Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13
14
15  */
16
17 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59               "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;       /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125          member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135         .owner          = THIS_MODULE,
136         .submit_bio     = drbd_submit_bio,
137         .open           = drbd_open,
138         .release        = drbd_release,
139 };
140
141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143         struct bio *bio;
144
145         if (!bioset_initialized(&drbd_md_io_bio_set))
146                 return bio_alloc(gfp_mask, 1);
147
148         bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149         if (!bio)
150                 return NULL;
151         return bio;
152 }
153
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156    give tons of false positives. When this is a real functions sparse works.
157  */
158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160         int io_allowed;
161
162         atomic_inc(&device->local_cnt);
163         io_allowed = (device->state.disk >= mins);
164         if (!io_allowed) {
165                 if (atomic_dec_and_test(&device->local_cnt))
166                         wake_up(&device->misc_wait);
167         }
168         return io_allowed;
169 }
170
171 #endif
172
173 /**
174  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175  * @connection: DRBD connection.
176  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
177  * @set_size:   Expected number of requests before that barrier.
178  *
179  * In case the passed barrier_nr or set_size does not match the oldest
180  * epoch of not yet barrier-acked requests, this function will cause a
181  * termination of the connection.
182  */
183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184                 unsigned int set_size)
185 {
186         struct drbd_request *r;
187         struct drbd_request *req = NULL;
188         int expect_epoch = 0;
189         int expect_size = 0;
190
191         spin_lock_irq(&connection->resource->req_lock);
192
193         /* find oldest not yet barrier-acked write request,
194          * count writes in its epoch. */
195         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196                 const unsigned s = r->rq_state;
197                 if (!req) {
198                         if (!(s & RQ_WRITE))
199                                 continue;
200                         if (!(s & RQ_NET_MASK))
201                                 continue;
202                         if (s & RQ_NET_DONE)
203                                 continue;
204                         req = r;
205                         expect_epoch = req->epoch;
206                         expect_size ++;
207                 } else {
208                         if (r->epoch != expect_epoch)
209                                 break;
210                         if (!(s & RQ_WRITE))
211                                 continue;
212                         /* if (s & RQ_DONE): not expected */
213                         /* if (!(s & RQ_NET_MASK)): not expected */
214                         expect_size++;
215                 }
216         }
217
218         /* first some paranoia code */
219         if (req == NULL) {
220                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221                          barrier_nr);
222                 goto bail;
223         }
224         if (expect_epoch != barrier_nr) {
225                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226                          barrier_nr, expect_epoch);
227                 goto bail;
228         }
229
230         if (expect_size != set_size) {
231                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232                          barrier_nr, set_size, expect_size);
233                 goto bail;
234         }
235
236         /* Clean up list of requests processed during current epoch. */
237         /* this extra list walk restart is paranoia,
238          * to catch requests being barrier-acked "unexpectedly".
239          * It usually should find the same req again, or some READ preceding it. */
240         list_for_each_entry(req, &connection->transfer_log, tl_requests)
241                 if (req->epoch == expect_epoch)
242                         break;
243         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
244                 if (req->epoch != expect_epoch)
245                         break;
246                 _req_mod(req, BARRIER_ACKED);
247         }
248         spin_unlock_irq(&connection->resource->req_lock);
249
250         return;
251
252 bail:
253         spin_unlock_irq(&connection->resource->req_lock);
254         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
255 }
256
257
258 /**
259  * _tl_restart() - Walks the transfer log, and applies an action to all requests
260  * @connection: DRBD connection to operate on.
261  * @what:       The action/event to perform with all request objects
262  *
263  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
264  * RESTART_FROZEN_DISK_IO.
265  */
266 /* must hold resource->req_lock */
267 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
268 {
269         struct drbd_request *req, *r;
270
271         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
272                 _req_mod(req, what);
273 }
274
275 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276 {
277         spin_lock_irq(&connection->resource->req_lock);
278         _tl_restart(connection, what);
279         spin_unlock_irq(&connection->resource->req_lock);
280 }
281
282 /**
283  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
284  * @device:     DRBD device.
285  *
286  * This is called after the connection to the peer was lost. The storage covered
287  * by the requests on the transfer gets marked as our of sync. Called from the
288  * receiver thread and the worker thread.
289  */
290 void tl_clear(struct drbd_connection *connection)
291 {
292         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
293 }
294
295 /**
296  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
297  * @device:     DRBD device.
298  */
299 void tl_abort_disk_io(struct drbd_device *device)
300 {
301         struct drbd_connection *connection = first_peer_device(device)->connection;
302         struct drbd_request *req, *r;
303
304         spin_lock_irq(&connection->resource->req_lock);
305         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
306                 if (!(req->rq_state & RQ_LOCAL_PENDING))
307                         continue;
308                 if (req->device != device)
309                         continue;
310                 _req_mod(req, ABORT_DISK_IO);
311         }
312         spin_unlock_irq(&connection->resource->req_lock);
313 }
314
315 static int drbd_thread_setup(void *arg)
316 {
317         struct drbd_thread *thi = (struct drbd_thread *) arg;
318         struct drbd_resource *resource = thi->resource;
319         unsigned long flags;
320         int retval;
321
322         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
323                  thi->name[0],
324                  resource->name);
325
326         allow_kernel_signal(DRBD_SIGKILL);
327         allow_kernel_signal(SIGXCPU);
328 restart:
329         retval = thi->function(thi);
330
331         spin_lock_irqsave(&thi->t_lock, flags);
332
333         /* if the receiver has been "EXITING", the last thing it did
334          * was set the conn state to "StandAlone",
335          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
336          * and receiver thread will be "started".
337          * drbd_thread_start needs to set "RESTARTING" in that case.
338          * t_state check and assignment needs to be within the same spinlock,
339          * so either thread_start sees EXITING, and can remap to RESTARTING,
340          * or thread_start see NONE, and can proceed as normal.
341          */
342
343         if (thi->t_state == RESTARTING) {
344                 drbd_info(resource, "Restarting %s thread\n", thi->name);
345                 thi->t_state = RUNNING;
346                 spin_unlock_irqrestore(&thi->t_lock, flags);
347                 goto restart;
348         }
349
350         thi->task = NULL;
351         thi->t_state = NONE;
352         smp_mb();
353         complete_all(&thi->stop);
354         spin_unlock_irqrestore(&thi->t_lock, flags);
355
356         drbd_info(resource, "Terminating %s\n", current->comm);
357
358         /* Release mod reference taken when thread was started */
359
360         if (thi->connection)
361                 kref_put(&thi->connection->kref, drbd_destroy_connection);
362         kref_put(&resource->kref, drbd_destroy_resource);
363         module_put(THIS_MODULE);
364         return retval;
365 }
366
367 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
368                              int (*func) (struct drbd_thread *), const char *name)
369 {
370         spin_lock_init(&thi->t_lock);
371         thi->task    = NULL;
372         thi->t_state = NONE;
373         thi->function = func;
374         thi->resource = resource;
375         thi->connection = NULL;
376         thi->name = name;
377 }
378
379 int drbd_thread_start(struct drbd_thread *thi)
380 {
381         struct drbd_resource *resource = thi->resource;
382         struct task_struct *nt;
383         unsigned long flags;
384
385         /* is used from state engine doing drbd_thread_stop_nowait,
386          * while holding the req lock irqsave */
387         spin_lock_irqsave(&thi->t_lock, flags);
388
389         switch (thi->t_state) {
390         case NONE:
391                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
392                          thi->name, current->comm, current->pid);
393
394                 /* Get ref on module for thread - this is released when thread exits */
395                 if (!try_module_get(THIS_MODULE)) {
396                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
397                         spin_unlock_irqrestore(&thi->t_lock, flags);
398                         return false;
399                 }
400
401                 kref_get(&resource->kref);
402                 if (thi->connection)
403                         kref_get(&thi->connection->kref);
404
405                 init_completion(&thi->stop);
406                 thi->reset_cpu_mask = 1;
407                 thi->t_state = RUNNING;
408                 spin_unlock_irqrestore(&thi->t_lock, flags);
409                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410
411                 nt = kthread_create(drbd_thread_setup, (void *) thi,
412                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
413
414                 if (IS_ERR(nt)) {
415                         drbd_err(resource, "Couldn't start thread\n");
416
417                         if (thi->connection)
418                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
419                         kref_put(&resource->kref, drbd_destroy_resource);
420                         module_put(THIS_MODULE);
421                         return false;
422                 }
423                 spin_lock_irqsave(&thi->t_lock, flags);
424                 thi->task = nt;
425                 thi->t_state = RUNNING;
426                 spin_unlock_irqrestore(&thi->t_lock, flags);
427                 wake_up_process(nt);
428                 break;
429         case EXITING:
430                 thi->t_state = RESTARTING;
431                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
432                                 thi->name, current->comm, current->pid);
433                 fallthrough;
434         case RUNNING:
435         case RESTARTING:
436         default:
437                 spin_unlock_irqrestore(&thi->t_lock, flags);
438                 break;
439         }
440
441         return true;
442 }
443
444
445 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
446 {
447         unsigned long flags;
448
449         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
450
451         /* may be called from state engine, holding the req lock irqsave */
452         spin_lock_irqsave(&thi->t_lock, flags);
453
454         if (thi->t_state == NONE) {
455                 spin_unlock_irqrestore(&thi->t_lock, flags);
456                 if (restart)
457                         drbd_thread_start(thi);
458                 return;
459         }
460
461         if (thi->t_state != ns) {
462                 if (thi->task == NULL) {
463                         spin_unlock_irqrestore(&thi->t_lock, flags);
464                         return;
465                 }
466
467                 thi->t_state = ns;
468                 smp_mb();
469                 init_completion(&thi->stop);
470                 if (thi->task != current)
471                         send_sig(DRBD_SIGKILL, thi->task, 1);
472         }
473
474         spin_unlock_irqrestore(&thi->t_lock, flags);
475
476         if (wait)
477                 wait_for_completion(&thi->stop);
478 }
479
480 int conn_lowest_minor(struct drbd_connection *connection)
481 {
482         struct drbd_peer_device *peer_device;
483         int vnr = 0, minor = -1;
484
485         rcu_read_lock();
486         peer_device = idr_get_next(&connection->peer_devices, &vnr);
487         if (peer_device)
488                 minor = device_to_minor(peer_device->device);
489         rcu_read_unlock();
490
491         return minor;
492 }
493
494 #ifdef CONFIG_SMP
495 /**
496  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
497  *
498  * Forces all threads of a resource onto the same CPU. This is beneficial for
499  * DRBD's performance. May be overwritten by user's configuration.
500  */
501 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
502 {
503         unsigned int *resources_per_cpu, min_index = ~0;
504
505         resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
506                                     GFP_KERNEL);
507         if (resources_per_cpu) {
508                 struct drbd_resource *resource;
509                 unsigned int cpu, min = ~0;
510
511                 rcu_read_lock();
512                 for_each_resource_rcu(resource, &drbd_resources) {
513                         for_each_cpu(cpu, resource->cpu_mask)
514                                 resources_per_cpu[cpu]++;
515                 }
516                 rcu_read_unlock();
517                 for_each_online_cpu(cpu) {
518                         if (resources_per_cpu[cpu] < min) {
519                                 min = resources_per_cpu[cpu];
520                                 min_index = cpu;
521                         }
522                 }
523                 kfree(resources_per_cpu);
524         }
525         if (min_index == ~0) {
526                 cpumask_setall(*cpu_mask);
527                 return;
528         }
529         cpumask_set_cpu(min_index, *cpu_mask);
530 }
531
532 /**
533  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
534  * @device:     DRBD device.
535  * @thi:        drbd_thread object
536  *
537  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
538  * prematurely.
539  */
540 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
541 {
542         struct drbd_resource *resource = thi->resource;
543         struct task_struct *p = current;
544
545         if (!thi->reset_cpu_mask)
546                 return;
547         thi->reset_cpu_mask = 0;
548         set_cpus_allowed_ptr(p, resource->cpu_mask);
549 }
550 #else
551 #define drbd_calc_cpu_mask(A) ({})
552 #endif
553
554 /**
555  * drbd_header_size  -  size of a packet header
556  *
557  * The header size is a multiple of 8, so any payload following the header is
558  * word aligned on 64-bit architectures.  (The bitmap send and receive code
559  * relies on this.)
560  */
561 unsigned int drbd_header_size(struct drbd_connection *connection)
562 {
563         if (connection->agreed_pro_version >= 100) {
564                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
565                 return sizeof(struct p_header100);
566         } else {
567                 BUILD_BUG_ON(sizeof(struct p_header80) !=
568                              sizeof(struct p_header95));
569                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
570                 return sizeof(struct p_header80);
571         }
572 }
573
574 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
575 {
576         h->magic   = cpu_to_be32(DRBD_MAGIC);
577         h->command = cpu_to_be16(cmd);
578         h->length  = cpu_to_be16(size);
579         return sizeof(struct p_header80);
580 }
581
582 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
583 {
584         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
585         h->command = cpu_to_be16(cmd);
586         h->length = cpu_to_be32(size);
587         return sizeof(struct p_header95);
588 }
589
590 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
591                                       int size, int vnr)
592 {
593         h->magic = cpu_to_be32(DRBD_MAGIC_100);
594         h->volume = cpu_to_be16(vnr);
595         h->command = cpu_to_be16(cmd);
596         h->length = cpu_to_be32(size);
597         h->pad = 0;
598         return sizeof(struct p_header100);
599 }
600
601 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
602                                    void *buffer, enum drbd_packet cmd, int size)
603 {
604         if (connection->agreed_pro_version >= 100)
605                 return prepare_header100(buffer, cmd, size, vnr);
606         else if (connection->agreed_pro_version >= 95 &&
607                  size > DRBD_MAX_SIZE_H80_PACKET)
608                 return prepare_header95(buffer, cmd, size);
609         else
610                 return prepare_header80(buffer, cmd, size);
611 }
612
613 static void *__conn_prepare_command(struct drbd_connection *connection,
614                                     struct drbd_socket *sock)
615 {
616         if (!sock->socket)
617                 return NULL;
618         return sock->sbuf + drbd_header_size(connection);
619 }
620
621 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
622 {
623         void *p;
624
625         mutex_lock(&sock->mutex);
626         p = __conn_prepare_command(connection, sock);
627         if (!p)
628                 mutex_unlock(&sock->mutex);
629
630         return p;
631 }
632
633 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
634 {
635         return conn_prepare_command(peer_device->connection, sock);
636 }
637
638 static int __send_command(struct drbd_connection *connection, int vnr,
639                           struct drbd_socket *sock, enum drbd_packet cmd,
640                           unsigned int header_size, void *data,
641                           unsigned int size)
642 {
643         int msg_flags;
644         int err;
645
646         /*
647          * Called with @data == NULL and the size of the data blocks in @size
648          * for commands that send data blocks.  For those commands, omit the
649          * MSG_MORE flag: this will increase the likelihood that data blocks
650          * which are page aligned on the sender will end up page aligned on the
651          * receiver.
