         device->resync_work.cb  = w_resync_timer;
2008         device->unplug_work.cb  = w_send_write_hint;
2009         device->bm_io_work.w.cb = w_bitmap_io;
2010
2011         init_timer(&device->resync_timer);
2012         init_timer(&device->md_sync_timer);
2013         init_timer(&device->start_resync_timer);
2014         init_timer(&device->request_timer);
2015         device->resync_timer.function = resync_timer_fn;
2016         device->resync_timer.data = (unsigned long) device;
2017         device->md_sync_timer.function = md_sync_timer_fn;
2018         device->md_sync_timer.data = (unsigned long) device;
2019         device->start_resync_timer.function = start_resync_timer_fn;
2020         device->start_resync_timer.data = (unsigned long) device;
2021         device->request_timer.function = request_timer_fn;
2022         device->request_timer.data = (unsigned long) device;
2023
2024         init_waitqueue_head(&device->misc_wait);
2025         init_waitqueue_head(&device->state_wait);
2026         init_waitqueue_head(&device->ee_wait);
2027         init_waitqueue_head(&device->al_wait);
2028         init_waitqueue_head(&device->seq_wait);
2029
2030         device->resync_wenr = LC_FREE;
2031         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2032         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2033 }
2034
2035 void drbd_device_cleanup(struct drbd_device *device)
2036 {
2037         int i;
2038         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2039                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2040                                 first_peer_device(device)->connection->receiver.t_state);
2041
2042         device->al_writ_cnt  =
2043         device->bm_writ_cnt  =
2044         device->read_cnt     =
2045         device->recv_cnt     =
2046         device->send_cnt     =
2047         device->writ_cnt     =
2048         device->p_size       =
2049         device->rs_start     =
2050         device->rs_total     =
2051         device->rs_failed    = 0;
2052         device->rs_last_events = 0;
2053         device->rs_last_sect_ev = 0;
2054         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2055                 device->rs_mark_left[i] = 0;
2056                 device->rs_mark_time[i] = 0;
2057         }
2058         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2059
2060         drbd_set_my_capacity(device, 0);
2061         if (device->bitmap) {
2062                 /* maybe never allocated. */
2063                 drbd_bm_resize(device, 0, 1);
2064                 drbd_bm_cleanup(device);
2065         }
2066
2067         drbd_backing_dev_free(device, device->ldev);
2068         device->ldev = NULL;
2069
2070         clear_bit(AL_SUSPENDED, &device->flags);
2071
2072         D_ASSERT(device, list_empty(&device->active_ee));
2073         D_ASSERT(device, list_empty(&device->sync_ee));
2074         D_ASSERT(device, list_empty(&device->done_ee));
2075         D_ASSERT(device, list_empty(&device->read_ee));
2076         D_ASSERT(device, list_empty(&device->net_ee));
2077         D_ASSERT(device, list_empty(&device->resync_reads));
2078         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2079         D_ASSERT(device, list_empty(&device->resync_work.list));
2080         D_ASSERT(device, list_empty(&device->unplug_work.list));
2081
2082         drbd_set_defaults(device);
2083 }
2084
2085
2086 static void drbd_destroy_mempools(void)
2087 {
2088         struct page *page;
2089
2090         while (drbd_pp_pool) {
2091                 page = drbd_pp_pool;
2092                 drbd_pp_pool = (struct page *)page_private(page);
2093                 __free_page(page);
2094                 drbd_pp_vacant--;
2095         }
2096
2097         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2098
2099         if (drbd_io_bio_set)
2100                 bioset_free(drbd_io_bio_set);
2101         if (drbd_md_io_bio_set)
2102                 bioset_free(drbd_md_io_bio_set);
2103         if (drbd_md_io_page_pool)
2104                 mempool_destroy(drbd_md_io_page_pool);
2105         if (drbd_ee_mempool)
2106                 mempool_destroy(drbd_ee_mempool);
2107         if (drbd_request_mempool)
2108                 mempool_destroy(drbd_request_mempool);
2109         if (drbd_ee_cache)
2110                 kmem_cache_destroy(drbd_ee_cache);
2111         if (drbd_request_cache)
2112                 kmem_cache_destroy(drbd_request_cache);
2113         if (drbd_bm_ext_cache)
2114                 kmem_cache_destroy(drbd_bm_ext_cache);
2115         if (drbd_al_ext_cache)
2116                 kmem_cache_destroy(drbd_al_ext_cache);
2117
2118         drbd_io_bio_set      = NULL;
2119         drbd_md_io_bio_set   = NULL;
2120         drbd_md_io_page_pool = NULL;
2121         drbd_ee_mempool      = NULL;
2122         drbd_request_mempool = NULL;
2123         drbd_ee_cache        = NULL;
2124         drbd_request_cache   = NULL;
2125         drbd_bm_ext_cache    = NULL;
2126         drbd_al_ext_cache    = NULL;
2127
2128         return;
2129 }
2130
2131 static int drbd_create_mempools(void)
2132 {
2133         struct page *page;
2134         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2135         int i;
2136
2137         /* prepare our caches and mempools */
2138         drbd_request_mempool = NULL;
2139         drbd_ee_cache        = NULL;
2140         drbd_request_cache   = NULL;
2141         drbd_bm_ext_cache    = NULL;
2142         drbd_al_ext_cache    = NULL;
2143         drbd_pp_pool         = NULL;
2144         drbd_md_io_page_pool = NULL;
2145         drbd_md_io_bio_set   = NULL;
2146         drbd_io_bio_set      = NULL;
2147
2148         /* caches */
2149         drbd_request_cache = kmem_cache_create(
2150                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2151         if (drbd_request_cache == NULL)
2152                 goto Enomem;
2153
2154         drbd_ee_cache = kmem_cache_create(
2155                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2156         if (drbd_ee_cache == NULL)
2157                 goto Enomem;
2158
2159         drbd_bm_ext_cache = kmem_cache_create(
2160                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2161         if (drbd_bm_ext_cache == NULL)
2162                 goto Enomem;
2163
2164         drbd_al_ext_cache = kmem_cache_create(
2165                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2166         if (drbd_al_ext_cache == NULL)
2167                 goto Enomem;
2168
2169         /* mempools */
2170         drbd_io_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_RESCUER);
2171         if (drbd_io_bio_set == NULL)
2172                 goto Enomem;
2173
2174         drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0,
2175                                            BIOSET_NEED_BVECS |
2176                                            BIOSET_NEED_RESCUER);
2177         if (drbd_md_io_bio_set == NULL)
2178                 goto Enomem;
2179
2180         drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2181         if (drbd_md_io_page_pool == NULL)
2182                 goto Enomem;
2183
2184         drbd_request_mempool = mempool_create_slab_pool(number,
2185                 drbd_request_cache);
2186         if (drbd_request_mempool == NULL)
2187                 goto Enomem;
2188
2189         drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2190         if (drbd_ee_mempool == NULL)
2191                 goto Enomem;
2192
2193         /* drbd's page pool */
2194         spin_lock_init(&drbd_pp_lock);
2195
2196         for (i = 0; i < number; i++) {
2197                 page = alloc_page(GFP_HIGHUSER);
2198                 if (!page)
2199                         goto Enomem;
2200                 set_page_private(page, (unsigned long)drbd_pp_pool);
2201                 drbd_pp_pool = page;
2202         }
2203         drbd_pp_vacant = number;
2204
2205         return 0;
2206
2207 Enomem:
2208         drbd_destroy_mempools(); /* in case we allocated some */
2209         return -ENOMEM;
2210 }
2211
2212 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2213 {
2214         int rr;
2215
2216         rr = drbd_free_peer_reqs(device, &device->active_ee);
2217         if (rr)
2218                 drbd_err(device, "%d EEs in active list found!\n", rr);
2219
2220         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2221         if (rr)
2222                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2223
2224         rr = drbd_free_peer_reqs(device, &device->read_ee);
2225         if (rr)
2226                 drbd_err(device, "%d EEs in read list found!\n", rr);
2227
2228         rr = drbd_free_peer_reqs(device, &device->done_ee);
2229         if (rr)
2230                 drbd_err(device, "%d EEs in done list found!\n", rr);
2231
2232         rr = drbd_free_peer_reqs(device, &device->net_ee);
2233         if (rr)
2234                 drbd_err(device, "%d EEs in net list found!\n", rr);
2235 }
2236
2237 /* caution. no locking. */
2238 void drbd_destroy_device(struct kref *kref)
2239 {
2240         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2241         struct drbd_resource *resource = device->resource;
2242         struct drbd_peer_device *peer_device, *tmp_peer_device;
2243
2244         del_timer_sync(&device->request_timer);
2245
2246         /* paranoia asserts */
2247         D_ASSERT(device, device->open_cnt == 0);
2248         /* end paranoia asserts */
2249
2250         /* cleanup stuff that may have been allocated during
2251          * device (re-)configuration or state changes */
2252
2253         if (device->this_bdev)
2254                 bdput(device->this_bdev);
2255
2256         drbd_backing_dev_free(device, device->ldev);
2257         device->ldev = NULL;
2258
2259         drbd_release_all_peer_reqs(device);
2260
2261         lc_destroy(device->act_log);
2262         lc_destroy(device->resync);
2263
2264         kfree(device->p_uuid);
2265         /* device->p_uuid = NULL; */
2266
2267         if (device->bitmap) /* should no longer be there. */
2268                 drbd_bm_cleanup(device);
2269         __free_page(device->md_io.page);
2270         put_disk(device->vdisk);
2271         blk_cleanup_queue(device->rq_queue);
2272         kfree(device->rs_plan_s);
2273
2274         /* not for_each_connection(connection, resource):
2275          * those may have been cleaned up and disassociated already.
