Merge tag 'samsung-soc-5.10' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk...
[linux-2.6-microblaze.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13
14
15  */
16
17 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59               "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;       /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125          member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135         .owner          = THIS_MODULE,
136         .submit_bio     = drbd_submit_bio,
137         .open           = drbd_open,
138         .release        = drbd_release,
139 };
140
141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143         struct bio *bio;
144
145         if (!bioset_initialized(&drbd_md_io_bio_set))
146                 return bio_alloc(gfp_mask, 1);
147
148         bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149         if (!bio)
150                 return NULL;
151         return bio;
152 }
153
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156    give tons of false positives. When this is a real functions sparse works.
157  */
158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160         int io_allowed;
161
162         atomic_inc(&device->local_cnt);
163         io_allowed = (device->state.disk >= mins);
164         if (!io_allowed) {
165                 if (atomic_dec_and_test(&device->local_cnt))
166                         wake_up(&device->misc_wait);
167         }
168         return io_allowed;
169 }
170
171 #endif
172
173 /**
174  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175  * @connection: DRBD connection.
176  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
177  * @set_size:   Expected number of requests before that barrier.
178  *
179  * In case the passed barrier_nr or set_size does not match the oldest
180  * epoch of not yet barrier-acked requests, this function will cause a
181  * termination of the connection.
182  */
183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184                 unsigned int set_size)
185 {
186         struct drbd_request *r;
187         struct drbd_request *req = NULL;
188         int expect_epoch = 0;
189         int expect_size = 0;
190
191         spin_lock_irq(&connection->resource->req_lock);
192
193         /* find oldest not yet barrier-acked write request,
194          * count writes in its epoch. */
195         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196                 const unsigned s = r->rq_state;
197                 if (!req) {
198                         if (!(s & RQ_WRITE))
199                                 continue;
200                         if (!(s & RQ_NET_MASK))
201                                 continue;
202                         if (s & RQ_NET_DONE)
203                                 continue;
204                         req = r;
205                         expect_epoch = req->epoch;
206                         expect_size ++;
207                 } else {
208                         if (r->epoch != expect_epoch)
209                                 break;
210                         if (!(s & RQ_WRITE))
211                                 continue;
212                         /* if (s & RQ_DONE): not expected */
213                         /* if (!(s & RQ_NET_MASK)): not expected */
214                         expect_size++;
215                 }
216         }
217
218         /* first some paranoia code */
219         if (req == NULL) {
220                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221                          barrier_nr);
222                 goto bail;
223         }
224         if (expect_epoch != barrier_nr) {
225                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226                          barrier_nr, expect_epoch);
227                 goto bail;
228         }
229
230         if (expect_size != set_size) {
231                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232                          barrier_nr, set_size, expect_size);
233                 goto bail;
234         }
235
236         /* Clean up list of requests processed during current epoch. */
237         /* this extra list walk restart is paranoia,
238          * to catch requests being barrier-acked "unexpectedly".
239          * It usually should find the same req again, or some READ preceding it. */
240         list_for_each_entry(req, &connection->transfer_log, tl_requests)
241                 if (req->epoch == expect_epoch)
242                         break;
243         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
244                 if (req->epoch != expect_epoch)
245                         break;
246                 _req_mod(req, BARRIER_ACKED);
247         }
248         spin_unlock_irq(&connection->resource->req_lock);
249
250         return;
251
252 bail:
253         spin_unlock_irq(&connection->resource->req_lock);
254         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
255 }
256
257
258 /**
259  * _tl_restart() - Walks the transfer log, and applies an action to all requests
260  * @connection: DRBD connection to operate on.
261  * @what:       The action/event to perform with all request objects
262  *
263  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
264  * RESTART_FROZEN_DISK_IO.
265  */
266 /* must hold resource->req_lock */
267 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
268 {
269         struct drbd_request *req, *r;
270
271         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
272                 _req_mod(req, what);
273 }
274
275 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276 {
277         spin_lock_irq(&connection->resource->req_lock);
278         _tl_restart(connection, what);
279         spin_unlock_irq(&connection->resource->req_lock);
280 }
281
282 /**
283  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
284  * @device:     DRBD device.
285  *
286  * This is called after the connection to the peer was lost. The storage covered
287  * by the requests on the transfer gets marked as our of sync. Called from the
288  * receiver thread and the worker thread.
289  */
290 void tl_clear(struct drbd_connection *connection)
291 {
292         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
293 }
294
295 /**
296  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
297  * @device:     DRBD device.
298  */
299 void tl_abort_disk_io(struct drbd_device *device)
300 {
301         struct drbd_connection *connection = first_peer_device(device)->connection;
302         struct drbd_request *req, *r;
303
304         spin_lock_irq(&connection->resource->req_lock);
305         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
306                 if (!(req->rq_state & RQ_LOCAL_PENDING))
307                         continue;
308                 if (req->device != device)
309                         continue;
310                 _req_mod(req, ABORT_DISK_IO);
311         }
312         spin_unlock_irq(&connection->resource->req_lock);
313 }
314
315 static int drbd_thread_setup(void *arg)
316 {
317         struct drbd_thread *thi = (struct drbd_thread *) arg;
318         struct drbd_resource *resource = thi->resource;
319         unsigned long flags;
320         int retval;
321
322         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
323                  thi->name[0],
324                  resource->name);
325
326         allow_kernel_signal(DRBD_SIGKILL);
327         allow_kernel_signal(SIGXCPU);
328 restart:
329         retval = thi->function(thi);
330
331         spin_lock_irqsave(&thi->t_lock, flags);
332
333         /* if the receiver has been "EXITING", the last thing it did
334          * was set the conn state to "StandAlone",
335          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
336          * and receiver thread will be "started".
337          * drbd_thread_start needs to set "RESTARTING" in that case.
338          * t_state check and assignment needs to be within the same spinlock,
339          * so either thread_start sees EXITING, and can remap to RESTARTING,
340          * or thread_start see NONE, and can proceed as normal.
341          */
342
343         if (thi->t_state == RESTARTING) {
344                 drbd_info(resource, "Restarting %s thread\n", thi->name);
345                 thi->t_state = RUNNING;
346                 spin_unlock_irqrestore(&thi->t_lock, flags);
347                 goto restart;
348         }
349
350         thi->task = NULL;
351         thi->t_state = NONE;
352         smp_mb();
353         complete_all(&thi->stop);
354         spin_unlock_irqrestore(&thi->t_lock, flags);
355
356         drbd_info(resource, "Terminating %s\n", current->comm);
357
358         /* Release mod reference taken when thread was started */
359
360         if (thi->connection)
361                 kref_put(&thi->connection->kref, drbd_destroy_connection);
362         kref_put(&resource->kref, drbd_destroy_resource);
363         module_put(THIS_MODULE);
364         return retval;
365 }
366
367 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
368                              int (*func) (struct drbd_thread *), const char *name)
369 {
370         spin_lock_init(&thi->t_lock);
371         thi->task    = NULL;
372         thi->t_state = NONE;
373         thi->function = func;
374         thi->resource = resource;
375         thi->connection = NULL;
376         thi->name = name;
377 }
378
379 int drbd_thread_start(struct drbd_thread *thi)
380 {
381         struct drbd_resource *resource = thi->resource;
382         struct task_struct *nt;
383         unsigned long flags;
384
385         /* is used from state engine doing drbd_thread_stop_nowait,
386          * while holding the req lock irqsave */
387         spin_lock_irqsave(&thi->t_lock, flags);
388
389         switch (thi->t_state) {
390         case NONE:
391                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
392                          thi->name, current->comm, current->pid);
393
394                 /* Get ref on module for thread - this is released when thread exits */
395                 if (!try_module_get(THIS_MODULE)) {
396                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
397                         spin_unlock_irqrestore(&thi->t_lock, flags);
398                         return false;
399                 }
400
401                 kref_get(&resource->kref);
402                 if (thi->connection)
403                         kref_get(&thi->connection->kref);
404
405                 init_completion(&thi->stop);
406                 thi->reset_cpu_mask = 1;
407                 thi->t_state = RUNNING;
408                 spin_unlock_irqrestore(&thi->t_lock, flags);
409                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410
411                 nt = kthread_create(drbd_thread_setup, (void *) thi,
412                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
413
414                 if (IS_ERR(nt)) {
415                         drbd_err(resource, "Couldn't start thread\n");
416
417                         if (thi->connection)
418                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
419                         kref_put(&resource->kref, drbd_destroy_resource);
420                         module_put(THIS_MODULE);
421                         return false;
422                 }
423                 spin_lock_irqsave(&thi->t_lock, flags);
424                 thi->task = nt;
425                 thi->t_state = RUNNING;
426                 spin_unlock_irqrestore(&thi->t_lock, flags);
427                 wake_up_process(nt);
428                 break;
429         case EXITING:
430                 thi->t_state = RESTARTING;
431                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
432                                 thi->name, current->comm, current->pid);
433                 fallthrough;
434         case RUNNING:
435         case RESTARTING:
436         default:
437                 spin_unlock_irqrestore(&thi->t_lock, flags);
438                 break;
439         }
440
441         return true;
442 }
443
444
445 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
446 {
447         unsigned long flags;
448
449         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
450
451         /* may be called from state engine, holding the req lock irqsave */
452         spin_lock_irqsave(&thi->t_lock, flags);
453
454         if (thi->t_state == NONE) {
455                 spin_unlock_irqrestore(&thi->t_lock, flags);
456                 if (restart)
457                         drbd_thread_start(thi);
458                 return;
459         }
460
461         if (thi->t_state != ns) {
462                 if (thi->task == NULL) {
463                         spin_unlock_irqrestore(&thi->t_lock, flags);
464                         return;
465                 }
466
467                 thi->t_state = ns;
468                 smp_mb();
469                 init_completion(&thi->stop);
470                 if (thi->task != current)
471                         send_sig(DRBD_SIGKILL, thi->task, 1);
472         }
473
474         spin_unlock_irqrestore(&thi->t_lock, flags);
475
476         if (wait)
477                 wait_for_completion(&thi->stop);
478 }
479
480 int conn_lowest_minor(struct drbd_connection *connection)
481 {
482         struct drbd_peer_device *peer_device;
483         int vnr = 0, minor = -1;
484
485         rcu_read_lock();
486         peer_device = idr_get_next(&connection->peer_devices, &vnr);
487         if (peer_device)
488                 minor = device_to_minor(peer_device->device);
489         rcu_read_unlock();
490
491         return minor;
492 }
493
494 #ifdef CONFIG_SMP
495 /**
496  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
497  *
498  * Forces all threads of a resource onto the same CPU. This is beneficial for
499  * DRBD's performance. May be overwritten by user's configuration.
500  */
501 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
502 {
503         unsigned int *resources_per_cpu, min_index = ~0;
504
505         resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
506                                     GFP_KERNEL);
507         if (resources_per_cpu) {
508                 struct drbd_resource *resource;
509                 unsigned int cpu, min = ~0;
510
511                 rcu_read_lock();
512                 for_each_resource_rcu(resource, &drbd_resources) {
513                         for_each_cpu(cpu, resource->cpu_mask)
514                                 resources_per_cpu[cpu]++;
515                 }
516                 rcu_read_unlock();
517                 for_each_online_cpu(cpu) {
518                         if (resources_per_cpu[cpu] < min) {
519                                 min = resources_per_cpu[cpu];
520                                 min_index = cpu;
521                         }
522                 }
523                 kfree(resources_per_cpu);
524         }
525         if (min_index == ~0) {
526                 cpumask_setall(*cpu_mask);
527                 return;
528         }
529         cpumask_set_cpu(min_index, *cpu_mask);
530 }
531
532 /**
533  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
534  * @device:     DRBD device.
535  * @thi:        drbd_thread object
536  *
537  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
538  * prematurely.
539  */
540 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
541 {
542         struct drbd_resource *resource = thi->resource;
543         struct task_struct *p = current;
544
545         if (!thi->reset_cpu_mask)
546                 return;
547         thi->reset_cpu_mask = 0;
548         set_cpus_allowed_ptr(p, resource->cpu_mask);
549 }
550 #else
551 #define drbd_calc_cpu_mask(A) ({})
552 #endif
553
554 /**
555  * drbd_header_size  -  size of a packet header
556  *
557  * The header size is a multiple of 8, so any payload following the header is
558  * word aligned on 64-bit architectures.  (The bitmap send and receive code
559  * relies on this.)
560  */
561 unsigned int drbd_header_size(struct drbd_connection *connection)
562 {
563         if (connection->agreed_pro_version >= 100) {
564                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
565                 return sizeof(struct p_header100);
566         } else {
567                 BUILD_BUG_ON(sizeof(struct p_header80) !=
568                              sizeof(struct p_header95));
569                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
570                 return sizeof(struct p_header80);
571         }
572 }
573
574 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
575 {
576         h->magic   = cpu_to_be32(DRBD_MAGIC);
577         h->command = cpu_to_be16(cmd);
578         h->length  = cpu_to_be16(size);
579         return sizeof(struct p_header80);
580 }
581
582 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
583 {
584         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
585         h->command = cpu_to_be16(cmd);
586         h->length = cpu_to_be32(size);
587         return sizeof(struct p_header95);
588 }
589
590 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
591                                       int size, int vnr)
592 {
593         h->magic = cpu_to_be32(DRBD_MAGIC_100);
594         h->volume = cpu_to_be16(vnr);
595         h->command = cpu_to_be16(cmd);
596         h->length = cpu_to_be32(size);
597         h->pad = 0;
598         return sizeof(struct p_header100);
599 }
600
601 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
602                                    void *buffer, enum drbd_packet cmd, int size)
603 {
604         if (connection->agreed_pro_version >= 100)
605                 return prepare_header100(buffer, cmd, size, vnr);
606         else if (connection->agreed_pro_version >= 95 &&
607                  size > DRBD_MAX_SIZE_H80_PACKET)
608                 return prepare_header95(buffer, cmd, size);
609         else
610                 return prepare_header80(buffer, cmd, size);
611 }
612
613 static void *__conn_prepare_command(struct drbd_connection *connection,
614                                     struct drbd_socket *sock)
615 {
616         if (!sock->socket)
617                 return NULL;
618         return sock->sbuf + drbd_header_size(connection);
619 }
620
621 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
622 {
623         void *p;
624
625         mutex_lock(&sock->mutex);
626         p = __conn_prepare_command(connection, sock);
627         if (!p)
628                 mutex_unlock(&sock->mutex);
629
630         return p;
631 }
632
633 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
634 {
635         return conn_prepare_command(peer_device->connection, sock);
636 }
637
638 static int __send_command(struct drbd_connection *connection, int vnr,
639                           struct drbd_socket *sock, enum drbd_packet cmd,
640                           unsigned int header_size, void *data,
641                           unsigned int size)
642 {
643         int msg_flags;
644         int err;
645
646         /*
647          * Called with @data == NULL and the size of the data blocks in @size
648          * for commands that send data blocks.  For those commands, omit the
649          * MSG_MORE flag: this will increase the likelihood that data blocks
650          * which are page aligned on the sender will end up page aligned on the
651          * receiver.