652          */
653         msg_flags = data ? MSG_MORE : 0;
654
655         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
656                                       header_size + size);
657         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
658                             msg_flags);
659         if (data && !err)
660                 err = drbd_send_all(connection, sock->socket, data, size, 0);
661         /* DRBD protocol "pings" are latency critical.
662          * This is supposed to trigger tcp_push_pending_frames() */
663         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
664                 tcp_sock_set_nodelay(sock->socket->sk);
665
666         return err;
667 }
668
669 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670                                enum drbd_packet cmd, unsigned int header_size,
671                                void *data, unsigned int size)
672 {
673         return __send_command(connection, 0, sock, cmd, header_size, data, size);
674 }
675
676 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677                       enum drbd_packet cmd, unsigned int header_size,
678                       void *data, unsigned int size)
679 {
680         int err;
681
682         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
683         mutex_unlock(&sock->mutex);
684         return err;
685 }
686
687 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
688                       enum drbd_packet cmd, unsigned int header_size,
689                       void *data, unsigned int size)
690 {
691         int err;
692
693         err = __send_command(peer_device->connection, peer_device->device->vnr,
694                              sock, cmd, header_size, data, size);
695         mutex_unlock(&sock->mutex);
696         return err;
697 }
698
699 int drbd_send_ping(struct drbd_connection *connection)
700 {
701         struct drbd_socket *sock;
702
703         sock = &connection->meta;
704         if (!conn_prepare_command(connection, sock))
705                 return -EIO;
706         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
707 }
708
709 int drbd_send_ping_ack(struct drbd_connection *connection)
710 {
711         struct drbd_socket *sock;
712
713         sock = &connection->meta;
714         if (!conn_prepare_command(connection, sock))
715                 return -EIO;
716         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
717 }
718
719 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
720 {
721         struct drbd_socket *sock;
722         struct p_rs_param_95 *p;
723         int size;
724         const int apv = peer_device->connection->agreed_pro_version;
725         enum drbd_packet cmd;
726         struct net_conf *nc;
727         struct disk_conf *dc;
728
729         sock = &peer_device->connection->data;
730         p = drbd_prepare_command(peer_device, sock);
731         if (!p)
732                 return -EIO;
733
734         rcu_read_lock();
735         nc = rcu_dereference(peer_device->connection->net_conf);
736
737         size = apv <= 87 ? sizeof(struct p_rs_param)
738                 : apv == 88 ? sizeof(struct p_rs_param)
739                         + strlen(nc->verify_alg) + 1
740                 : apv <= 94 ? sizeof(struct p_rs_param_89)
741                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
742
743         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
744
745         /* initialize verify_alg and csums_alg */
746         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
747
748         if (get_ldev(peer_device->device)) {
749                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
750                 p->resync_rate = cpu_to_be32(dc->resync_rate);
751                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
752                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
753                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
754                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
755                 put_ldev(peer_device->device);
756         } else {
757                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
758                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
759                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
760                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
761                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
762         }
763
764         if (apv >= 88)
765                 strcpy(p->verify_alg, nc->verify_alg);
766         if (apv >= 89)
767                 strcpy(p->csums_alg, nc->csums_alg);
768         rcu_read_unlock();
769
770         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
771 }
772
773 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
774 {
775         struct drbd_socket *sock;
776         struct p_protocol *p;
777         struct net_conf *nc;
778         int size, cf;
779
780         sock = &connection->data;
781         p = __conn_prepare_command(connection, sock);
782         if (!p)
783                 return -EIO;
784
785         rcu_read_lock();
786         nc = rcu_dereference(connection->net_conf);
787
788         if (nc->tentative && connection->agreed_pro_version < 92) {
789                 rcu_read_unlock();
790                 drbd_err(connection, "--dry-run is not supported by peer");
791                 return -EOPNOTSUPP;
792         }
793
794         size = sizeof(*p);
795         if (connection->agreed_pro_version >= 87)
796                 size += strlen(nc->integrity_alg) + 1;
797
798         p->protocol      = cpu_to_be32(nc->wire_protocol);
799         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
800         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
801         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
802         p->two_primaries = cpu_to_be32(nc->two_primaries);
803         cf = 0;
804         if (nc->discard_my_data)
805                 cf |= CF_DISCARD_MY_DATA;
806         if (nc->tentative)
807                 cf |= CF_DRY_RUN;
808         p->conn_flags    = cpu_to_be32(cf);
809
810         if (connection->agreed_pro_version >= 87)
811                 strcpy(p->integrity_alg, nc->integrity_alg);
812         rcu_read_unlock();
813
814         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816
817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819         int err;
820
821         mutex_lock(&connection->data.mutex);
822         err = __drbd_send_protocol(connection, P_PROTOCOL);
823         mutex_unlock(&connection->data.mutex);
824
825         return err;
826 }
827
828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830         struct drbd_device *device = peer_device->device;
831         struct drbd_socket *sock;
832         struct p_uuids *p;
833         int i;
834
835         if (!get_ldev_if_state(device, D_NEGOTIATING))
836                 return 0;
837
838         sock = &peer_device->connection->data;
839         p = drbd_prepare_command(peer_device, sock);
840         if (!p) {
841                 put_ldev(device);
842                 return -EIO;
843         }
844         spin_lock_irq(&device->ldev->md.uuid_lock);
845         for (i = UI_CURRENT; i < UI_SIZE; i++)
846                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847         spin_unlock_irq(&device->ldev->md.uuid_lock);
848
849         device->comm_bm_set = drbd_bm_total_weight(device);
850         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851         rcu_read_lock();
852         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853         rcu_read_unlock();
854         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857
858         put_ldev(device);
859         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861
862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864         return _drbd_send_uuids(peer_device, 0);
865 }
866
867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869         return _drbd_send_uuids(peer_device, 8);
870 }
871
872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874         if (get_ldev_if_state(device, D_NEGOTIATING)) {
875                 u64 *uuid = device->ldev->md.uuid;
876                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877                      text,
878                      (unsigned long long)uuid[UI_CURRENT],
879                      (unsigned long long)uuid[UI_BITMAP],
880                      (unsigned long long)uuid[UI_HISTORY_START],
881                      (unsigned long long)uuid[UI_HISTORY_END]);
882                 put_ldev(device);
883         } else {
884                 drbd_info(device, "%s effective data uuid: %016llX\n",
885                                 text,
886                                 (unsigned long long)device->ed_uuid);
887         }
888 }
889
890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892         struct drbd_device *device = peer_device->device;
893         struct drbd_socket *sock;
894         struct p_rs_uuid *p;
895         u64 uuid;
896
897         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898
899         uuid = device->ldev->md.uuid[UI_BITMAP];
900         if (uuid && uuid != UUID_JUST_CREATED)
901                 uuid = uuid + UUID_NEW_BM_OFFSET;
902         else
903                 get_random_bytes(&uuid, sizeof(u64));
904         drbd_uuid_set(device, UI_BITMAP, uuid);
905         drbd_print_uuids(device, "updated sync UUID");
906         drbd_md_sync(device);
907
908         sock = &peer_device->connection->data;
909         p = drbd_prepare_command(peer_device, sock);
910         if (p) {
911                 p->uuid = cpu_to_be64(uuid);
912                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913         }
914 }
915
916 /* communicated if (agreed_features & DRBD_FF_WSAME) */
917 static void
918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
919                                         struct request_queue *q)
920 {
921         if (q) {
922                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
923                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
924                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
925                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
926                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
927                 p->qlim->discard_enabled = blk_queue_discard(q);
928                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
929         } else {
930                 q = device->rq_queue;
931                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
932                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
933                 p->qlim->alignment_offset = 0;
934                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
935                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
936                 p->qlim->discard_enabled = 0;
937                 p->qlim->write_same_capable = 0;
938         }
939 }
940
941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
942 {
943         struct drbd_device *device = peer_device->device;
944         struct drbd_socket *sock;
945         struct p_sizes *p;
946         sector_t d_size, u_size;
947         int q_order_type;
948         unsigned int max_bio_size;
949         unsigned int packet_size;
950
951         sock = &peer_device->connection->data;
952         p = drbd_prepare_command(peer_device, sock);
953         if (!p)
954                 return -EIO;
955
956         packet_size = sizeof(*p);
957         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
958                 packet_size += sizeof(p->qlim[0]);
959
960         memset(p, 0, packet_size);
961         if (get_ldev_if_state(device, D_NEGOTIATING)) {
962                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
963                 d_size = drbd_get_max_capacity(device->ldev);
964                 rcu_read_lock();
965                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
966                 rcu_read_unlock();
967                 q_order_type = drbd_queue_order_type(device);
968                 max_bio_size = queue_max_hw_sectors(q) << 9;
969                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
970                 assign_p_sizes_qlim(device, p, q);
971                 put_ldev(device);
972         } else {
973                 d_size = 0;
974                 u_size = 0;
975                 q_order_type = QUEUE_ORDERED_NONE;
976                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
977                 assign_p_sizes_qlim(device, p, NULL);
978         }
979
980         if (peer_device->connection->agreed_pro_version <= 94)
981                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
982         else if (peer_device->connection->agreed_pro_version < 100)
983                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
984
985         p->d_size = cpu_to_be64(d_size);
986         p->u_size = cpu_to_be64(u_size);
987         if (trigger_reply)
988                 p->c_size = 0;
989         else
990                 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
991         p->max_bio_size = cpu_to_be32(max_bio_size);
992         p->queue_order_type = cpu_to_be16(q_order_type);
993         p->dds_flags = cpu_to_be16(flags);
994
995         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
996 }
997
998 /**
999  * drbd_send_current_state() - Sends the drbd state to the peer
1000  * @peer_device:        DRBD peer device.
1001  */
1002 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1003 {
1004         struct drbd_socket *sock;
1005         struct p_state *p;
1006
1007         sock = &peer_device->connection->data;
1008         p = drbd_prepare_command(peer_device, sock);
1009         if (!p)
1010                 return -EIO;
1011         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1012         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1013 }
1014
1015 /**
1016  * drbd_send_state() - After a state change, sends the new state to the peer
1017  * @peer_device:      DRBD peer device.
1018  * @state:     the state to send, not necessarily the current state.
1019  *
1020  * Each state change queues an "after_state_ch" work, which will eventually
1021  * send the resulting new state to the peer. If more state changes happen
1022  * between queuing and processing of the after_state_ch work, we still
1023  * want to send each intermediary state in the order it occurred.
1024  */
1025 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1026 {
1027         struct drbd_socket *sock;
1028         struct p_state *p;
1029
1030         sock = &peer_device->connection->data;
1031         p = drbd_prepare_command(peer_device, sock);
1032         if (!p)
1033                 return -EIO;
1034         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1035         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1036 }
1037
1038 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1039 {
1040         struct drbd_socket *sock;
1041         struct p_req_state *p;
1042
1043         sock = &peer_device->connection->data;
1044         p = drbd_prepare_command(peer_device, sock);
1045         if (!p)
1046                 return -EIO;
1047         p->mask = cpu_to_be32(mask.i);
1048         p->val = cpu_to_be32(val.i);
1049         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1050 }
1051
1052 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1053 {
1054         enum drbd_packet cmd;
1055         struct drbd_socket *sock;
1056         struct p_req_state *p;
1057
1058         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1059         sock = &connection->data;
1060         p = conn_prepare_command(connection, sock);
1061         if (!p)
1062                 return -EIO;
1063         p->mask = cpu_to_be32(mask.i);
1064         p->val = cpu_to_be32(val.i);
1065         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1066 }
1067
1068 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1069 {
1070         struct drbd_socket *sock;
1071         struct p_req_state_reply *p;
1072
1073         sock = &peer_device->connection->meta;
1074         p = drbd_prepare_command(peer_device, sock);
1075         if (p) {
1076                 p->retcode = cpu_to_be32(retcode);
1077                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1078         }
1079 }
1080
1081 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1082 {
1083         struct drbd_socket *sock;
1084         struct p_req_state_reply *p;
1085         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1086
1087         sock = &connection->meta;
1088         p = conn_prepare_command(connection, sock);
1089         if (p) {
1090                 p->retcode = cpu_to_be32(retcode);
1091                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1092         }
1093 }
1094
1095 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1096 {
1097         BUG_ON(code & ~0xf);
1098         p->encoding = (p->encoding & ~0xf) | code;
1099 }
1100
1101 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1102 {
1103         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1104 }
1105
1106 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1107 {
1108         BUG_ON(n & ~0x7);
1109         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1110 }
1111
1112 static int fill_bitmap_rle_bits(struct drbd_device *device,
1113                          struct p_compressed_bm *p,
1114                          unsigned int size,
1115                          struct bm_xfer_ctx *c)
1116 {
1117         struct bitstream bs;
1118         unsigned long plain_bits;
1119         unsigned long tmp;
1120         unsigned long rl;
1121         unsigned len;
1122         unsigned toggle;
1123         int bits, use_rle;
1124
1125         /* may we use this feature? */
1126         rcu_read_lock();
1127         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1128         rcu_read_unlock();
1129         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1130                 return 0;
1131
1132         if (c->bit_offset >= c->bm_bits)
1133                 return 0; /* nothing to do. */
1134
1135         /* use at most thus many bytes */
1136         bitstream_init(&bs, p->code, size, 0);
1137         memset(p->code, 0, size);
1138         /* plain bits covered in this code string */
1139         plain_bits = 0;
1140
1141         /* p->encoding & 0x80 stores whether the first run length is set.