2276          */
2277         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2278                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2279                 kfree(peer_device);
2280         }
2281         memset(device, 0xfd, sizeof(*device));
2282         kfree(device);
2283         kref_put(&resource->kref, drbd_destroy_resource);
2284 }
2285
2286 /* One global retry thread, if we need to push back some bio and have it
2287  * reinserted through our make request function.
2288  */
2289 static struct retry_worker {
2290         struct workqueue_struct *wq;
2291         struct work_struct worker;
2292
2293         spinlock_t lock;
2294         struct list_head writes;
2295 } retry;
2296
2297 static void do_retry(struct work_struct *ws)
2298 {
2299         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2300         LIST_HEAD(writes);
2301         struct drbd_request *req, *tmp;
2302
2303         spin_lock_irq(&retry->lock);
2304         list_splice_init(&retry->writes, &writes);
2305         spin_unlock_irq(&retry->lock);
2306
2307         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2308                 struct drbd_device *device = req->device;
2309                 struct bio *bio = req->master_bio;
2310                 unsigned long start_jif = req->start_jif;
2311                 bool expected;
2312
2313                 expected =
2314                         expect(atomic_read(&req->completion_ref) == 0) &&
2315                         expect(req->rq_state & RQ_POSTPONED) &&
2316                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2317                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2318
2319                 if (!expected)
2320                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2321                                 req, atomic_read(&req->completion_ref),
2322                                 req->rq_state);
2323
2324                 /* We still need to put one kref associated with the
2325                  * "completion_ref" going zero in the code path that queued it
2326                  * here.  The request object may still be referenced by a
2327                  * frozen local req->private_bio, in case we force-detached.
2328                  */
2329                 kref_put(&req->kref, drbd_req_destroy);
2330
2331                 /* A single suspended or otherwise blocking device may stall
2332                  * all others as well.  Fortunately, this code path is to
2333                  * recover from a situation that "should not happen":
2334                  * concurrent writes in multi-primary setup.
2335                  * In a "normal" lifecycle, this workqueue is supposed to be
2336                  * destroyed without ever doing anything.
2337                  * If it turns out to be an issue anyways, we can do per
2338                  * resource (replication group) or per device (minor) retry
2339                  * workqueues instead.
2340                  */
2341
2342                 /* We are not just doing generic_make_request(),
2343                  * as we want to keep the start_time information. */
2344                 inc_ap_bio(device);
2345                 __drbd_make_request(device, bio, start_jif);
2346         }
2347 }
2348
2349 /* called via drbd_req_put_completion_ref(),
2350  * holds resource->req_lock */
2351 void drbd_restart_request(struct drbd_request *req)
2352 {
2353         unsigned long flags;
2354         spin_lock_irqsave(&retry.lock, flags);
2355         list_move_tail(&req->tl_requests, &retry.writes);
2356         spin_unlock_irqrestore(&retry.lock, flags);
2357
2358         /* Drop the extra reference that would otherwise
2359          * have been dropped by complete_master_bio.
2360          * do_retry() needs to grab a new one. */
2361         dec_ap_bio(req->device);
2362
2363         queue_work(retry.wq, &retry.worker);
2364 }
2365
2366 void drbd_destroy_resource(struct kref *kref)
2367 {
2368         struct drbd_resource *resource =
2369                 container_of(kref, struct drbd_resource, kref);
2370
2371         idr_destroy(&resource->devices);
2372         free_cpumask_var(resource->cpu_mask);
2373         kfree(resource->name);
2374         memset(resource, 0xf2, sizeof(*resource));
2375         kfree(resource);
2376 }
2377
2378 void drbd_free_resource(struct drbd_resource *resource)
2379 {
2380         struct drbd_connection *connection, *tmp;
2381
2382         for_each_connection_safe(connection, tmp, resource) {
2383                 list_del(&connection->connections);
2384                 drbd_debugfs_connection_cleanup(connection);
2385                 kref_put(&connection->kref, drbd_destroy_connection);
2386         }
2387         drbd_debugfs_resource_cleanup(resource);
2388         kref_put(&resource->kref, drbd_destroy_resource);
2389 }
2390
2391 static void drbd_cleanup(void)
2392 {
2393         unsigned int i;
2394         struct drbd_device *device;
2395         struct drbd_resource *resource, *tmp;
2396
2397         /* first remove proc,
2398          * drbdsetup uses it's presence to detect
2399          * whether DRBD is loaded.
2400          * If we would get stuck in proc removal,
2401          * but have netlink already deregistered,
2402          * some drbdsetup commands may wait forever
2403          * for an answer.
2404          */
2405         if (drbd_proc)
2406                 remove_proc_entry("drbd", NULL);
2407
2408         if (retry.wq)
2409                 destroy_workqueue(retry.wq);
2410
2411         drbd_genl_unregister();
2412         drbd_debugfs_cleanup();
2413
2414         idr_for_each_entry(&drbd_devices, device, i)
2415                 drbd_delete_device(device);
2416
2417         /* not _rcu since, no other updater anymore. Genl already unregistered */
2418         for_each_resource_safe(resource, tmp, &drbd_resources) {
2419                 list_del(&resource->resources);
2420                 drbd_free_resource(resource);
2421         }
2422
2423         drbd_destroy_mempools();
2424         unregister_blkdev(DRBD_MAJOR, "drbd");
2425
2426         idr_destroy(&drbd_devices);
2427
2428         pr_info("module cleanup done.\n");
2429 }
2430
2431 /**
2432  * drbd_congested() - Callback for the flusher thread
2433  * @congested_data:     User data
2434  * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2435  *
2436  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2437  */
2438 static int drbd_congested(void *congested_data, int bdi_bits)
2439 {
2440         struct drbd_device *device = congested_data;
2441         struct request_queue *q;
2442         char reason = '-';
2443         int r = 0;
2444
2445         if (!may_inc_ap_bio(device)) {
2446                 /* DRBD has frozen IO */
2447                 r = bdi_bits;
2448                 reason = 'd';
2449                 goto out;
2450         }
2451
2452         if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2453                 r |= (1 << WB_async_congested);
2454                 /* Without good local data, we would need to read from remote,
2455                  * and that would need the worker thread as well, which is
2456                  * currently blocked waiting for that usermode helper to
2457                  * finish.