652          */
653         msg_flags = data ? MSG_MORE : 0;
654
655         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
656                                       header_size + size);
657         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
658                             msg_flags);
659         if (data && !err)
660                 err = drbd_send_all(connection, sock->socket, data, size, 0);
661         /* DRBD protocol "pings" are latency critical.
662          * This is supposed to trigger tcp_push_pending_frames() */
663         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
664                 tcp_sock_set_nodelay(sock->socket->sk);
665
666         return err;
667 }
668
669 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670                                enum drbd_packet cmd, unsigned int header_size,
671                                void *data, unsigned int size)
672 {
673         return __send_command(connection, 0, sock, cmd, header_size, data, size);
674 }
675
676 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677                       enum drbd_packet cmd, unsigned int header_size,
678                       void *data, unsigned int size)
679 {
680         int err;
681
682         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
683         mutex_unlock(&sock->mutex);
684         return err;
685 }
686
687 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
688                       enum drbd_packet cmd, unsigned int header_size,
689                       void *data, unsigned int size)
690 {
691         int err;
692
693         err = __send_command(peer_device->connection, peer_device->device->vnr,
694                              sock, cmd, header_size, data, size);
695         mutex_unlock(&sock->mutex);
696         return err;
697 }
698
699 int drbd_send_ping(struct drbd_connection *connection)
700 {
701         struct drbd_socket *sock;
702
703         sock = &connection->meta;
704         if (!conn_prepare_command(connection, sock))
705                 return -EIO;
706         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
707 }
708
709 int drbd_send_ping_ack(struct drbd_connection *connection)
710 {
711         struct drbd_socket *sock;
712
713         sock = &connection->meta;
714         if (!conn_prepare_command(connection, sock))
715                 return -EIO;
716         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
717 }
718
719 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
720 {
721         struct drbd_socket *sock;
722         struct p_rs_param_95 *p;
723         int size;
724         const int apv = peer_device->connection->agreed_pro_version;
725         enum drbd_packet cmd;
726         struct net_conf *nc;
727         struct disk_conf *dc;
728
729         sock = &peer_device->connection->data;
730         p = drbd_prepare_command(peer_device, sock);
731         if (!p)
732                 return -EIO;
733
734         rcu_read_lock();
735         nc = rcu_dereference(peer_device->connection->net_conf);
736
737         size = apv <= 87 ? sizeof(struct p_rs_param)
738                 : apv == 88 ? sizeof(struct p_rs_param)
739                         + strlen(nc->verify_alg) + 1
740                 : apv <= 94 ? sizeof(struct p_rs_param_89)
741                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
742
743         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
744
745         /* initialize verify_alg and csums_alg */
746         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
747
748         if (get_ldev(peer_device->device)) {
749                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
750                 p->resync_rate = cpu_to_be32(dc->resync_rate);
751                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
752                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
753                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
754                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
755                 put_ldev(peer_device->device);
756         } else {
757                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
758                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
759                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
760                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
761                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
762         }
763
764         if (apv >= 88)
765                 strcpy(p->verify_alg, nc->verify_alg);
766         if (apv >= 89)
767                 strcpy(p->csums_alg, nc->csums_alg);
768         rcu_read_unlock();
769
770         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
771 }
772
773 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
774 {
775         struct drbd_socket *sock;
776         struct p_protocol *p;
777         struct net_conf *nc;
778         int size, cf;
779
780         sock = &connection->data;
781         p = __conn_prepare_command(connection, sock);
782         if (!p)
783                 return -EIO;
784
785         rcu_read_lock();
786         nc = rcu_dereference(connection->net_conf);
787
788         if (nc->tentative && connection->agreed_pro_version < 92) {
789                 rcu_read_unlock();
790                 drbd_err(connection, "--dry-run is not supported by peer");
791                 return -EOPNOTSUPP;
792         }
793
794         size = sizeof(*p);
795         if (connection->agreed_pro_version >= 87)
796                 size += strlen(nc->integrity_alg) + 1;
797
798         p->protocol      = cpu_to_be32(nc->wire_protocol);
799         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
800         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
801         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
802         p->two_primaries = cpu_to_be32(nc->two_primaries);
803         cf = 0;
804         if (nc->discard_my_data)
805                 cf |= CF_DISCARD_MY_DATA;
806         if (nc->tentative)
807                 cf |= CF_DRY_RUN;
808         p->conn_flags    = cpu_to_be32(cf);
809
810         if (connection->agreed_pro_version >= 87)
811                 strcpy(p->integrity_alg, nc->integrity_alg);
812         rcu_read_unlock();
813
814         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816
817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819         int err;
820
821         mutex_lock(&connection->data.mutex);
822         err = __drbd_send_protocol(connection, P_PROTOCOL);
823         mutex_unlock(&connection->data.mutex);
824
825         return err;
826 }
827
828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830         struct drbd_device *device = peer_device->device;
831         struct drbd_socket *sock;
832         struct p_uuids *p;
833         int i;
834
835         if (!get_ldev_if_state(device, D_NEGOTIATING))
836                 return 0;
837
838         sock = &peer_device->connection->data;
839         p = drbd_prepare_command(peer_device, sock);
840         if (!p) {
841                 put_ldev(device);
842                 return -EIO;
843         }
844         spin_lock_irq(&device->ldev->md.uuid_lock);
845         for (i = UI_CURRENT; i < UI_SIZE; i++)
846                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847         spin_unlock_irq(&device->ldev->md.uuid_lock);
848
849         device->comm_bm_set = drbd_bm_total_weight(device);
850         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851         rcu_read_lock();
852         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853         rcu_read_unlock();
854         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857
858         put_ldev(device);
859         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861
862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864         return _drbd_send_uuids(peer_device, 0);
865 }
866
867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869         return _drbd_send_uuids(peer_device, 8);
870 }
871
872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874         if (get_ldev_if_state(device, D_NEGOTIATING)) {
875                 u64 *uuid = device->ldev->md.uuid;
876                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877                      text,
878                      (unsigned long long)uuid[UI_CURRENT],
879                      (unsigned long long)uuid[UI_BITMAP],
880                      (unsigned long long)uuid[UI_HISTORY_START],
881                      (unsigned long long)uuid[UI_HISTORY_END]);
882                 put_ldev(device);
883         } else {
884                 drbd_info(device, "%s effective data uuid: %016llX\n",
885                                 text,
886                                 (unsigned long long)device->ed_uuid);
887         }
888 }
889
890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892         struct drbd_device *device = peer_device->device;
893         struct drbd_socket *sock;
894         struct p_rs_uuid *p;
895         u64 uuid;
896
897         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898
899         uuid = device->ldev->md.uuid[UI_BITMAP];
900         if (uuid && uuid != UUID_JUST_CREATED)
901                 uuid = uuid + UUID_NEW_BM_OFFSET;
902         else
903                 get_random_bytes(&uuid, sizeof(u64));
904         drbd_uuid_set(device, UI_BITMAP, uuid);
905         drbd_print_uuids(device, "updated sync UUID");
906         drbd_md_sync(device);
907
908         sock = &peer_device->connection->data;
909         p = drbd_prepare_command(peer_device, sock);
910         if (p) {
911                 p->uuid = cpu_to_be64(uuid);
912                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913         }
914 }
915
916 /* communicated if (agreed_features & DRBD_FF_WSAME) */
917 static void
918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
919                                         struct request_queue *q)
920 {
921         if (q) {
922                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
923                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
924                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
925                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
926                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
927                 p->qlim->discard_enabled = blk_queue_discard(q);
928                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
929         } else {
930                 q = device->rq_queue;
931                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
932                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
933                 p->qlim->alignment_offset = 0;
934                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
935                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
936                 p->qlim->discard_enabled = 0;
937                 p->qlim->write_same_capable = 0;
938         }
939 }
940
941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
942 {
943         struct drbd_device *device = peer_device->device;
944         struct drbd_socket *sock;
945         struct p_sizes *p;
946         sector_t d_size, u_size;
947         int q_order_type;
948         unsigned int max_bio_size;
949         unsigned int packet_size;
950
951         sock = &peer_device->connection->data;
952         p = drbd_prepare_command(peer_device, sock);
953         if (!p)
954                 return -EIO;
955
956         packet_size = sizeof(*p);
957         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
958                 packet_size += sizeof(p->qlim[0]);
959
960         memset(p, 0, packet_size);
961         if (get_ldev_if_state(device, D_NEGOTIATING)) {
962                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
963                 d_size = drbd_get_max_capacity(device->ldev);
964                 rcu_read_lock();
965                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
966                 rcu_read_unlock();
967                 q_order_type = drbd_queue_order_type(device);
968                 max_bio_size = queue_max_hw_sectors(q) << 9;
969                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
970                 assign_p_sizes_qlim(device, p, q);
971                 put_ldev(device);
972         } else {
973                 d_size = 0;
974                 u_size = 0;
975                 q_order_type = QUEUE_ORDERED_NONE;
976                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
977                 assign_p_sizes_qlim(device, p, NULL);
978         }
979
980         if (peer_device->connection->agreed_pro_version <= 94)
981                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
982         else if (peer_device->connection->agreed_pro_version < 100)
983                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
984
985         p->d_size = cpu_to_be64(d_size);
986         p->u_size = cpu_to_be64(u_size);
987         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
988         p->max_bio_size = cpu_to_be32(max_bio_size);
989         p->queue_order_type = cpu_to_be16(q_order_type);
990         p->dds_flags = cpu_to_be16(flags);
991
992         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
993 }
994
995 /**
996  * drbd_send_current_state() - Sends the drbd state to the peer
997  * @peer_device:        DRBD peer device.
998  */
999 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1000 {
1001         struct drbd_socket *sock;
1002         struct p_state *p;
1003
1004         sock = &peer_device->connection->data;
1005         p = drbd_prepare_command(peer_device, sock);
1006         if (!p)
1007                 return -EIO;
1008         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1009         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1010 }
1011
1012 /**
1013  * drbd_send_state() - After a state change, sends the new state to the peer
1014  * @peer_device:      DRBD peer device.
1015  * @state:     the state to send, not necessarily the current state.
1016  *
1017  * Each state change queues an "after_state_ch" work, which will eventually
1018  * send the resulting new state to the peer. If more state changes happen
1019  * between queuing and processing of the after_state_ch work, we still
1020  * want to send each intermediary state in the order it occurred.
1021  */
1022 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1023 {
1024         struct drbd_socket *sock;
1025         struct p_state *p;
1026
1027         sock = &peer_device->connection->data;
1028         p = drbd_prepare_command(peer_device, sock);
1029         if (!p)
1030                 return -EIO;
1031         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1032         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1033 }
1034
1035 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1036 {
1037         struct drbd_socket *sock;
1038         struct p_req_state *p;
1039
1040         sock = &peer_device->connection->data;
1041         p = drbd_prepare_command(peer_device, sock);
1042         if (!p)
1043                 return -EIO;
1044         p->mask = cpu_to_be32(mask.i);
1045         p->val = cpu_to_be32(val.i);
1046         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1047 }
1048
1049 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1050 {
1051         enum drbd_packet cmd;
1052         struct drbd_socket *sock;
1053         struct p_req_state *p;
1054
1055         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1056         sock = &connection->data;
1057         p = conn_prepare_command(connection, sock);
1058         if (!p)
1059                 return -EIO;
1060         p->mask = cpu_to_be32(mask.i);
1061         p->val = cpu_to_be32(val.i);
1062         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1063 }
1064
1065 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1066 {
1067         struct drbd_socket *sock;
1068         struct p_req_state_reply *p;
1069
1070         sock = &peer_device->connection->meta;
1071         p = drbd_prepare_command(peer_device, sock);
1072         if (p) {
1073                 p->retcode = cpu_to_be32(retcode);
1074                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1075         }
1076 }
1077
1078 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1079 {
1080         struct drbd_socket *sock;
1081         struct p_req_state_reply *p;
1082         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1083
1084         sock = &connection->meta;
1085         p = conn_prepare_command(connection, sock);
1086         if (p) {
1087                 p->retcode = cpu_to_be32(retcode);
1088                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1089         }
1090 }
1091
1092 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1093 {
1094         BUG_ON(code & ~0xf);
1095         p->encoding = (p->encoding & ~0xf) | code;
1096 }
1097
1098 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1099 {
1100         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1101 }
1102
1103 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1104 {
1105         BUG_ON(n & ~0x7);
1106         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1107 }
1108
1109 static int fill_bitmap_rle_bits(struct drbd_device *device,
1110                          struct p_compressed_bm *p,
1111                          unsigned int size,
1112                          struct bm_xfer_ctx *c)
1113 {
1114         struct bitstream bs;
1115         unsigned long plain_bits;
1116         unsigned long tmp;
1117         unsigned long rl;
1118         unsigned len;
1119         unsigned toggle;
1120         int bits, use_rle;
1121
1122         /* may we use this feature? */
1123         rcu_read_lock();
1124         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1125         rcu_read_unlock();
1126         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1127                 return 0;
1128
1129         if (c->bit_offset >= c->bm_bits)
1130                 return 0; /* nothing to do. */
1131
1132         /* use at most thus many bytes */
1133         bitstream_init(&bs, p->code, size, 0);
1134         memset(p->code, 0, size);
1135         /* plain bits covered in this code string */
1136         plain_bits = 0;
1137
1138         /* p->encoding & 0x80 stores whether the first run length is set.