1142          * bit offset is implicit.
1143          * start with toggle == 2 to be able to tell the first iteration */
1144         toggle = 2;
1145
1146         /* see how much plain bits we can stuff into one packet
1147          * using RLE and VLI. */
1148         do {
1149                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1150                                     : _drbd_bm_find_next(device, c->bit_offset);
1151                 if (tmp == -1UL)
1152                         tmp = c->bm_bits;
1153                 rl = tmp - c->bit_offset;
1154
1155                 if (toggle == 2) { /* first iteration */
1156                         if (rl == 0) {
1157                                 /* the first checked bit was set,
1158                                  * store start value, */
1159                                 dcbp_set_start(p, 1);
1160                                 /* but skip encoding of zero run length */
1161                                 toggle = !toggle;
1162                                 continue;
1163                         }
1164                         dcbp_set_start(p, 0);
1165                 }
1166
1167                 /* paranoia: catch zero runlength.
1168                  * can only happen if bitmap is modified while we scan it. */
1169                 if (rl == 0) {
1170                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1171                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1172                         return -1;
1173                 }
1174
1175                 bits = vli_encode_bits(&bs, rl);
1176                 if (bits == -ENOBUFS) /* buffer full */
1177                         break;
1178                 if (bits <= 0) {
1179                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1180                         return 0;
1181                 }
1182
1183                 toggle = !toggle;
1184                 plain_bits += rl;
1185                 c->bit_offset = tmp;
1186         } while (c->bit_offset < c->bm_bits);
1187
1188         len = bs.cur.b - p->code + !!bs.cur.bit;
1189
1190         if (plain_bits < (len << 3)) {
1191                 /* incompressible with this method.
1192                  * we need to rewind both word and bit position. */
1193                 c->bit_offset -= plain_bits;
1194                 bm_xfer_ctx_bit_to_word_offset(c);
1195                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1196                 return 0;
1197         }
1198
1199         /* RLE + VLI was able to compress it just fine.
1200          * update c->word_offset. */
1201         bm_xfer_ctx_bit_to_word_offset(c);
1202
1203         /* store pad_bits */
1204         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1205
1206         return len;
1207 }
1208
1209 /**
1210  * send_bitmap_rle_or_plain
1211  *
1212  * Return 0 when done, 1 when another iteration is needed, and a negative error
1213  * code upon failure.
1214  */
1215 static int
1216 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1217 {
1218         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1219         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1220         struct p_compressed_bm *p = sock->sbuf + header_size;
1221         int len, err;
1222
1223         len = fill_bitmap_rle_bits(device, p,
1224                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1225         if (len < 0)
1226                 return -EIO;
1227
1228         if (len) {
1229                 dcbp_set_code(p, RLE_VLI_Bits);
1230                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1231                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1232                                      NULL, 0);
1233                 c->packets[0]++;
1234                 c->bytes[0] += header_size + sizeof(*p) + len;
1235
1236                 if (c->bit_offset >= c->bm_bits)
1237                         len = 0; /* DONE */
1238         } else {
1239                 /* was not compressible.
1240                  * send a buffer full of plain text bits instead. */
1241                 unsigned int data_size;
1242                 unsigned long num_words;
1243                 unsigned long *p = sock->sbuf + header_size;
1244
1245                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1246                 num_words = min_t(size_t, data_size / sizeof(*p),
1247                                   c->bm_words - c->word_offset);
1248                 len = num_words * sizeof(*p);
1249                 if (len)
1250                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1251                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1252                 c->word_offset += num_words;
1253                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1254
1255                 c->packets[1]++;
1256                 c->bytes[1] += header_size + len;
1257
1258                 if (c->bit_offset > c->bm_bits)
1259                         c->bit_offset = c->bm_bits;
1260         }
1261         if (!err) {
1262                 if (len == 0) {
1263                         INFO_bm_xfer_stats(device, "send", c);
1264                         return 0;
1265                 } else
1266                         return 1;
1267         }
1268         return -EIO;
1269 }
1270
1271 /* See the comment at receive_bitmap() */
1272 static int _drbd_send_bitmap(struct drbd_device *device)
1273 {
1274         struct bm_xfer_ctx c;
1275         int err;
1276
1277         if (!expect(device->bitmap))
1278                 return false;
1279
1280         if (get_ldev(device)) {
1281                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1282                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1283                         drbd_bm_set_all(device);
1284                         if (drbd_bm_write(device)) {
1285                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1286                                  * but otherwise process as per normal - need to tell other
1287                                  * side that a full resync is required! */
1288                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1289                         } else {
1290                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1291                                 drbd_md_sync(device);
1292                         }
1293                 }
1294                 put_ldev(device);
1295         }
1296
1297         c = (struct bm_xfer_ctx) {
1298                 .bm_bits = drbd_bm_bits(device),
1299                 .bm_words = drbd_bm_words(device),
1300         };
1301
1302         do {
1303                 err = send_bitmap_rle_or_plain(device, &c);
1304         } while (err > 0);
1305
1306         return err == 0;
1307 }
1308
1309 int drbd_send_bitmap(struct drbd_device *device)
1310 {
1311         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1312         int err = -1;
1313
1314         mutex_lock(&sock->mutex);
1315         if (sock->socket)
1316                 err = !_drbd_send_bitmap(device);
1317         mutex_unlock(&sock->mutex);
1318         return err;
1319 }
1320
1321 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1322 {
1323         struct drbd_socket *sock;
1324         struct p_barrier_ack *p;
1325
1326         if (connection->cstate < C_WF_REPORT_PARAMS)
1327                 return;
1328
1329         sock = &connection->meta;
1330         p = conn_prepare_command(connection, sock);
1331         if (!p)
1332                 return;
1333         p->barrier = barrier_nr;
1334         p->set_size = cpu_to_be32(set_size);
1335         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1336 }
1337
1338 /**
1339  * _drbd_send_ack() - Sends an ack packet
1340  * @device:     DRBD device.
1341  * @cmd:        Packet command code.
1342  * @sector:     sector, needs to be in big endian byte order
1343  * @blksize:    size in byte, needs to be in big endian byte order
1344  * @block_id:   Id, big endian byte order
1345  */
1346 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1347                           u64 sector, u32 blksize, u64 block_id)
1348 {
1349         struct drbd_socket *sock;
1350         struct p_block_ack *p;
1351
1352         if (peer_device->device->state.conn < C_CONNECTED)
1353                 return -EIO;
1354
1355         sock = &peer_device->connection->meta;
1356         p = drbd_prepare_command(peer_device, sock);
1357         if (!p)
1358                 return -EIO;
1359         p->sector = sector;
1360         p->block_id = block_id;
1361         p->blksize = blksize;
1362         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1363         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1364 }
1365
1366 /* dp->sector and dp->block_id already/still in network byte order,
1367  * data_size is payload size according to dp->head,
1368  * and may need to be corrected for digest size. */
1369 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1370                       struct p_data *dp, int data_size)
1371 {
1372         if (peer_device->connection->peer_integrity_tfm)
1373                 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1374         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1375                        dp->block_id);
1376 }
1377
1378 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1379                       struct p_block_req *rp)
1380 {
1381         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1382 }
1383
1384 /**
1385  * drbd_send_ack() - Sends an ack packet
1386  * @device:     DRBD device
1387  * @cmd:        packet command code
1388  * @peer_req:   peer request
1389  */
1390 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1391                   struct drbd_peer_request *peer_req)
1392 {
1393         return _drbd_send_ack(peer_device, cmd,
1394                               cpu_to_be64(peer_req->i.sector),
1395                               cpu_to_be32(peer_req->i.size),
1396                               peer_req->block_id);
1397 }
1398
1399 /* This function misuses the block_id field to signal if the blocks
1400  * are is sync or not. */
1401 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1402                      sector_t sector, int blksize, u64 block_id)
1403 {
1404         return _drbd_send_ack(peer_device, cmd,
1405                               cpu_to_be64(sector),
1406                               cpu_to_be32(blksize),
1407                               cpu_to_be64(block_id));
1408 }
1409
1410 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1411                              struct drbd_peer_request *peer_req)
1412 {
1413         struct drbd_socket *sock;
1414         struct p_block_desc *p;
1415
1416         sock = &peer_device->connection->data;
1417         p = drbd_prepare_command(peer_device, sock);
1418         if (!p)
1419                 return -EIO;
1420         p->sector = cpu_to_be64(peer_req->i.sector);
1421         p->blksize = cpu_to_be32(peer_req->i.size);
1422         p->pad = 0;
1423         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1424 }
1425
1426 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1427                        sector_t sector, int size, u64 block_id)
1428 {
1429         struct drbd_socket *sock;
1430         struct p_block_req *p;
1431
1432         sock = &peer_device->connection->data;
1433         p = drbd_prepare_command(peer_device, sock);
1434         if (!p)
1435                 return -EIO;
1436         p->sector = cpu_to_be64(sector);
1437         p->block_id = block_id;
1438         p->blksize = cpu_to_be32(size);
1439         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1440 }
1441
1442 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1443                             void *digest, int digest_size, enum drbd_packet cmd)
1444 {
1445         struct drbd_socket *sock;
1446         struct p_block_req *p;
1447
1448         /* FIXME: Put the digest into the preallocated socket buffer.  */
1449
1450         sock = &peer_device->connection->data;
1451         p = drbd_prepare_command(peer_device, sock);
1452         if (!p)
1453                 return -EIO;
1454         p->sector = cpu_to_be64(sector);
1455         p->block_id = ID_SYNCER /* unused */;
1456         p->blksize = cpu_to_be32(size);
1457         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1458 }
1459
1460 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1461 {
1462         struct drbd_socket *sock;
1463         struct p_block_req *p;
1464
1465         sock = &peer_device->connection->data;
1466         p = drbd_prepare_command(peer_device, sock);
1467         if (!p)
1468                 return -EIO;
1469         p->sector = cpu_to_be64(sector);
1470         p->block_id = ID_SYNCER /* unused */;
1471         p->blksize = cpu_to_be32(size);
1472         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1473 }
1474
1475 /* called on sndtimeo
1476  * returns false if we should retry,
1477  * true if we think connection is dead
1478  */
1479 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1480 {
1481         int drop_it;
1482         /* long elapsed = (long)(jiffies - device->last_received); */
1483
1484         drop_it =   connection->meta.socket == sock
1485                 || !connection->ack_receiver.task
1486                 || get_t_state(&connection->ack_receiver) != RUNNING
1487                 || connection->cstate < C_WF_REPORT_PARAMS;
1488
1489         if (drop_it)
1490                 return true;
1491
1492         drop_it = !--connection->ko_count;
1493         if (!drop_it) {
1494                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1495                          current->comm, current->pid, connection->ko_count);
1496                 request_ping(connection);
1497         }
1498
1499         return drop_it; /* && (device->state == R_PRIMARY) */;
1500 }
1501
1502 static void drbd_update_congested(struct drbd_connection *connection)
1503 {
1504         struct sock *sk = connection->data.socket->sk;
1505         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1506                 set_bit(NET_CONGESTED, &connection->flags);
1507 }
1508
1509 /* The idea of sendpage seems to be to put some kind of reference
1510  * to the page into the skb, and to hand it over to the NIC. In
1511  * this process get_page() gets called.
1512  *
1513  * As soon as the page was really sent over the network put_page()
1514  * gets called by some part of the network layer. [ NIC driver? ]
1515  *
1516  * [ get_page() / put_page() increment/decrement the count. If count
1517  *   reaches 0 the page will be freed. ]
1518  *
1519  * This works nicely with pages from FSs.
1520  * But this means that in protocol A we might signal IO completion too early!
1521  *
1522  * In order not to corrupt data during a resync we must make sure
1523  * that we do not reuse our own buffer pages (EEs) to early, therefore
1524  * we have the net_ee list.
1525  *
1526  * XFS seems to have problems, still, it submits pages with page_count == 0!
1527  * As a workaround, we disable sendpage on pages
1528  * with page_count == 0 or PageSlab.
1529  */
1530 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1531                               int offset, size_t size, unsigned msg_flags)
1532 {
1533         struct socket *socket;
1534         void *addr;
1535         int err;
1536
1537         socket = peer_device->connection->data.socket;
1538         addr = kmap(page) + offset;
1539         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1540         kunmap(page);
1541         if (!err)
1542                 peer_device->device->send_cnt += size >> 9;
1543         return err;
1544 }
1545
1546 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1547                     int offset, size_t size, unsigned msg_flags)
1548 {
1549         struct socket *socket = peer_device->connection->data.socket;
1550         int len = size;
1551         int err = -EIO;
1552
1553         /* e.g. XFS meta- & log-data is in slab pages, which have a
1554          * page_count of 0 and/or have PageSlab() set.