2458                  */
2459                 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2460                         r |= (1 << WB_sync_congested);
2461                 else
2462                         put_ldev(device);
2463                 r &= bdi_bits;
2464                 reason = 'c';
2465                 goto out;
2466         }
2467
2468         if (get_ldev(device)) {
2469                 q = bdev_get_queue(device->ldev->backing_bdev);
2470                 r = bdi_congested(q->backing_dev_info, bdi_bits);
2471                 put_ldev(device);
2472                 if (r)
2473                         reason = 'b';
2474         }
2475
2476         if (bdi_bits & (1 << WB_async_congested) &&
2477             test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2478                 r |= (1 << WB_async_congested);
2479                 reason = reason == 'b' ? 'a' : 'n';
2480         }
2481
2482 out:
2483         device->congestion_reason = reason;
2484         return r;
2485 }
2486
2487 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2488 {
2489         spin_lock_init(&wq->q_lock);
2490         INIT_LIST_HEAD(&wq->q);
2491         init_waitqueue_head(&wq->q_wait);
2492 }
2493
2494 struct completion_work {
2495         struct drbd_work w;
2496         struct completion done;
2497 };
2498
2499 static int w_complete(struct drbd_work *w, int cancel)
2500 {
2501         struct completion_work *completion_work =
2502                 container_of(w, struct completion_work, w);
2503
2504         complete(&completion_work->done);
2505         return 0;
2506 }
2507
2508 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2509 {
2510         struct completion_work completion_work;
2511
2512         completion_work.w.cb = w_complete;
2513         init_completion(&completion_work.done);
2514         drbd_queue_work(work_queue, &completion_work.w);
2515         wait_for_completion(&completion_work.done);
2516 }
2517
2518 struct drbd_resource *drbd_find_resource(const char *name)
2519 {
2520         struct drbd_resource *resource;
2521
2522         if (!name || !name[0])
2523                 return NULL;
2524
2525         rcu_read_lock();
2526         for_each_resource_rcu(resource, &drbd_resources) {
2527                 if (!strcmp(resource->name, name)) {
2528                         kref_get(&resource->kref);
2529                         goto found;
2530                 }
2531         }
2532         resource = NULL;
2533 found:
2534         rcu_read_unlock();
2535         return resource;
2536 }
2537
2538 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2539                                      void *peer_addr, int peer_addr_len)
2540 {
2541         struct drbd_resource *resource;
2542         struct drbd_connection *connection;
2543
2544         rcu_read_lock();
2545         for_each_resource_rcu(resource, &drbd_resources) {
2546                 for_each_connection_rcu(connection, resource) {
2547                         if (connection->my_addr_len == my_addr_len &&
2548                             connection->peer_addr_len == peer_addr_len &&
2549                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2550                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2551                                 kref_get(&connection->kref);
2552                                 goto found;
2553                         }
2554                 }
2555         }
2556         connection = NULL;
2557 found:
2558         rcu_read_unlock();
2559         return connection;
2560 }
2561
2562 static int drbd_alloc_socket(struct drbd_socket *socket)
2563 {
2564         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2565         if (!socket->rbuf)
2566                 return -ENOMEM;
2567         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2568         if (!socket->sbuf)
2569                 return -ENOMEM;
2570         return 0;
2571 }
2572
2573 static void drbd_free_socket(struct drbd_socket *socket)
2574 {
2575         free_page((unsigned long) socket->sbuf);
2576         free_page((unsigned long) socket->rbuf);
2577 }
2578
2579 void conn_free_crypto(struct drbd_connection *connection)
2580 {
2581         drbd_free_sock(connection);
2582
2583         crypto_free_ahash(connection->csums_tfm);
2584         crypto_free_ahash(connection->verify_tfm);
2585         crypto_free_shash(connection->cram_hmac_tfm);
2586         crypto_free_ahash(connection->integrity_tfm);
2587         crypto_free_ahash(connection->peer_integrity_tfm);
2588         kfree(connection->int_dig_in);
2589         kfree(connection->int_dig_vv);
2590
2591         connection->csums_tfm = NULL;
2592         connection->verify_tfm = NULL;
2593         connection->cram_hmac_tfm = NULL;
2594         connection->integrity_tfm = NULL;
2595         connection->peer_integrity_tfm = NULL;
2596         connection->int_dig_in = NULL;
2597         connection->int_dig_vv = NULL;
2598 }
2599
2600 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2601 {
2602         struct drbd_connection *connection;
2603         cpumask_var_t new_cpu_mask;
2604         int err;
2605
2606         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2607                 return -ENOMEM;
2608
2609         /* silently ignore cpu mask on UP kernel */
2610         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2611                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2612                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2613                 if (err == -EOVERFLOW) {
2614                         /* So what. mask it out. */
2615                         cpumask_var_t tmp_cpu_mask;
2616                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2617                                 cpumask_setall(tmp_cpu_mask);
2618                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2619                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2620                                         res_opts->cpu_mask,
2621                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2622                                         nr_cpu_ids);
2623                                 free_cpumask_var(tmp_cpu_mask);
2624                                 err = 0;
2625                         }
2626                 }
2627                 if (err) {
2628                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2629                         /* retcode = ERR_CPU_MASK_PARSE; */
2630                         goto fail;
2631                 }
2632         }
2633         resource->res_opts = *res_opts;
2634         if (cpumask_empty(new_cpu_mask))
2635                 drbd_calc_cpu_mask(&new_cpu_mask);
2636         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2637                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2638                 for_each_connection_rcu(connection, resource) {
2639                         connection->receiver.reset_cpu_mask = 1;
2640                         connection->ack_receiver.reset_cpu_mask = 1;
2641                         connection->worker.reset_cpu_mask = 1;
2642                 }
2643         }
2644         err = 0;
2645
2646 fail:
2647         free_cpumask_var(new_cpu_mask);
2648         return err;
2649
2650 }
2651
2652 struct drbd_resource *drbd_create_resource(const char *name)
2653 {
2654         struct drbd_resource *resource;
2655
2656         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2657         if (!resource)
2658                 goto fail;
2659         resource->name = kstrdup(name, GFP_KERNEL);
2660         if (!resource->name)
2661                 goto fail_free_resource;
2662         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2663                 goto fail_free_name;
2664         kref_init(&resource->kref);
2665         idr_init(&resource->devices);
2666         INIT_LIST_HEAD(&resource->connections);
2667         resource->write_ordering = WO_BDEV_FLUSH;
2668         list_add_tail_rcu(&resource->resources, &drbd_resources);
2669         mutex_init(&resource->conf_update);
2670         mutex_init(&resource->adm_mutex);
2671         spin_lock_init(&resource->req_lock);
2672         drbd_debugfs_resource_add(resource);
2673         return resource;
2674
2675 fail_free_name:
2676         kfree(resource->name);
2677 fail_free_resource:
2678         kfree(resource);
2679 fail:
2680         return NULL;
2681 }
2682
2683 /* caller must be under adm_mutex */
2684 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2685 {
2686         struct drbd_resource *resource;
2687         struct drbd_connection *connection;
2688
2689         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2690         if (!connection)
