cciss: remove superfluous sleeps around reset code
[linux-2.6-microblaze.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/jiffies.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45
46 #include <linux/dma-mapping.h>
47 #include <linux/blkdev.h>
48 #include <linux/genhd.h>
49 #include <linux/completion.h>
50 #include <scsi/scsi.h>
51 #include <scsi/sg.h>
52 #include <scsi/scsi_ioctl.h>
53 #include <linux/cdrom.h>
54 #include <linux/scatterlist.h>
55 #include <linux/kthread.h>
56
57 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
60
61 /* Embedded module documentation macros - see modules.h */
62 MODULE_AUTHOR("Hewlett-Packard Company");
63 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65 MODULE_VERSION("3.6.26");
66 MODULE_LICENSE("GPL");
67
68 static DEFINE_MUTEX(cciss_mutex);
69 static struct proc_dir_entry *proc_cciss;
70
71 #include "cciss_cmd.h"
72 #include "cciss.h"
73 #include <linux/cciss_ioctl.h>
74
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
78         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
97         {0,}
98 };
99
100 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
101
102 /*  board_id = Subsystem Device ID & Vendor ID
103  *  product = Marketing Name for the board
104  *  access = Address of the struct of function pointers
105  */
106 static struct board_type products[] = {
107         {0x40700E11, "Smart Array 5300", &SA5_access},
108         {0x40800E11, "Smart Array 5i", &SA5B_access},
109         {0x40820E11, "Smart Array 532", &SA5B_access},
110         {0x40830E11, "Smart Array 5312", &SA5B_access},
111         {0x409A0E11, "Smart Array 641", &SA5_access},
112         {0x409B0E11, "Smart Array 642", &SA5_access},
113         {0x409C0E11, "Smart Array 6400", &SA5_access},
114         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
115         {0x40910E11, "Smart Array 6i", &SA5_access},
116         {0x3225103C, "Smart Array P600", &SA5_access},
117         {0x3223103C, "Smart Array P800", &SA5_access},
118         {0x3234103C, "Smart Array P400", &SA5_access},
119         {0x3235103C, "Smart Array P400i", &SA5_access},
120         {0x3211103C, "Smart Array E200i", &SA5_access},
121         {0x3212103C, "Smart Array E200", &SA5_access},
122         {0x3213103C, "Smart Array E200i", &SA5_access},
123         {0x3214103C, "Smart Array E200i", &SA5_access},
124         {0x3215103C, "Smart Array E200i", &SA5_access},
125         {0x3237103C, "Smart Array E500", &SA5_access},
126         {0x3223103C, "Smart Array P800", &SA5_access},
127         {0x3234103C, "Smart Array P400", &SA5_access},
128         {0x323D103C, "Smart Array P700m", &SA5_access},
129 };
130
131 /* How long to wait (in milliseconds) for board to go into simple mode */
132 #define MAX_CONFIG_WAIT 30000
133 #define MAX_IOCTL_CONFIG_WAIT 1000
134
135 /*define how many times we will try a command because of bus resets */
136 #define MAX_CMD_RETRIES 3
137
138 #define MAX_CTLR        32
139
140 /* Originally cciss driver only supports 8 major numbers */
141 #define MAX_CTLR_ORIG   8
142
143 static ctlr_info_t *hba[MAX_CTLR];
144
145 static struct task_struct *cciss_scan_thread;
146 static DEFINE_MUTEX(scan_mutex);
147 static LIST_HEAD(scan_q);
148
149 static void do_cciss_request(struct request_queue *q);
150 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
151 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
152 static int cciss_open(struct block_device *bdev, fmode_t mode);
153 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
154 static int cciss_release(struct gendisk *disk, fmode_t mode);
155 static int do_ioctl(struct block_device *bdev, fmode_t mode,
156                     unsigned int cmd, unsigned long arg);
157 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
158                        unsigned int cmd, unsigned long arg);
159 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
160
161 static int cciss_revalidate(struct gendisk *disk);
162 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
163 static int deregister_disk(ctlr_info_t *h, int drv_index,
164                            int clear_all, int via_ioctl);
165
166 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
167                         sector_t *total_size, unsigned int *block_size);
168 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
169                         sector_t *total_size, unsigned int *block_size);
170 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
171                         sector_t total_size,
172                         unsigned int block_size, InquiryData_struct *inq_buff,
173                                    drive_info_struct *drv);
174 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
175 static void start_io(ctlr_info_t *h);
176 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
177                         __u8 page_code, unsigned char scsi3addr[],
178                         int cmd_type);
179 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
180         int attempt_retry);
181 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
182
183 static int add_to_scan_list(struct ctlr_info *h);
184 static int scan_thread(void *data);
185 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
186 static void cciss_hba_release(struct device *dev);
187 static void cciss_device_release(struct device *dev);
188 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
189 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
190 static inline u32 next_command(ctlr_info_t *h);
191 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
192         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
193         u64 *cfg_offset);
194 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
195         unsigned long *memory_bar);
196 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
197 static __devinit int write_driver_ver_to_cfgtable(
198         CfgTable_struct __iomem *cfgtable);
199
200 /* performant mode helper functions */
201 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
202                                 int *bucket_map);
203 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
204
205 #ifdef CONFIG_PROC_FS
206 static void cciss_procinit(ctlr_info_t *h);
207 #else
208 static void cciss_procinit(ctlr_info_t *h)
209 {
210 }
211 #endif                          /* CONFIG_PROC_FS */
212
213 #ifdef CONFIG_COMPAT
214 static int cciss_compat_ioctl(struct block_device *, fmode_t,
215                               unsigned, unsigned long);
216 #endif
217
218 static const struct block_device_operations cciss_fops = {
219         .owner = THIS_MODULE,
220         .open = cciss_unlocked_open,
221         .release = cciss_release,
222         .ioctl = do_ioctl,
223         .getgeo = cciss_getgeo,
224 #ifdef CONFIG_COMPAT
225         .compat_ioctl = cciss_compat_ioctl,
226 #endif
227         .revalidate_disk = cciss_revalidate,
228 };
229
230 /* set_performant_mode: Modify the tag for cciss performant
231  * set bit 0 for pull model, bits 3-1 for block fetch
232  * register number
233  */
234 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
235 {
236         if (likely(h->transMethod & CFGTBL_Trans_Performant))
237                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
238 }
239
240 /*
241  * Enqueuing and dequeuing functions for cmdlists.
242  */
243 static inline void addQ(struct list_head *list, CommandList_struct *c)
244 {
245         list_add_tail(&c->list, list);
246 }
247
248 static inline void removeQ(CommandList_struct *c)
249 {
250         /*
251          * After kexec/dump some commands might still
252          * be in flight, which the firmware will try
253          * to complete. Resetting the firmware doesn't work
254          * with old fw revisions, so we have to mark
255          * them off as 'stale' to prevent the driver from
256          * falling over.