1555          * we cannot use send_page for those, as that does get_page();
1556          * put_page(); and would cause either a VM_BUG directly, or
1557          * __page_cache_release a page that would actually still be referenced
1558          * by someone, leading to some obscure delayed Oops somewhere else. */
1559         if (drbd_disable_sendpage || !sendpage_ok(page))
1560                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1561
1562         msg_flags |= MSG_NOSIGNAL;
1563         drbd_update_congested(peer_device->connection);
1564         do {
1565                 int sent;
1566
1567                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1568                 if (sent <= 0) {
1569                         if (sent == -EAGAIN) {
1570                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1571                                         break;
1572                                 continue;
1573                         }
1574                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1575                              __func__, (int)size, len, sent);
1576                         if (sent < 0)
1577                                 err = sent;
1578                         break;
1579                 }
1580                 len    -= sent;
1581                 offset += sent;
1582         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1583         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1584
1585         if (len == 0) {
1586                 err = 0;
1587                 peer_device->device->send_cnt += size >> 9;
1588         }
1589         return err;
1590 }
1591
1592 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1593 {
1594         struct bio_vec bvec;
1595         struct bvec_iter iter;
1596
1597         /* hint all but last page with MSG_MORE */
1598         bio_for_each_segment(bvec, bio, iter) {
1599                 int err;
1600
1601                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1602                                          bvec.bv_offset, bvec.bv_len,
1603                                          bio_iter_last(bvec, iter)
1604                                          ? 0 : MSG_MORE);
1605                 if (err)
1606                         return err;
1607                 /* REQ_OP_WRITE_SAME has only one segment */
1608                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1609                         break;
1610         }
1611         return 0;
1612 }
1613
1614 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1615 {
1616         struct bio_vec bvec;
1617         struct bvec_iter iter;
1618
1619         /* hint all but last page with MSG_MORE */
1620         bio_for_each_segment(bvec, bio, iter) {
1621                 int err;
1622
1623                 err = _drbd_send_page(peer_device, bvec.bv_page,
1624                                       bvec.bv_offset, bvec.bv_len,
1625                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1626                 if (err)
1627                         return err;
1628                 /* REQ_OP_WRITE_SAME has only one segment */
1629                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1630                         break;
1631         }
1632         return 0;
1633 }
1634
1635 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1636                             struct drbd_peer_request *peer_req)
1637 {
1638         struct page *page = peer_req->pages;
1639         unsigned len = peer_req->i.size;
1640         int err;
1641
1642         /* hint all but last page with MSG_MORE */
1643         page_chain_for_each(page) {
1644                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1645
1646                 err = _drbd_send_page(peer_device, page, 0, l,
1647                                       page_chain_next(page) ? MSG_MORE : 0);
1648                 if (err)
1649                         return err;
1650                 len -= l;
1651         }
1652         return 0;
1653 }
1654
1655 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1656                              struct bio *bio)
1657 {
1658         if (connection->agreed_pro_version >= 95)
1659                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1660                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1661                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1662                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1663                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1664                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1665                           ((connection->agreed_features & DRBD_FF_WZEROES) ?
1666                            (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1667                            : DP_DISCARD)
1668                         : 0);
1669         else
1670                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1671 }
1672
1673 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1674  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1675  */
1676 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1677 {
1678         struct drbd_device *device = peer_device->device;
1679         struct drbd_socket *sock;
1680         struct p_data *p;
1681         struct p_wsame *wsame = NULL;
1682         void *digest_out;
1683         unsigned int dp_flags = 0;
1684         int digest_size;
1685         int err;
1686
1687         sock = &peer_device->connection->data;
1688         p = drbd_prepare_command(peer_device, sock);
1689         digest_size = peer_device->connection->integrity_tfm ?
1690                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1691
1692         if (!p)
1693                 return -EIO;
1694         p->sector = cpu_to_be64(req->i.sector);
1695         p->block_id = (unsigned long)req;
1696         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1697         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1698         if (device->state.conn >= C_SYNC_SOURCE &&
1699             device->state.conn <= C_PAUSED_SYNC_T)
1700                 dp_flags |= DP_MAY_SET_IN_SYNC;
1701         if (peer_device->connection->agreed_pro_version >= 100) {
1702                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1703                         dp_flags |= DP_SEND_RECEIVE_ACK;
1704                 /* During resync, request an explicit write ack,
1705                  * even in protocol != C */
1706                 if (req->rq_state & RQ_EXP_WRITE_ACK
1707                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1708                         dp_flags |= DP_SEND_WRITE_ACK;
1709         }
1710         p->dp_flags = cpu_to_be32(dp_flags);
1711
1712         if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1713                 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1714                 struct p_trim *t = (struct p_trim*)p;
1715                 t->size = cpu_to_be32(req->i.size);
1716                 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1717                 goto out;
1718         }
1719         if (dp_flags & DP_WSAME) {
1720                 /* this will only work if DRBD_FF_WSAME is set AND the
1721                  * handshake agreed that all nodes and backend devices are
1722                  * WRITE_SAME capable and agree on logical_block_size */
1723                 wsame = (struct p_wsame*)p;
1724                 digest_out = wsame + 1;
1725                 wsame->size = cpu_to_be32(req->i.size);
1726         } else
1727                 digest_out = p + 1;
1728
1729         /* our digest is still only over the payload.
1730          * TRIM does not carry any payload. */
1731         if (digest_size)
1732                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1733         if (wsame) {
1734                 err =
1735                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1736                                    sizeof(*wsame) + digest_size, NULL,
1737                                    bio_iovec(req->master_bio).bv_len);
1738         } else
1739                 err =
1740                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1741                                    sizeof(*p) + digest_size, NULL, req->i.size);
1742         if (!err) {
1743                 /* For protocol A, we have to memcpy the payload into
1744                  * socket buffers, as we may complete right away
1745                  * as soon as we handed it over to tcp, at which point the data
1746                  * pages may become invalid.
1747                  *
1748                  * For data-integrity enabled, we copy it as well, so we can be
1749                  * sure that even if the bio pages may still be modified, it
1750                  * won't change the data on the wire, thus if the digest checks
1751                  * out ok after sending on this side, but does not fit on the
1752                  * receiving side, we sure have detected corruption elsewhere.
1753                  */
1754                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1755                         err = _drbd_send_bio(peer_device, req->master_bio);
1756                 else
1757                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1758
1759                 /* double check digest, sometimes buffers have been modified in flight. */
1760                 if (digest_size > 0 && digest_size <= 64) {
1761                         /* 64 byte, 512 bit, is the largest digest size
1762                          * currently supported in kernel crypto. */
1763                         unsigned char digest[64];
1764                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1765                         if (memcmp(p + 1, digest, digest_size)) {
1766                                 drbd_warn(device,
1767                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1768                                         (unsigned long long)req->i.sector, req->i.size);
1769                         }
1770                 } /* else if (digest_size > 64) {
1771                      ... Be noisy about digest too large ...
1772                 } */
1773         }
1774 out:
1775         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1776
1777         return err;
1778 }
1779
1780 /* answer packet, used to send data back for read requests:
1781  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1782  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1783  */
1784 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1785                     struct drbd_peer_request *peer_req)
1786 {
1787         struct drbd_device *device = peer_device->device;
1788         struct drbd_socket *sock;
1789         struct p_data *p;
1790         int err;
1791         int digest_size;
1792
1793         sock = &peer_device->connection->data;
1794         p = drbd_prepare_command(peer_device, sock);
1795
1796         digest_size = peer_device->connection->integrity_tfm ?
1797                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1798
1799         if (!p)
1800                 return -EIO;
1801         p->sector = cpu_to_be64(peer_req->i.sector);
1802         p->block_id = peer_req->block_id;
1803         p->seq_num = 0;  /* unused */
1804         p->dp_flags = 0;
1805         if (digest_size)
1806                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1807         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1808         if (!err)
1809                 err = _drbd_send_zc_ee(peer_device, peer_req);
1810         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1811
1812         return err;
1813 }
1814
1815 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1816 {
1817         struct drbd_socket *sock;
1818         struct p_block_desc *p;
1819
1820         sock = &peer_device->connection->data;
1821         p = drbd_prepare_command(peer_device, sock);
1822         if (!p)
1823                 return -EIO;
1824         p->sector = cpu_to_be64(req->i.sector);
1825         p->blksize = cpu_to_be32(req->i.size);
1826         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1827 }
1828
1829 /*
1830   drbd_send distinguishes two cases:
1831
1832   Packets sent via the data socket "sock"
1833   and packets sent via the meta data socket "msock"
1834
1835                     sock                      msock
1836   -----------------+-------------------------+------------------------------
1837   timeout           conf.timeout / 2          conf.timeout / 2
1838   timeout action    send a ping via msock     Abort communication
1839                                               and close all sockets
1840 */
1841
1842 /*
1843  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1844  */
1845 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1846               void *buf, size_t size, unsigned msg_flags)
1847 {
1848         struct kvec iov = {.iov_base = buf, .iov_len = size};
1849         struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1850         int rv, sent = 0;
1851
1852         if (!sock)
1853                 return -EBADR;
1854
1855         /* THINK  if (signal_pending) return ... ? */
1856
1857         iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1858
1859         if (sock == connection->data.socket) {
1860                 rcu_read_lock();
1861                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1862                 rcu_read_unlock();
1863                 drbd_update_congested(connection);
1864         }
1865         do {
1866                 rv = sock_sendmsg(sock, &msg);
1867                 if (rv == -EAGAIN) {
1868                         if (we_should_drop_the_connection(connection, sock))
1869                                 break;
1870                         else
1871                                 continue;
1872                 }
1873                 if (rv == -EINTR) {
1874                         flush_signals(current);
1875                         rv = 0;
1876                 }
1877                 if (rv < 0)
1878                         break;
1879                 sent += rv;
1880         } while (sent < size);
1881
1882         if (sock == connection->data.socket)
1883                 clear_bit(NET_CONGESTED, &connection->flags);
1884
1885         if (rv <= 0) {
1886                 if (rv != -EAGAIN) {
1887                         drbd_err(connection, "%s_sendmsg returned %d\n",
1888                                  sock == connection->meta.socket ? "msock" : "sock",
1889                                  rv);
1890                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1891                 } else
1892                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1893         }
1894
1895         return sent;
1896 }
1897
1898 /**
1899  * drbd_send_all  -  Send an entire buffer
1900  *
1901  * Returns 0 upon success and a negative error value otherwise.
1902  */
1903 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1904                   size_t size, unsigned msg_flags)
1905 {
1906         int err;
1907
1908         err = drbd_send(connection, sock, buffer, size, msg_flags);
1909         if (err < 0)
1910                 return err;
1911         if (err != size)
1912                 return -EIO;
1913         return 0;
1914 }
1915
1916 static int drbd_open(struct block_device *bdev, fmode_t mode)
1917 {
1918         struct drbd_device *device = bdev->bd_disk->private_data;
1919         unsigned long flags;
1920         int rv = 0;
1921
1922         mutex_lock(&drbd_main_mutex);
1923         spin_lock_irqsave(&device->resource->req_lock, flags);
1924         /* to have a stable device->state.role
1925          * and no race with updating open_cnt */
1926
1927         if (device->state.role != R_PRIMARY) {
1928                 if (mode & FMODE_WRITE)
1929                         rv = -EROFS;
1930                 else if (!drbd_allow_oos)
1931                         rv = -EMEDIUMTYPE;
1932         }
1933
1934         if (!rv)
1935                 device->open_cnt++;
1936         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1937         mutex_unlock(&drbd_main_mutex);
1938
1939         return rv;
1940 }
1941
1942 static void drbd_release(struct gendisk *gd, fmode_t mode)
1943 {
1944         struct drbd_device *device = gd->private_data;
1945         mutex_lock(&drbd_main_mutex);
1946         device->open_cnt--;
1947         mutex_unlock(&drbd_main_mutex);
1948 }
1949
1950 /* need to hold resource->req_lock */
1951 void drbd_queue_unplug(struct drbd_device *device)
1952 {
1953         if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1954                 D_ASSERT(device, device->state.role == R_PRIMARY);
1955                 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1956                         drbd_queue_work_if_unqueued(
1957                                 &first_peer_device(device)->connection->sender_work,
1958                                 &device->unplug_work);
1959                 }
1960         }
1961 }
1962
1963 static void drbd_set_defaults(struct drbd_device *device)
1964 {
1965         /* Beware! The actual layout differs
1966          * between big endian and little endian */
1967         device->state = (union drbd_dev_state) {
1968                 { .role = R_SECONDARY,
1969                   .peer = R_UNKNOWN,
1970                   .conn = C_STANDALONE,
1971                   .disk = D_DISKLESS,
1972                   .pdsk = D_UNKNOWN,
1973                 } };
1974 }
1975
1976 void drbd_init_set_defaults(struct drbd_device *device)
1977 {
1978         /* the memset(,0,) did most of this.