1139          * bit offset is implicit.
1140          * start with toggle == 2 to be able to tell the first iteration */
1141         toggle = 2;
1142
1143         /* see how much plain bits we can stuff into one packet
1144          * using RLE and VLI. */
1145         do {
1146                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1147                                     : _drbd_bm_find_next(device, c->bit_offset);
1148                 if (tmp == -1UL)
1149                         tmp = c->bm_bits;
1150                 rl = tmp - c->bit_offset;
1151
1152                 if (toggle == 2) { /* first iteration */
1153                         if (rl == 0) {
1154                                 /* the first checked bit was set,
1155                                  * store start value, */
1156                                 dcbp_set_start(p, 1);
1157                                 /* but skip encoding of zero run length */
1158                                 toggle = !toggle;
1159                                 continue;
1160                         }
1161                         dcbp_set_start(p, 0);
1162                 }
1163
1164                 /* paranoia: catch zero runlength.
1165                  * can only happen if bitmap is modified while we scan it. */
1166                 if (rl == 0) {
1167                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1168                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1169                         return -1;
1170                 }
1171
1172                 bits = vli_encode_bits(&bs, rl);
1173                 if (bits == -ENOBUFS) /* buffer full */
1174                         break;
1175                 if (bits <= 0) {
1176                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1177                         return 0;
1178                 }
1179
1180                 toggle = !toggle;
1181                 plain_bits += rl;
1182                 c->bit_offset = tmp;
1183         } while (c->bit_offset < c->bm_bits);
1184
1185         len = bs.cur.b - p->code + !!bs.cur.bit;
1186
1187         if (plain_bits < (len << 3)) {
1188                 /* incompressible with this method.
1189                  * we need to rewind both word and bit position. */
1190                 c->bit_offset -= plain_bits;
1191                 bm_xfer_ctx_bit_to_word_offset(c);
1192                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1193                 return 0;
1194         }
1195
1196         /* RLE + VLI was able to compress it just fine.
1197          * update c->word_offset. */
1198         bm_xfer_ctx_bit_to_word_offset(c);
1199
1200         /* store pad_bits */
1201         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1202
1203         return len;
1204 }
1205
1206 /**
1207  * send_bitmap_rle_or_plain
1208  *
1209  * Return 0 when done, 1 when another iteration is needed, and a negative error
1210  * code upon failure.
1211  */
1212 static int
1213 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1214 {
1215         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1216         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1217         struct p_compressed_bm *p = sock->sbuf + header_size;
1218         int len, err;
1219
1220         len = fill_bitmap_rle_bits(device, p,
1221                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1222         if (len < 0)
1223                 return -EIO;
1224
1225         if (len) {
1226                 dcbp_set_code(p, RLE_VLI_Bits);
1227                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1228                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1229                                      NULL, 0);
1230                 c->packets[0]++;
1231                 c->bytes[0] += header_size + sizeof(*p) + len;
1232
1233                 if (c->bit_offset >= c->bm_bits)
1234                         len = 0; /* DONE */
1235         } else {
1236                 /* was not compressible.
1237                  * send a buffer full of plain text bits instead. */
1238                 unsigned int data_size;
1239                 unsigned long num_words;
1240                 unsigned long *p = sock->sbuf + header_size;
1241
1242                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1243                 num_words = min_t(size_t, data_size / sizeof(*p),
1244                                   c->bm_words - c->word_offset);
1245                 len = num_words * sizeof(*p);
1246                 if (len)
1247                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1248                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1249                 c->word_offset += num_words;
1250                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1251
1252                 c->packets[1]++;
1253                 c->bytes[1] += header_size + len;
1254
1255                 if (c->bit_offset > c->bm_bits)
1256                         c->bit_offset = c->bm_bits;
1257         }
1258         if (!err) {
1259                 if (len == 0) {
1260                         INFO_bm_xfer_stats(device, "send", c);
1261                         return 0;
1262                 } else
1263                         return 1;
1264         }
1265         return -EIO;
1266 }
1267
1268 /* See the comment at receive_bitmap() */
1269 static int _drbd_send_bitmap(struct drbd_device *device)
1270 {
1271         struct bm_xfer_ctx c;
1272         int err;
1273
1274         if (!expect(device->bitmap))
1275                 return false;
1276
1277         if (get_ldev(device)) {
1278                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1279                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1280                         drbd_bm_set_all(device);
1281                         if (drbd_bm_write(device)) {
1282                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1283                                  * but otherwise process as per normal - need to tell other
1284                                  * side that a full resync is required! */
1285                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1286                         } else {
1287                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1288                                 drbd_md_sync(device);
1289                         }
1290                 }
1291                 put_ldev(device);
1292         }
1293
1294         c = (struct bm_xfer_ctx) {
1295                 .bm_bits = drbd_bm_bits(device),
1296                 .bm_words = drbd_bm_words(device),
1297         };
1298
1299         do {
1300                 err = send_bitmap_rle_or_plain(device, &c);
1301         } while (err > 0);
1302
1303         return err == 0;
1304 }
1305
1306 int drbd_send_bitmap(struct drbd_device *device)
1307 {
1308         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1309         int err = -1;
1310
1311         mutex_lock(&sock->mutex);
1312         if (sock->socket)
1313                 err = !_drbd_send_bitmap(device);
1314         mutex_unlock(&sock->mutex);
1315         return err;
1316 }
1317
1318 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1319 {
1320         struct drbd_socket *sock;
1321         struct p_barrier_ack *p;
1322
1323         if (connection->cstate < C_WF_REPORT_PARAMS)
1324                 return;
1325
1326         sock = &connection->meta;
1327         p = conn_prepare_command(connection, sock);
1328         if (!p)
1329                 return;
1330         p->barrier = barrier_nr;
1331         p->set_size = cpu_to_be32(set_size);
1332         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1333 }
1334
1335 /**
1336  * _drbd_send_ack() - Sends an ack packet
1337  * @device:     DRBD device.
1338  * @cmd:        Packet command code.
1339  * @sector:     sector, needs to be in big endian byte order
1340  * @blksize:    size in byte, needs to be in big endian byte order
1341  * @block_id:   Id, big endian byte order
1342  */
1343 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1344                           u64 sector, u32 blksize, u64 block_id)
1345 {
1346         struct drbd_socket *sock;
1347         struct p_block_ack *p;
1348
1349         if (peer_device->device->state.conn < C_CONNECTED)
1350                 return -EIO;
1351
1352         sock = &peer_device->connection->meta;
1353         p = drbd_prepare_command(peer_device, sock);
1354         if (!p)
1355                 return -EIO;
1356         p->sector = sector;
1357         p->block_id = block_id;
1358         p->blksize = blksize;
1359         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1360         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1361 }
1362
1363 /* dp->sector and dp->block_id already/still in network byte order,
1364  * data_size is payload size according to dp->head,
1365  * and may need to be corrected for digest size. */
1366 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1367                       struct p_data *dp, int data_size)
1368 {
1369         if (peer_device->connection->peer_integrity_tfm)
1370                 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1371         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1372                        dp->block_id);
1373 }
1374
1375 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1376                       struct p_block_req *rp)
1377 {
1378         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1379 }
1380
1381 /**
1382  * drbd_send_ack() - Sends an ack packet
1383  * @device:     DRBD device
1384  * @cmd:        packet command code
1385  * @peer_req:   peer request
1386  */
1387 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1388                   struct drbd_peer_request *peer_req)
1389 {
1390         return _drbd_send_ack(peer_device, cmd,
1391                               cpu_to_be64(peer_req->i.sector),
1392                               cpu_to_be32(peer_req->i.size),
1393                               peer_req->block_id);
1394 }
1395
1396 /* This function misuses the block_id field to signal if the blocks
1397  * are is sync or not. */
1398 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1399                      sector_t sector, int blksize, u64 block_id)
1400 {
1401         return _drbd_send_ack(peer_device, cmd,
1402                               cpu_to_be64(sector),
1403                               cpu_to_be32(blksize),
1404                               cpu_to_be64(block_id));
1405 }
1406
1407 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1408                              struct drbd_peer_request *peer_req)
1409 {
1410         struct drbd_socket *sock;
1411         struct p_block_desc *p;
1412
1413         sock = &peer_device->connection->data;
1414         p = drbd_prepare_command(peer_device, sock);
1415         if (!p)
1416                 return -EIO;
1417         p->sector = cpu_to_be64(peer_req->i.sector);
1418         p->blksize = cpu_to_be32(peer_req->i.size);
1419         p->pad = 0;
1420         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1421 }
1422
1423 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1424                        sector_t sector, int size, u64 block_id)
1425 {
1426         struct drbd_socket *sock;
1427         struct p_block_req *p;
1428
1429         sock = &peer_device->connection->data;
1430         p = drbd_prepare_command(peer_device, sock);
1431         if (!p)
1432                 return -EIO;
1433         p->sector = cpu_to_be64(sector);
1434         p->block_id = block_id;
1435         p->blksize = cpu_to_be32(size);
1436         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1437 }
1438
1439 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1440                             void *digest, int digest_size, enum drbd_packet cmd)
1441 {
1442         struct drbd_socket *sock;
1443         struct p_block_req *p;
1444
1445         /* FIXME: Put the digest into the preallocated socket buffer.  */
1446
1447         sock = &peer_device->connection->data;
1448         p = drbd_prepare_command(peer_device, sock);
1449         if (!p)
1450                 return -EIO;
1451         p->sector = cpu_to_be64(sector);
1452         p->block_id = ID_SYNCER /* unused */;
1453         p->blksize = cpu_to_be32(size);
1454         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1455 }
1456
1457 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1458 {
1459         struct drbd_socket *sock;
1460         struct p_block_req *p;
1461
1462         sock = &peer_device->connection->data;
1463         p = drbd_prepare_command(peer_device, sock);
1464         if (!p)
1465                 return -EIO;
1466         p->sector = cpu_to_be64(sector);
1467         p->block_id = ID_SYNCER /* unused */;
1468         p->blksize = cpu_to_be32(size);
1469         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1470 }
1471
1472 /* called on sndtimeo
1473  * returns false if we should retry,
1474  * true if we think connection is dead
1475  */
1476 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1477 {
1478         int drop_it;
1479         /* long elapsed = (long)(jiffies - device->last_received); */
1480
1481         drop_it =   connection->meta.socket == sock
1482                 || !connection->ack_receiver.task
1483                 || get_t_state(&connection->ack_receiver) != RUNNING
1484                 || connection->cstate < C_WF_REPORT_PARAMS;
1485
1486         if (drop_it)
1487                 return true;
1488
1489         drop_it = !--connection->ko_count;
1490         if (!drop_it) {
1491                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1492                          current->comm, current->pid, connection->ko_count);
1493                 request_ping(connection);
1494         }
1495
1496         return drop_it; /* && (device->state == R_PRIMARY) */;
1497 }
1498
1499 static void drbd_update_congested(struct drbd_connection *connection)
1500 {
1501         struct sock *sk = connection->data.socket->sk;
1502         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1503                 set_bit(NET_CONGESTED, &connection->flags);
1504 }
1505
1506 /* The idea of sendpage seems to be to put some kind of reference
1507  * to the page into the skb, and to hand it over to the NIC. In
1508  * this process get_page() gets called.
1509  *
1510  * As soon as the page was really sent over the network put_page()
1511  * gets called by some part of the network layer. [ NIC driver? ]
1512  *
1513  * [ get_page() / put_page() increment/decrement the count. If count
1514  *   reaches 0 the page will be freed. ]
1515  *
1516  * This works nicely with pages from FSs.
1517  * But this means that in protocol A we might signal IO completion too early!
1518  *
1519  * In order not to corrupt data during a resync we must make sure
1520  * that we do not reuse our own buffer pages (EEs) to early, therefore
1521  * we have the net_ee list.
1522  *
1523  * XFS seems to have problems, still, it submits pages with page_count == 0!
1524  * As a workaround, we disable sendpage on pages
1525  * with page_count == 0 or PageSlab.
1526  */
1527 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1528                               int offset, size_t size, unsigned msg_flags)
1529 {
1530         struct socket *socket;
1531         void *addr;
1532         int err;
1533
1534         socket = peer_device->connection->data.socket;
1535         addr = kmap(page) + offset;
1536         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1537         kunmap(page);
1538         if (!err)
1539                 peer_device->device->send_cnt += size >> 9;
1540         return err;
1541 }
1542
1543 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1544                     int offset, size_t size, unsigned msg_flags)
1545 {
1546         struct socket *socket = peer_device->connection->data.socket;
1547         int len = size;
1548         int err = -EIO;
1549
1550         /* e.g. XFS meta- & log-data is in slab pages, which have a
1551          * page_count of 0 and/or have PageSlab() set.