257          */
258         if (WARN_ON(list_empty(&c->list))) {
259                 c->cmd_type = CMD_MSG_STALE;
260                 return;
261         }
262
263         list_del_init(&c->list);
264 }
265
266 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
267         CommandList_struct *c)
268 {
269         unsigned long flags;
270         set_performant_mode(h, c);
271         spin_lock_irqsave(&h->lock, flags);
272         addQ(&h->reqQ, c);
273         h->Qdepth++;
274         if (h->Qdepth > h->maxQsinceinit)
275                 h->maxQsinceinit = h->Qdepth;
276         start_io(h);
277         spin_unlock_irqrestore(&h->lock, flags);
278 }
279
280 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
281         int nr_cmds)
282 {
283         int i;
284
285         if (!cmd_sg_list)
286                 return;
287         for (i = 0; i < nr_cmds; i++) {
288                 kfree(cmd_sg_list[i]);
289                 cmd_sg_list[i] = NULL;
290         }
291         kfree(cmd_sg_list);
292 }
293
294 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
295         ctlr_info_t *h, int chainsize, int nr_cmds)
296 {
297         int j;
298         SGDescriptor_struct **cmd_sg_list;
299
300         if (chainsize <= 0)
301                 return NULL;
302
303         cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
304         if (!cmd_sg_list)
305                 return NULL;
306
307         /* Build up chain blocks for each command */
308         for (j = 0; j < nr_cmds; j++) {
309                 /* Need a block of chainsized s/g elements. */
310                 cmd_sg_list[j] = kmalloc((chainsize *
311                         sizeof(*cmd_sg_list[j])), GFP_KERNEL);
312                 if (!cmd_sg_list[j]) {
313                         dev_err(&h->pdev->dev, "Cannot get memory "
314                                 "for s/g chains.\n");
315                         goto clean;
316                 }
317         }
318         return cmd_sg_list;
319 clean:
320         cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
321         return NULL;
322 }
323
324 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
325 {
326         SGDescriptor_struct *chain_sg;
327         u64bit temp64;
328
329         if (c->Header.SGTotal <= h->max_cmd_sgentries)
330                 return;
331
332         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
333         temp64.val32.lower = chain_sg->Addr.lower;
334         temp64.val32.upper = chain_sg->Addr.upper;
335         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
336 }
337
338 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
339         SGDescriptor_struct *chain_block, int len)
340 {
341         SGDescriptor_struct *chain_sg;
342         u64bit temp64;
343
344         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
345         chain_sg->Ext = CCISS_SG_CHAIN;
346         chain_sg->Len = len;
347         temp64.val = pci_map_single(h->pdev, chain_block, len,
348                                 PCI_DMA_TODEVICE);
349         chain_sg->Addr.lower = temp64.val32.lower;
350         chain_sg->Addr.upper = temp64.val32.upper;
351 }
352
353 #include "cciss_scsi.c"         /* For SCSI tape support */
354
355 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
356         "UNKNOWN"
357 };
358 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
359
360 #ifdef CONFIG_PROC_FS
361
362 /*
363  * Report information about this controller.
364  */
365 #define ENG_GIG 1000000000
366 #define ENG_GIG_FACTOR (ENG_GIG/512)
367 #define ENGAGE_SCSI     "engage scsi"
368
369 static void cciss_seq_show_header(struct seq_file *seq)
370 {
371         ctlr_info_t *h = seq->private;
372
373         seq_printf(seq, "%s: HP %s Controller\n"
374                 "Board ID: 0x%08lx\n"
375                 "Firmware Version: %c%c%c%c\n"
376                 "IRQ: %d\n"
377                 "Logical drives: %d\n"
378                 "Current Q depth: %d\n"
379                 "Current # commands on controller: %d\n"
380                 "Max Q depth since init: %d\n"
381                 "Max # commands on controller since init: %d\n"
382                 "Max SG entries since init: %d\n",
383                 h->devname,
384                 h->product_name,
385                 (unsigned long)h->board_id,
386                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
387                 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
388                 h->num_luns,
389                 h->Qdepth, h->commands_outstanding,
390                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
391
392 #ifdef CONFIG_CISS_SCSI_TAPE
393         cciss_seq_tape_report(seq, h);
394 #endif /* CONFIG_CISS_SCSI_TAPE */
395 }
396
397 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
398 {
399         ctlr_info_t *h = seq->private;
400         unsigned long flags;
401
402         /* prevent displaying bogus info during configuration
403          * or deconfiguration of a logical volume
404          */
405         spin_lock_irqsave(&h->lock, flags);
406         if (h->busy_configuring) {
407                 spin_unlock_irqrestore(&h->lock, flags);
408                 return ERR_PTR(-EBUSY);
409         }
410         h->busy_configuring = 1;
411         spin_unlock_irqrestore(&h->lock, flags);
412
413         if (*pos == 0)
414                 cciss_seq_show_header(seq);
415
416         return pos;
417 }
418
419 static int cciss_seq_show(struct seq_file *seq, void *v)
420 {
421         sector_t vol_sz, vol_sz_frac;
422         ctlr_info_t *h = seq->private;
423         unsigned ctlr = h->ctlr;
424         loff_t *pos = v;
425         drive_info_struct *drv = h->drv[*pos];
426
427         if (*pos > h->highest_lun)
428                 return 0;
429
430         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
431                 return 0;
432
433         if (drv->heads == 0)
434                 return 0;
435
436         vol_sz = drv->nr_blocks;
437         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
438         vol_sz_frac *= 100;
439         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
440
441         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
442                 drv->raid_level = RAID_UNKNOWN;
443         seq_printf(seq, "cciss/c%dd%d:"
444                         "\t%4u.%02uGB\tRAID %s\n",
445                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
446                         raid_label[drv->raid_level]);
447         return 0;
448 }
449
450 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
451 {
452         ctlr_info_t *h = seq->private;
453
454         if (*pos > h->highest_lun)
455                 return NULL;
456         *pos += 1;
457
458         return pos;
459 }
460
461 static void cciss_seq_stop(struct seq_file *seq, void *v)
462 {
463         ctlr_info_t *h = seq->private;
464
465         /* Only reset h->busy_configuring if we succeeded in setting
466          * it during cciss_seq_start. */
467         if (v == ERR_PTR(-EBUSY))
468                 return;
469
470         h->busy_configuring = 0;
471 }
472
473 static const struct seq_operations cciss_seq_ops = {
474         .start = cciss_seq_start,
475         .show  = cciss_seq_show,
476         .next  = cciss_seq_next,
477         .stop  = cciss_seq_stop,
478 };
479
480 static int cciss_seq_open(struct inode *inode, struct file *file)
481 {
482         int ret = seq_open(file, &cciss_seq_ops);
483         struct seq_file *seq = file->private_data;
484
485         if (!ret)
486                 seq->private = PDE(inode)->data;
487
488         return ret;
489 }
490
491 static ssize_t
492 cciss_proc_write(struct file *file, const char __user *buf,
493                  size_t length, loff_t *ppos)
494 {
495         int err;
496         char *buffer;
497
498 #ifndef CONFIG_CISS_SCSI_TAPE
499         return -EINVAL;
500 #endif
501
502         if (!buf || length > PAGE_SIZE - 1)
503                 return -EINVAL;
504