2691                 return NULL;
2692
2693         if (drbd_alloc_socket(&connection->data))
2694                 goto fail;
2695         if (drbd_alloc_socket(&connection->meta))
2696                 goto fail;
2697
2698         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2699         if (!connection->current_epoch)
2700                 goto fail;
2701
2702         INIT_LIST_HEAD(&connection->transfer_log);
2703
2704         INIT_LIST_HEAD(&connection->current_epoch->list);
2705         connection->epochs = 1;
2706         spin_lock_init(&connection->epoch_lock);
2707
2708         connection->send.seen_any_write_yet = false;
2709         connection->send.current_epoch_nr = 0;
2710         connection->send.current_epoch_writes = 0;
2711
2712         resource = drbd_create_resource(name);
2713         if (!resource)
2714                 goto fail;
2715
2716         connection->cstate = C_STANDALONE;
2717         mutex_init(&connection->cstate_mutex);
2718         init_waitqueue_head(&connection->ping_wait);
2719         idr_init(&connection->peer_devices);
2720
2721         drbd_init_workqueue(&connection->sender_work);
2722         mutex_init(&connection->data.mutex);
2723         mutex_init(&connection->meta.mutex);
2724
2725         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2726         connection->receiver.connection = connection;
2727         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2728         connection->worker.connection = connection;
2729         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2730         connection->ack_receiver.connection = connection;
2731
2732         kref_init(&connection->kref);
2733
2734         connection->resource = resource;
2735
2736         if (set_resource_options(resource, res_opts))
2737                 goto fail_resource;
2738
2739         kref_get(&resource->kref);
2740         list_add_tail_rcu(&connection->connections, &resource->connections);
2741         drbd_debugfs_connection_add(connection);
2742         return connection;
2743
2744 fail_resource:
2745         list_del(&resource->resources);
2746         drbd_free_resource(resource);
2747 fail:
2748         kfree(connection->current_epoch);
2749         drbd_free_socket(&connection->meta);
2750         drbd_free_socket(&connection->data);
2751         kfree(connection);
2752         return NULL;
2753 }
2754
2755 void drbd_destroy_connection(struct kref *kref)
2756 {
2757         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2758         struct drbd_resource *resource = connection->resource;
2759
2760         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2761                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2762         kfree(connection->current_epoch);
2763
2764         idr_destroy(&connection->peer_devices);
2765
2766         drbd_free_socket(&connection->meta);
2767         drbd_free_socket(&connection->data);
2768         kfree(connection->int_dig_in);
2769         kfree(connection->int_dig_vv);
2770         memset(connection, 0xfc, sizeof(*connection));
2771         kfree(connection);
2772         kref_put(&resource->kref, drbd_destroy_resource);
2773 }
2774
2775 static int init_submitter(struct drbd_device *device)
2776 {
2777         /* opencoded create_singlethread_workqueue(),
2778          * to be able to say "drbd%d", ..., minor */
2779         device->submit.wq =
2780                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2781         if (!device->submit.wq)
2782                 return -ENOMEM;
2783
2784         INIT_WORK(&device->submit.worker, do_submit);
2785         INIT_LIST_HEAD(&device->submit.writes);
2786         return 0;
2787 }
2788
2789 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2790 {
2791         struct drbd_resource *resource = adm_ctx->resource;
2792         struct drbd_connection *connection;
2793         struct drbd_device *device;
2794         struct drbd_peer_device *peer_device, *tmp_peer_device;
2795         struct gendisk *disk;
2796         struct request_queue *q;
2797         int id;
2798         int vnr = adm_ctx->volume;
2799         enum drbd_ret_code err = ERR_NOMEM;
2800
2801         device = minor_to_device(minor);
2802         if (device)
2803                 return ERR_MINOR_OR_VOLUME_EXISTS;
2804
2805         /* GFP_KERNEL, we are outside of all write-out paths */
2806         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2807         if (!device)
2808                 return ERR_NOMEM;
2809         kref_init(&device->kref);
2810
2811         kref_get(&resource->kref);
2812         device->resource = resource;
2813         device->minor = minor;
2814         device->vnr = vnr;
2815
2816         drbd_init_set_defaults(device);
2817
2818         q = blk_alloc_queue(GFP_KERNEL);
2819         if (!q)
2820                 goto out_no_q;
2821         device->rq_queue = q;
2822         q->queuedata   = device;
2823
2824         disk = alloc_disk(1);
2825         if (!disk)
2826                 goto out_no_disk;
2827         device->vdisk = disk;
2828
2829         set_disk_ro(disk, true);
2830
2831         disk->queue = q;
2832         disk->major = DRBD_MAJOR;
2833         disk->first_minor = minor;
2834         disk->fops = &drbd_ops;
2835         sprintf(disk->disk_name, "drbd%d", minor);
2836         disk->private_data = device;
2837
2838         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2839         /* we have no partitions. we contain only ourselves. */
2840         device->this_bdev->bd_contains = device->this_bdev;
2841
2842         q->backing_dev_info->congested_fn = drbd_congested;
2843         q->backing_dev_info->congested_data = device;
2844
2845         blk_queue_make_request(q, drbd_make_request);
2846         blk_queue_write_cache(q, true, true);
2847         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2848            This triggers a max_bio_size message upon first attach or connect */
2849         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2850         q->queue_lock = &resource->req_lock;
2851
2852         device->md_io.page = alloc_page(GFP_KERNEL);
2853         if (!device->md_io.page)
2854                 goto out_no_io_page;
2855
2856         if (drbd_bm_init(device))
2857                 goto out_no_bitmap;
2858         device->read_requests = RB_ROOT;
2859         device->write_requests = RB_ROOT;
2860
2861         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2862         if (id < 0) {
2863                 if (id == -ENOSPC)
2864                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2865                 goto out_no_minor_idr;
2866         }
2867         kref_get(&device->kref);
2868
2869         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2870         if (id < 0) {
2871                 if (id == -ENOSPC)
2872                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2873                 goto out_idr_remove_minor;
2874         }
2875         kref_get(&device->kref);
2876
2877         INIT_LIST_HEAD(&device->peer_devices);
2878         INIT_LIST_HEAD(&device->pending_bitmap_io);
2879         for_each_connection(connection, resource) {
2880                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2881                 if (!peer_device)
2882                         goto out_idr_remove_from_resource;
2883                 peer_device->connection = connection;
2884                 peer_device->device = device;
2885
2886                 list_add(&peer_device->peer_devices, &device->peer_devices);
2887                 kref_get(&device->kref);
2888
2889                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2890                 if (id < 0) {
2891                         if (id == -ENOSPC)
2892                                 err = ERR_INVALID_REQUEST;
2893                         goto out_idr_remove_from_resource;
2894                 }
2895                 kref_get(&connection->kref);
2896                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2897         }
2898
2899         if (init_submitter(device)) {
2900                 err = ERR_NOMEM;
2901                 goto out_idr_remove_vol;
2902         }
2903
2904         add_disk(disk);
2905
2906         /* inherit the connection state */
2907         device->state.conn = first_connection(resource)->cstate;
2908         if (device->state.conn == C_WF_REPORT_PARAMS) {
2909                 for_each_peer_device(peer_device, device)
2910                         drbd_connected(peer_device);
2911         }
2912         /* move to create_peer_device() */
2913         for_each_peer_device(peer_device, device)
2914                 drbd_debugfs_peer_device_add(peer_device);
2915         drbd_debugfs_device_add(device);