1552          * we cannot use send_page for those, as that does get_page();
1553          * put_page(); and would cause either a VM_BUG directly, or
1554          * __page_cache_release a page that would actually still be referenced
1555          * by someone, leading to some obscure delayed Oops somewhere else. */
1556         if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1557                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1558
1559         msg_flags |= MSG_NOSIGNAL;
1560         drbd_update_congested(peer_device->connection);
1561         do {
1562                 int sent;
1563
1564                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1565                 if (sent <= 0) {
1566                         if (sent == -EAGAIN) {
1567                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1568                                         break;
1569                                 continue;
1570                         }
1571                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1572                              __func__, (int)size, len, sent);
1573                         if (sent < 0)
1574                                 err = sent;
1575                         break;
1576                 }
1577                 len    -= sent;
1578                 offset += sent;
1579         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1580         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1581
1582         if (len == 0) {
1583                 err = 0;
1584                 peer_device->device->send_cnt += size >> 9;
1585         }
1586         return err;
1587 }
1588
1589 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1590 {
1591         struct bio_vec bvec;
1592         struct bvec_iter iter;
1593
1594         /* hint all but last page with MSG_MORE */
1595         bio_for_each_segment(bvec, bio, iter) {
1596                 int err;
1597
1598                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1599                                          bvec.bv_offset, bvec.bv_len,
1600                                          bio_iter_last(bvec, iter)
1601                                          ? 0 : MSG_MORE);
1602                 if (err)
1603                         return err;
1604                 /* REQ_OP_WRITE_SAME has only one segment */
1605                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1606                         break;
1607         }
1608         return 0;
1609 }
1610
1611 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1612 {
1613         struct bio_vec bvec;
1614         struct bvec_iter iter;
1615
1616         /* hint all but last page with MSG_MORE */
1617         bio_for_each_segment(bvec, bio, iter) {
1618                 int err;
1619
1620                 err = _drbd_send_page(peer_device, bvec.bv_page,
1621                                       bvec.bv_offset, bvec.bv_len,
1622                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1623                 if (err)
1624                         return err;
1625                 /* REQ_OP_WRITE_SAME has only one segment */
1626                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1627                         break;
1628         }
1629         return 0;
1630 }
1631
1632 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1633                             struct drbd_peer_request *peer_req)
1634 {
1635         struct page *page = peer_req->pages;
1636         unsigned len = peer_req->i.size;
1637         int err;
1638
1639         /* hint all but last page with MSG_MORE */
1640         page_chain_for_each(page) {
1641                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1642
1643                 err = _drbd_send_page(peer_device, page, 0, l,
1644                                       page_chain_next(page) ? MSG_MORE : 0);
1645                 if (err)
1646                         return err;
1647                 len -= l;
1648         }
1649         return 0;
1650 }
1651
1652 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1653                              struct bio *bio)
1654 {
1655         if (connection->agreed_pro_version >= 95)
1656                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1657                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1658                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1659                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1660                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1661                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1662                           ((connection->agreed_features & DRBD_FF_WZEROES) ?
1663                            (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1664                            : DP_DISCARD)
1665                         : 0);
1666         else
1667                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1668 }
1669
1670 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1671  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1672  */
1673 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1674 {
1675         struct drbd_device *device = peer_device->device;
1676         struct drbd_socket *sock;
1677         struct p_data *p;
1678         struct p_wsame *wsame = NULL;
1679         void *digest_out;
1680         unsigned int dp_flags = 0;
1681         int digest_size;
1682         int err;
1683
1684         sock = &peer_device->connection->data;
1685         p = drbd_prepare_command(peer_device, sock);
1686         digest_size = peer_device->connection->integrity_tfm ?
1687                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1688
1689         if (!p)
1690                 return -EIO;
1691         p->sector = cpu_to_be64(req->i.sector);
1692         p->block_id = (unsigned long)req;
1693         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1694         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1695         if (device->state.conn >= C_SYNC_SOURCE &&
1696             device->state.conn <= C_PAUSED_SYNC_T)
1697                 dp_flags |= DP_MAY_SET_IN_SYNC;
1698         if (peer_device->connection->agreed_pro_version >= 100) {
1699                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1700                         dp_flags |= DP_SEND_RECEIVE_ACK;
1701                 /* During resync, request an explicit write ack,
1702                  * even in protocol != C */
1703                 if (req->rq_state & RQ_EXP_WRITE_ACK
1704                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1705                         dp_flags |= DP_SEND_WRITE_ACK;
1706         }
1707         p->dp_flags = cpu_to_be32(dp_flags);
1708
1709         if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1710                 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1711                 struct p_trim *t = (struct p_trim*)p;
1712                 t->size = cpu_to_be32(req->i.size);
1713                 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1714                 goto out;
1715         }
1716         if (dp_flags & DP_WSAME) {
1717                 /* this will only work if DRBD_FF_WSAME is set AND the
1718                  * handshake agreed that all nodes and backend devices are
1719                  * WRITE_SAME capable and agree on logical_block_size */
1720                 wsame = (struct p_wsame*)p;
1721                 digest_out = wsame + 1;
1722                 wsame->size = cpu_to_be32(req->i.size);
1723         } else
1724                 digest_out = p + 1;
1725
1726         /* our digest is still only over the payload.
1727          * TRIM does not carry any payload. */
1728         if (digest_size)
1729                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1730         if (wsame) {
1731                 err =
1732                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1733                                    sizeof(*wsame) + digest_size, NULL,
1734                                    bio_iovec(req->master_bio).bv_len);
1735         } else
1736                 err =
1737                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1738                                    sizeof(*p) + digest_size, NULL, req->i.size);
1739         if (!err) {
1740                 /* For protocol A, we have to memcpy the payload into
1741                  * socket buffers, as we may complete right away
1742                  * as soon as we handed it over to tcp, at which point the data
1743                  * pages may become invalid.
1744                  *
1745                  * For data-integrity enabled, we copy it as well, so we can be
1746                  * sure that even if the bio pages may still be modified, it
1747                  * won't change the data on the wire, thus if the digest checks
1748                  * out ok after sending on this side, but does not fit on the
1749                  * receiving side, we sure have detected corruption elsewhere.
1750                  */
1751                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1752                         err = _drbd_send_bio(peer_device, req->master_bio);
1753                 else
1754                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1755
1756                 /* double check digest, sometimes buffers have been modified in flight. */
1757                 if (digest_size > 0 && digest_size <= 64) {
1758                         /* 64 byte, 512 bit, is the largest digest size
1759                          * currently supported in kernel crypto. */
1760                         unsigned char digest[64];
1761                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1762                         if (memcmp(p + 1, digest, digest_size)) {
1763                                 drbd_warn(device,
1764                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1765                                         (unsigned long long)req->i.sector, req->i.size);
1766                         }
1767                 } /* else if (digest_size > 64) {
1768                      ... Be noisy about digest too large ...
1769                 } */
1770         }
1771 out:
1772         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1773
1774         return err;
1775 }
1776
1777 /* answer packet, used to send data back for read requests:
1778  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1779  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1780  */
1781 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1782                     struct drbd_peer_request *peer_req)
1783 {
1784         struct drbd_device *device = peer_device->device;
1785         struct drbd_socket *sock;
1786         struct p_data *p;
1787         int err;
1788         int digest_size;
1789
1790         sock = &peer_device->connection->data;
1791         p = drbd_prepare_command(peer_device, sock);
1792
1793         digest_size = peer_device->connection->integrity_tfm ?
1794                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1795
1796         if (!p)
1797                 return -EIO;
1798         p->sector = cpu_to_be64(peer_req->i.sector);
1799         p->block_id = peer_req->block_id;
1800         p->seq_num = 0;  /* unused */
1801         p->dp_flags = 0;
1802         if (digest_size)
1803                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1804         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1805         if (!err)
1806                 err = _drbd_send_zc_ee(peer_device, peer_req);
1807         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1808
1809         return err;
1810 }
1811
1812 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1813 {
1814         struct drbd_socket *sock;
1815         struct p_block_desc *p;
1816
1817         sock = &peer_device->connection->data;
1818         p = drbd_prepare_command(peer_device, sock);
1819         if (!p)
1820                 return -EIO;
1821         p->sector = cpu_to_be64(req->i.sector);
1822         p->blksize = cpu_to_be32(req->i.size);
1823         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1824 }
1825
1826 /*
1827   drbd_send distinguishes two cases:
1828
1829   Packets sent via the data socket "sock"
1830   and packets sent via the meta data socket "msock"
1831
1832                     sock                      msock
1833   -----------------+-------------------------+------------------------------
1834   timeout           conf.timeout / 2          conf.timeout / 2
1835   timeout action    send a ping via msock     Abort communication
1836                                               and close all sockets
1837 */
1838
1839 /*
1840  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1841  */
1842 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1843               void *buf, size_t size, unsigned msg_flags)
1844 {
1845         struct kvec iov = {.iov_base = buf, .iov_len = size};
1846         struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1847         int rv, sent = 0;
1848
1849         if (!sock)
1850                 return -EBADR;
1851
1852         /* THINK  if (signal_pending) return ... ? */
1853
1854         iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1855
1856         if (sock == connection->data.socket) {
1857                 rcu_read_lock();
1858                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1859                 rcu_read_unlock();
1860                 drbd_update_congested(connection);
1861         }
1862         do {
1863                 rv = sock_sendmsg(sock, &msg);
1864                 if (rv == -EAGAIN) {
1865                         if (we_should_drop_the_connection(connection, sock))
1866                                 break;
1867                         else
1868                                 continue;
1869                 }
1870                 if (rv == -EINTR) {
1871                         flush_signals(current);
1872                         rv = 0;
1873                 }
1874                 if (rv < 0)
1875                         break;
1876                 sent += rv;
1877         } while (sent < size);
1878
1879         if (sock == connection->data.socket)
1880                 clear_bit(NET_CONGESTED, &connection->flags);
1881
1882         if (rv <= 0) {
1883                 if (rv != -EAGAIN) {
1884                         drbd_err(connection, "%s_sendmsg returned %d\n",
1885                                  sock == connection->meta.socket ? "msock" : "sock",
1886                                  rv);
1887                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1888                 } else
1889                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1890         }
1891
1892         return sent;
1893 }
1894
1895 /**
1896  * drbd_send_all  -  Send an entire buffer
1897  *
1898  * Returns 0 upon success and a negative error value otherwise.
1899  */
1900 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1901                   size_t size, unsigned msg_flags)
1902 {
1903         int err;
1904
1905         err = drbd_send(connection, sock, buffer, size, msg_flags);
1906         if (err < 0)
1907                 return err;
1908         if (err != size)
1909                 return -EIO;
1910         return 0;
1911 }
1912
1913 static int drbd_open(struct block_device *bdev, fmode_t mode)
1914 {
1915         struct drbd_device *device = bdev->bd_disk->private_data;
1916         unsigned long flags;
1917         int rv = 0;
1918
1919         mutex_lock(&drbd_main_mutex);
1920         spin_lock_irqsave(&device->resource->req_lock, flags);
1921         /* to have a stable device->state.role
1922          * and no race with updating open_cnt */
1923
1924         if (device->state.role != R_PRIMARY) {
1925                 if (mode & FMODE_WRITE)
1926                         rv = -EROFS;
1927                 else if (!drbd_allow_oos)
1928                         rv = -EMEDIUMTYPE;
1929         }
1930
1931         if (!rv)
1932                 device->open_cnt++;
1933         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1934         mutex_unlock(&drbd_main_mutex);
1935
1936         return rv;
1937 }
1938
1939 static void drbd_release(struct gendisk *gd, fmode_t mode)
1940 {
1941         struct drbd_device *device = gd->private_data;
1942         mutex_lock(&drbd_main_mutex);
1943         device->open_cnt--;
1944         mutex_unlock(&drbd_main_mutex);
1945 }
1946
1947 /* need to hold resource->req_lock */
1948 void drbd_queue_unplug(struct drbd_device *device)
1949 {
1950         if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1951                 D_ASSERT(device, device->state.role == R_PRIMARY);
1952                 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1953                         drbd_queue_work_if_unqueued(
1954                                 &first_peer_device(device)->connection->sender_work,
1955                                 &device->unplug_work);
1956                 }
1957         }
1958 }
1959
1960 static void drbd_set_defaults(struct drbd_device *device)
1961 {
1962         /* Beware! The actual layout differs
1963          * between big endian and little endian */
1964         device->state = (union drbd_dev_state) {
1965                 { .role = R_SECONDARY,
1966                   .peer = R_UNKNOWN,
1967                   .conn = C_STANDALONE,
1968                   .disk = D_DISKLESS,
1969                   .pdsk = D_UNKNOWN,
1970                 } };
1971 }
1972
1973 void drbd_init_set_defaults(struct drbd_device *device)
1974 {
1975         /* the memset(,0,) did most of this.