505         buffer = (char *)__get_free_page(GFP_KERNEL);
506         if (!buffer)
507                 return -ENOMEM;
508
509         err = -EFAULT;
510         if (copy_from_user(buffer, buf, length))
511                 goto out;
512         buffer[length] = '\0';
513
514 #ifdef CONFIG_CISS_SCSI_TAPE
515         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
516                 struct seq_file *seq = file->private_data;
517                 ctlr_info_t *h = seq->private;
518
519                 err = cciss_engage_scsi(h);
520                 if (err == 0)
521                         err = length;
522         } else
523 #endif /* CONFIG_CISS_SCSI_TAPE */
524                 err = -EINVAL;
525         /* might be nice to have "disengage" too, but it's not
526            safely possible. (only 1 module use count, lock issues.) */
527
528 out:
529         free_page((unsigned long)buffer);
530         return err;
531 }
532
533 static const struct file_operations cciss_proc_fops = {
534         .owner   = THIS_MODULE,
535         .open    = cciss_seq_open,
536         .read    = seq_read,
537         .llseek  = seq_lseek,
538         .release = seq_release,
539         .write   = cciss_proc_write,
540 };
541
542 static void __devinit cciss_procinit(ctlr_info_t *h)
543 {
544         struct proc_dir_entry *pde;
545
546         if (proc_cciss == NULL)
547                 proc_cciss = proc_mkdir("driver/cciss", NULL);
548         if (!proc_cciss)
549                 return;
550         pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
551                                         S_IROTH, proc_cciss,
552                                         &cciss_proc_fops, h);
553 }
554 #endif                          /* CONFIG_PROC_FS */
555
556 #define MAX_PRODUCT_NAME_LEN 19
557
558 #define to_hba(n) container_of(n, struct ctlr_info, dev)
559 #define to_drv(n) container_of(n, drive_info_struct, dev)
560
561 /* List of controllers which cannot be reset on kexec with reset_devices */
562 static u32 unresettable_controller[] = {
563         0x324a103C, /* Smart Array P712m */
564         0x324b103C, /* SmartArray P711m */
565         0x3223103C, /* Smart Array P800 */
566         0x3234103C, /* Smart Array P400 */
567         0x3235103C, /* Smart Array P400i */
568         0x3211103C, /* Smart Array E200i */
569         0x3212103C, /* Smart Array E200 */
570         0x3213103C, /* Smart Array E200i */
571         0x3214103C, /* Smart Array E200i */
572         0x3215103C, /* Smart Array E200i */
573         0x3237103C, /* Smart Array E500 */
574         0x323D103C, /* Smart Array P700m */
575         0x409C0E11, /* Smart Array 6400 */
576         0x409D0E11, /* Smart Array 6400 EM */
577 };
578
579 static int ctlr_is_resettable(struct ctlr_info *h)
580 {
581         int i;
582
583         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
584                 if (unresettable_controller[i] == h->board_id)
585                         return 0;
586         return 1;
587 }
588
589 static ssize_t host_show_resettable(struct device *dev,
590                                     struct device_attribute *attr,
591                                     char *buf)
592 {
593         struct ctlr_info *h = to_hba(dev);
594
595         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
596 }
597 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
598
599 static ssize_t host_store_rescan(struct device *dev,
600                                  struct device_attribute *attr,
601                                  const char *buf, size_t count)
602 {
603         struct ctlr_info *h = to_hba(dev);
604
605         add_to_scan_list(h);
606         wake_up_process(cciss_scan_thread);
607         wait_for_completion_interruptible(&h->scan_wait);
608
609         return count;
610 }
611 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
612
613 static ssize_t dev_show_unique_id(struct device *dev,
614                                  struct device_attribute *attr,
615                                  char *buf)
616 {
617         drive_info_struct *drv = to_drv(dev);
618         struct ctlr_info *h = to_hba(drv->dev.parent);
619         __u8 sn[16];
620         unsigned long flags;
621         int ret = 0;
622
623         spin_lock_irqsave(&h->lock, flags);
624         if (h->busy_configuring)
625                 ret = -EBUSY;
626         else
627                 memcpy(sn, drv->serial_no, sizeof(sn));
628         spin_unlock_irqrestore(&h->lock, flags);
629
630         if (ret)
631                 return ret;
632         else
633                 return snprintf(buf, 16 * 2 + 2,
634                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
635                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
636                                 sn[0], sn[1], sn[2], sn[3],
637                                 sn[4], sn[5], sn[6], sn[7],
638                                 sn[8], sn[9], sn[10], sn[11],
639                                 sn[12], sn[13], sn[14], sn[15]);
640 }
641 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
642
643 static ssize_t dev_show_vendor(struct device *dev,
644                                struct device_attribute *attr,
645                                char *buf)
646 {
647         drive_info_struct *drv = to_drv(dev);
648         struct ctlr_info *h = to_hba(drv->dev.parent);
649         char vendor[VENDOR_LEN + 1];
650         unsigned long flags;
651         int ret = 0;
652
653         spin_lock_irqsave(&h->lock, flags);
654         if (h->busy_configuring)
655                 ret = -EBUSY;
656         else
657                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
658         spin_unlock_irqrestore(&h->lock, flags);
659
660         if (ret)
661                 return ret;
662         else
663                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
664 }
665 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
666
667 static ssize_t dev_show_model(struct device *dev,
668                               struct device_attribute *attr,
669                               char *buf)
670 {
671         drive_info_struct *drv = to_drv(dev);
672         struct ctlr_info *h = to_hba(drv->dev.parent);
673         char model[MODEL_LEN + 1];
674         unsigned long flags;
675         int ret = 0;
676
677         spin_lock_irqsave(&h->lock, flags);
678         if (h->busy_configuring)
679                 ret = -EBUSY;
680         else
681                 memcpy(model, drv->model, MODEL_LEN + 1);
682         spin_unlock_irqrestore(&h->lock, flags);
683
684         if (ret)
685                 return ret;
686         else
687                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
688 }
689 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
690
691 static ssize_t dev_show_rev(struct device *dev,
692                             struct device_attribute *attr,
693                             char *buf)
694 {
695         drive_info_struct *drv = to_drv(dev);
696         struct ctlr_info *h = to_hba(drv->dev.parent);
697         char rev[REV_LEN + 1];
698         unsigned long flags;
699         int ret = 0;
700
701         spin_lock_irqsave(&h->lock, flags);
702         if (h->busy_configuring)
703                 ret = -EBUSY;
704         else
705                 memcpy(rev, drv->rev, REV_LEN + 1);
706         spin_unlock_irqrestore(&h->lock, flags);
707
708         if (ret)
709                 return ret;
710         else
711                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
712 }
713 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
714
715 static ssize_t cciss_show_lunid(struct device *dev,
716                                 struct device_attribute *attr, char *buf)
717 {
718         drive_info_struct *drv = to_drv(dev);
719         struct ctlr_info *h = to_hba(drv->dev.parent);
720         unsigned long flags;
721         unsigned char lunid[8];
722
723         spin_lock_irqsave(&h->lock, flags);
724         if (h->busy_configuring) {