1979          * note: only assignments, no allocation in here */
1980
1981         drbd_set_defaults(device);
1982
1983         atomic_set(&device->ap_bio_cnt, 0);
1984         atomic_set(&device->ap_actlog_cnt, 0);
1985         atomic_set(&device->ap_pending_cnt, 0);
1986         atomic_set(&device->rs_pending_cnt, 0);
1987         atomic_set(&device->unacked_cnt, 0);
1988         atomic_set(&device->local_cnt, 0);
1989         atomic_set(&device->pp_in_use_by_net, 0);
1990         atomic_set(&device->rs_sect_in, 0);
1991         atomic_set(&device->rs_sect_ev, 0);
1992         atomic_set(&device->ap_in_flight, 0);
1993         atomic_set(&device->md_io.in_use, 0);
1994
1995         mutex_init(&device->own_state_mutex);
1996         device->state_mutex = &device->own_state_mutex;
1997
1998         spin_lock_init(&device->al_lock);
1999         spin_lock_init(&device->peer_seq_lock);
2000
2001         INIT_LIST_HEAD(&device->active_ee);
2002         INIT_LIST_HEAD(&device->sync_ee);
2003         INIT_LIST_HEAD(&device->done_ee);
2004         INIT_LIST_HEAD(&device->read_ee);
2005         INIT_LIST_HEAD(&device->net_ee);
2006         INIT_LIST_HEAD(&device->resync_reads);
2007         INIT_LIST_HEAD(&device->resync_work.list);
2008         INIT_LIST_HEAD(&device->unplug_work.list);
2009         INIT_LIST_HEAD(&device->bm_io_work.w.list);
2010         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2011         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2012         INIT_LIST_HEAD(&device->pending_completion[0]);
2013         INIT_LIST_HEAD(&device->pending_completion[1]);
2014
2015         device->resync_work.cb  = w_resync_timer;
2016         device->unplug_work.cb  = w_send_write_hint;
2017         device->bm_io_work.w.cb = w_bitmap_io;
2018
2019         timer_setup(&device->resync_timer, resync_timer_fn, 0);
2020         timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2021         timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2022         timer_setup(&device->request_timer, request_timer_fn, 0);
2023
2024         init_waitqueue_head(&device->misc_wait);
2025         init_waitqueue_head(&device->state_wait);
2026         init_waitqueue_head(&device->ee_wait);
2027         init_waitqueue_head(&device->al_wait);
2028         init_waitqueue_head(&device->seq_wait);
2029
2030         device->resync_wenr = LC_FREE;
2031         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2032         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2033 }
2034
2035 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2036 {
2037         char ppb[10];
2038
2039         set_capacity_and_notify(device->vdisk, size);
2040
2041         drbd_info(device, "size = %s (%llu KB)\n",
2042                 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2043 }
2044
2045 void drbd_device_cleanup(struct drbd_device *device)
2046 {
2047         int i;
2048         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2049                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2050                                 first_peer_device(device)->connection->receiver.t_state);
2051
2052         device->al_writ_cnt  =
2053         device->bm_writ_cnt  =
2054         device->read_cnt     =
2055         device->recv_cnt     =
2056         device->send_cnt     =
2057         device->writ_cnt     =
2058         device->p_size       =
2059         device->rs_start     =
2060         device->rs_total     =
2061         device->rs_failed    = 0;
2062         device->rs_last_events = 0;
2063         device->rs_last_sect_ev = 0;
2064         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2065                 device->rs_mark_left[i] = 0;
2066                 device->rs_mark_time[i] = 0;
2067         }
2068         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2069
2070         set_capacity_and_notify(device->vdisk, 0);
2071         if (device->bitmap) {
2072                 /* maybe never allocated. */
2073                 drbd_bm_resize(device, 0, 1);
2074                 drbd_bm_cleanup(device);
2075         }
2076
2077         drbd_backing_dev_free(device, device->ldev);
2078         device->ldev = NULL;
2079
2080         clear_bit(AL_SUSPENDED, &device->flags);
2081
2082         D_ASSERT(device, list_empty(&device->active_ee));
2083         D_ASSERT(device, list_empty(&device->sync_ee));
2084         D_ASSERT(device, list_empty(&device->done_ee));
2085         D_ASSERT(device, list_empty(&device->read_ee));
2086         D_ASSERT(device, list_empty(&device->net_ee));
2087         D_ASSERT(device, list_empty(&device->resync_reads));
2088         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2089         D_ASSERT(device, list_empty(&device->resync_work.list));
2090         D_ASSERT(device, list_empty(&device->unplug_work.list));
2091
2092         drbd_set_defaults(device);
2093 }
2094
2095
2096 static void drbd_destroy_mempools(void)
2097 {
2098         struct page *page;
2099
2100         while (drbd_pp_pool) {
2101                 page = drbd_pp_pool;
2102                 drbd_pp_pool = (struct page *)page_private(page);
2103                 __free_page(page);
2104                 drbd_pp_vacant--;
2105         }
2106
2107         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2108
2109         bioset_exit(&drbd_io_bio_set);
2110         bioset_exit(&drbd_md_io_bio_set);
2111         mempool_exit(&drbd_md_io_page_pool);
2112         mempool_exit(&drbd_ee_mempool);
2113         mempool_exit(&drbd_request_mempool);
2114         kmem_cache_destroy(drbd_ee_cache);
2115         kmem_cache_destroy(drbd_request_cache);
2116         kmem_cache_destroy(drbd_bm_ext_cache);
2117         kmem_cache_destroy(drbd_al_ext_cache);
2118
2119         drbd_ee_cache        = NULL;
2120         drbd_request_cache   = NULL;
2121         drbd_bm_ext_cache    = NULL;
2122         drbd_al_ext_cache    = NULL;
2123
2124         return;
2125 }
2126
2127 static int drbd_create_mempools(void)
2128 {
2129         struct page *page;
2130         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2131         int i, ret;
2132
2133         /* caches */
2134         drbd_request_cache = kmem_cache_create(
2135                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2136         if (drbd_request_cache == NULL)
2137                 goto Enomem;
2138
2139         drbd_ee_cache = kmem_cache_create(
2140                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2141         if (drbd_ee_cache == NULL)
2142                 goto Enomem;
2143
2144         drbd_bm_ext_cache = kmem_cache_create(
2145                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2146         if (drbd_bm_ext_cache == NULL)
2147                 goto Enomem;
2148
2149         drbd_al_ext_cache = kmem_cache_create(
2150                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2151         if (drbd_al_ext_cache == NULL)
2152                 goto Enomem;
2153
2154         /* mempools */
2155         ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2156         if (ret)
2157                 goto Enomem;
2158
2159         ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2160                           BIOSET_NEED_BVECS);
2161         if (ret)
2162                 goto Enomem;
2163
2164         ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2165         if (ret)
2166                 goto Enomem;
2167
2168         ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2169                                      drbd_request_cache);
2170         if (ret)
2171                 goto Enomem;
2172
2173         ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2174         if (ret)
2175                 goto Enomem;
2176
2177         /* drbd's page pool */
2178         spin_lock_init(&drbd_pp_lock);
2179
2180         for (i = 0; i < number; i++) {
2181                 page = alloc_page(GFP_HIGHUSER);
2182                 if (!page)
2183                         goto Enomem;
2184                 set_page_private(page, (unsigned long)drbd_pp_pool);
2185                 drbd_pp_pool = page;
2186         }
2187         drbd_pp_vacant = number;
2188
2189         return 0;
2190
2191 Enomem:
2192         drbd_destroy_mempools(); /* in case we allocated some */
2193         return -ENOMEM;
2194 }
2195
2196 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2197 {
2198         int rr;
2199
2200         rr = drbd_free_peer_reqs(device, &device->active_ee);
2201         if (rr)
2202                 drbd_err(device, "%d EEs in active list found!\n", rr);
2203
2204         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2205         if (rr)
2206                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2207
2208         rr = drbd_free_peer_reqs(device, &device->read_ee);
2209         if (rr)
2210                 drbd_err(device, "%d EEs in read list found!\n", rr);
2211
2212         rr = drbd_free_peer_reqs(device, &device->done_ee);
2213         if (rr)
2214                 drbd_err(device, "%d EEs in done list found!\n", rr);
2215
2216         rr = drbd_free_peer_reqs(device, &device->net_ee);
2217         if (rr)
2218                 drbd_err(device, "%d EEs in net list found!\n", rr);
2219 }
2220
2221 /* caution. no locking. */
2222 void drbd_destroy_device(struct kref *kref)
2223 {
2224         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2225         struct drbd_resource *resource = device->resource;
2226         struct drbd_peer_device *peer_device, *tmp_peer_device;
2227
2228         del_timer_sync(&device->request_timer);
2229
2230         /* paranoia asserts */
2231         D_ASSERT(device, device->open_cnt == 0);
2232         /* end paranoia asserts */
2233
2234         /* cleanup stuff that may have been allocated during
2235          * device (re-)configuration or state changes */
2236
2237         drbd_backing_dev_free(device, device->ldev);
2238         device->ldev = NULL;
2239
2240         drbd_release_all_peer_reqs(device);
2241
2242         lc_destroy(device->act_log);
2243         lc_destroy(device->resync);
2244
2245         kfree(device->p_uuid);
2246         /* device->p_uuid = NULL; */
2247
2248         if (device->bitmap) /* should no longer be there. */
2249                 drbd_bm_cleanup(device);
2250         __free_page(device->md_io.page);
2251         put_disk(device->vdisk);
2252         blk_cleanup_queue(device->rq_queue);
2253         kfree(device->rs_plan_s);
2254
2255         /* not for_each_connection(connection, resource):
2256          * those may have been cleaned up and disassociated already.
2257          */
2258         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2259                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2260                 kfree(peer_device);
2261         }
2262         memset(device, 0xfd, sizeof(*device));
2263         kfree(device);
2264         kref_put(&resource->kref, drbd_destroy_resource);
2265 }
2266
2267 /* One global retry thread, if we need to push back some bio and have it
2268  * reinserted through our make request function.
2269  */
2270 static struct retry_worker {
2271         struct workqueue_struct *wq;
2272         struct work_struct worker;
2273
2274         spinlock_t lock;
2275         struct list_head writes;
2276 } retry;
2277
2278 static void do_retry(struct work_struct *ws)
2279 {
2280         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2281         LIST_HEAD(writes);
2282         struct drbd_request *req, *tmp;
2283
2284         spin_lock_irq(&retry->lock);
2285         list_splice_init(&retry->writes, &writes);
2286         spin_unlock_irq(&retry->lock);
2287
2288         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2289                 struct drbd_device *device = req->device;
2290                 struct bio *bio = req->master_bio;
2291                 unsigned long start_jif = req->start_jif;
2292                 bool expected;
2293
2294                 expected =
2295                         expect(atomic_read(&req->completion_ref) == 0) &&
2296                         expect(req->rq_state & RQ_POSTPONED) &&
2297                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2298                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2299
2300                 if (!expected)
2301                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2302                                 req, atomic_read(&req->completion_ref),
2303                                 req->rq_state);
2304
2305                 /* We still need to put one kref associated with the
2306                  * "completion_ref" going zero in the code path that queued it
2307                  * here.  The request object may still be referenced by a
2308                  * frozen local req->private_bio, in case we force-detached.
2309                  */
2310                 kref_put(&req->kref, drbd_req_destroy);
2311
2312                 /* A single suspended or otherwise blocking device may stall
2313                  * all others as well.  Fortunately, this code path is to
2314                  * recover from a situation that "should not happen":
2315                  * concurrent writes in multi-primary setup.
2316                  * In a "normal" lifecycle, this workqueue is supposed to be
2317                  * destroyed without ever doing anything.
2318                  * If it turns out to be an issue anyways, we can do per
2319                  * resource (replication group) or per device (minor) retry
2320                  * workqueues instead.
2321                  */
2322
2323                 /* We are not just doing submit_bio_noacct(),
2324                  * as we want to keep the start_time information. */
2325                 inc_ap_bio(device);
2326                 __drbd_make_request(device, bio, start_jif);
2327         }
2328 }
2329
2330 /* called via drbd_req_put_completion_ref(),
2331  * holds resource->req_lock */
2332 void drbd_restart_request(struct drbd_request *req)
2333 {
2334         unsigned long flags;
2335         spin_lock_irqsave(&retry.lock, flags);
2336         list_move_tail(&req->tl_requests, &retry.writes);
2337         spin_unlock_irqrestore(&retry.lock, flags);
2338
2339         /* Drop the extra reference that would otherwise
2340          * have been dropped by complete_master_bio.
2341          * do_retry() needs to grab a new one. */
2342         dec_ap_bio(req->device);
2343
2344         queue_work(retry.wq, &retry.worker);
2345 }
2346
2347 void drbd_destroy_resource(struct kref *kref)
2348 {
2349         struct drbd_resource *resource =
2350                 container_of(kref, struct drbd_resource, kref);
2351
2352         idr_destroy(&resource->devices);
2353         free_cpumask_var(resource->cpu_mask);
2354         kfree(resource->name);
2355         memset(resource, 0xf2, sizeof(*resource));
2356         kfree(resource);
2357 }
2358
2359 void drbd_free_resource(struct drbd_resource *resource)
2360 {
2361         struct drbd_connection *connection, *tmp;
2362
2363         for_each_connection_safe(connection, tmp, resource) {
2364                 list_del(&connection->connections);
2365                 drbd_debugfs_connection_cleanup(connection);
2366                 kref_put(&connection->kref, drbd_destroy_connection);
2367         }
2368         drbd_debugfs_resource_cleanup(resource);
2369         kref_put(&resource->kref, drbd_destroy_resource);
2370 }
2371
2372 static void drbd_cleanup(void)
2373 {
2374         unsigned int i;
2375         struct drbd_device *device;
2376         struct drbd_resource *resource, *tmp;
2377
2378         /* first remove proc,
2379          * drbdsetup uses it's presence to detect
2380          * whether DRBD is loaded.
2381          * If we would get stuck in proc removal,
2382          * but have netlink already deregistered,
2383          * some drbdsetup commands may wait forever
2384          * for an answer.