2916         return NO_ERROR;
2917
2918 out_idr_remove_vol:
2919         idr_remove(&connection->peer_devices, vnr);
2920 out_idr_remove_from_resource:
2921         for_each_connection(connection, resource) {
2922                 peer_device = idr_remove(&connection->peer_devices, vnr);
2923                 if (peer_device)
2924                         kref_put(&connection->kref, drbd_destroy_connection);
2925         }
2926         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2927                 list_del(&peer_device->peer_devices);
2928                 kfree(peer_device);
2929         }
2930         idr_remove(&resource->devices, vnr);
2931 out_idr_remove_minor:
2932         idr_remove(&drbd_devices, minor);
2933         synchronize_rcu();
2934 out_no_minor_idr:
2935         drbd_bm_cleanup(device);
2936 out_no_bitmap:
2937         __free_page(device->md_io.page);
2938 out_no_io_page:
2939         put_disk(disk);
2940 out_no_disk:
2941         blk_cleanup_queue(q);
2942 out_no_q:
2943         kref_put(&resource->kref, drbd_destroy_resource);
2944         kfree(device);
2945         return err;
2946 }
2947
2948 void drbd_delete_device(struct drbd_device *device)
2949 {
2950         struct drbd_resource *resource = device->resource;
2951         struct drbd_connection *connection;
2952         struct drbd_peer_device *peer_device;
2953
2954         /* move to free_peer_device() */
2955         for_each_peer_device(peer_device, device)
2956                 drbd_debugfs_peer_device_cleanup(peer_device);
2957         drbd_debugfs_device_cleanup(device);
2958         for_each_connection(connection, resource) {
2959                 idr_remove(&connection->peer_devices, device->vnr);
2960                 kref_put(&device->kref, drbd_destroy_device);
2961         }
2962         idr_remove(&resource->devices, device->vnr);
2963         kref_put(&device->kref, drbd_destroy_device);
2964         idr_remove(&drbd_devices, device_to_minor(device));
2965         kref_put(&device->kref, drbd_destroy_device);
2966         del_gendisk(device->vdisk);
2967         synchronize_rcu();
2968         kref_put(&device->kref, drbd_destroy_device);
2969 }
2970
2971 static int __init drbd_init(void)
2972 {
2973         int err;
2974
2975         if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2976                 pr_err("invalid minor_count (%d)\n", minor_count);
2977 #ifdef MODULE
2978                 return -EINVAL;
2979 #else
2980                 minor_count = DRBD_MINOR_COUNT_DEF;
2981 #endif
2982         }
2983
2984         err = register_blkdev(DRBD_MAJOR, "drbd");
2985         if (err) {
2986                 pr_err("unable to register block device major %d\n",
2987                        DRBD_MAJOR);
2988                 return err;
2989         }
2990
2991         /*
2992          * allocate all necessary structs
2993          */
2994         init_waitqueue_head(&drbd_pp_wait);
2995
2996         drbd_proc = NULL; /* play safe for drbd_cleanup */
2997         idr_init(&drbd_devices);
2998
2999         mutex_init(&resources_mutex);
3000         INIT_LIST_HEAD(&drbd_resources);
3001
3002         err = drbd_genl_register();
3003         if (err) {
3004                 pr_err("unable to register generic netlink family\n");
3005                 goto fail;
3006         }
3007
3008         err = drbd_create_mempools();
3009         if (err)
3010                 goto fail;
3011
3012         err = -ENOMEM;
3013         drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3014         if (!drbd_proc) {
3015                 pr_err("unable to register proc file\n");
3016                 goto fail;
3017         }
3018
3019         retry.wq = create_singlethread_workqueue("drbd-reissue");
3020         if (!retry.wq) {
3021                 pr_err("unable to create retry workqueue\n");
3022                 goto fail;
3023         }
3024         INIT_WORK(&retry.worker, do_retry);
3025         spin_lock_init(&retry.lock);
3026         INIT_LIST_HEAD(&retry.writes);
3027
3028         if (drbd_debugfs_init())
3029                 pr_notice("failed to initialize debugfs -- will not be available\n");
3030
3031         pr_info("initialized. "
3032                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3033                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3034         pr_info("%s\n", drbd_buildtag());
3035         pr_info("registered as block device major %d\n", DRBD_MAJOR);
3036         return 0; /* Success! */
3037
3038 fail:
3039         drbd_cleanup();
3040         if (err == -ENOMEM)
3041                 pr_err("ran out of memory\n");
3042         else
3043                 pr_err("initialization failure\n");
3044         return err;
3045 }
3046
3047 static void drbd_free_one_sock(struct drbd_socket *ds)
3048 {
3049         struct socket *s;
3050         mutex_lock(&ds->mutex);
3051         s = ds->socket;
3052         ds->socket = NULL;
3053         mutex_unlock(&ds->mutex);
3054         if (s) {
3055                 /* so debugfs does not need to mutex_lock() */
3056                 synchronize_rcu();
3057                 kernel_sock_shutdown(s, SHUT_RDWR);
3058                 sock_release(s);
3059         }
3060 }
3061
3062 void drbd_free_sock(struct drbd_connection *connection)
3063 {
3064         if (connection->data.socket)
3065                 drbd_free_one_sock(&connection->data);
3066         if (connection->meta.socket)
3067                 drbd_free_one_sock(&connection->meta);
3068 }
3069
3070 /* meta data management */
3071
3072 void conn_md_sync(struct drbd_connection *connection)
3073 {
3074         struct drbd_peer_device *peer_device;
3075         int vnr;
3076
3077         rcu_read_lock();
3078         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3079                 struct drbd_device *device = peer_device->device;
3080
3081                 kref_get(&device->kref);
3082                 rcu_read_unlock();
3083                 drbd_md_sync(device);
3084                 kref_put(&device->kref, drbd_destroy_device);
3085                 rcu_read_lock();
3086         }
3087         rcu_read_unlock();
3088 }
3089
3090 /* aligned 4kByte */
3091 struct meta_data_on_disk {
3092         u64 la_size_sect;      /* last agreed size. */
3093         u64 uuid[UI_SIZE];   /* UUIDs. */
3094         u64 device_uuid;
3095         u64 reserved_u64_1;
3096         u32 flags;             /* MDF */
3097         u32 magic;
3098         u32 md_size_sect;
3099         u32 al_offset;         /* offset to this block */
3100         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3101               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3102         u32 bm_offset;         /* offset to the bitmap, from here */
3103         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3104         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3105
3106         /* see al_tr_number_to_on_disk_sector() */
3107         u32 al_stripes;
3108         u32 al_stripe_size_4k;
3109
3110         u8 reserved_u8[4096 - (7*8 + 10*4)];
3111 } __packed;
3112
3113
3114
3115 void drbd_md_write(struct drbd_device *device, void *b)
3116 {
3117         struct meta_data_on_disk *buffer = b;
3118         sector_t sector;
3119         int i;
3120
3121         memset(buffer, 0, sizeof(*buffer));
3122
3123         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3124         for (i = UI_CURRENT; i < UI_SIZE; i++)
3125                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3126         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3127         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3128
3129         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3130         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3131         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3132         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3133         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3134
3135         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3136         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3137
3138         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3139         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3140
3141         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3142         sector = device->ldev->md.md_offset;
3143
3144         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3145                 /* this was a try anyways ... */
3146                 drbd_err(device, "meta data update failed!\n");
3147                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3148         }
3149 }
3150
3151 /**
3152  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3153  * @device:     DRBD device.