725                 spin_unlock_irqrestore(&h->lock, flags);
726                 return -EBUSY;
727         }
728         if (!drv->heads) {
729                 spin_unlock_irqrestore(&h->lock, flags);
730                 return -ENOTTY;
731         }
732         memcpy(lunid, drv->LunID, sizeof(lunid));
733         spin_unlock_irqrestore(&h->lock, flags);
734         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
735                 lunid[0], lunid[1], lunid[2], lunid[3],
736                 lunid[4], lunid[5], lunid[6], lunid[7]);
737 }
738 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
739
740 static ssize_t cciss_show_raid_level(struct device *dev,
741                                      struct device_attribute *attr, char *buf)
742 {
743         drive_info_struct *drv = to_drv(dev);
744         struct ctlr_info *h = to_hba(drv->dev.parent);
745         int raid;
746         unsigned long flags;
747
748         spin_lock_irqsave(&h->lock, flags);
749         if (h->busy_configuring) {
750                 spin_unlock_irqrestore(&h->lock, flags);
751                 return -EBUSY;
752         }
753         raid = drv->raid_level;
754         spin_unlock_irqrestore(&h->lock, flags);
755         if (raid < 0 || raid > RAID_UNKNOWN)
756                 raid = RAID_UNKNOWN;
757
758         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
759                         raid_label[raid]);
760 }
761 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
762
763 static ssize_t cciss_show_usage_count(struct device *dev,
764                                       struct device_attribute *attr, char *buf)
765 {
766         drive_info_struct *drv = to_drv(dev);
767         struct ctlr_info *h = to_hba(drv->dev.parent);
768         unsigned long flags;
769         int count;
770
771         spin_lock_irqsave(&h->lock, flags);
772         if (h->busy_configuring) {
773                 spin_unlock_irqrestore(&h->lock, flags);
774                 return -EBUSY;
775         }
776         count = drv->usage_count;
777         spin_unlock_irqrestore(&h->lock, flags);
778         return snprintf(buf, 20, "%d\n", count);
779 }
780 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
781
782 static struct attribute *cciss_host_attrs[] = {
783         &dev_attr_rescan.attr,
784         &dev_attr_resettable.attr,
785         NULL
786 };
787
788 static struct attribute_group cciss_host_attr_group = {
789         .attrs = cciss_host_attrs,
790 };
791
792 static const struct attribute_group *cciss_host_attr_groups[] = {
793         &cciss_host_attr_group,
794         NULL
795 };
796
797 static struct device_type cciss_host_type = {
798         .name           = "cciss_host",
799         .groups         = cciss_host_attr_groups,
800         .release        = cciss_hba_release,
801 };
802
803 static struct attribute *cciss_dev_attrs[] = {
804         &dev_attr_unique_id.attr,
805         &dev_attr_model.attr,
806         &dev_attr_vendor.attr,
807         &dev_attr_rev.attr,
808         &dev_attr_lunid.attr,
809         &dev_attr_raid_level.attr,
810         &dev_attr_usage_count.attr,
811         NULL
812 };
813
814 static struct attribute_group cciss_dev_attr_group = {
815         .attrs = cciss_dev_attrs,
816 };
817
818 static const struct attribute_group *cciss_dev_attr_groups[] = {
819         &cciss_dev_attr_group,
820         NULL
821 };
822
823 static struct device_type cciss_dev_type = {
824         .name           = "cciss_device",
825         .groups         = cciss_dev_attr_groups,
826         .release        = cciss_device_release,
827 };
828
829 static struct bus_type cciss_bus_type = {
830         .name           = "cciss",
831 };
832
833 /*
834  * cciss_hba_release is called when the reference count
835  * of h->dev goes to zero.
836  */
837 static void cciss_hba_release(struct device *dev)
838 {
839         /*
840          * nothing to do, but need this to avoid a warning
841          * about not having a release handler from lib/kref.c.
842          */
843 }
844
845 /*
846  * Initialize sysfs entry for each controller.  This sets up and registers
847  * the 'cciss#' directory for each individual controller under
848  * /sys/bus/pci/devices/<dev>/.
849  */
850 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
851 {
852         device_initialize(&h->dev);
853         h->dev.type = &cciss_host_type;
854         h->dev.bus = &cciss_bus_type;
855         dev_set_name(&h->dev, "%s", h->devname);
856         h->dev.parent = &h->pdev->dev;
857
858         return device_add(&h->dev);
859 }
860
861 /*
862  * Remove sysfs entries for an hba.
863  */
864 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
865 {
866         device_del(&h->dev);
867         put_device(&h->dev); /* final put. */
868 }
869
870 /* cciss_device_release is called when the reference count
871  * of h->drv[x]dev goes to zero.
872  */
873 static void cciss_device_release(struct device *dev)
874 {
875         drive_info_struct *drv = to_drv(dev);
876         kfree(drv);
877 }
878
879 /*
880  * Initialize sysfs for each logical drive.  This sets up and registers
881  * the 'c#d#' directory for each individual logical drive under
882  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
883  * /sys/block/cciss!c#d# to this entry.
884  */
885 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
886                                        int drv_index)
887 {
888         struct device *dev;
889
890         if (h->drv[drv_index]->device_initialized)
891                 return 0;
892
893         dev = &h->drv[drv_index]->dev;
894         device_initialize(dev);
895         dev->type = &cciss_dev_type;
896         dev->bus = &cciss_bus_type;
897         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
898         dev->parent = &h->dev;
899         h->drv[drv_index]->device_initialized = 1;
900         return device_add(dev);
901 }
902
903 /*
904  * Remove sysfs entries for a logical drive.
905  */
906 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
907         int ctlr_exiting)
908 {
909         struct device *dev = &h->drv[drv_index]->dev;
910
911         /* special case for c*d0, we only destroy it on controller exit */
912         if (drv_index == 0 && !ctlr_exiting)
913                 return;
914
915         device_del(dev);
916         put_device(dev); /* the "final" put. */
917         h->drv[drv_index] = NULL;
918 }
919
920 /*
921  * For operations that cannot sleep, a command block is allocated at init,
922  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
923  * which ones are free or in use.
924  */
925 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
926 {
927         CommandList_struct *c;
928         int i;
929         u64bit temp64;
930         dma_addr_t cmd_dma_handle, err_dma_handle;
931
932         do {
933                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
934                 if (i == h->nr_cmds)
935                         return NULL;
936         } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
937                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
938         c = h->cmd_pool + i;
939         memset(c, 0, sizeof(CommandList_struct));
940         cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
941         c->err_info = h->errinfo_pool + i;
942         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
943         err_dma_handle = h->errinfo_pool_dhandle
944             + i * sizeof(ErrorInfo_struct);
945         h->nr_allocs++;
946
947         c->cmdindex = i;
948
949         INIT_LIST_HEAD(&c->list);
950         c->busaddr = (__u32) cmd_dma_handle;
951         temp64.val = (__u64) err_dma_handle;
952         c->ErrDesc.Addr.lower = temp64.val32.lower;
953         c->ErrDesc.Addr.upper = temp64.val32.upper;
954         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
955
956         c->ctlr = h->ctlr;
957         return c;
958 }
959
960 /* allocate a command using pci_alloc_consistent, used for ioctls,
961  * etc., not for the main i/o path.