2385          */
2386         if (drbd_proc)
2387                 remove_proc_entry("drbd", NULL);
2388
2389         if (retry.wq)
2390                 destroy_workqueue(retry.wq);
2391
2392         drbd_genl_unregister();
2393
2394         idr_for_each_entry(&drbd_devices, device, i)
2395                 drbd_delete_device(device);
2396
2397         /* not _rcu since, no other updater anymore. Genl already unregistered */
2398         for_each_resource_safe(resource, tmp, &drbd_resources) {
2399                 list_del(&resource->resources);
2400                 drbd_free_resource(resource);
2401         }
2402
2403         drbd_debugfs_cleanup();
2404
2405         drbd_destroy_mempools();
2406         unregister_blkdev(DRBD_MAJOR, "drbd");
2407
2408         idr_destroy(&drbd_devices);
2409
2410         pr_info("module cleanup done.\n");
2411 }
2412
2413 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2414 {
2415         spin_lock_init(&wq->q_lock);
2416         INIT_LIST_HEAD(&wq->q);
2417         init_waitqueue_head(&wq->q_wait);
2418 }
2419
2420 struct completion_work {
2421         struct drbd_work w;
2422         struct completion done;
2423 };
2424
2425 static int w_complete(struct drbd_work *w, int cancel)
2426 {
2427         struct completion_work *completion_work =
2428                 container_of(w, struct completion_work, w);
2429
2430         complete(&completion_work->done);
2431         return 0;
2432 }
2433
2434 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2435 {
2436         struct completion_work completion_work;
2437
2438         completion_work.w.cb = w_complete;
2439         init_completion(&completion_work.done);
2440         drbd_queue_work(work_queue, &completion_work.w);
2441         wait_for_completion(&completion_work.done);
2442 }
2443
2444 struct drbd_resource *drbd_find_resource(const char *name)
2445 {
2446         struct drbd_resource *resource;
2447
2448         if (!name || !name[0])
2449                 return NULL;
2450
2451         rcu_read_lock();
2452         for_each_resource_rcu(resource, &drbd_resources) {
2453                 if (!strcmp(resource->name, name)) {
2454                         kref_get(&resource->kref);
2455                         goto found;
2456                 }
2457         }
2458         resource = NULL;
2459 found:
2460         rcu_read_unlock();
2461         return resource;
2462 }
2463
2464 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2465                                      void *peer_addr, int peer_addr_len)
2466 {
2467         struct drbd_resource *resource;
2468         struct drbd_connection *connection;
2469
2470         rcu_read_lock();
2471         for_each_resource_rcu(resource, &drbd_resources) {
2472                 for_each_connection_rcu(connection, resource) {
2473                         if (connection->my_addr_len == my_addr_len &&
2474                             connection->peer_addr_len == peer_addr_len &&
2475                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2476                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2477                                 kref_get(&connection->kref);
2478                                 goto found;
2479                         }
2480                 }
2481         }
2482         connection = NULL;
2483 found:
2484         rcu_read_unlock();
2485         return connection;
2486 }
2487
2488 static int drbd_alloc_socket(struct drbd_socket *socket)
2489 {
2490         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2491         if (!socket->rbuf)
2492                 return -ENOMEM;
2493         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2494         if (!socket->sbuf)
2495                 return -ENOMEM;
2496         return 0;
2497 }
2498
2499 static void drbd_free_socket(struct drbd_socket *socket)
2500 {
2501         free_page((unsigned long) socket->sbuf);
2502         free_page((unsigned long) socket->rbuf);
2503 }
2504
2505 void conn_free_crypto(struct drbd_connection *connection)
2506 {
2507         drbd_free_sock(connection);
2508
2509         crypto_free_shash(connection->csums_tfm);
2510         crypto_free_shash(connection->verify_tfm);
2511         crypto_free_shash(connection->cram_hmac_tfm);
2512         crypto_free_shash(connection->integrity_tfm);
2513         crypto_free_shash(connection->peer_integrity_tfm);
2514         kfree(connection->int_dig_in);
2515         kfree(connection->int_dig_vv);
2516
2517         connection->csums_tfm = NULL;
2518         connection->verify_tfm = NULL;
2519         connection->cram_hmac_tfm = NULL;
2520         connection->integrity_tfm = NULL;
2521         connection->peer_integrity_tfm = NULL;
2522         connection->int_dig_in = NULL;
2523         connection->int_dig_vv = NULL;
2524 }
2525
2526 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2527 {
2528         struct drbd_connection *connection;
2529         cpumask_var_t new_cpu_mask;
2530         int err;
2531
2532         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2533                 return -ENOMEM;
2534
2535         /* silently ignore cpu mask on UP kernel */
2536         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2537                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2538                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2539                 if (err == -EOVERFLOW) {
2540                         /* So what. mask it out. */
2541                         cpumask_var_t tmp_cpu_mask;
2542                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2543                                 cpumask_setall(tmp_cpu_mask);
2544                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2545                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2546                                         res_opts->cpu_mask,
2547                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2548                                         nr_cpu_ids);
2549                                 free_cpumask_var(tmp_cpu_mask);
2550                                 err = 0;
2551                         }
2552                 }
2553                 if (err) {
2554                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2555                         /* retcode = ERR_CPU_MASK_PARSE; */
2556                         goto fail;
2557                 }
2558         }
2559         resource->res_opts = *res_opts;
2560         if (cpumask_empty(new_cpu_mask))
2561                 drbd_calc_cpu_mask(&new_cpu_mask);
2562         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2563                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2564                 for_each_connection_rcu(connection, resource) {
2565                         connection->receiver.reset_cpu_mask = 1;
2566                         connection->ack_receiver.reset_cpu_mask = 1;
2567                         connection->worker.reset_cpu_mask = 1;
2568                 }
2569         }
2570         err = 0;
2571
2572 fail:
2573         free_cpumask_var(new_cpu_mask);
2574         return err;
2575
2576 }
2577
2578 struct drbd_resource *drbd_create_resource(const char *name)
2579 {
2580         struct drbd_resource *resource;
2581
2582         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2583         if (!resource)
2584                 goto fail;
2585         resource->name = kstrdup(name, GFP_KERNEL);
2586         if (!resource->name)
2587                 goto fail_free_resource;
2588         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2589                 goto fail_free_name;
2590         kref_init(&resource->kref);
2591         idr_init(&resource->devices);
2592         INIT_LIST_HEAD(&resource->connections);
2593         resource->write_ordering = WO_BDEV_FLUSH;
2594         list_add_tail_rcu(&resource->resources, &drbd_resources);
2595         mutex_init(&resource->conf_update);
2596         mutex_init(&resource->adm_mutex);
2597         spin_lock_init(&resource->req_lock);
2598         drbd_debugfs_resource_add(resource);
2599         return resource;
2600
2601 fail_free_name:
2602         kfree(resource->name);
2603 fail_free_resource:
2604         kfree(resource);
2605 fail:
2606         return NULL;
2607 }
2608
2609 /* caller must be under adm_mutex */
2610 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2611 {
2612         struct drbd_resource *resource;
2613         struct drbd_connection *connection;
2614
2615         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2616         if (!connection)
2617                 return NULL;
2618
2619         if (drbd_alloc_socket(&connection->data))
2620                 goto fail;
2621         if (drbd_alloc_socket(&connection->meta))
2622                 goto fail;
2623
2624         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2625         if (!connection->current_epoch)
2626                 goto fail;
2627
2628         INIT_LIST_HEAD(&connection->transfer_log);
2629
2630         INIT_LIST_HEAD(&connection->current_epoch->list);
2631         connection->epochs = 1;
2632         spin_lock_init(&connection->epoch_lock);
2633
2634         connection->send.seen_any_write_yet = false;
2635         connection->send.current_epoch_nr = 0;
2636         connection->send.current_epoch_writes = 0;
2637
2638         resource = drbd_create_resource(name);
2639         if (!resource)
2640                 goto fail;
2641
2642         connection->cstate = C_STANDALONE;
2643         mutex_init(&connection->cstate_mutex);
2644         init_waitqueue_head(&connection->ping_wait);
2645         idr_init(&connection->peer_devices);
2646
2647         drbd_init_workqueue(&connection->sender_work);
2648         mutex_init(&connection->data.mutex);
2649         mutex_init(&connection->meta.mutex);
2650
2651         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2652         connection->receiver.connection = connection;
2653         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2654         connection->worker.connection = connection;
2655         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2656         connection->ack_receiver.connection = connection;
2657
2658         kref_init(&connection->kref);
2659
2660         connection->resource = resource;
2661
2662         if (set_resource_options(resource, res_opts))
2663                 goto fail_resource;
2664
2665         kref_get(&resource->kref);
2666         list_add_tail_rcu(&connection->connections, &resource->connections);
2667         drbd_debugfs_connection_add(connection);
2668         return connection;
2669
2670 fail_resource:
2671         list_del(&resource->resources);
2672         drbd_free_resource(resource);
2673 fail:
2674         kfree(connection->current_epoch);
2675         drbd_free_socket(&connection->meta);
2676         drbd_free_socket(&connection->data);
2677         kfree(connection);
2678         return NULL;
2679 }
2680
2681 void drbd_destroy_connection(struct kref *kref)
2682 {
2683         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2684         struct drbd_resource *resource = connection->resource;
2685
2686         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2687                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2688         kfree(connection->current_epoch);
2689
2690         idr_destroy(&connection->peer_devices);
2691
2692         drbd_free_socket(&connection->meta);
2693         drbd_free_socket(&connection->data);
2694         kfree(connection->int_dig_in);
2695         kfree(connection->int_dig_vv);
2696         memset(connection, 0xfc, sizeof(*connection));
2697         kfree(connection);
2698         kref_put(&resource->kref, drbd_destroy_resource);
2699 }
2700
2701 static int init_submitter(struct drbd_device *device)
2702 {
2703         /* opencoded create_singlethread_workqueue(),
2704          * to be able to say "drbd%d", ..., minor */
2705         device->submit.wq =
2706                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2707         if (!device->submit.wq)
2708                 return -ENOMEM;
2709
2710         INIT_WORK(&device->submit.worker, do_submit);
2711         INIT_LIST_HEAD(&device->submit.writes);
2712         return 0;
2713 }
2714
2715 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2716 {
2717         struct drbd_resource *resource = adm_ctx->resource;
2718         struct drbd_connection *connection;
2719         struct drbd_device *device;
2720         struct drbd_peer_device *peer_device, *tmp_peer_device;
2721         struct gendisk *disk;
2722         struct request_queue *q;
2723         int id;
2724         int vnr = adm_ctx->volume;
2725         enum drbd_ret_code err = ERR_NOMEM;
2726
2727         device = minor_to_device(minor);
2728         if (device)
2729                 return ERR_MINOR_OR_VOLUME_EXISTS;
2730
2731         /* GFP_KERNEL, we are outside of all write-out paths */
2732         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2733         if (!device)
2734                 return ERR_NOMEM;
2735         kref_init(&device->kref);
2736
2737         kref_get(&resource->kref);
2738         device->resource = resource;
2739         device->minor = minor;
2740         device->vnr = vnr;
2741
2742         drbd_init_set_defaults(device);
2743
2744         q = blk_alloc_queue(NUMA_NO_NODE);
2745         if (!q)
2746                 goto out_no_q;
2747         device->rq_queue = q;
2748
2749         disk = alloc_disk(1);
2750         if (!disk)
2751                 goto out_no_disk;
2752         device->vdisk = disk;
2753
2754         set_disk_ro(disk, true);
2755
2756         disk->queue = q;
2757         disk->major = DRBD_MAJOR;
2758         disk->first_minor = minor;
2759         disk->fops = &drbd_ops;
2760         sprintf(disk->disk_name, "drbd%d", minor);
2761         disk->private_data = device;
2762
2763         blk_queue_write_cache(q, true, true);
2764         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2765            This triggers a max_bio_size message upon first attach or connect */
2766         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2767
2768         device->md_io.page = alloc_page(GFP_KERNEL);
2769         if (!device->md_io.page)
2770                 goto out_no_io_page;
2771
2772         if (drbd_bm_init(device))
2773                 goto out_no_bitmap;
2774         device->read_requests = RB_ROOT;
2775         device->write_requests = RB_ROOT;
2776
2777         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2778         if (id < 0) {
2779                 if (id == -ENOSPC)
2780                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2781                 goto out_no_minor_idr;
2782         }
2783         kref_get(&device->kref);
2784
2785         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2786         if (id < 0) {
2787                 if (id == -ENOSPC)
2788                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2789                 goto out_idr_remove_minor;
2790         }
2791         kref_get(&device->kref);
2792
2793         INIT_LIST_HEAD(&device->peer_devices);
2794         INIT_LIST_HEAD(&device->pending_bitmap_io);
2795         for_each_connection(connection, resource) {
2796                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2797                 if (!peer_device)
2798                         goto out_idr_remove_from_resource;
2799                 peer_device->connection = connection;
2800                 peer_device->device = device;
2801
2802                 list_add(&peer_device->peer_devices, &device->peer_devices);
2803                 kref_get(&device->kref);
2804
2805                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2806                 if (id < 0) {
2807                         if (id == -ENOSPC)
2808                                 err = ERR_INVALID_REQUEST;
2809                         goto out_idr_remove_from_resource;
2810                 }
2811                 kref_get(&connection->kref);
2812                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2813         }
2814
2815         if (init_submitter(device)) {
2816                 err = ERR_NOMEM;
2817                 goto out_idr_remove_vol;
2818         }
2819
2820         add_disk(disk);
2821
2822         /* inherit the connection state */
2823         device->state.conn = first_connection(resource)->cstate;
2824         if (device->state.conn == C_WF_REPORT_PARAMS) {
2825                 for_each_peer_device(peer_device, device)
2826                         drbd_connected(peer_device);
2827         }
2828         /* move to create_peer_device() */
2829         for_each_peer_device(peer_device, device)
2830                 drbd_debugfs_peer_device_add(peer_device);
2831         drbd_debugfs_device_add(device);
2832         return NO_ERROR;
2833
2834 out_idr_remove_vol:
2835         idr_remove(&connection->peer_devices, vnr);
2836 out_idr_remove_from_resource:
2837         for_each_connection(connection, resource) {
2838                 peer_device = idr_remove(&connection->peer_devices, vnr);
2839                 if (peer_device)
2840                         kref_put(&connection->kref, drbd_destroy_connection);
2841         }
2842         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2843                 list_del(&peer_device->peer_devices);
2844                 kfree(peer_device);
2845         }
2846         idr_remove(&resource->devices, vnr);
2847 out_idr_remove_minor:
2848         idr_remove(&drbd_devices, minor);
2849         synchronize_rcu();
2850 out_no_minor_idr:
2851         drbd_bm_cleanup(device);
2852 out_no_bitmap:
2853         __free_page(device->md_io.page);
2854 out_no_io_page:
2855         put_disk(disk);
2856 out_no_disk:
2857         blk_cleanup_queue(q);
2858 out_no_q:
2859         kref_put(&resource->kref, drbd_destroy_resource);
2860         kfree(device);
2861         return err;
2862 }
2863
2864 void drbd_delete_device(struct drbd_device *device)
2865 {
2866         struct drbd_resource *resource = device->resource;
2867         struct drbd_connection *connection;
2868         struct drbd_peer_device *peer_device;
2869
2870         /* move to free_peer_device() */
2871         for_each_peer_device(peer_device, device)
2872                 drbd_debugfs_peer_device_cleanup(peer_device);
2873         drbd_debugfs_device_cleanup(device);
2874         for_each_connection(connection, resource) {
2875                 idr_remove(&connection->peer_devices, device->vnr);
2876                 kref_put(&device->kref, drbd_destroy_device);
2877         }
2878         idr_remove(&resource->devices, device->vnr);
2879         kref_put(&device->kref, drbd_destroy_device);
2880         idr_remove(&drbd_devices, device_to_minor(device));
2881         kref_put(&device->kref, drbd_destroy_device);
2882         del_gendisk(device->vdisk);
2883         synchronize_rcu();
2884         kref_put(&device->kref, drbd_destroy_device);
2885 }
2886
2887 static int __init drbd_init(void)
2888 {
2889         int err;
2890
2891         if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2892                 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2893 #ifdef MODULE
2894                 return -EINVAL;
2895 #else
2896                 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2897 #endif
2898         }
2899
2900         err = register_blkdev(DRBD_MAJOR, "drbd");