3154  */
3155 void drbd_md_sync(struct drbd_device *device)
3156 {
3157         struct meta_data_on_disk *buffer;
3158
3159         /* Don't accidentally change the DRBD meta data layout. */
3160         BUILD_BUG_ON(UI_SIZE != 4);
3161         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3162
3163         del_timer(&device->md_sync_timer);
3164         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3165         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3166                 return;
3167
3168         /* We use here D_FAILED and not D_ATTACHING because we try to write
3169          * metadata even if we detach due to a disk failure! */
3170         if (!get_ldev_if_state(device, D_FAILED))
3171                 return;
3172
3173         buffer = drbd_md_get_buffer(device, __func__);
3174         if (!buffer)
3175                 goto out;
3176
3177         drbd_md_write(device, buffer);
3178
3179         /* Update device->ldev->md.la_size_sect,
3180          * since we updated it on metadata. */
3181         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3182
3183         drbd_md_put_buffer(device);
3184 out:
3185         put_ldev(device);
3186 }
3187
3188 static int check_activity_log_stripe_size(struct drbd_device *device,
3189                 struct meta_data_on_disk *on_disk,
3190                 struct drbd_md *in_core)
3191 {
3192         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3193         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3194         u64 al_size_4k;
3195
3196         /* both not set: default to old fixed size activity log */
3197         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3198                 al_stripes = 1;
3199                 al_stripe_size_4k = MD_32kB_SECT/8;
3200         }
3201
3202         /* some paranoia plausibility checks */
3203
3204         /* we need both values to be set */
3205         if (al_stripes == 0 || al_stripe_size_4k == 0)
3206                 goto err;
3207
3208         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3209
3210         /* Upper limit of activity log area, to avoid potential overflow
3211          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3212          * than 72 * 4k blocks total only increases the amount of history,
3213          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3214         if (al_size_4k > (16 * 1024 * 1024/4))
3215                 goto err;
3216
3217         /* Lower limit: we need at least 8 transaction slots (32kB)
3218          * to not break existing setups */
3219         if (al_size_4k < MD_32kB_SECT/8)
3220                 goto err;
3221
3222         in_core->al_stripe_size_4k = al_stripe_size_4k;
3223         in_core->al_stripes = al_stripes;
3224         in_core->al_size_4k = al_size_4k;
3225
3226         return 0;
3227 err:
3228         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3229                         al_stripes, al_stripe_size_4k);
3230         return -EINVAL;
3231 }
3232
3233 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3234 {
3235         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3236         struct drbd_md *in_core = &bdev->md;
3237         s32 on_disk_al_sect;
3238         s32 on_disk_bm_sect;
3239
3240         /* The on-disk size of the activity log, calculated from offsets, and
3241          * the size of the activity log calculated from the stripe settings,
3242          * should match.
3243          * Though we could relax this a bit: it is ok, if the striped activity log
3244          * fits in the available on-disk activity log size.
3245          * Right now, that would break how resize is implemented.
3246          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3247          * of possible unused padding space in the on disk layout. */
3248         if (in_core->al_offset < 0) {
3249                 if (in_core->bm_offset > in_core->al_offset)
3250                         goto err;
3251                 on_disk_al_sect = -in_core->al_offset;
3252                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3253         } else {
3254                 if (in_core->al_offset != MD_4kB_SECT)
3255                         goto err;
3256                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3257                         goto err;
3258
3259                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3260                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3261         }
3262
3263         /* old fixed size meta data is exactly that: fixed. */
3264         if (in_core->meta_dev_idx >= 0) {
3265                 if (in_core->md_size_sect != MD_128MB_SECT
3266                 ||  in_core->al_offset != MD_4kB_SECT
3267                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3268                 ||  in_core->al_stripes != 1
3269                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3270                         goto err;
3271         }
3272
3273         if (capacity < in_core->md_size_sect)
3274                 goto err;
3275         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3276                 goto err;
3277
3278         /* should be aligned, and at least 32k */
3279         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3280                 goto err;
3281
3282         /* should fit (for now: exactly) into the available on-disk space;
3283          * overflow prevention is in check_activity_log_stripe_size() above. */
3284         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3285                 goto err;
3286
3287         /* again, should be aligned */
3288         if (in_core->bm_offset & 7)
3289                 goto err;
3290
3291         /* FIXME check for device grow with flex external meta data? */
3292
3293         /* can the available bitmap space cover the last agreed device size? */
3294         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3295                 goto err;
3296
3297         return 0;
3298
3299 err:
3300         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3301                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3302                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3303                         in_core->meta_dev_idx,
3304                         in_core->al_stripes, in_core->al_stripe_size_4k,
3305                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3306                         (unsigned long long)in_core->la_size_sect,
3307                         (unsigned long long)capacity);
3308
3309         return -EINVAL;
3310 }
3311
3312
3313 /**
3314  * drbd_md_read() - Reads in the meta data super block
3315  * @device:     DRBD device.
3316  * @bdev:       Device from which the meta data should be read in.
3317  *
3318  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3319  * something goes wrong.
3320  *
3321  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3322  * even before @bdev is assigned to @device->ldev.
3323  */
3324 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3325 {
3326         struct meta_data_on_disk *buffer;
3327         u32 magic, flags;
3328         int i, rv = NO_ERROR;
3329
3330         if (device->state.disk != D_DISKLESS)
3331                 return ERR_DISK_CONFIGURED;
3332
3333         buffer = drbd_md_get_buffer(device, __func__);
3334         if (!buffer)
3335                 return ERR_NOMEM;
3336
3337         /* First, figure out where our meta data superblock is located,
3338          * and read it. */
3339         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3340         bdev->md.md_offset = drbd_md_ss(bdev);
3341         /* Even for (flexible or indexed) external meta data,
3342          * initially restrict us to the 4k superblock for now.
3343          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3344         bdev->md.md_size_sect = 8;
3345
3346         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3347                                  REQ_OP_READ)) {
3348                 /* NOTE: can't do normal error processing here as this is
3349                    called BEFORE disk is attached */
3350                 drbd_err(device, "Error while reading metadata.\n");
3351                 rv = ERR_IO_MD_DISK;
3352                 goto err;
3353         }
3354
3355         magic = be32_to_cpu(buffer->magic);
3356         flags = be32_to_cpu(buffer->flags);
3357         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3358             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3359                         /* btw: that's Activity Log clean, not "all" clean. */
3360                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3361                 rv = ERR_MD_UNCLEAN;
3362                 goto err;
3363         }
3364
3365         rv = ERR_MD_INVALID;
3366         if (magic != DRBD_MD_MAGIC_08) {
3367                 if (magic == DRBD_MD_MAGIC_07)
3368                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3369                 else
3370                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3371                 goto err;
3372         }
3373
3374         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3375                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3376                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3377                 goto err;
3378         }
3379
3380
3381         /* convert to in_core endian */
3382         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3383         for (i = UI_CURRENT; i < UI_SIZE; i++)
3384                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3385         bdev->md.flags = be32_to_cpu(buffer->flags);
3386         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3387
3388         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3389         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3390         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3391
3392         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3393                 goto err;
3394         if (check_offsets_and_sizes(device, bdev))
3395                 goto err;
3396
3397         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3398                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3399                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3400                 goto err;
3401         }
3402         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3403                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3404                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3405                 goto err;
3406         }
3407
3408         rv = NO_ERROR;
3409
3410         spin_lock_irq(&device->resource->req_lock);
3411         if (device->state.conn < C_CONNECTED) {
3412                 unsigned int peer;
3413                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3414                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3415                 device->peer_max_bio_size = peer;
3416         }
3417         spin_unlock_irq(&device->resource->req_lock);
3418
3419  err:
3420         drbd_md_put_buffer(device);
3421
3422         return rv;
3423 }
3424
3425 /**
3426  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3427  * @device:     DRBD device.
3428  *
3429  * Call this function if you change anything that should be written to
3430  * the meta-data super block. This function sets MD_DIRTY, and starts a
3431  * timer that ensures that within five seconds you have to call drbd_md_sync().