962  */
963 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
964 {
965         CommandList_struct *c;
966         u64bit temp64;
967         dma_addr_t cmd_dma_handle, err_dma_handle;
968
969         c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
970                 sizeof(CommandList_struct), &cmd_dma_handle);
971         if (c == NULL)
972                 return NULL;
973         memset(c, 0, sizeof(CommandList_struct));
974
975         c->cmdindex = -1;
976
977         c->err_info = (ErrorInfo_struct *)
978             pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
979                     &err_dma_handle);
980
981         if (c->err_info == NULL) {
982                 pci_free_consistent(h->pdev,
983                         sizeof(CommandList_struct), c, cmd_dma_handle);
984                 return NULL;
985         }
986         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
987
988         INIT_LIST_HEAD(&c->list);
989         c->busaddr = (__u32) cmd_dma_handle;
990         temp64.val = (__u64) err_dma_handle;
991         c->ErrDesc.Addr.lower = temp64.val32.lower;
992         c->ErrDesc.Addr.upper = temp64.val32.upper;
993         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
994
995         c->ctlr = h->ctlr;
996         return c;
997 }
998
999 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1000 {
1001         int i;
1002
1003         i = c - h->cmd_pool;
1004         clear_bit(i & (BITS_PER_LONG - 1),
1005                   h->cmd_pool_bits + (i / BITS_PER_LONG));
1006         h->nr_frees++;
1007 }
1008
1009 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1010 {
1011         u64bit temp64;
1012
1013         temp64.val32.lower = c->ErrDesc.Addr.lower;
1014         temp64.val32.upper = c->ErrDesc.Addr.upper;
1015         pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1016                             c->err_info, (dma_addr_t) temp64.val);
1017         pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1018                 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1019 }
1020
1021 static inline ctlr_info_t *get_host(struct gendisk *disk)
1022 {
1023         return disk->queue->queuedata;
1024 }
1025
1026 static inline drive_info_struct *get_drv(struct gendisk *disk)
1027 {
1028         return disk->private_data;
1029 }
1030
1031 /*
1032  * Open.  Make sure the device is really there.
1033  */
1034 static int cciss_open(struct block_device *bdev, fmode_t mode)
1035 {
1036         ctlr_info_t *h = get_host(bdev->bd_disk);
1037         drive_info_struct *drv = get_drv(bdev->bd_disk);
1038
1039         dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1040         if (drv->busy_configuring)
1041                 return -EBUSY;
1042         /*
1043          * Root is allowed to open raw volume zero even if it's not configured
1044          * so array config can still work. Root is also allowed to open any
1045          * volume that has a LUN ID, so it can issue IOCTL to reread the
1046          * disk information.  I don't think I really like this
1047          * but I'm already using way to many device nodes to claim another one
1048          * for "raw controller".
1049          */
1050         if (drv->heads == 0) {
1051                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1052                         /* if not node 0 make sure it is a partition = 0 */
1053                         if (MINOR(bdev->bd_dev) & 0x0f) {
1054                                 return -ENXIO;
1055                                 /* if it is, make sure we have a LUN ID */
1056                         } else if (memcmp(drv->LunID, CTLR_LUNID,
1057                                 sizeof(drv->LunID))) {
1058                                 return -ENXIO;
1059                         }
1060                 }
1061                 if (!capable(CAP_SYS_ADMIN))
1062                         return -EPERM;
1063         }
1064         drv->usage_count++;
1065         h->usage_count++;
1066         return 0;
1067 }
1068
1069 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1070 {
1071         int ret;
1072
1073         mutex_lock(&cciss_mutex);
1074         ret = cciss_open(bdev, mode);
1075         mutex_unlock(&cciss_mutex);
1076
1077         return ret;
1078 }
1079
1080 /*
1081  * Close.  Sync first.
1082  */
1083 static int cciss_release(struct gendisk *disk, fmode_t mode)
1084 {
1085         ctlr_info_t *h;
1086         drive_info_struct *drv;
1087
1088         mutex_lock(&cciss_mutex);
1089         h = get_host(disk);
1090         drv = get_drv(disk);
1091         dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1092         drv->usage_count--;
1093         h->usage_count--;
1094         mutex_unlock(&cciss_mutex);
1095         return 0;
1096 }
1097
1098 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1099                     unsigned cmd, unsigned long arg)
1100 {
1101         int ret;
1102         mutex_lock(&cciss_mutex);
1103         ret = cciss_ioctl(bdev, mode, cmd, arg);
1104         mutex_unlock(&cciss_mutex);
1105         return ret;
1106 }
1107
1108 #ifdef CONFIG_COMPAT
1109
1110 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1111                                   unsigned cmd, unsigned long arg);
1112 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1113                                       unsigned cmd, unsigned long arg);
1114
1115 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1116                               unsigned cmd, unsigned long arg)
1117 {
1118         switch (cmd) {
1119         case CCISS_GETPCIINFO:
1120         case CCISS_GETINTINFO:
1121         case CCISS_SETINTINFO:
1122         case CCISS_GETNODENAME:
1123         case CCISS_SETNODENAME:
1124         case CCISS_GETHEARTBEAT:
1125         case CCISS_GETBUSTYPES:
1126         case CCISS_GETFIRMVER:
1127         case CCISS_GETDRIVVER:
1128         case CCISS_REVALIDVOLS:
1129         case CCISS_DEREGDISK:
1130         case CCISS_REGNEWDISK:
1131         case CCISS_REGNEWD:
1132         case CCISS_RESCANDISK:
1133         case CCISS_GETLUNINFO:
1134                 return do_ioctl(bdev, mode, cmd, arg);
1135
1136         case CCISS_PASSTHRU32:
1137                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1138         case CCISS_BIG_PASSTHRU32:
1139                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1140
1141         default:
1142                 return -ENOIOCTLCMD;
1143         }
1144 }
1145
1146 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1147                                   unsigned cmd, unsigned long arg)
1148 {
1149         IOCTL32_Command_struct __user *arg32 =
1150             (IOCTL32_Command_struct __user *) arg;
1151         IOCTL_Command_struct arg64;
1152         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1153         int err;
1154         u32 cp;
1155
1156         err = 0;
1157         err |=
1158             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1159                            sizeof(arg64.LUN_info));
1160         err |=
1161             copy_from_user(&arg64.Request, &arg32->Request,
1162                            sizeof(arg64.Request));
1163         err |=
1164             copy_from_user(&arg64.error_info, &arg32->error_info,
1165                            sizeof(arg64.error_info));
1166         err |= get_user(arg64.buf_size, &arg32->buf_size);
1167         err |= get_user(cp, &arg32->buf);
1168         arg64.buf = compat_ptr(cp);
1169         err |= copy_to_user(p, &arg64, sizeof(arg64));
1170
1171         if (err)
1172                 return -EFAULT;
1173
1174         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1175         if (err)
1176                 return err;
1177         err |=
1178             copy_in_user(&arg32->error_info, &p->error_info,
1179                          sizeof(arg32->error_info));
1180         if (err)
1181                 return -EFAULT;
1182         return err;
1183 }
1184
1185 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1186                                       unsigned cmd, unsigned long arg)
1187 {
1188         BIG_IOCTL32_Command_struct __user *arg32 =
1189             (BIG_IOCTL32_Command_struct __user *) arg;
1190         BIG_IOCTL_Command_struct arg64;
1191         BIG_IOCTL_Command_struct __user *p =
1192             compat_alloc_user_space(sizeof(arg64));
1193         int err;
1194         u32 cp;
1195
1196         memset(&arg64, 0, sizeof(arg64));
1197         err = 0;
1198         err |=
1199             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1200                            sizeof(arg64.LUN_info));
1201         err |=
1202             copy_from_user(&arg64.Request, &arg32->Request,