1976          * note: only assignments, no allocation in here */
1977
1978         drbd_set_defaults(device);
1979
1980         atomic_set(&device->ap_bio_cnt, 0);
1981         atomic_set(&device->ap_actlog_cnt, 0);
1982         atomic_set(&device->ap_pending_cnt, 0);
1983         atomic_set(&device->rs_pending_cnt, 0);
1984         atomic_set(&device->unacked_cnt, 0);
1985         atomic_set(&device->local_cnt, 0);
1986         atomic_set(&device->pp_in_use_by_net, 0);
1987         atomic_set(&device->rs_sect_in, 0);
1988         atomic_set(&device->rs_sect_ev, 0);
1989         atomic_set(&device->ap_in_flight, 0);
1990         atomic_set(&device->md_io.in_use, 0);
1991
1992         mutex_init(&device->own_state_mutex);
1993         device->state_mutex = &device->own_state_mutex;
1994
1995         spin_lock_init(&device->al_lock);
1996         spin_lock_init(&device->peer_seq_lock);
1997
1998         INIT_LIST_HEAD(&device->active_ee);
1999         INIT_LIST_HEAD(&device->sync_ee);
2000         INIT_LIST_HEAD(&device->done_ee);
2001         INIT_LIST_HEAD(&device->read_ee);
2002         INIT_LIST_HEAD(&device->net_ee);
2003         INIT_LIST_HEAD(&device->resync_reads);
2004         INIT_LIST_HEAD(&device->resync_work.list);
2005         INIT_LIST_HEAD(&device->unplug_work.list);
2006         INIT_LIST_HEAD(&device->bm_io_work.w.list);
2007         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2008         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2009         INIT_LIST_HEAD(&device->pending_completion[0]);
2010         INIT_LIST_HEAD(&device->pending_completion[1]);
2011
2012         device->resync_work.cb  = w_resync_timer;
2013         device->unplug_work.cb  = w_send_write_hint;
2014         device->bm_io_work.w.cb = w_bitmap_io;
2015
2016         timer_setup(&device->resync_timer, resync_timer_fn, 0);
2017         timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2018         timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2019         timer_setup(&device->request_timer, request_timer_fn, 0);
2020
2021         init_waitqueue_head(&device->misc_wait);
2022         init_waitqueue_head(&device->state_wait);
2023         init_waitqueue_head(&device->ee_wait);
2024         init_waitqueue_head(&device->al_wait);
2025         init_waitqueue_head(&device->seq_wait);
2026
2027         device->resync_wenr = LC_FREE;
2028         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2029         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2030 }
2031
2032 static void _drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2033 {
2034         /* set_capacity(device->this_bdev->bd_disk, size); */
2035         set_capacity(device->vdisk, size);
2036         device->this_bdev->bd_inode->i_size = (loff_t)size << 9;
2037 }
2038
2039 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2040 {
2041         char ppb[10];
2042         _drbd_set_my_capacity(device, size);
2043         drbd_info(device, "size = %s (%llu KB)\n",
2044                 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2045 }
2046
2047 void drbd_device_cleanup(struct drbd_device *device)
2048 {
2049         int i;
2050         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2051                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2052                                 first_peer_device(device)->connection->receiver.t_state);
2053
2054         device->al_writ_cnt  =
2055         device->bm_writ_cnt  =
2056         device->read_cnt     =
2057         device->recv_cnt     =
2058         device->send_cnt     =
2059         device->writ_cnt     =
2060         device->p_size       =
2061         device->rs_start     =
2062         device->rs_total     =
2063         device->rs_failed    = 0;
2064         device->rs_last_events = 0;
2065         device->rs_last_sect_ev = 0;
2066         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2067                 device->rs_mark_left[i] = 0;
2068                 device->rs_mark_time[i] = 0;
2069         }
2070         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2071
2072         _drbd_set_my_capacity(device, 0);
2073         if (device->bitmap) {
2074                 /* maybe never allocated. */
2075                 drbd_bm_resize(device, 0, 1);
2076                 drbd_bm_cleanup(device);
2077         }
2078
2079         drbd_backing_dev_free(device, device->ldev);
2080         device->ldev = NULL;
2081
2082         clear_bit(AL_SUSPENDED, &device->flags);
2083
2084         D_ASSERT(device, list_empty(&device->active_ee));
2085         D_ASSERT(device, list_empty(&device->sync_ee));
2086         D_ASSERT(device, list_empty(&device->done_ee));
2087         D_ASSERT(device, list_empty(&device->read_ee));
2088         D_ASSERT(device, list_empty(&device->net_ee));
2089         D_ASSERT(device, list_empty(&device->resync_reads));
2090         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2091         D_ASSERT(device, list_empty(&device->resync_work.list));
2092         D_ASSERT(device, list_empty(&device->unplug_work.list));
2093
2094         drbd_set_defaults(device);
2095 }
2096
2097
2098 static void drbd_destroy_mempools(void)
2099 {
2100         struct page *page;
2101
2102         while (drbd_pp_pool) {
2103                 page = drbd_pp_pool;
2104                 drbd_pp_pool = (struct page *)page_private(page);
2105                 __free_page(page);
2106                 drbd_pp_vacant--;
2107         }
2108
2109         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2110
2111         bioset_exit(&drbd_io_bio_set);
2112         bioset_exit(&drbd_md_io_bio_set);
2113         mempool_exit(&drbd_md_io_page_pool);
2114         mempool_exit(&drbd_ee_mempool);
2115         mempool_exit(&drbd_request_mempool);
2116         kmem_cache_destroy(drbd_ee_cache);
2117         kmem_cache_destroy(drbd_request_cache);
2118         kmem_cache_destroy(drbd_bm_ext_cache);
2119         kmem_cache_destroy(drbd_al_ext_cache);
2120
2121         drbd_ee_cache        = NULL;
2122         drbd_request_cache   = NULL;
2123         drbd_bm_ext_cache    = NULL;
2124         drbd_al_ext_cache    = NULL;
2125
2126         return;
2127 }
2128
2129 static int drbd_create_mempools(void)
2130 {
2131         struct page *page;
2132         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2133         int i, ret;
2134
2135         /* caches */
2136         drbd_request_cache = kmem_cache_create(
2137                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2138         if (drbd_request_cache == NULL)
2139                 goto Enomem;
2140
2141         drbd_ee_cache = kmem_cache_create(
2142                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2143         if (drbd_ee_cache == NULL)
2144                 goto Enomem;
2145
2146         drbd_bm_ext_cache = kmem_cache_create(
2147                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2148         if (drbd_bm_ext_cache == NULL)
2149                 goto Enomem;
2150
2151         drbd_al_ext_cache = kmem_cache_create(
2152                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2153         if (drbd_al_ext_cache == NULL)
2154                 goto Enomem;
2155
2156         /* mempools */
2157         ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2158         if (ret)
2159                 goto Enomem;
2160
2161         ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2162                           BIOSET_NEED_BVECS);
2163         if (ret)
2164                 goto Enomem;
2165
2166         ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2167         if (ret)
2168                 goto Enomem;
2169
2170         ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2171                                      drbd_request_cache);
2172         if (ret)
2173                 goto Enomem;
2174
2175         ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2176         if (ret)
2177                 goto Enomem;
2178
2179         /* drbd's page pool */
2180         spin_lock_init(&drbd_pp_lock);
2181
2182         for (i = 0; i < number; i++) {
2183                 page = alloc_page(GFP_HIGHUSER);
2184                 if (!page)
2185                         goto Enomem;
2186                 set_page_private(page, (unsigned long)drbd_pp_pool);
2187                 drbd_pp_pool = page;
2188         }
2189         drbd_pp_vacant = number;
2190
2191         return 0;
2192
2193 Enomem:
2194         drbd_destroy_mempools(); /* in case we allocated some */
2195         return -ENOMEM;
2196 }
2197
2198 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2199 {
2200         int rr;
2201
2202         rr = drbd_free_peer_reqs(device, &device->active_ee);
2203         if (rr)
2204                 drbd_err(device, "%d EEs in active list found!\n", rr);
2205
2206         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2207         if (rr)
2208                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2209
2210         rr = drbd_free_peer_reqs(device, &device->read_ee);
2211         if (rr)
2212                 drbd_err(device, "%d EEs in read list found!\n", rr);
2213
2214         rr = drbd_free_peer_reqs(device, &device->done_ee);
2215         if (rr)
2216                 drbd_err(device, "%d EEs in done list found!\n", rr);
2217
2218         rr = drbd_free_peer_reqs(device, &device->net_ee);
2219         if (rr)
2220                 drbd_err(device, "%d EEs in net list found!\n", rr);
2221 }
2222
2223 /* caution. no locking. */
2224 void drbd_destroy_device(struct kref *kref)
2225 {
2226         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2227         struct drbd_resource *resource = device->resource;
2228         struct drbd_peer_device *peer_device, *tmp_peer_device;
2229
2230         del_timer_sync(&device->request_timer);
2231
2232         /* paranoia asserts */
2233         D_ASSERT(device, device->open_cnt == 0);
2234         /* end paranoia asserts */
2235
2236         /* cleanup stuff that may have been allocated during
2237          * device (re-)configuration or state changes */
2238
2239         if (device->this_bdev)
2240                 bdput(device->this_bdev);
2241
2242         drbd_backing_dev_free(device, device->ldev);
2243         device->ldev = NULL;
2244
2245         drbd_release_all_peer_reqs(device);
2246
2247         lc_destroy(device->act_log);
2248         lc_destroy(device->resync);
2249
2250         kfree(device->p_uuid);
2251         /* device->p_uuid = NULL; */
2252
2253         if (device->bitmap) /* should no longer be there. */
2254                 drbd_bm_cleanup(device);
2255         __free_page(device->md_io.page);
2256         put_disk(device->vdisk);
2257         blk_cleanup_queue(device->rq_queue);
2258         kfree(device->rs_plan_s);
2259
2260         /* not for_each_connection(connection, resource):
2261          * those may have been cleaned up and disassociated already.
2262          */
2263         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2264                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2265                 kfree(peer_device);
2266         }
2267         memset(device, 0xfd, sizeof(*device));
2268         kfree(device);
2269         kref_put(&resource->kref, drbd_destroy_resource);
2270 }
2271
2272 /* One global retry thread, if we need to push back some bio and have it
2273  * reinserted through our make request function.
2274  */
2275 static struct retry_worker {
2276         struct workqueue_struct *wq;
2277         struct work_struct worker;
2278
2279         spinlock_t lock;
2280         struct list_head writes;
2281 } retry;
2282
2283 static void do_retry(struct work_struct *ws)
2284 {
2285         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2286         LIST_HEAD(writes);
2287         struct drbd_request *req, *tmp;
2288
2289         spin_lock_irq(&retry->lock);
2290         list_splice_init(&retry->writes, &writes);
2291         spin_unlock_irq(&retry->lock);
2292
2293         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2294                 struct drbd_device *device = req->device;
2295                 struct bio *bio = req->master_bio;
2296                 unsigned long start_jif = req->start_jif;
2297                 bool expected;
2298
2299                 expected =
2300                         expect(atomic_read(&req->completion_ref) == 0) &&
2301                         expect(req->rq_state & RQ_POSTPONED) &&
2302                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2303                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2304
2305                 if (!expected)
2306                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2307                                 req, atomic_read(&req->completion_ref),
2308                                 req->rq_state);
2309
2310                 /* We still need to put one kref associated with the
2311                  * "completion_ref" going zero in the code path that queued it
2312                  * here.  The request object may still be referenced by a
2313                  * frozen local req->private_bio, in case we force-detached.
2314                  */
2315                 kref_put(&req->kref, drbd_req_destroy);
2316
2317                 /* A single suspended or otherwise blocking device may stall
2318                  * all others as well.  Fortunately, this code path is to
2319                  * recover from a situation that "should not happen":
2320                  * concurrent writes in multi-primary setup.
2321                  * In a "normal" lifecycle, this workqueue is supposed to be
2322                  * destroyed without ever doing anything.
2323                  * If it turns out to be an issue anyways, we can do per
2324                  * resource (replication group) or per device (minor) retry
2325                  * workqueues instead.
2326                  */
2327
2328                 /* We are not just doing submit_bio_noacct(),
2329                  * as we want to keep the start_time information. */
2330                 inc_ap_bio(device);
2331                 __drbd_make_request(device, bio, start_jif);
2332         }
2333 }
2334
2335 /* called via drbd_req_put_completion_ref(),
2336  * holds resource->req_lock */
2337 void drbd_restart_request(struct drbd_request *req)
2338 {
2339         unsigned long flags;
2340         spin_lock_irqsave(&retry.lock, flags);
2341         list_move_tail(&req->tl_requests, &retry.writes);
2342         spin_unlock_irqrestore(&retry.lock, flags);
2343
2344         /* Drop the extra reference that would otherwise
2345          * have been dropped by complete_master_bio.
2346          * do_retry() needs to grab a new one. */
2347         dec_ap_bio(req->device);
2348
2349         queue_work(retry.wq, &retry.worker);
2350 }
2351
2352 void drbd_destroy_resource(struct kref *kref)
2353 {
2354         struct drbd_resource *resource =
2355                 container_of(kref, struct drbd_resource, kref);
2356
2357         idr_destroy(&resource->devices);
2358         free_cpumask_var(resource->cpu_mask);
2359         kfree(resource->name);
2360         memset(resource, 0xf2, sizeof(*resource));
2361         kfree(resource);
2362 }
2363
2364 void drbd_free_resource(struct drbd_resource *resource)
2365 {
2366         struct drbd_connection *connection, *tmp;
2367
2368         for_each_connection_safe(connection, tmp, resource) {
2369                 list_del(&connection->connections);
2370                 drbd_debugfs_connection_cleanup(connection);
2371                 kref_put(&connection->kref, drbd_destroy_connection);
2372         }
2373         drbd_debugfs_resource_cleanup(resource);
2374         kref_put(&resource->kref, drbd_destroy_resource);
2375 }
2376
2377 static void drbd_cleanup(void)
2378 {
2379         unsigned int i;
2380         struct drbd_device *device;
2381         struct drbd_resource *resource, *tmp;
2382
2383         /* first remove proc,
2384          * drbdsetup uses it's presence to detect
2385          * whether DRBD is loaded.
2386          * If we would get stuck in proc removal,
2387          * but have netlink already deregistered,
2388          * some drbdsetup commands may wait forever
2389          * for an answer.