3432  */
3433 #ifdef DEBUG
3434 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3435 {
3436         if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3437                 mod_timer(&device->md_sync_timer, jiffies + HZ);
3438                 device->last_md_mark_dirty.line = line;
3439                 device->last_md_mark_dirty.func = func;
3440         }
3441 }
3442 #else
3443 void drbd_md_mark_dirty(struct drbd_device *device)
3444 {
3445         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3446                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3447 }
3448 #endif
3449
3450 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3451 {
3452         int i;
3453
3454         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3455                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3456 }
3457
3458 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3459 {
3460         if (idx == UI_CURRENT) {
3461                 if (device->state.role == R_PRIMARY)
3462                         val |= 1;
3463                 else
3464                         val &= ~((u64)1);
3465
3466                 drbd_set_ed_uuid(device, val);
3467         }
3468
3469         device->ldev->md.uuid[idx] = val;
3470         drbd_md_mark_dirty(device);
3471 }
3472
3473 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3474 {
3475         unsigned long flags;
3476         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3477         __drbd_uuid_set(device, idx, val);
3478         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3479 }
3480
3481 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3482 {
3483         unsigned long flags;
3484         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3485         if (device->ldev->md.uuid[idx]) {
3486                 drbd_uuid_move_history(device);
3487                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3488         }
3489         __drbd_uuid_set(device, idx, val);
3490         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3491 }
3492
3493 /**
3494  * drbd_uuid_new_current() - Creates a new current UUID
3495  * @device:     DRBD device.
3496  *
3497  * Creates a new current UUID, and rotates the old current UUID into
3498  * the bitmap slot. Causes an incremental resync upon next connect.
3499  */
3500 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3501 {
3502         u64 val;
3503         unsigned long long bm_uuid;
3504
3505         get_random_bytes(&val, sizeof(u64));
3506
3507         spin_lock_irq(&device->ldev->md.uuid_lock);
3508         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3509
3510         if (bm_uuid)
3511                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3512
3513         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3514         __drbd_uuid_set(device, UI_CURRENT, val);
3515         spin_unlock_irq(&device->ldev->md.uuid_lock);
3516
3517         drbd_print_uuids(device, "new current UUID");
3518         /* get it to stable storage _now_ */
3519         drbd_md_sync(device);
3520 }
3521
3522 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3523 {
3524         unsigned long flags;
3525         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3526                 return;
3527
3528         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3529         if (val == 0) {
3530                 drbd_uuid_move_history(device);
3531                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3532                 device->ldev->md.uuid[UI_BITMAP] = 0;
3533         } else {
3534                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3535                 if (bm_uuid)
3536                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3537
3538                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3539         }
3540         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3541
3542         drbd_md_mark_dirty(device);
3543 }
3544
3545 /**
3546  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3547  * @device:     DRBD device.
3548  *
3549  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3550  */
3551 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3552 {
3553         int rv = -EIO;
3554
3555         drbd_md_set_flag(device, MDF_FULL_SYNC);
3556         drbd_md_sync(device);
3557         drbd_bm_set_all(device);
3558
3559         rv = drbd_bm_write(device);
3560
3561         if (!rv) {
3562                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3563                 drbd_md_sync(device);
3564         }
3565
3566         return rv;
3567 }
3568
3569 /**
3570  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3571  * @device:     DRBD device.
3572  *
3573  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3574  */
3575 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3576 {
3577         drbd_resume_al(device);
3578         drbd_bm_clear_all(device);
3579         return drbd_bm_write(device);
3580 }
3581
3582 static int w_bitmap_io(struct drbd_work *w, int unused)
3583 {
3584         struct drbd_device *device =
3585                 container_of(w, struct drbd_device, bm_io_work.w);
3586         struct bm_io_work *work = &device->bm_io_work;
3587         int rv = -EIO;
3588
3589         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3590                 int cnt = atomic_read(&device->ap_bio_cnt);
3591                 if (cnt)
3592                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3593                                         cnt, work->why);
3594         }
3595
3596         if (get_ldev(device)) {
3597                 drbd_bm_lock(device, work->why, work->flags);
3598                 rv = work->io_fn(device);
3599                 drbd_bm_unlock(device);
3600                 put_ldev(device);
3601         }
3602
3603         clear_bit_unlock(BITMAP_IO, &device->flags);
3604         wake_up(&device->misc_wait);
3605
3606         if (work->done)
3607                 work->done(device, rv);
3608
3609         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3610         work->why = NULL;
3611         work->flags = 0;
3612
3613         return 0;
3614 }
3615
3616 /**
3617  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3618  * @device:     DRBD device.
3619  * @io_fn:      IO callback to be called when bitmap IO is possible
3620  * @done:       callback to be called after the bitmap IO was performed
3621  * @why:        Descriptive text of the reason for doing the IO
3622  *
3623  * While IO on the bitmap happens we freeze application IO thus we ensure
3624  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3625  * called from worker context. It MUST NOT be used while a previous such
3626  * work is still pending!
3627  *
3628  * Its worker function encloses the call of io_fn() by get_ldev() and
3629  * put_ldev().
3630  */
3631 void drbd_queue_bitmap_io(struct drbd_device *device,
3632                           int (*io_fn)(struct drbd_device *),
3633                           void (*done)(struct drbd_device *, int),
3634                           char *why, enum bm_flag flags)
3635 {
3636         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3637
3638         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3639         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3640         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3641         if (device->bm_io_work.why)
3642                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3643                         why, device->bm_io_work.why);
3644
3645         device->bm_io_work.io_fn = io_fn;
3646         device->bm_io_work.done = done;
3647         device->bm_io_work.why = why;
3648         device->bm_io_work.flags = flags;
3649
3650         spin_lock_irq(&device->resource->req_lock);
3651         set_bit(BITMAP_IO, &device->flags);
3652         /* don't wait for pending application IO if the caller indicates that
3653          * application IO does not conflict anyways. */
3654         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3655                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3656                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3657                                         &device->bm_io_work.w);
3658         }
3659         spin_unlock_irq(&device->resource->req_lock);
3660 }
3661
3662 /**
3663  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3664  * @device:     DRBD device.
3665  * @io_fn:      IO callback to be called when bitmap IO is possible
3666  * @why:        Descriptive text of the reason for doing the IO
3667  *
3668  * freezes application IO while that the actual IO operations runs. This
3669  * functions MAY NOT be called from worker context.