2901         if (err) {
2902                 pr_err("unable to register block device major %d\n",
2903                        DRBD_MAJOR);
2904                 return err;
2905         }
2906
2907         /*
2908          * allocate all necessary structs
2909          */
2910         init_waitqueue_head(&drbd_pp_wait);
2911
2912         drbd_proc = NULL; /* play safe for drbd_cleanup */
2913         idr_init(&drbd_devices);
2914
2915         mutex_init(&resources_mutex);
2916         INIT_LIST_HEAD(&drbd_resources);
2917
2918         err = drbd_genl_register();
2919         if (err) {
2920                 pr_err("unable to register generic netlink family\n");
2921                 goto fail;
2922         }
2923
2924         err = drbd_create_mempools();
2925         if (err)
2926                 goto fail;
2927
2928         err = -ENOMEM;
2929         drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2930         if (!drbd_proc) {
2931                 pr_err("unable to register proc file\n");
2932                 goto fail;
2933         }
2934
2935         retry.wq = create_singlethread_workqueue("drbd-reissue");
2936         if (!retry.wq) {
2937                 pr_err("unable to create retry workqueue\n");
2938                 goto fail;
2939         }
2940         INIT_WORK(&retry.worker, do_retry);
2941         spin_lock_init(&retry.lock);
2942         INIT_LIST_HEAD(&retry.writes);
2943
2944         drbd_debugfs_init();
2945
2946         pr_info("initialized. "
2947                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2948                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2949         pr_info("%s\n", drbd_buildtag());
2950         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2951         return 0; /* Success! */
2952
2953 fail:
2954         drbd_cleanup();
2955         if (err == -ENOMEM)
2956                 pr_err("ran out of memory\n");
2957         else
2958                 pr_err("initialization failure\n");
2959         return err;
2960 }
2961
2962 static void drbd_free_one_sock(struct drbd_socket *ds)
2963 {
2964         struct socket *s;
2965         mutex_lock(&ds->mutex);
2966         s = ds->socket;
2967         ds->socket = NULL;
2968         mutex_unlock(&ds->mutex);
2969         if (s) {
2970                 /* so debugfs does not need to mutex_lock() */
2971                 synchronize_rcu();
2972                 kernel_sock_shutdown(s, SHUT_RDWR);
2973                 sock_release(s);
2974         }
2975 }
2976
2977 void drbd_free_sock(struct drbd_connection *connection)
2978 {
2979         if (connection->data.socket)
2980                 drbd_free_one_sock(&connection->data);
2981         if (connection->meta.socket)
2982                 drbd_free_one_sock(&connection->meta);
2983 }
2984
2985 /* meta data management */
2986
2987 void conn_md_sync(struct drbd_connection *connection)
2988 {
2989         struct drbd_peer_device *peer_device;
2990         int vnr;
2991
2992         rcu_read_lock();
2993         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2994                 struct drbd_device *device = peer_device->device;
2995
2996                 kref_get(&device->kref);
2997                 rcu_read_unlock();
2998                 drbd_md_sync(device);
2999                 kref_put(&device->kref, drbd_destroy_device);
3000                 rcu_read_lock();
3001         }
3002         rcu_read_unlock();
3003 }
3004
3005 /* aligned 4kByte */
3006 struct meta_data_on_disk {
3007         u64 la_size_sect;      /* last agreed size. */
3008         u64 uuid[UI_SIZE];   /* UUIDs. */
3009         u64 device_uuid;
3010         u64 reserved_u64_1;
3011         u32 flags;             /* MDF */
3012         u32 magic;
3013         u32 md_size_sect;
3014         u32 al_offset;         /* offset to this block */
3015         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3016               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3017         u32 bm_offset;         /* offset to the bitmap, from here */
3018         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3019         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3020
3021         /* see al_tr_number_to_on_disk_sector() */
3022         u32 al_stripes;
3023         u32 al_stripe_size_4k;
3024
3025         u8 reserved_u8[4096 - (7*8 + 10*4)];
3026 } __packed;
3027
3028
3029
3030 void drbd_md_write(struct drbd_device *device, void *b)
3031 {
3032         struct meta_data_on_disk *buffer = b;
3033         sector_t sector;
3034         int i;
3035
3036         memset(buffer, 0, sizeof(*buffer));
3037
3038         buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3039         for (i = UI_CURRENT; i < UI_SIZE; i++)
3040                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3041         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3042         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3043
3044         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3045         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3046         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3047         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3048         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3049
3050         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3051         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3052
3053         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3054         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3055
3056         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3057         sector = device->ldev->md.md_offset;
3058
3059         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3060                 /* this was a try anyways ... */
3061                 drbd_err(device, "meta data update failed!\n");
3062                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3063         }
3064 }
3065
3066 /**
3067  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3068  * @device:     DRBD device.
3069  */
3070 void drbd_md_sync(struct drbd_device *device)
3071 {
3072         struct meta_data_on_disk *buffer;
3073
3074         /* Don't accidentally change the DRBD meta data layout. */
3075         BUILD_BUG_ON(UI_SIZE != 4);
3076         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3077
3078         del_timer(&device->md_sync_timer);
3079         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3080         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3081                 return;
3082
3083         /* We use here D_FAILED and not D_ATTACHING because we try to write
3084          * metadata even if we detach due to a disk failure! */
3085         if (!get_ldev_if_state(device, D_FAILED))
3086                 return;
3087
3088         buffer = drbd_md_get_buffer(device, __func__);
3089         if (!buffer)
3090                 goto out;
3091
3092         drbd_md_write(device, buffer);
3093
3094         /* Update device->ldev->md.la_size_sect,
3095          * since we updated it on metadata. */
3096         device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3097
3098         drbd_md_put_buffer(device);
3099 out:
3100         put_ldev(device);
3101 }
3102
3103 static int check_activity_log_stripe_size(struct drbd_device *device,
3104                 struct meta_data_on_disk *on_disk,
3105                 struct drbd_md *in_core)
3106 {
3107         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3108         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3109         u64 al_size_4k;
3110
3111         /* both not set: default to old fixed size activity log */
3112         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3113                 al_stripes = 1;
3114                 al_stripe_size_4k = MD_32kB_SECT/8;
3115         }
3116
3117         /* some paranoia plausibility checks */
3118
3119         /* we need both values to be set */
3120         if (al_stripes == 0 || al_stripe_size_4k == 0)
3121                 goto err;
3122
3123         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3124
3125         /* Upper limit of activity log area, to avoid potential overflow
3126          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3127          * than 72 * 4k blocks total only increases the amount of history,
3128          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3129         if (al_size_4k > (16 * 1024 * 1024/4))
3130                 goto err;
3131
3132         /* Lower limit: we need at least 8 transaction slots (32kB)
3133          * to not break existing setups */
3134         if (al_size_4k < MD_32kB_SECT/8)
3135                 goto err;
3136
3137         in_core->al_stripe_size_4k = al_stripe_size_4k;
3138         in_core->al_stripes = al_stripes;
3139         in_core->al_size_4k = al_size_4k;
3140
3141         return 0;
3142 err:
3143         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3144                         al_stripes, al_stripe_size_4k);
3145         return -EINVAL;
3146 }
3147
3148 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3149 {
3150         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3151         struct drbd_md *in_core = &bdev->md;
3152         s32 on_disk_al_sect;
3153         s32 on_disk_bm_sect;
3154
3155         /* The on-disk size of the activity log, calculated from offsets, and
3156          * the size of the activity log calculated from the stripe settings,
3157          * should match.
3158          * Though we could relax this a bit: it is ok, if the striped activity log
3159          * fits in the available on-disk activity log size.
3160          * Right now, that would break how resize is implemented.
3161          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3162          * of possible unused padding space in the on disk layout. */
3163         if (in_core->al_offset < 0) {
3164                 if (in_core->bm_offset > in_core->al_offset)
3165                         goto err;
3166                 on_disk_al_sect = -in_core->al_offset;
3167                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3168         } else {
3169                 if (in_core->al_offset != MD_4kB_SECT)
3170                         goto err;
3171                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3172                         goto err;
3173
3174                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3175                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3176         }
3177
3178         /* old fixed size meta data is exactly that: fixed. */
3179         if (in_core->meta_dev_idx >= 0) {
3180                 if (in_core->md_size_sect != MD_128MB_SECT
3181                 ||  in_core->al_offset != MD_4kB_SECT
3182                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3183                 ||  in_core->al_stripes != 1
3184                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3185                         goto err;
3186         }
3187
3188         if (capacity < in_core->md_size_sect)
3189                 goto err;
3190         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3191                 goto err;
3192
3193         /* should be aligned, and at least 32k */
3194         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3195                 goto err;
3196
3197         /* should fit (for now: exactly) into the available on-disk space;
3198          * overflow prevention is in check_activity_log_stripe_size() above. */
3199         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3200                 goto err;
3201
3202         /* again, should be aligned */
3203         if (in_core->bm_offset & 7)
3204                 goto err;
3205
3206         /* FIXME check for device grow with flex external meta data? */
3207
3208         /* can the available bitmap space cover the last agreed device size? */
3209         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3210                 goto err;
3211
3212         return 0;
3213
3214 err:
3215         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3216                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3217                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3218                         in_core->meta_dev_idx,
3219                         in_core->al_stripes, in_core->al_stripe_size_4k,
3220                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3221                         (unsigned long long)in_core->la_size_sect,
3222                         (unsigned long long)capacity);
3223
3224         return -EINVAL;
3225 }
3226
3227
3228 /**
3229  * drbd_md_read() - Reads in the meta data super block
3230  * @device:     DRBD device.
3231  * @bdev:       Device from which the meta data should be read in.
3232  *
3233  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3234  * something goes wrong.
3235  *
3236  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3237  * even before @bdev is assigned to @device->ldev.
3238  */
3239 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3240 {
3241         struct meta_data_on_disk *buffer;
3242         u32 magic, flags;
3243         int i, rv = NO_ERROR;
3244
3245         if (device->state.disk != D_DISKLESS)
3246                 return ERR_DISK_CONFIGURED;
3247
3248         buffer = drbd_md_get_buffer(device, __func__);
3249         if (!buffer)
3250                 return ERR_NOMEM;
3251
3252         /* First, figure out where our meta data superblock is located,
3253          * and read it. */
3254         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3255         bdev->md.md_offset = drbd_md_ss(bdev);
3256         /* Even for (flexible or indexed) external meta data,
3257          * initially restrict us to the 4k superblock for now.
3258          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3259         bdev->md.md_size_sect = 8;
3260
3261         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3262                                  REQ_OP_READ)) {
3263                 /* NOTE: can't do normal error processing here as this is
3264                    called BEFORE disk is attached */
3265                 drbd_err(device, "Error while reading metadata.\n");
3266                 rv = ERR_IO_MD_DISK;
3267                 goto err;
3268         }
3269
3270         magic = be32_to_cpu(buffer->magic);
3271         flags = be32_to_cpu(buffer->flags);
3272         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3273             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3274                         /* btw: that's Activity Log clean, not "all" clean. */
3275                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3276                 rv = ERR_MD_UNCLEAN;
3277                 goto err;
3278         }
3279
3280         rv = ERR_MD_INVALID;
3281         if (magic != DRBD_MD_MAGIC_08) {
3282                 if (magic == DRBD_MD_MAGIC_07)
3283                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3284                 else
3285                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3286                 goto err;
3287         }
3288
3289         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3290                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3291                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3292                 goto err;
3293         }
3294
3295
3296         /* convert to in_core endian */
3297         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3298         for (i = UI_CURRENT; i < UI_SIZE; i++)
3299                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3300         bdev->md.flags = be32_to_cpu(buffer->flags);
3301         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3302
3303         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3304         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3305         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3306
3307         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3308                 goto err;
3309         if (check_offsets_and_sizes(device, bdev))
3310                 goto err;
3311
3312         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3313                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3314                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3315                 goto err;
3316         }
3317         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3318                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3319                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3320                 goto err;
3321         }
3322
3323         rv = NO_ERROR;
3324
3325         spin_lock_irq(&device->resource->req_lock);
3326         if (device->state.conn < C_CONNECTED) {
3327                 unsigned int peer;
3328                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3329                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3330                 device->peer_max_bio_size = peer;
3331         }
3332         spin_unlock_irq(&device->resource->req_lock);
3333
3334  err:
3335         drbd_md_put_buffer(device);
3336
3337         return rv;
3338 }
3339
3340 /**
3341  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3342  * @device:     DRBD device.
3343  *
3344  * Call this function if you change anything that should be written to
3345  * the meta-data super block. This function sets MD_DIRTY, and starts a
3346  * timer that ensures that within five seconds you have to call drbd_md_sync().
3347  */
3348 void drbd_md_mark_dirty(struct drbd_device *device)
3349 {
3350         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3351                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3352 }
3353
3354 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3355 {
3356         int i;
3357
3358         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3359                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3360 }
3361
3362 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3363 {
3364         if (idx == UI_CURRENT) {
3365                 if (device->state.role == R_PRIMARY)
3366                         val |= 1;
3367                 else
3368                         val &= ~((u64)1);
3369
3370                 drbd_set_ed_uuid(device, val);
3371         }
3372
3373         device->ldev->md.uuid[idx] = val;
3374         drbd_md_mark_dirty(device);
3375 }
3376
3377 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3378 {
3379         unsigned long flags;
3380         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3381         __drbd_uuid_set(device, idx, val);
3382         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3383 }
3384
3385 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3386 {
3387         unsigned long flags;
3388         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3389         if (device->ldev->md.uuid[idx]) {
3390                 drbd_uuid_move_history(device);
3391                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3392         }
3393         __drbd_uuid_set(device, idx, val);
3394         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3395 }
3396
3397 /**
3398  * drbd_uuid_new_current() - Creates a new current UUID
3399  * @device:     DRBD device.