1203                            sizeof(arg64.Request));
1204         err |=
1205             copy_from_user(&arg64.error_info, &arg32->error_info,
1206                            sizeof(arg64.error_info));
1207         err |= get_user(arg64.buf_size, &arg32->buf_size);
1208         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1209         err |= get_user(cp, &arg32->buf);
1210         arg64.buf = compat_ptr(cp);
1211         err |= copy_to_user(p, &arg64, sizeof(arg64));
1212
1213         if (err)
1214                 return -EFAULT;
1215
1216         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1217         if (err)
1218                 return err;
1219         err |=
1220             copy_in_user(&arg32->error_info, &p->error_info,
1221                          sizeof(arg32->error_info));
1222         if (err)
1223                 return -EFAULT;
1224         return err;
1225 }
1226 #endif
1227
1228 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1229 {
1230         drive_info_struct *drv = get_drv(bdev->bd_disk);
1231
1232         if (!drv->cylinders)
1233                 return -ENXIO;
1234
1235         geo->heads = drv->heads;
1236         geo->sectors = drv->sectors;
1237         geo->cylinders = drv->cylinders;
1238         return 0;
1239 }
1240
1241 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1242 {
1243         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1244                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1245                 (void)check_for_unit_attention(h, c);
1246 }
1247
1248 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1249 {
1250         cciss_pci_info_struct pciinfo;
1251
1252         if (!argp)
1253                 return -EINVAL;
1254         pciinfo.domain = pci_domain_nr(h->pdev->bus);
1255         pciinfo.bus = h->pdev->bus->number;
1256         pciinfo.dev_fn = h->pdev->devfn;
1257         pciinfo.board_id = h->board_id;
1258         if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1259                 return -EFAULT;
1260         return 0;
1261 }
1262
1263 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1264 {
1265         cciss_coalint_struct intinfo;
1266
1267         if (!argp)
1268                 return -EINVAL;
1269         intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1270         intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1271         if (copy_to_user
1272             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1273                 return -EFAULT;
1274         return 0;
1275 }
1276
1277 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1278 {
1279         cciss_coalint_struct intinfo;
1280         unsigned long flags;
1281         int i;
1282
1283         if (!argp)
1284                 return -EINVAL;
1285         if (!capable(CAP_SYS_ADMIN))
1286                 return -EPERM;
1287         if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1288                 return -EFAULT;
1289         if ((intinfo.delay == 0) && (intinfo.count == 0))
1290                 return -EINVAL;
1291         spin_lock_irqsave(&h->lock, flags);
1292         /* Update the field, and then ring the doorbell */
1293         writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1294         writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1295         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1296
1297         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1298                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1299                         break;
1300                 udelay(1000); /* delay and try again */
1301         }
1302         spin_unlock_irqrestore(&h->lock, flags);
1303         if (i >= MAX_IOCTL_CONFIG_WAIT)
1304                 return -EAGAIN;
1305         return 0;
1306 }
1307
1308 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1309 {
1310         NodeName_type NodeName;
1311         int i;
1312
1313         if (!argp)
1314                 return -EINVAL;
1315         for (i = 0; i < 16; i++)
1316                 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1317         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1318                 return -EFAULT;
1319         return 0;
1320 }
1321
1322 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1323 {
1324         NodeName_type NodeName;
1325         unsigned long flags;
1326         int i;
1327
1328         if (!argp)
1329                 return -EINVAL;
1330         if (!capable(CAP_SYS_ADMIN))
1331                 return -EPERM;
1332         if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1333                 return -EFAULT;
1334         spin_lock_irqsave(&h->lock, flags);
1335         /* Update the field, and then ring the doorbell */
1336         for (i = 0; i < 16; i++)
1337                 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1338         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1339         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1340                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1341                         break;
1342                 udelay(1000); /* delay and try again */
1343         }
1344         spin_unlock_irqrestore(&h->lock, flags);
1345         if (i >= MAX_IOCTL_CONFIG_WAIT)
1346                 return -EAGAIN;
1347         return 0;
1348 }
1349
1350 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1351 {
1352         Heartbeat_type heartbeat;
1353
1354         if (!argp)
1355                 return -EINVAL;
1356         heartbeat = readl(&h->cfgtable->HeartBeat);
1357         if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1358                 return -EFAULT;
1359         return 0;
1360 }
1361
1362 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1363 {
1364         BusTypes_type BusTypes;
1365
1366         if (!argp)
1367                 return -EINVAL;
1368         BusTypes = readl(&h->cfgtable->BusTypes);
1369         if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1370                 return -EFAULT;
1371         return 0;
1372 }
1373
1374 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1375 {
1376         FirmwareVer_type firmware;
1377
1378         if (!argp)
1379                 return -EINVAL;
1380         memcpy(firmware, h->firm_ver, 4);
1381
1382         if (copy_to_user
1383             (argp, firmware, sizeof(FirmwareVer_type)))
1384                 return -EFAULT;
1385         return 0;
1386 }
1387
1388 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1389 {
1390         DriverVer_type DriverVer = DRIVER_VERSION;
1391
1392         if (!argp)
1393                 return -EINVAL;
1394         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1395                 return -EFAULT;
1396         return 0;
1397 }
1398
1399 static int cciss_getluninfo(ctlr_info_t *h,
1400         struct gendisk *disk, void __user *argp)
1401 {
1402         LogvolInfo_struct luninfo;
1403         drive_info_struct *drv = get_drv(disk);
1404
1405         if (!argp)
1406                 return -EINVAL;
1407         memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1408         luninfo.num_opens = drv->usage_count;
1409         luninfo.num_parts = 0;
1410         if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1411                 return -EFAULT;
1412         return 0;
1413 }
1414
1415 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1416 {
1417         IOCTL_Command_struct iocommand;
1418         CommandList_struct *c;
1419         char *buff = NULL;
1420         u64bit temp64;
1421         DECLARE_COMPLETION_ONSTACK(wait);
1422
1423         if (!argp)
1424                 return -EINVAL;
1425
1426         if (!capable(CAP_SYS_RAWIO))
1427                 return -EPERM;
1428
1429         if (copy_from_user
1430             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1431                 return -EFAULT;
1432         if ((iocommand.buf_size < 1) &&
1433             (iocommand.Request.Type.Direction != XFER_NONE)) {
1434                 return -EINVAL;
1435         }
1436         if (iocommand.buf_size > 0) {
1437                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1438                 if (buff == NULL)
1439                         return -EFAULT;
1440         }
1441         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1442                 /* Copy the data into the buffer we created */
1443                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1444                         kfree(buff);
1445                         return -EFAULT;
1446                 }
1447         } else {
1448                 memset(buff, 0, iocommand.buf_size);
1449         }