2390          */
2391         if (drbd_proc)
2392                 remove_proc_entry("drbd", NULL);
2393
2394         if (retry.wq)
2395                 destroy_workqueue(retry.wq);
2396
2397         drbd_genl_unregister();
2398
2399         idr_for_each_entry(&drbd_devices, device, i)
2400                 drbd_delete_device(device);
2401
2402         /* not _rcu since, no other updater anymore. Genl already unregistered */
2403         for_each_resource_safe(resource, tmp, &drbd_resources) {
2404                 list_del(&resource->resources);
2405                 drbd_free_resource(resource);
2406         }
2407
2408         drbd_debugfs_cleanup();
2409
2410         drbd_destroy_mempools();
2411         unregister_blkdev(DRBD_MAJOR, "drbd");
2412
2413         idr_destroy(&drbd_devices);
2414
2415         pr_info("module cleanup done.\n");
2416 }
2417
2418 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2419 {
2420         spin_lock_init(&wq->q_lock);
2421         INIT_LIST_HEAD(&wq->q);
2422         init_waitqueue_head(&wq->q_wait);
2423 }
2424
2425 struct completion_work {
2426         struct drbd_work w;
2427         struct completion done;
2428 };
2429
2430 static int w_complete(struct drbd_work *w, int cancel)
2431 {
2432         struct completion_work *completion_work =
2433                 container_of(w, struct completion_work, w);
2434
2435         complete(&completion_work->done);
2436         return 0;
2437 }
2438
2439 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2440 {
2441         struct completion_work completion_work;
2442
2443         completion_work.w.cb = w_complete;
2444         init_completion(&completion_work.done);
2445         drbd_queue_work(work_queue, &completion_work.w);
2446         wait_for_completion(&completion_work.done);
2447 }
2448
2449 struct drbd_resource *drbd_find_resource(const char *name)
2450 {
2451         struct drbd_resource *resource;
2452
2453         if (!name || !name[0])
2454                 return NULL;
2455
2456         rcu_read_lock();
2457         for_each_resource_rcu(resource, &drbd_resources) {
2458                 if (!strcmp(resource->name, name)) {
2459                         kref_get(&resource->kref);
2460                         goto found;
2461                 }
2462         }
2463         resource = NULL;
2464 found:
2465         rcu_read_unlock();
2466         return resource;
2467 }
2468
2469 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2470                                      void *peer_addr, int peer_addr_len)
2471 {
2472         struct drbd_resource *resource;
2473         struct drbd_connection *connection;
2474
2475         rcu_read_lock();
2476         for_each_resource_rcu(resource, &drbd_resources) {
2477                 for_each_connection_rcu(connection, resource) {
2478                         if (connection->my_addr_len == my_addr_len &&
2479                             connection->peer_addr_len == peer_addr_len &&
2480                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2481                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2482                                 kref_get(&connection->kref);
2483                                 goto found;
2484                         }
2485                 }
2486         }
2487         connection = NULL;
2488 found:
2489         rcu_read_unlock();
2490         return connection;
2491 }
2492
2493 static int drbd_alloc_socket(struct drbd_socket *socket)
2494 {
2495         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2496         if (!socket->rbuf)
2497                 return -ENOMEM;
2498         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2499         if (!socket->sbuf)
2500                 return -ENOMEM;
2501         return 0;
2502 }
2503
2504 static void drbd_free_socket(struct drbd_socket *socket)
2505 {
2506         free_page((unsigned long) socket->sbuf);
2507         free_page((unsigned long) socket->rbuf);
2508 }
2509
2510 void conn_free_crypto(struct drbd_connection *connection)
2511 {
2512         drbd_free_sock(connection);
2513
2514         crypto_free_shash(connection->csums_tfm);
2515         crypto_free_shash(connection->verify_tfm);
2516         crypto_free_shash(connection->cram_hmac_tfm);
2517         crypto_free_shash(connection->integrity_tfm);
2518         crypto_free_shash(connection->peer_integrity_tfm);
2519         kfree(connection->int_dig_in);
2520         kfree(connection->int_dig_vv);
2521
2522         connection->csums_tfm = NULL;
2523         connection->verify_tfm = NULL;
2524         connection->cram_hmac_tfm = NULL;
2525         connection->integrity_tfm = NULL;
2526         connection->peer_integrity_tfm = NULL;
2527         connection->int_dig_in = NULL;
2528         connection->int_dig_vv = NULL;
2529 }
2530
2531 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2532 {
2533         struct drbd_connection *connection;
2534         cpumask_var_t new_cpu_mask;
2535         int err;
2536
2537         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2538                 return -ENOMEM;
2539
2540         /* silently ignore cpu mask on UP kernel */
2541         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2542                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2543                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2544                 if (err == -EOVERFLOW) {
2545                         /* So what. mask it out. */
2546                         cpumask_var_t tmp_cpu_mask;
2547                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2548                                 cpumask_setall(tmp_cpu_mask);
2549                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2550                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2551                                         res_opts->cpu_mask,
2552                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2553                                         nr_cpu_ids);
2554                                 free_cpumask_var(tmp_cpu_mask);
2555                                 err = 0;
2556                         }
2557                 }
2558                 if (err) {
2559                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2560                         /* retcode = ERR_CPU_MASK_PARSE; */
2561                         goto fail;
2562                 }
2563         }
2564         resource->res_opts = *res_opts;
2565         if (cpumask_empty(new_cpu_mask))
2566                 drbd_calc_cpu_mask(&new_cpu_mask);
2567         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2568                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2569                 for_each_connection_rcu(connection, resource) {
2570                         connection->receiver.reset_cpu_mask = 1;
2571                         connection->ack_receiver.reset_cpu_mask = 1;
2572                         connection->worker.reset_cpu_mask = 1;
2573                 }
2574         }
2575         err = 0;
2576
2577 fail:
2578         free_cpumask_var(new_cpu_mask);
2579         return err;
2580
2581 }
2582
2583 struct drbd_resource *drbd_create_resource(const char *name)
2584 {
2585         struct drbd_resource *resource;
2586
2587         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2588         if (!resource)
2589                 goto fail;
2590         resource->name = kstrdup(name, GFP_KERNEL);
2591         if (!resource->name)
2592                 goto fail_free_resource;
2593         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2594                 goto fail_free_name;
2595         kref_init(&resource->kref);
2596         idr_init(&resource->devices);
2597         INIT_LIST_HEAD(&resource->connections);
2598         resource->write_ordering = WO_BDEV_FLUSH;
2599         list_add_tail_rcu(&resource->resources, &drbd_resources);
2600         mutex_init(&resource->conf_update);
2601         mutex_init(&resource->adm_mutex);
2602         spin_lock_init(&resource->req_lock);
2603         drbd_debugfs_resource_add(resource);
2604         return resource;
2605
2606 fail_free_name:
2607         kfree(resource->name);
2608 fail_free_resource:
2609         kfree(resource);
2610 fail:
2611         return NULL;
2612 }
2613
2614 /* caller must be under adm_mutex */
2615 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2616 {
2617         struct drbd_resource *resource;
2618         struct drbd_connection *connection;
2619
2620         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2621         if (!connection)
2622                 return NULL;
2623
2624         if (drbd_alloc_socket(&connection->data))
2625                 goto fail;
2626         if (drbd_alloc_socket(&connection->meta))
2627                 goto fail;
2628
2629         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2630         if (!connection->current_epoch)
2631                 goto fail;
2632
2633         INIT_LIST_HEAD(&connection->transfer_log);
2634
2635         INIT_LIST_HEAD(&connection->current_epoch->list);
2636         connection->epochs = 1;
2637         spin_lock_init(&connection->epoch_lock);
2638
2639         connection->send.seen_any_write_yet = false;
2640         connection->send.current_epoch_nr = 0;
2641         connection->send.current_epoch_writes = 0;
2642
2643         resource = drbd_create_resource(name);
2644         if (!resource)
2645                 goto fail;
2646
2647         connection->cstate = C_STANDALONE;
2648         mutex_init(&connection->cstate_mutex);
2649         init_waitqueue_head(&connection->ping_wait);
2650         idr_init(&connection->peer_devices);
2651
2652         drbd_init_workqueue(&connection->sender_work);
2653         mutex_init(&connection->data.mutex);
2654         mutex_init(&connection->meta.mutex);
2655
2656         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2657         connection->receiver.connection = connection;
2658         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2659         connection->worker.connection = connection;
2660         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2661         connection->ack_receiver.connection = connection;
2662
2663         kref_init(&connection->kref);
2664
2665         connection->resource = resource;
2666
2667         if (set_resource_options(resource, res_opts))
2668                 goto fail_resource;
2669
2670         kref_get(&resource->kref);
2671         list_add_tail_rcu(&connection->connections, &resource->connections);
2672         drbd_debugfs_connection_add(connection);
2673         return connection;
2674
2675 fail_resource:
2676         list_del(&resource->resources);
2677         drbd_free_resource(resource);
2678 fail:
2679         kfree(connection->current_epoch);
2680         drbd_free_socket(&connection->meta);
2681         drbd_free_socket(&connection->data);
2682         kfree(connection);
2683         return NULL;
2684 }
2685
2686 void drbd_destroy_connection(struct kref *kref)
2687 {
2688         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2689         struct drbd_resource *resource = connection->resource;
2690
2691         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2692                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2693         kfree(connection->current_epoch);
2694
2695         idr_destroy(&connection->peer_devices);
2696
2697         drbd_free_socket(&connection->meta);
2698         drbd_free_socket(&connection->data);
2699         kfree(connection->int_dig_in);
2700         kfree(connection->int_dig_vv);
2701         memset(connection, 0xfc, sizeof(*connection));
2702         kfree(connection);
2703         kref_put(&resource->kref, drbd_destroy_resource);
2704 }
2705
2706 static int init_submitter(struct drbd_device *device)
2707 {
2708         /* opencoded create_singlethread_workqueue(),
2709          * to be able to say "drbd%d", ..., minor */
2710         device->submit.wq =
2711                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2712         if (!device->submit.wq)
2713                 return -ENOMEM;
2714
2715         INIT_WORK(&device->submit.worker, do_submit);
2716         INIT_LIST_HEAD(&device->submit.writes);
2717         return 0;
2718 }
2719
2720 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2721 {
2722         struct drbd_resource *resource = adm_ctx->resource;
2723         struct drbd_connection *connection;
2724         struct drbd_device *device;
2725         struct drbd_peer_device *peer_device, *tmp_peer_device;
2726         struct gendisk *disk;
2727         struct request_queue *q;
2728         int id;
2729         int vnr = adm_ctx->volume;
2730         enum drbd_ret_code err = ERR_NOMEM;
2731
2732         device = minor_to_device(minor);
2733         if (device)
2734                 return ERR_MINOR_OR_VOLUME_EXISTS;
2735
2736         /* GFP_KERNEL, we are outside of all write-out paths */
2737         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2738         if (!device)
2739                 return ERR_NOMEM;
2740         kref_init(&device->kref);
2741
2742         kref_get(&resource->kref);
2743         device->resource = resource;
2744         device->minor = minor;
2745         device->vnr = vnr;
2746
2747         drbd_init_set_defaults(device);
2748
2749         q = blk_alloc_queue(NUMA_NO_NODE);
2750         if (!q)
2751                 goto out_no_q;
2752         device->rq_queue = q;
2753
2754         disk = alloc_disk(1);
2755         if (!disk)
2756                 goto out_no_disk;
2757         device->vdisk = disk;
2758
2759         set_disk_ro(disk, true);
2760
2761         disk->queue = q;
2762         disk->major = DRBD_MAJOR;
2763         disk->first_minor = minor;
2764         disk->fops = &drbd_ops;
2765         sprintf(disk->disk_name, "drbd%d", minor);
2766         disk->private_data = device;
2767
2768         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2769         /* we have no partitions. we contain only ourselves. */
2770         device->this_bdev->bd_contains = device->this_bdev;
2771
2772         blk_queue_write_cache(q, true, true);
2773         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2774            This triggers a max_bio_size message upon first attach or connect */
2775         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2776
2777         device->md_io.page = alloc_page(GFP_KERNEL);
2778         if (!device->md_io.page)
2779                 goto out_no_io_page;
2780
2781         if (drbd_bm_init(device))
2782                 goto out_no_bitmap;
2783         device->read_requests = RB_ROOT;
2784         device->write_requests = RB_ROOT;
2785
2786         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2787         if (id < 0) {
2788                 if (id == -ENOSPC)
2789                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2790                 goto out_no_minor_idr;
2791         }
2792         kref_get(&device->kref);
2793
2794         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2795         if (id < 0) {
2796                 if (id == -ENOSPC)
2797                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2798                 goto out_idr_remove_minor;
2799         }
2800         kref_get(&device->kref);
2801
2802         INIT_LIST_HEAD(&device->peer_devices);
2803         INIT_LIST_HEAD(&device->pending_bitmap_io);
2804         for_each_connection(connection, resource) {
2805                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2806                 if (!peer_device)
2807                         goto out_idr_remove_from_resource;
2808                 peer_device->connection = connection;
2809                 peer_device->device = device;
2810
2811                 list_add(&peer_device->peer_devices, &device->peer_devices);
2812                 kref_get(&device->kref);
2813
2814                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2815                 if (id < 0) {
2816                         if (id == -ENOSPC)
2817                                 err = ERR_INVALID_REQUEST;
2818                         goto out_idr_remove_from_resource;
2819                 }
2820                 kref_get(&connection->kref);
2821                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2822         }
2823
2824         if (init_submitter(device)) {
2825                 err = ERR_NOMEM;
2826                 goto out_idr_remove_vol;
2827         }
2828
2829         add_disk(disk);
2830
2831         /* inherit the connection state */
2832         device->state.conn = first_connection(resource)->cstate;
2833         if (device->state.conn == C_WF_REPORT_PARAMS) {
2834                 for_each_peer_device(peer_device, device)
2835                         drbd_connected(peer_device);
2836         }
2837         /* move to create_peer_device() */
2838         for_each_peer_device(peer_device, device)
2839                 drbd_debugfs_peer_device_add(peer_device);
2840         drbd_debugfs_device_add(device);
2841         return NO_ERROR;
2842
2843 out_idr_remove_vol:
2844         idr_remove(&connection->peer_devices, vnr);
2845 out_idr_remove_from_resource:
2846         for_each_connection(connection, resource) {
2847                 peer_device = idr_remove(&connection->peer_devices, vnr);
2848                 if (peer_device)
2849                         kref_put(&connection->kref, drbd_destroy_connection);
2850         }
2851         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2852                 list_del(&peer_device->peer_devices);
2853                 kfree(peer_device);
2854         }
2855         idr_remove(&resource->devices, vnr);
2856 out_idr_remove_minor:
2857         idr_remove(&drbd_devices, minor);
2858         synchronize_rcu();
2859 out_no_minor_idr:
2860         drbd_bm_cleanup(device);
2861 out_no_bitmap:
2862         __free_page(device->md_io.page);
2863 out_no_io_page:
2864         put_disk(disk);
2865 out_no_disk:
2866         blk_cleanup_queue(q);
2867 out_no_q:
2868         kref_put(&resource->kref, drbd_destroy_resource);
2869         kfree(device);
2870         return err;
2871 }
2872
2873 void drbd_delete_device(struct drbd_device *device)
2874 {
2875         struct drbd_resource *resource = device->resource;
2876         struct drbd_connection *connection;
2877         struct drbd_peer_device *peer_device;
2878
2879         /* move to free_peer_device() */
2880         for_each_peer_device(peer_device, device)
2881                 drbd_debugfs_peer_device_cleanup(peer_device);
2882         drbd_debugfs_device_cleanup(device);
2883         for_each_connection(connection, resource) {
2884                 idr_remove(&connection->peer_devices, device->vnr);
2885                 kref_put(&device->kref, drbd_destroy_device);
2886         }
2887         idr_remove(&resource->devices, device->vnr);
2888         kref_put(&device->kref, drbd_destroy_device);
2889         idr_remove(&drbd_devices, device_to_minor(device));
2890         kref_put(&device->kref, drbd_destroy_device);
2891         del_gendisk(device->vdisk);
2892         synchronize_rcu();
2893         kref_put(&device->kref, drbd_destroy_device);
2894 }
2895
2896 static int __init drbd_init(void)
2897 {
2898         int err;
2899
2900         if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2901                 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2902 #ifdef MODULE
2903                 return -EINVAL;
2904 #else
2905                 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2906 #endif