3400  *
3401  * Creates a new current UUID, and rotates the old current UUID into
3402  * the bitmap slot. Causes an incremental resync upon next connect.
3403  */
3404 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3405 {
3406         u64 val;
3407         unsigned long long bm_uuid;
3408
3409         get_random_bytes(&val, sizeof(u64));
3410
3411         spin_lock_irq(&device->ldev->md.uuid_lock);
3412         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3413
3414         if (bm_uuid)
3415                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3416
3417         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3418         __drbd_uuid_set(device, UI_CURRENT, val);
3419         spin_unlock_irq(&device->ldev->md.uuid_lock);
3420
3421         drbd_print_uuids(device, "new current UUID");
3422         /* get it to stable storage _now_ */
3423         drbd_md_sync(device);
3424 }
3425
3426 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3427 {
3428         unsigned long flags;
3429         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3430                 return;
3431
3432         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3433         if (val == 0) {
3434                 drbd_uuid_move_history(device);
3435                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3436                 device->ldev->md.uuid[UI_BITMAP] = 0;
3437         } else {
3438                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3439                 if (bm_uuid)
3440                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3441
3442                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3443         }
3444         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3445
3446         drbd_md_mark_dirty(device);
3447 }
3448
3449 /**
3450  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3451  * @device:     DRBD device.
3452  *
3453  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3454  */
3455 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3456 {
3457         int rv = -EIO;
3458
3459         drbd_md_set_flag(device, MDF_FULL_SYNC);
3460         drbd_md_sync(device);
3461         drbd_bm_set_all(device);
3462
3463         rv = drbd_bm_write(device);
3464
3465         if (!rv) {
3466                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3467                 drbd_md_sync(device);
3468         }
3469
3470         return rv;
3471 }
3472
3473 /**
3474  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3475  * @device:     DRBD device.
3476  *
3477  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3478  */
3479 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3480 {
3481         drbd_resume_al(device);
3482         drbd_bm_clear_all(device);
3483         return drbd_bm_write(device);
3484 }
3485
3486 static int w_bitmap_io(struct drbd_work *w, int unused)
3487 {
3488         struct drbd_device *device =
3489                 container_of(w, struct drbd_device, bm_io_work.w);
3490         struct bm_io_work *work = &device->bm_io_work;
3491         int rv = -EIO;
3492
3493         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3494                 int cnt = atomic_read(&device->ap_bio_cnt);
3495                 if (cnt)
3496                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3497                                         cnt, work->why);
3498         }
3499
3500         if (get_ldev(device)) {
3501                 drbd_bm_lock(device, work->why, work->flags);
3502                 rv = work->io_fn(device);
3503                 drbd_bm_unlock(device);
3504                 put_ldev(device);
3505         }
3506
3507         clear_bit_unlock(BITMAP_IO, &device->flags);
3508         wake_up(&device->misc_wait);
3509
3510         if (work->done)
3511                 work->done(device, rv);
3512
3513         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3514         work->why = NULL;
3515         work->flags = 0;
3516
3517         return 0;
3518 }
3519
3520 /**
3521  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3522  * @device:     DRBD device.
3523  * @io_fn:      IO callback to be called when bitmap IO is possible
3524  * @done:       callback to be called after the bitmap IO was performed
3525  * @why:        Descriptive text of the reason for doing the IO
3526  *
3527  * While IO on the bitmap happens we freeze application IO thus we ensure
3528  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3529  * called from worker context. It MUST NOT be used while a previous such
3530  * work is still pending!
3531  *
3532  * Its worker function encloses the call of io_fn() by get_ldev() and
3533  * put_ldev().
3534  */
3535 void drbd_queue_bitmap_io(struct drbd_device *device,
3536                           int (*io_fn)(struct drbd_device *),
3537                           void (*done)(struct drbd_device *, int),
3538                           char *why, enum bm_flag flags)
3539 {
3540         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3541
3542         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3543         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3544         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3545         if (device->bm_io_work.why)
3546                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3547                         why, device->bm_io_work.why);
3548
3549         device->bm_io_work.io_fn = io_fn;
3550         device->bm_io_work.done = done;
3551         device->bm_io_work.why = why;
3552         device->bm_io_work.flags = flags;
3553
3554         spin_lock_irq(&device->resource->req_lock);
3555         set_bit(BITMAP_IO, &device->flags);
3556         /* don't wait for pending application IO if the caller indicates that
3557          * application IO does not conflict anyways. */
3558         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3559                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3560                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3561                                         &device->bm_io_work.w);
3562         }
3563         spin_unlock_irq(&device->resource->req_lock);
3564 }
3565
3566 /**
3567  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3568  * @device:     DRBD device.
3569  * @io_fn:      IO callback to be called when bitmap IO is possible
3570  * @why:        Descriptive text of the reason for doing the IO
3571  *
3572  * freezes application IO while that the actual IO operations runs. This
3573  * functions MAY NOT be called from worker context.
3574  */
3575 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3576                 char *why, enum bm_flag flags)
3577 {
3578         /* Only suspend io, if some operation is supposed to be locked out */
3579         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3580         int rv;
3581
3582         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3583
3584         if (do_suspend_io)
3585                 drbd_suspend_io(device);
3586
3587         drbd_bm_lock(device, why, flags);
3588         rv = io_fn(device);
3589         drbd_bm_unlock(device);
3590
3591         if (do_suspend_io)
3592                 drbd_resume_io(device);
3593
3594         return rv;
3595 }
3596
3597 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3598 {
3599         if ((device->ldev->md.flags & flag) != flag) {
3600                 drbd_md_mark_dirty(device);
3601                 device->ldev->md.flags |= flag;
3602         }
3603 }
3604
3605 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3606 {
3607         if ((device->ldev->md.flags & flag) != 0) {
3608                 drbd_md_mark_dirty(device);
3609                 device->ldev->md.flags &= ~flag;
3610         }
3611 }
3612 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3613 {
3614         return (bdev->md.flags & flag) != 0;
3615 }
3616
3617 static void md_sync_timer_fn(struct timer_list *t)
3618 {
3619         struct drbd_device *device = from_timer(device, t, md_sync_timer);
3620         drbd_device_post_work(device, MD_SYNC);
3621 }
3622
3623 const char *cmdname(enum drbd_packet cmd)
3624 {
3625         /* THINK may need to become several global tables
3626          * when we want to support more than
3627          * one PRO_VERSION */
3628         static const char *cmdnames[] = {
3629                 [P_DATA]                = "Data",
3630                 [P_WSAME]               = "WriteSame",
3631                 [P_TRIM]                = "Trim",
3632                 [P_DATA_REPLY]          = "DataReply",
3633                 [P_RS_DATA_REPLY]       = "RSDataReply",
3634                 [P_BARRIER]             = "Barrier",
3635                 [P_BITMAP]              = "ReportBitMap",
3636                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3637                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3638                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3639                 [P_DATA_REQUEST]        = "DataRequest",
3640                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3641                 [P_SYNC_PARAM]          = "SyncParam",
3642                 [P_SYNC_PARAM89]        = "SyncParam89",
3643                 [P_PROTOCOL]            = "ReportProtocol",
3644                 [P_UUIDS]               = "ReportUUIDs",
3645                 [P_SIZES]               = "ReportSizes",
3646                 [P_STATE]               = "ReportState",
3647                 [P_SYNC_UUID]           = "ReportSyncUUID",
3648                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3649                 [P_AUTH_RESPONSE]       = "AuthResponse",
3650                 [P_PING]                = "Ping",
3651                 [P_PING_ACK]            = "PingAck",
3652                 [P_RECV_ACK]            = "RecvAck",
3653                 [P_WRITE_ACK]           = "WriteAck",
3654                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3655                 [P_SUPERSEDED]          = "Superseded",
3656                 [P_NEG_ACK]             = "NegAck",
3657                 [P_NEG_DREPLY]          = "NegDReply",
3658                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3659                 [P_BARRIER_ACK]         = "BarrierAck",
3660                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3661                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3662                 [P_OV_REQUEST]          = "OVRequest",
3663                 [P_OV_REPLY]            = "OVReply",
3664                 [P_OV_RESULT]           = "OVResult",
3665                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3666                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3667                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3668                 [P_DELAY_PROBE]         = "DelayProbe",
3669                 [P_OUT_OF_SYNC]         = "OutOfSync",
3670                 [P_RETRY_WRITE]         = "RetryWrite",
3671                 [P_RS_CANCEL]           = "RSCancel",
3672                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3673                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3674                 [P_RETRY_WRITE]         = "retry_write",
3675                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3676                 [P_RS_THIN_REQ]         = "rs_thin_req",
3677                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3678
3679                 /* enum drbd_packet, but not commands - obsoleted flags:
3680                  *      P_MAY_IGNORE
3681                  *      P_MAX_OPT_CMD
3682                  */
3683         };
3684
3685         /* too big for the array: 0xfffX */
3686         if (cmd == P_INITIAL_META)
3687                 return "InitialMeta";
3688         if (cmd == P_INITIAL_DATA)
3689                 return "InitialData";
3690         if (cmd == P_CONNECTION_FEATURES)
3691                 return "ConnectionFeatures";
3692         if (cmd >= ARRAY_SIZE(cmdnames))
3693                 return "Unknown";
3694         return cmdnames[cmd];
3695 }
3696
3697 /**
3698  * drbd_wait_misc  -  wait for a request to make progress
3699  * @device:     device associated with the request
3700  * @i:          the struct drbd_interval embedded in struct drbd_request or
3701  *              struct drbd_peer_request
3702  */
3703 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3704 {
3705         struct net_conf *nc;
3706         DEFINE_WAIT(wait);
3707         long timeout;
3708
3709         rcu_read_lock();
3710         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3711         if (!nc) {
3712                 rcu_read_unlock();
3713                 return -ETIMEDOUT;
3714         }
3715         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3716         rcu_read_unlock();
3717
3718         /* Indicate to wake up device->misc_wait on progress.  */
3719         i->waiting = true;
3720         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3721         spin_unlock_irq(&device->resource->req_lock);
3722         timeout = schedule_timeout(timeout);
3723         finish_wait(&device->misc_wait, &wait);
3724         spin_lock_irq(&device->resource->req_lock);
3725         if (!timeout || device->state.conn < C_CONNECTED)
3726                 return -ETIMEDOUT;
3727         if (signal_pending(current))
3728                 return -ERESTARTSYS;
3729         return 0;
3730 }
3731
3732 void lock_all_resources(void)
3733 {
3734         struct drbd_resource *resource;
3735         int __maybe_unused i = 0;
3736
3737         mutex_lock(&resources_mutex);
3738         local_irq_disable();
3739         for_each_resource(resource, &drbd_resources)
3740                 spin_lock_nested(&resource->req_lock, i++);
3741 }
3742
3743 void unlock_all_resources(void)
3744 {
3745         struct drbd_resource *resource;
3746
3747         for_each_resource(resource, &drbd_resources)
3748                 spin_unlock(&resource->req_lock);
3749         local_irq_enable();
3750         mutex_unlock(&resources_mutex);
3751 }
3752
3753 #ifdef CONFIG_DRBD_FAULT_INJECTION
3754 /* Fault insertion support including random number generator shamelessly
3755  * stolen from kernel/rcutorture.c */
3756 struct fault_random_state {
3757         unsigned long state;
3758         unsigned long count;
3759 };
3760
3761 #define FAULT_RANDOM_MULT 39916801  /* prime */
3762 #define FAULT_RANDOM_ADD        479001701 /* prime */
3763 #define FAULT_RANDOM_REFRESH 10000
3764
3765 /*
3766  * Crude but fast random-number generator.  Uses a linear congruential
3767  * generator, with occasional help from get_random_bytes().
3768  */
3769 static unsigned long
3770 _drbd_fault_random(struct fault_random_state *rsp)
3771 {
3772         long refresh;
3773
3774         if (!rsp->count--) {
3775                 get_random_bytes(&refresh, sizeof(refresh));
3776                 rsp->state += refresh;
3777                 rsp->count = FAULT_RANDOM_REFRESH;
3778         }
3779         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3780         return swahw32(rsp->state);
3781 }
3782
3783 static char *
3784 _drbd_fault_str(unsigned int type) {
3785         static char *_faults[] = {
3786                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3787                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3788                 [DRBD_FAULT_RS_WR] = "Resync write",
3789                 [DRBD_FAULT_RS_RD] = "Resync read",
3790                 [DRBD_FAULT_DT_WR] = "Data write",
3791                 [DRBD_FAULT_DT_RD] = "Data read",
3792                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3793                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3794                 [DRBD_FAULT_AL_EE] = "EE allocation",
3795                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3796         };
3797
3798         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3799 }
3800
3801 unsigned int
3802 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3803 {
3804         static struct fault_random_state rrs = {0, 0};
3805
3806         unsigned int ret = (
3807                 (drbd_fault_devs == 0 ||
3808                         ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3809                 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3810
3811         if (ret) {
3812                 drbd_fault_count++;
3813
3814                 if (__ratelimit(&drbd_ratelimit_state))
3815                         drbd_warn(device, "***Simulating %s failure\n",
3816                                 _drbd_fault_str(type));
3817         }
3818
3819         return ret;
3820 }
3821 #endif
3822
3823 const char *drbd_buildtag(void)
3824 {
3825         /* DRBD built from external sources has here a reference to the
3826            git hash of the source code. */
3827
3828         static char buildtag[38] = "\0uilt-in";
3829
3830         if (buildtag[0] == 0) {
3831 #ifdef MODULE
3832                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3833 #else
3834                 buildtag[0] = 'b';
3835 #endif
3836         }
3837
3838         return buildtag;
3839 }
3840
3841 module_init(drbd_init)
3842 module_exit(drbd_cleanup)
3843
3844 EXPORT_SYMBOL(drbd_conn_str);
3845 EXPORT_SYMBOL(drbd_role_str);
3846 EXPORT_SYMBOL(drbd_disk_str);
3847 EXPORT_SYMBOL(drbd_set_st_err_str);