3670  */
3671 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3672                 char *why, enum bm_flag flags)
3673 {
3674         /* Only suspend io, if some operation is supposed to be locked out */
3675         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3676         int rv;
3677
3678         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3679
3680         if (do_suspend_io)
3681                 drbd_suspend_io(device);
3682
3683         drbd_bm_lock(device, why, flags);
3684         rv = io_fn(device);
3685         drbd_bm_unlock(device);
3686
3687         if (do_suspend_io)
3688                 drbd_resume_io(device);
3689
3690         return rv;
3691 }
3692
3693 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3694 {
3695         if ((device->ldev->md.flags & flag) != flag) {
3696                 drbd_md_mark_dirty(device);
3697                 device->ldev->md.flags |= flag;
3698         }
3699 }
3700
3701 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3702 {
3703         if ((device->ldev->md.flags & flag) != 0) {
3704                 drbd_md_mark_dirty(device);
3705                 device->ldev->md.flags &= ~flag;
3706         }
3707 }
3708 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3709 {
3710         return (bdev->md.flags & flag) != 0;
3711 }
3712
3713 static void md_sync_timer_fn(unsigned long data)
3714 {
3715         struct drbd_device *device = (struct drbd_device *) data;
3716         drbd_device_post_work(device, MD_SYNC);
3717 }
3718
3719 const char *cmdname(enum drbd_packet cmd)
3720 {
3721         /* THINK may need to become several global tables
3722          * when we want to support more than
3723          * one PRO_VERSION */
3724         static const char *cmdnames[] = {
3725                 [P_DATA]                = "Data",
3726                 [P_WSAME]               = "WriteSame",
3727                 [P_TRIM]                = "Trim",
3728                 [P_DATA_REPLY]          = "DataReply",
3729                 [P_RS_DATA_REPLY]       = "RSDataReply",
3730                 [P_BARRIER]             = "Barrier",
3731                 [P_BITMAP]              = "ReportBitMap",
3732                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3733                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3734                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3735                 [P_DATA_REQUEST]        = "DataRequest",
3736                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3737                 [P_SYNC_PARAM]          = "SyncParam",
3738                 [P_SYNC_PARAM89]        = "SyncParam89",
3739                 [P_PROTOCOL]            = "ReportProtocol",
3740                 [P_UUIDS]               = "ReportUUIDs",
3741                 [P_SIZES]               = "ReportSizes",
3742                 [P_STATE]               = "ReportState",
3743                 [P_SYNC_UUID]           = "ReportSyncUUID",
3744                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3745                 [P_AUTH_RESPONSE]       = "AuthResponse",
3746                 [P_PING]                = "Ping",
3747                 [P_PING_ACK]            = "PingAck",
3748                 [P_RECV_ACK]            = "RecvAck",
3749                 [P_WRITE_ACK]           = "WriteAck",
3750                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3751                 [P_SUPERSEDED]          = "Superseded",
3752                 [P_NEG_ACK]             = "NegAck",
3753                 [P_NEG_DREPLY]          = "NegDReply",
3754                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3755                 [P_BARRIER_ACK]         = "BarrierAck",
3756                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3757                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3758                 [P_OV_REQUEST]          = "OVRequest",
3759                 [P_OV_REPLY]            = "OVReply",
3760                 [P_OV_RESULT]           = "OVResult",
3761                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3762                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3763                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3764                 [P_DELAY_PROBE]         = "DelayProbe",
3765                 [P_OUT_OF_SYNC]         = "OutOfSync",
3766                 [P_RETRY_WRITE]         = "RetryWrite",
3767                 [P_RS_CANCEL]           = "RSCancel",
3768                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3769                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3770                 [P_RETRY_WRITE]         = "retry_write",
3771                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3772                 [P_RS_THIN_REQ]         = "rs_thin_req",
3773                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3774
3775                 /* enum drbd_packet, but not commands - obsoleted flags:
3776                  *      P_MAY_IGNORE
3777                  *      P_MAX_OPT_CMD
3778                  */
3779         };
3780
3781         /* too big for the array: 0xfffX */
3782         if (cmd == P_INITIAL_META)
3783                 return "InitialMeta";
3784         if (cmd == P_INITIAL_DATA)
3785                 return "InitialData";
3786         if (cmd == P_CONNECTION_FEATURES)
3787                 return "ConnectionFeatures";
3788         if (cmd >= ARRAY_SIZE(cmdnames))
3789                 return "Unknown";
3790         return cmdnames[cmd];
3791 }
3792
3793 /**
3794  * drbd_wait_misc  -  wait for a request to make progress
3795  * @device:     device associated with the request
3796  * @i:          the struct drbd_interval embedded in struct drbd_request or
3797  *              struct drbd_peer_request
3798  */
3799 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3800 {
3801         struct net_conf *nc;
3802         DEFINE_WAIT(wait);
3803         long timeout;
3804
3805         rcu_read_lock();
3806         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3807         if (!nc) {
3808                 rcu_read_unlock();
3809                 return -ETIMEDOUT;
3810         }
3811         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3812         rcu_read_unlock();
3813
3814         /* Indicate to wake up device->misc_wait on progress.  */
3815         i->waiting = true;
3816         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3817         spin_unlock_irq(&device->resource->req_lock);
3818         timeout = schedule_timeout(timeout);
3819         finish_wait(&device->misc_wait, &wait);
3820         spin_lock_irq(&device->resource->req_lock);
3821         if (!timeout || device->state.conn < C_CONNECTED)
3822                 return -ETIMEDOUT;
3823         if (signal_pending(current))
3824                 return -ERESTARTSYS;
3825         return 0;
3826 }
3827
3828 void lock_all_resources(void)
3829 {
3830         struct drbd_resource *resource;
3831         int __maybe_unused i = 0;
3832
3833         mutex_lock(&resources_mutex);
3834         local_irq_disable();
3835         for_each_resource(resource, &drbd_resources)
3836                 spin_lock_nested(&resource->req_lock, i++);
3837 }
3838
3839 void unlock_all_resources(void)
3840 {
3841         struct drbd_resource *resource;
3842
3843         for_each_resource(resource, &drbd_resources)
3844                 spin_unlock(&resource->req_lock);
3845         local_irq_enable();
3846         mutex_unlock(&resources_mutex);
3847 }
3848
3849 #ifdef CONFIG_DRBD_FAULT_INJECTION
3850 /* Fault insertion support including random number generator shamelessly
3851  * stolen from kernel/rcutorture.c */
3852 struct fault_random_state {
3853         unsigned long state;
3854         unsigned long count;
3855 };
3856
3857 #define FAULT_RANDOM_MULT 39916801  /* prime */
3858 #define FAULT_RANDOM_ADD        479001701 /* prime */
3859 #define FAULT_RANDOM_REFRESH 10000
3860
3861 /*
3862  * Crude but fast random-number generator.  Uses a linear congruential
3863  * generator, with occasional help from get_random_bytes().
3864  */
3865 static unsigned long
3866 _drbd_fault_random(struct fault_random_state *rsp)
3867 {
3868         long refresh;
3869
3870         if (!rsp->count--) {
3871                 get_random_bytes(&refresh, sizeof(refresh));
3872                 rsp->state += refresh;
3873                 rsp->count = FAULT_RANDOM_REFRESH;
3874         }
3875         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3876         return swahw32(rsp->state);
3877 }
3878
3879 static char *
3880 _drbd_fault_str(unsigned int type) {
3881         static char *_faults[] = {
3882                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3883                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3884                 [DRBD_FAULT_RS_WR] = "Resync write",
3885                 [DRBD_FAULT_RS_RD] = "Resync read",
3886                 [DRBD_FAULT_DT_WR] = "Data write",
3887                 [DRBD_FAULT_DT_RD] = "Data read",
3888                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3889                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3890                 [DRBD_FAULT_AL_EE] = "EE allocation",
3891                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3892         };
3893
3894         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3895 }
3896
3897 unsigned int
3898 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3899 {
3900         static struct fault_random_state rrs = {0, 0};
3901
3902         unsigned int ret = (
3903                 (fault_devs == 0 ||
3904                         ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3905                 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3906
3907         if (ret) {
3908                 fault_count++;
3909
3910                 if (__ratelimit(&drbd_ratelimit_state))
3911                         drbd_warn(device, "***Simulating %s failure\n",
3912                                 _drbd_fault_str(type));
3913         }
3914
3915         return ret;
3916 }
3917 #endif
3918
3919 const char *drbd_buildtag(void)
3920 {
3921         /* DRBD built from external sources has here a reference to the
3922            git hash of the source code. */
3923
3924         static char buildtag[38] = "\0uilt-in";
3925
3926         if (buildtag[0] == 0) {
3927 #ifdef MODULE
3928                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3929 #else
3930                 buildtag[0] = 'b';
3931 #endif
3932         }
3933
3934         return buildtag;
3935 }
3936
3937 module_init(drbd_init)
3938 module_exit(drbd_cleanup)
3939
3940 EXPORT_SYMBOL(drbd_conn_str);
3941 EXPORT_SYMBOL(drbd_role_str);
3942 EXPORT_SYMBOL(drbd_disk_str);
3943 EXPORT_SYMBOL(drbd_set_st_err_str);