2907         }
2908
2909         err = register_blkdev(DRBD_MAJOR, "drbd");
2910         if (err) {
2911                 pr_err("unable to register block device major %d\n",
2912                        DRBD_MAJOR);
2913                 return err;
2914         }
2915
2916         /*
2917          * allocate all necessary structs
2918          */
2919         init_waitqueue_head(&drbd_pp_wait);
2920
2921         drbd_proc = NULL; /* play safe for drbd_cleanup */
2922         idr_init(&drbd_devices);
2923
2924         mutex_init(&resources_mutex);
2925         INIT_LIST_HEAD(&drbd_resources);
2926
2927         err = drbd_genl_register();
2928         if (err) {
2929                 pr_err("unable to register generic netlink family\n");
2930                 goto fail;
2931         }
2932
2933         err = drbd_create_mempools();
2934         if (err)
2935                 goto fail;
2936
2937         err = -ENOMEM;
2938         drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2939         if (!drbd_proc) {
2940                 pr_err("unable to register proc file\n");
2941                 goto fail;
2942         }
2943
2944         retry.wq = create_singlethread_workqueue("drbd-reissue");
2945         if (!retry.wq) {
2946                 pr_err("unable to create retry workqueue\n");
2947                 goto fail;
2948         }
2949         INIT_WORK(&retry.worker, do_retry);
2950         spin_lock_init(&retry.lock);
2951         INIT_LIST_HEAD(&retry.writes);
2952
2953         drbd_debugfs_init();
2954
2955         pr_info("initialized. "
2956                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2957                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2958         pr_info("%s\n", drbd_buildtag());
2959         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2960         return 0; /* Success! */
2961
2962 fail:
2963         drbd_cleanup();
2964         if (err == -ENOMEM)
2965                 pr_err("ran out of memory\n");
2966         else
2967                 pr_err("initialization failure\n");
2968         return err;
2969 }
2970
2971 static void drbd_free_one_sock(struct drbd_socket *ds)
2972 {
2973         struct socket *s;
2974         mutex_lock(&ds->mutex);
2975         s = ds->socket;
2976         ds->socket = NULL;
2977         mutex_unlock(&ds->mutex);
2978         if (s) {
2979                 /* so debugfs does not need to mutex_lock() */
2980                 synchronize_rcu();
2981                 kernel_sock_shutdown(s, SHUT_RDWR);
2982                 sock_release(s);
2983         }
2984 }
2985
2986 void drbd_free_sock(struct drbd_connection *connection)
2987 {
2988         if (connection->data.socket)
2989                 drbd_free_one_sock(&connection->data);
2990         if (connection->meta.socket)
2991                 drbd_free_one_sock(&connection->meta);
2992 }
2993
2994 /* meta data management */
2995
2996 void conn_md_sync(struct drbd_connection *connection)
2997 {
2998         struct drbd_peer_device *peer_device;
2999         int vnr;
3000
3001         rcu_read_lock();
3002         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3003                 struct drbd_device *device = peer_device->device;
3004
3005                 kref_get(&device->kref);
3006                 rcu_read_unlock();
3007                 drbd_md_sync(device);
3008                 kref_put(&device->kref, drbd_destroy_device);
3009                 rcu_read_lock();
3010         }
3011         rcu_read_unlock();
3012 }
3013
3014 /* aligned 4kByte */
3015 struct meta_data_on_disk {
3016         u64 la_size_sect;      /* last agreed size. */
3017         u64 uuid[UI_SIZE];   /* UUIDs. */
3018         u64 device_uuid;
3019         u64 reserved_u64_1;
3020         u32 flags;             /* MDF */
3021         u32 magic;
3022         u32 md_size_sect;
3023         u32 al_offset;         /* offset to this block */
3024         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3025               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3026         u32 bm_offset;         /* offset to the bitmap, from here */
3027         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3028         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3029
3030         /* see al_tr_number_to_on_disk_sector() */
3031         u32 al_stripes;
3032         u32 al_stripe_size_4k;
3033
3034         u8 reserved_u8[4096 - (7*8 + 10*4)];
3035 } __packed;
3036
3037
3038
3039 void drbd_md_write(struct drbd_device *device, void *b)
3040 {
3041         struct meta_data_on_disk *buffer = b;
3042         sector_t sector;
3043         int i;
3044
3045         memset(buffer, 0, sizeof(*buffer));
3046
3047         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3048         for (i = UI_CURRENT; i < UI_SIZE; i++)
3049                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3050         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3051         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3052
3053         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3054         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3055         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3056         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3057         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3058
3059         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3060         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3061
3062         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3063         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3064
3065         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3066         sector = device->ldev->md.md_offset;
3067
3068         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3069                 /* this was a try anyways ... */
3070                 drbd_err(device, "meta data update failed!\n");
3071                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3072         }
3073 }
3074
3075 /**
3076  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3077  * @device:     DRBD device.
3078  */
3079 void drbd_md_sync(struct drbd_device *device)
3080 {
3081         struct meta_data_on_disk *buffer;
3082
3083         /* Don't accidentally change the DRBD meta data layout. */
3084         BUILD_BUG_ON(UI_SIZE != 4);
3085         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3086
3087         del_timer(&device->md_sync_timer);
3088         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3089         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3090                 return;
3091
3092         /* We use here D_FAILED and not D_ATTACHING because we try to write
3093          * metadata even if we detach due to a disk failure! */
3094         if (!get_ldev_if_state(device, D_FAILED))
3095                 return;
3096
3097         buffer = drbd_md_get_buffer(device, __func__);
3098         if (!buffer)
3099                 goto out;
3100
3101         drbd_md_write(device, buffer);
3102
3103         /* Update device->ldev->md.la_size_sect,
3104          * since we updated it on metadata. */
3105         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3106
3107         drbd_md_put_buffer(device);
3108 out:
3109         put_ldev(device);
3110 }
3111
3112 static int check_activity_log_stripe_size(struct drbd_device *device,
3113                 struct meta_data_on_disk *on_disk,
3114                 struct drbd_md *in_core)
3115 {
3116         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3117         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3118         u64 al_size_4k;
3119
3120         /* both not set: default to old fixed size activity log */
3121         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3122                 al_stripes = 1;
3123                 al_stripe_size_4k = MD_32kB_SECT/8;
3124         }
3125
3126         /* some paranoia plausibility checks */
3127
3128         /* we need both values to be set */
3129         if (al_stripes == 0 || al_stripe_size_4k == 0)
3130                 goto err;
3131
3132         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3133
3134         /* Upper limit of activity log area, to avoid potential overflow
3135          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3136          * than 72 * 4k blocks total only increases the amount of history,
3137          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3138         if (al_size_4k > (16 * 1024 * 1024/4))
3139                 goto err;
3140
3141         /* Lower limit: we need at least 8 transaction slots (32kB)
3142          * to not break existing setups */
3143         if (al_size_4k < MD_32kB_SECT/8)
3144                 goto err;
3145
3146         in_core->al_stripe_size_4k = al_stripe_size_4k;
3147         in_core->al_stripes = al_stripes;
3148         in_core->al_size_4k = al_size_4k;
3149
3150         return 0;
3151 err:
3152         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3153                         al_stripes, al_stripe_size_4k);
3154         return -EINVAL;
3155 }
3156
3157 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3158 {
3159         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3160         struct drbd_md *in_core = &bdev->md;
3161         s32 on_disk_al_sect;
3162         s32 on_disk_bm_sect;
3163
3164         /* The on-disk size of the activity log, calculated from offsets, and
3165          * the size of the activity log calculated from the stripe settings,
3166          * should match.
3167          * Though we could relax this a bit: it is ok, if the striped activity log
3168          * fits in the available on-disk activity log size.
3169          * Right now, that would break how resize is implemented.
3170          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3171          * of possible unused padding space in the on disk layout. */
3172         if (in_core->al_offset < 0) {
3173                 if (in_core->bm_offset > in_core->al_offset)
3174                         goto err;
3175                 on_disk_al_sect = -in_core->al_offset;
3176                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3177         } else {
3178                 if (in_core->al_offset != MD_4kB_SECT)
3179                         goto err;
3180                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3181                         goto err;
3182
3183                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3184                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3185         }
3186
3187         /* old fixed size meta data is exactly that: fixed. */
3188         if (in_core->meta_dev_idx >= 0) {
3189                 if (in_core->md_size_sect != MD_128MB_SECT
3190                 ||  in_core->al_offset != MD_4kB_SECT
3191                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3192                 ||  in_core->al_stripes != 1
3193                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3194                         goto err;
3195         }
3196
3197         if (capacity < in_core->md_size_sect)
3198                 goto err;
3199         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3200                 goto err;
3201
3202         /* should be aligned, and at least 32k */
3203         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3204                 goto err;
3205
3206         /* should fit (for now: exactly) into the available on-disk space;
3207          * overflow prevention is in check_activity_log_stripe_size() above. */
3208         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3209                 goto err;
3210
3211         /* again, should be aligned */
3212         if (in_core->bm_offset & 7)
3213                 goto err;
3214
3215         /* FIXME check for device grow with flex external meta data? */
3216
3217         /* can the available bitmap space cover the last agreed device size? */
3218         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3219                 goto err;
3220
3221         return 0;
3222
3223 err:
3224         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3225                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3226                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3227                         in_core->meta_dev_idx,
3228                         in_core->al_stripes, in_core->al_stripe_size_4k,
3229                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3230                         (unsigned long long)in_core->la_size_sect,
3231                         (unsigned long long)capacity);
3232
3233         return -EINVAL;
3234 }
3235
3236
3237 /**
3238  * drbd_md_read() - Reads in the meta data super block
3239  * @device:     DRBD device.
3240  * @bdev:       Device from which the meta data should be read in.
3241  *
3242  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3243  * something goes wrong.
3244  *
3245  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3246  * even before @bdev is assigned to @device->ldev.
3247  */
3248 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3249 {
3250         struct meta_data_on_disk *buffer;
3251         u32 magic, flags;
3252         int i, rv = NO_ERROR;
3253
3254         if (device->state.disk != D_DISKLESS)
3255                 return ERR_DISK_CONFIGURED;
3256
3257         buffer = drbd_md_get_buffer(device, __func__);
3258         if (!buffer)
3259                 return ERR_NOMEM;
3260
3261         /* First, figure out where our meta data superblock is located,
3262          * and read it. */
3263         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3264         bdev->md.md_offset = drbd_md_ss(bdev);
3265         /* Even for (flexible or indexed) external meta data,
3266          * initially restrict us to the 4k superblock for now.
3267          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3268         bdev->md.md_size_sect = 8;
3269
3270         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3271                                  REQ_OP_READ)) {
3272                 /* NOTE: can't do normal error processing here as this is
3273                    called BEFORE disk is attached */
3274                 drbd_err(device, "Error while reading metadata.\n");
3275                 rv = ERR_IO_MD_DISK;
3276                 goto err;
3277         }
3278
3279         magic = be32_to_cpu(buffer->magic);
3280         flags = be32_to_cpu(buffer->flags);
3281         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3282             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3283                         /* btw: that's Activity Log clean, not "all" clean. */
3284                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3285                 rv = ERR_MD_UNCLEAN;
3286                 goto err;
3287         }
3288
3289         rv = ERR_MD_INVALID;
3290         if (magic != DRBD_MD_MAGIC_08) {
3291                 if (magic == DRBD_MD_MAGIC_07)
3292                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3293                 else
3294                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3295                 goto err;
3296         }
3297
3298         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3299                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3300                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3301                 goto err;
3302         }
3303
3304
3305         /* convert to in_core endian */
3306         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3307         for (i = UI_CURRENT; i < UI_SIZE; i++)
3308                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3309         bdev->md.flags = be32_to_cpu(buffer->flags);
3310         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3311
3312         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3313         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3314         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3315
3316         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3317                 goto err;
3318         if (check_offsets_and_sizes(device, bdev))
3319                 goto err;
3320
3321         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3322                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3323                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3324                 goto err;
3325         }
3326         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3327                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3328                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3329                 goto err;
3330         }
3331
3332         rv = NO_ERROR;
3333
3334         spin_lock_irq(&device->resource->req_lock);
3335         if (device->state.conn < C_CONNECTED) {
3336                 unsigned int peer;
3337                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3338                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3339                 device->peer_max_bio_size = peer;
3340         }
3341         spin_unlock_irq(&device->resource->req_lock);
3342
3343  err:
3344         drbd_md_put_buffer(device);
3345
3346         return rv;
3347 }
3348
3349 /**
3350  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3351  * @device:     DRBD device.
3352  *
3353  * Call this function if you change anything that should be written to
3354  * the meta-data super block. This function sets MD_DIRTY, and starts a
3355  * timer that ensures that within five seconds you have to call drbd_md_sync().
3356  */
3357 void drbd_md_mark_dirty(struct drbd_device *device)
3358 {
3359         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3360                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3361 }
3362
3363 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3364 {
3365         int i;
3366
3367         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3368                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3369 }
3370
3371 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3372 {
3373         if (idx == UI_CURRENT) {
3374                 if (device->state.role == R_PRIMARY)
3375                         val |= 1;
3376                 else
3377                         val &= ~((u64)1);
3378
3379                 drbd_set_ed_uuid(device, val);
3380         }
3381
3382         device->ldev->md.uuid[idx] = val;
3383         drbd_md_mark_dirty(device);
3384 }
3385
3386 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3387 {
3388         unsigned long flags;
3389         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3390         __drbd_uuid_set(device, idx, val);
3391         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3392 }
3393
3394 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3395 {
3396         unsigned long flags;
3397         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3398         if (device->ldev->md.uuid[idx]) {
3399                 drbd_uuid_move_history(device);
3400                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3401         }
3402         __drbd_uuid_set(device, idx, val);
3403         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3404 }
3405
3406 /**
3407  * drbd_uuid_new_current() - Creates a new current UUID
3408  * @device:     DRBD device.
3409  *
3410  * Creates a new current UUID, and rotates the old current UUID into
3411  * the bitmap slot. Causes an incremental resync upon next connect.
3412  */
3413 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3414 {
3415         u64 val;
3416         unsigned long long bm_uuid;
3417
3418         get_random_bytes(&val, sizeof(u64));
3419
3420         spin_lock_irq(&device->ldev->md.uuid_lock);
3421         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3422
3423         if (bm_uuid)
3424                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3425
3426         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3427         __drbd_uuid_set(device, UI_CURRENT, val);
3428         spin_unlock_irq(&device->ldev->md.uuid_lock);
3429
3430         drbd_print_uuids(device, "new current UUID");
3431         /* get it to stable storage _now_ */
3432         drbd_md_sync(device);
3433 }
3434
3435 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3436 {
3437         unsigned long flags;
3438         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3439                 return;
3440
3441         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3442         if (val == 0) {
3443                 drbd_uuid_move_history(device);
3444                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3445                 device->ldev->md.uuid[UI_BITMAP] = 0;
3446         } else {
3447                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3448                 if (bm_uuid)
3449                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3450
3451                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3452         }
3453         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3454
3455         drbd_md_mark_dirty(device);
3456 }
3457
3458 /**
3459  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3460  * @device:     DRBD device.
3461  *
3462  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3463  */
3464 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3465 {
3466         int rv = -EIO;
3467
3468         drbd_md_set_flag(device, MDF_FULL_SYNC);
3469         drbd_md_sync(device);
3470         drbd_bm_set_all(device);
3471
3472         rv = drbd_bm_write(device);
3473
3474         if (!rv) {
3475                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3476                 drbd_md_sync(device);
3477         }
3478
3479         return rv;
3480 }
3481
3482 /**
3483  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3484  * @device:     DRBD device.
3485  *
3486  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3487  */
3488 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3489 {
3490         drbd_resume_al(device);
3491         drbd_bm_clear_all(device);
3492         return drbd_bm_write(device);
3493 }
3494
3495 static int w_bitmap_io(struct drbd_work *w, int unused)
3496 {
3497         struct drbd_device *device =
3498                 container_of(w, struct drbd_device, bm_io_work.w);
3499         struct bm_io_work *work = &device->bm_io_work;
3500         int rv = -EIO;
3501
3502         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3503                 int cnt = atomic_read(&device->ap_bio_cnt);
3504                 if (cnt)
3505                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3506                                         cnt, work->why);
3507         }
3508
3509         if (get_ldev(device)) {
3510                 drbd_bm_lock(device, work->why, work->flags);
3511                 rv = work->io_fn(device);
3512                 drbd_bm_unlock(device);
3513                 put_ldev(device);
3514         }
3515
3516         clear_bit_unlock(BITMAP_IO, &device->flags);
3517         wake_up(&device->misc_wait);
3518
3519         if (work->done)
3520                 work->done(device, rv);
3521
3522         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3523         work->why = NULL;
3524         work->flags = 0;
3525
3526         return 0;
3527 }
3528
3529 /**
3530  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3531  * @device:     DRBD device.
3532  * @io_fn:      IO callback to be called when bitmap IO is possible
3533  * @done:       callback to be called after the bitmap IO was performed
3534  * @why:        Descriptive text of the reason for doing the IO
3535  *
3536  * While IO on the bitmap happens we freeze application IO thus we ensure
3537  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3538  * called from worker context. It MUST NOT be used while a previous such
3539  * work is still pending!
3540  *
3541  * Its worker function encloses the call of io_fn() by get_ldev() and
3542  * put_ldev().
3543  */
3544 void drbd_queue_bitmap_io(struct drbd_device *device,
3545                           int (*io_fn)(struct drbd_device *),
3546                           void (*done)(struct drbd_device *, int),
3547                           char *why, enum bm_flag flags)
3548 {
3549         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3550
3551         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3552         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3553         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3554         if (device->bm_io_work.why)
3555                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3556                         why, device->bm_io_work.why);
3557
3558         device->bm_io_work.io_fn = io_fn;
3559         device->bm_io_work.done = done;
3560         device->bm_io_work.why = why;
3561         device->bm_io_work.flags = flags;
3562
3563         spin_lock_irq(&device->resource->req_lock);
3564         set_bit(BITMAP_IO, &device->flags);
3565         /* don't wait for pending application IO if the caller indicates that
3566          * application IO does not conflict anyways. */
3567         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3568                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3569                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3570                                         &device->bm_io_work.w);
3571         }
3572         spin_unlock_irq(&device->resource->req_lock);
3573 }
3574
3575 /**
3576  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3577  * @device:     DRBD device.
3578  * @io_fn:      IO callback to be called when bitmap IO is possible
3579  * @why:        Descriptive text of the reason for doing the IO
3580  *
3581  * freezes application IO while that the actual IO operations runs. This
3582  * functions MAY NOT be called from worker context.
3583  */
3584 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3585                 char *why, enum bm_flag flags)
3586 {
3587         /* Only suspend io, if some operation is supposed to be locked out */
3588         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3589         int rv;
3590
3591         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3592
3593         if (do_suspend_io)
3594                 drbd_suspend_io(device);
3595
3596         drbd_bm_lock(device, why, flags);
3597         rv = io_fn(device);
3598         drbd_bm_unlock(device);
3599
3600         if (do_suspend_io)
3601                 drbd_resume_io(device);
3602
3603         return rv;
3604 }
3605
3606 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3607 {
3608         if ((device->ldev->md.flags & flag) != flag) {
3609                 drbd_md_mark_dirty(device);
3610                 device->ldev->md.flags |= flag;
3611         }
3612 }
3613
3614 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3615 {
3616         if ((device->ldev->md.flags & flag) != 0) {
3617                 drbd_md_mark_dirty(device);
3618                 device->ldev->md.flags &= ~flag;
3619         }
3620 }
3621 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3622 {
3623         return (bdev->md.flags & flag) != 0;
3624 }
3625
3626 static void md_sync_timer_fn(struct timer_list *t)
3627 {
3628         struct drbd_device *device = from_timer(device, t, md_sync_timer);
3629         drbd_device_post_work(device, MD_SYNC);
3630 }
3631
3632 const char *cmdname(enum drbd_packet cmd)
3633 {
3634         /* THINK may need to become several global tables
3635          * when we want to support more than
3636          * one PRO_VERSION */
3637         static const char *cmdnames[] = {
3638                 [P_DATA]                = "Data",
3639                 [P_WSAME]               = "WriteSame",
3640                 [P_TRIM]                = "Trim",
3641                 [P_DATA_REPLY]          = "DataReply",
3642                 [P_RS_DATA_REPLY]       = "RSDataReply",
3643                 [P_BARRIER]             = "Barrier",
3644                 [P_BITMAP]              = "ReportBitMap",
3645                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3646                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3647                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3648                 [P_DATA_REQUEST]        = "DataRequest",
3649                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3650                 [P_SYNC_PARAM]          = "SyncParam",
3651                 [P_SYNC_PARAM89]        = "SyncParam89",
3652                 [P_PROTOCOL]            = "ReportProtocol",
3653                 [P_UUIDS]               = "ReportUUIDs",
3654                 [P_SIZES]               = "ReportSizes",
3655                 [P_STATE]               = "ReportState",
3656                 [P_SYNC_UUID]           = "ReportSyncUUID",
3657                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3658                 [P_AUTH_RESPONSE]       = "AuthResponse",
3659                 [P_PING]                = "Ping",
3660                 [P_PING_ACK]            = "PingAck",
3661                 [P_RECV_ACK]            = "RecvAck",
3662                 [P_WRITE_ACK]           = "WriteAck",
3663                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3664                 [P_SUPERSEDED]          = "Superseded",
3665                 [P_NEG_ACK]             = "NegAck",
3666                 [P_NEG_DREPLY]          = "NegDReply",
3667                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3668                 [P_BARRIER_ACK]         = "BarrierAck",
3669                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3670                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3671                 [P_OV_REQUEST]          = "OVRequest",
3672                 [P_OV_REPLY]            = "OVReply",
3673                 [P_OV_RESULT]           = "OVResult",
3674                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3675                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3676                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3677                 [P_DELAY_PROBE]         = "DelayProbe",
3678                 [P_OUT_OF_SYNC]         = "OutOfSync",
3679                 [P_RETRY_WRITE]         = "RetryWrite",
3680                 [P_RS_CANCEL]           = "RSCancel",
3681                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3682                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3683                 [P_RETRY_WRITE]         = "retry_write",
3684                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3685                 [P_RS_THIN_REQ]         = "rs_thin_req",
3686                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3687
3688                 /* enum drbd_packet, but not commands - obsoleted flags:
3689                  *      P_MAY_IGNORE
3690                  *      P_MAX_OPT_CMD
3691                  */
3692         };
3693
3694         /* too big for the array: 0xfffX */
3695         if (cmd == P_INITIAL_META)
3696                 return "InitialMeta";
3697         if (cmd == P_INITIAL_DATA)
3698                 return "InitialData";
3699         if (cmd == P_CONNECTION_FEATURES)
3700                 return "ConnectionFeatures";
3701         if (cmd >= ARRAY_SIZE(cmdnames))
3702                 return "Unknown";
3703         return cmdnames[cmd];
3704 }
3705
3706 /**
3707  * drbd_wait_misc  -  wait for a request to make progress
3708  * @device:     device associated with the request
3709  * @i:          the struct drbd_interval embedded in struct drbd_request or
3710  *              struct drbd_peer_request
3711  */
3712 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3713 {
3714         struct net_conf *nc;
3715         DEFINE_WAIT(wait);
3716         long timeout;
3717
3718         rcu_read_lock();
3719         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3720         if (!nc) {
3721                 rcu_read_unlock();
3722                 return -ETIMEDOUT;
3723         }
3724         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3725         rcu_read_unlock();
3726
3727         /* Indicate to wake up device->misc_wait on progress.  */
3728         i->waiting = true;
3729         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3730         spin_unlock_irq(&device->resource->req_lock);
3731         timeout = schedule_timeout(timeout);
3732         finish_wait(&device->misc_wait, &wait);
3733         spin_lock_irq(&device->resource->req_lock);
3734         if (!timeout || device->state.conn < C_CONNECTED)
3735                 return -ETIMEDOUT;
3736         if (signal_pending(current))
3737                 return -ERESTARTSYS;
3738         return 0;
3739 }
3740
3741 void lock_all_resources(void)
3742 {
3743         struct drbd_resource *resource;
3744         int __maybe_unused i = 0;
3745
3746         mutex_lock(&resources_mutex);
3747         local_irq_disable();
3748         for_each_resource(resource, &drbd_resources)
3749                 spin_lock_nested(&resource->req_lock, i++);
3750 }
3751
3752 void unlock_all_resources(void)
3753 {
3754         struct drbd_resource *resource;
3755
3756         for_each_resource(resource, &drbd_resources)
3757                 spin_unlock(&resource->req_lock);
3758         local_irq_enable();
3759         mutex_unlock(&resources_mutex);
3760 }
3761
3762 #ifdef CONFIG_DRBD_FAULT_INJECTION
3763 /* Fault insertion support including random number generator shamelessly
3764  * stolen from kernel/rcutorture.c */
3765 struct fault_random_state {
3766         unsigned long state;
3767         unsigned long count;
3768 };
3769
3770 #define FAULT_RANDOM_MULT 39916801  /* prime */
3771 #define FAULT_RANDOM_ADD        479001701 /* prime */
3772 #define FAULT_RANDOM_REFRESH 10000
3773
3774 /*
3775  * Crude but fast random-number generator.  Uses a linear congruential
3776  * generator, with occasional help from get_random_bytes().
3777  */
3778 static unsigned long
3779 _drbd_fault_random(struct fault_random_state *rsp)
3780 {
3781         long refresh;
3782
3783         if (!rsp->count--) {
3784                 get_random_bytes(&refresh, sizeof(refresh));
3785                 rsp->state += refresh;
3786                 rsp->count = FAULT_RANDOM_REFRESH;
3787         }
3788         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3789         return swahw32(rsp->state);
3790 }
3791
3792 static char *
3793 _drbd_fault_str(unsigned int type) {
3794         static char *_faults[] = {
3795                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3796                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3797                 [DRBD_FAULT_RS_WR] = "Resync write",
3798                 [DRBD_FAULT_RS_RD] = "Resync read",
3799                 [DRBD_FAULT_DT_WR] = "Data write",
3800                 [DRBD_FAULT_DT_RD] = "Data read",
3801                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3802                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3803                 [DRBD_FAULT_AL_EE] = "EE allocation",
3804                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3805         };
3806
3807         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3808 }
3809
3810 unsigned int
3811 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3812 {
3813         static struct fault_random_state rrs = {0, 0};
3814
3815         unsigned int ret = (
3816                 (drbd_fault_devs == 0 ||
3817                         ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3818                 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3819
3820         if (ret) {
3821                 drbd_fault_count++;
3822
3823                 if (__ratelimit(&drbd_ratelimit_state))
3824                         drbd_warn(device, "***Simulating %s failure\n",
3825                                 _drbd_fault_str(type));
3826         }
3827
3828         return ret;
3829 }
3830 #endif
3831
3832 const char *drbd_buildtag(void)
3833 {
3834         /* DRBD built from external sources has here a reference to the
3835            git hash of the source code. */
3836
3837         static char buildtag[38] = "\0uilt-in";
3838
3839         if (buildtag[0] == 0) {
3840 #ifdef MODULE
3841                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3842 #else
3843                 buildtag[0] = 'b';
3844 #endif
3845         }
3846
3847         return buildtag;
3848 }
3849
3850 module_init(drbd_init)
3851 module_exit(drbd_cleanup)
3852
3853 EXPORT_SYMBOL(drbd_conn_str);
3854 EXPORT_SYMBOL(drbd_role_str);
3855 EXPORT_SYMBOL(drbd_disk_str);
3856 EXPORT_SYMBOL(drbd_set_st_err_str);