1450         c = cmd_special_alloc(h);
1451         if (!c) {
1452                 kfree(buff);
1453                 return -ENOMEM;
1454         }
1455         /* Fill in the command type */
1456         c->cmd_type = CMD_IOCTL_PEND;
1457         /* Fill in Command Header */
1458         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1459         if (iocommand.buf_size > 0) { /* buffer to fill */
1460                 c->Header.SGList = 1;
1461                 c->Header.SGTotal = 1;
1462         } else { /* no buffers to fill */
1463                 c->Header.SGList = 0;
1464                 c->Header.SGTotal = 0;
1465         }
1466         c->Header.LUN = iocommand.LUN_info;
1467         /* use the kernel address the cmd block for tag */
1468         c->Header.Tag.lower = c->busaddr;
1469
1470         /* Fill in Request block */
1471         c->Request = iocommand.Request;
1472
1473         /* Fill in the scatter gather information */
1474         if (iocommand.buf_size > 0) {
1475                 temp64.val = pci_map_single(h->pdev, buff,
1476                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1477                 c->SG[0].Addr.lower = temp64.val32.lower;
1478                 c->SG[0].Addr.upper = temp64.val32.upper;
1479                 c->SG[0].Len = iocommand.buf_size;
1480                 c->SG[0].Ext = 0;  /* we are not chaining */
1481         }
1482         c->waiting = &wait;
1483
1484         enqueue_cmd_and_start_io(h, c);
1485         wait_for_completion(&wait);
1486
1487         /* unlock the buffers from DMA */
1488         temp64.val32.lower = c->SG[0].Addr.lower;
1489         temp64.val32.upper = c->SG[0].Addr.upper;
1490         pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1491                          PCI_DMA_BIDIRECTIONAL);
1492         check_ioctl_unit_attention(h, c);
1493
1494         /* Copy the error information out */
1495         iocommand.error_info = *(c->err_info);
1496         if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1497                 kfree(buff);
1498                 cmd_special_free(h, c);
1499                 return -EFAULT;
1500         }
1501
1502         if (iocommand.Request.Type.Direction == XFER_READ) {
1503                 /* Copy the data out of the buffer we created */
1504                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1505                         kfree(buff);
1506                         cmd_special_free(h, c);
1507                         return -EFAULT;
1508                 }
1509         }
1510         kfree(buff);
1511         cmd_special_free(h, c);
1512         return 0;
1513 }
1514
1515 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1516 {
1517         BIG_IOCTL_Command_struct *ioc;
1518         CommandList_struct *c;
1519         unsigned char **buff = NULL;
1520         int *buff_size = NULL;
1521         u64bit temp64;
1522         BYTE sg_used = 0;
1523         int status = 0;
1524         int i;
1525         DECLARE_COMPLETION_ONSTACK(wait);
1526         __u32 left;
1527         __u32 sz;
1528         BYTE __user *data_ptr;
1529
1530         if (!argp)
1531                 return -EINVAL;
1532         if (!capable(CAP_SYS_RAWIO))
1533                 return -EPERM;
1534         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1535         if (!ioc) {
1536                 status = -ENOMEM;
1537                 goto cleanup1;
1538         }
1539         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1540                 status = -EFAULT;
1541                 goto cleanup1;
1542         }
1543         if ((ioc->buf_size < 1) &&
1544             (ioc->Request.Type.Direction != XFER_NONE)) {
1545                 status = -EINVAL;
1546                 goto cleanup1;
1547         }
1548         /* Check kmalloc limits  using all SGs */
1549         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1550                 status = -EINVAL;
1551                 goto cleanup1;
1552         }
1553         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1554                 status = -EINVAL;
1555                 goto cleanup1;
1556         }
1557         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1558         if (!buff) {
1559                 status = -ENOMEM;
1560                 goto cleanup1;
1561         }
1562         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1563         if (!buff_size) {
1564                 status = -ENOMEM;
1565                 goto cleanup1;
1566         }
1567         left = ioc->buf_size;
1568         data_ptr = ioc->buf;
1569         while (left) {
1570                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1571                 buff_size[sg_used] = sz;
1572                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1573                 if (buff[sg_used] == NULL) {
1574                         status = -ENOMEM;
1575                         goto cleanup1;
1576                 }
1577                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1578                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1579                                 status = -EFAULT;
1580                                 goto cleanup1;
1581                         }
1582                 } else {
1583                         memset(buff[sg_used], 0, sz);
1584                 }
1585                 left -= sz;
1586                 data_ptr += sz;
1587                 sg_used++;
1588         }
1589         c = cmd_special_alloc(h);
1590         if (!c) {
1591                 status = -ENOMEM;
1592                 goto cleanup1;
1593         }
1594         c->cmd_type = CMD_IOCTL_PEND;
1595         c->Header.ReplyQueue = 0;
1596         c->Header.SGList = sg_used;
1597         c->Header.SGTotal = sg_used;
1598         c->Header.LUN = ioc->LUN_info;
1599         c->Header.Tag.lower = c->busaddr;
1600
1601         c->Request = ioc->Request;
1602         for (i = 0; i < sg_used; i++) {
1603                 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1604                                     PCI_DMA_BIDIRECTIONAL);
1605                 c->SG[i].Addr.lower = temp64.val32.lower;
1606                 c->SG[i].Addr.upper = temp64.val32.upper;
1607                 c->SG[i].Len = buff_size[i];
1608                 c->SG[i].Ext = 0;       /* we are not chaining */
1609         }
1610         c->waiting = &wait;
1611         enqueue_cmd_and_start_io(h, c);
1612         wait_for_completion(&wait);
1613         /* unlock the buffers from DMA */
1614         for (i = 0; i < sg_used; i++) {
1615                 temp64.val32.lower = c->SG[i].Addr.lower;
1616                 temp64.val32.upper = c->SG[i].Addr.upper;
1617                 pci_unmap_single(h->pdev,
1618                         (dma_addr_t) temp64.val, buff_size[i],
1619                         PCI_DMA_BIDIRECTIONAL);
1620         }
1621         check_ioctl_unit_attention(h, c);
1622         /* Copy the error information out */
1623         ioc->error_info = *(c->err_info);
1624         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1625                 cmd_special_free(h, c);
1626                 status = -EFAULT;
1627                 goto cleanup1;
1628         }
1629         if (ioc->Request.Type.Direction == XFER_READ) {
1630                 /* Copy the data out of the buffer we created */
1631                 BYTE __user *ptr = ioc->buf;
1632                 for (i = 0; i < sg_used; i++) {
1633                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
1634                                 cmd_special_free(h, c);
1635                                 status = -EFAULT;
1636                                 goto cleanup1;
1637                         }
1638                         ptr += buff_size[i];
1639                 }
1640         }
1641         cmd_special_free(h, c);
1642         status = 0;
1643 cleanup1:
1644         if (buff) {
1645                 for (i = 0; i < sg_used; i++)
1646                         kfree(buff[i]);
1647                 kfree(buff);
1648         }
1649         kfree(buff_size);
1650         kfree(ioc);
1651         return status;
1652 }
1653
1654 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1655         unsigned int cmd, unsigned long arg)
1656 {
1657         struct gendisk *disk = bdev->bd_disk;
1658         ctlr_info_t *h = get_host(disk);
1659         void __user *argp = (void __user *)arg;
1660
1661         dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1662                 cmd, arg);
1663         switch (cmd) {
1664         case CCISS_GETPCIINFO:
1665                 return cciss_getpciinfo(h, argp);
1666         case CCISS_GETINTINFO:
1667                 return cciss_getintinfo(h, argp);
1668         case CCISS_SETINTINFO:
1669                 return cciss_setintinfo(h, argp);
1670         case CCISS_GETNODENAME:
1671                 return cciss_getnodename(h, argp);
1672         case CCISS_SETNODENAME:
1673                 return cciss_setnodename(h, argp);
1674         case CCISS_GETHEARTBEAT:
1675                 return cciss_getheartbeat(h, argp);
1676         case CCISS_GETBUSTYPES:
1677                 return cciss_getbustypes(h, argp);
1678         case CCISS_GETFIRMVER:
1679                 return cciss_getfirmver(h, argp);
1680         case CCISS_GETDRIVVER:
1681                 return cciss_getdrivver(h, argp);
1682         case CCISS_DEREGDISK:
1683         case CCISS_REGNEWD:
1684         case CCISS_REVALIDVOLS:
1685                 return rebuild_lun_table(h, 0, 1);
1686         case CCISS_GETLUNINFO:
1687                 return cciss_getluninfo(h, disk, argp);
1688         case CCISS_PASSTHRU:
1689                 return cciss_passthru(h, argp);
1690         case CCISS_BIG_PASSTHRU:
1691                 return cciss_bigpassthru(h, argp);
1692
1693         /* scsi_cmd_ioctl handles these, below, though some are not */
1694         /* very meaningful for cciss.  SG_IO is the main one people want. */
1695
1696         case SG_GET_VERSION_NUM:
1697         case SG_SET_TIMEOUT:
1698         case SG_GET_TIMEOUT:
1699         case SG_GET_RESERVED_SIZE:
1700         case SG_SET_RESERVED_SIZE:
1701         case SG_EMULATED_HOST:
1702         case SG_IO:
1703         case SCSI_IOCTL_SEND_COMMAND:
1704                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1705
1706         /* scsi_cmd_ioctl would normally handle these, below, but */
1707         /* they aren't a good fit for cciss, as CD-ROMs are */
1708         /* not supported, and we don't have any bus/target/lun */
1709         /* which we present to the kernel. */
1710
1711         case CDROM_SEND_PACKET:
1712         case CDROMCLOSETRAY:
1713         case CDROMEJECT:
1714         case SCSI_IOCTL_GET_IDLUN:
1715         case SCSI_IOCTL_GET_BUS_NUMBER:
1716         default:
1717                 return -ENOTTY;
1718         }
1719 }
1720
1721 static void cciss_check_queues(ctlr_info_t *h)
1722 {
1723         int start_queue = h->next_to_run;
1724         int i;
1725
1726         /* check to see if we have maxed out the number of commands that can
1727          * be placed on the queue.  If so then exit.  We do this check here
1728          * in case the interrupt we serviced was from an ioctl and did not
1729          * free any new commands.
1730          */
1731         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1732                 return;
1733
1734         /* We have room on the queue for more commands.  Now we need to queue
1735          * them up.  We will also keep track of the next queue to run so
1736          * that every queue gets a chance to be started first.
1737          */
1738         for (i = 0; i < h->highest_lun + 1; i++) {
1739                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1740                 /* make sure the disk has been added and the drive is real
1741                  * because this can be called from the middle of init_one.
1742                  */
1743                 if (!h->drv[curr_queue])
1744                         continue;
1745                 if (!(h->drv[curr_queue]->queue) ||
1746                         !(h->drv[curr_queue]->heads))
1747                         continue;
1748                 blk_start_queue(h->gendisk[curr_queue]->queue);
1749
1750                 /* check to see if we have maxed out the number of commands
1751                  * that can be placed on the queue.
1752                  */
1753                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1754                         if (curr_queue == start_queue) {
1755                                 h->next_to_run =
1756                                     (start_queue + 1) % (h->highest_lun + 1);
1757                                 break;
1758                         } else {
1759                                 h->next_to_run = curr_queue;
1760                                 break;
1761                         }
1762                 }
1763         }
1764 }
1765
1766 static void cciss_softirq_done(struct request *rq)
1767 {
1768         CommandList_struct *c = rq->completion_data;
1769         ctlr_info_t *h = hba[c->ctlr];
1770         SGDescriptor_struct *curr_sg = c->SG;
1771         u64bit temp64;
1772         unsigned long flags;
1773         int i, ddir;
1774         int sg_index = 0;
1775
1776         if (c->Request.Type.Direction == XFER_READ)
1777                 ddir = PCI_DMA_FROMDEVICE;
1778         else
1779                 ddir = PCI_DMA_TODEVICE;
1780
1781         /* command did not need to be retried */
1782         /* unmap the DMA mapping for all the scatter gather elements */
1783         for (i = 0; i < c->Header.SGList; i++) {
1784                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1785                         cciss_unmap_sg_chain_block(h, c);
1786                         /* Point to the next block */
1787                         curr_sg = h->cmd_sg_list[c->cmdindex];
1788                         sg_index = 0;
1789                 }
1790                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1791                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1792                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1793                                 ddir);
1794                 ++sg_index;
1795         }
1796
1797         dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1798
1799         /* set the residual count for pc requests */
1800         if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1801                 rq->resid_len = c->err_info->ResidualCnt;
1802
1803         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1804
1805         spin_lock_irqsave(&h->lock, flags);
1806         cmd_free(h, c);
1807         cciss_check_queues(h);
1808         spin_unlock_irqrestore(&h->lock, flags);
1809 }
1810
1811 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1812         unsigned char scsi3addr[], uint32_t log_unit)
1813 {
1814         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1815                 sizeof(h->drv[log_unit]->LunID));
1816 }
1817
1818 /* This function gets the SCSI vendor, model, and revision of a logical drive
1819  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1820  * they cannot be read.
1821  */
1822 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1823                                    char *vendor, char *model, char *rev)
1824 {
1825         int rc;
1826         InquiryData_struct *inq_buf;
1827         unsigned char scsi3addr[8];
1828
1829         *vendor = '\0';
1830         *model = '\0';
1831         *rev = '\0';
1832
1833         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1834         if (!inq_buf)
1835                 return;
1836
1837         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1838         rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1839                         scsi3addr, TYPE_CMD);
1840         if (rc == IO_OK) {
1841                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1842                 vendor[VENDOR_LEN] = '\0';
1843                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1844                 model[MODEL_LEN] = '\0';
1845                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1846                 rev[REV_LEN] = '\0';
1847         }
1848
1849         kfree(inq_buf);
1850         return;
1851 }
1852
1853 /* This function gets the serial number of a logical drive via
1854  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1855  * number cannot be had, for whatever reason, 16 bytes of 0xff
1856  * are returned instead.
1857  */
1858 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1859                                 unsigned char *serial_no, int buflen)
1860 {
1861 #define PAGE_83_INQ_BYTES 64
1862         int rc;
1863         unsigned char *buf;
1864         unsigned char scsi3addr[8];
1865
1866         if (buflen > 16)
1867                 buflen = 16;
1868         memset(serial_no, 0xff, buflen);
1869         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1870         if (!buf)
1871                 return;
1872         memset(serial_no, 0, buflen);
1873         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1874         rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1875                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1876         if (rc == IO_OK)
1877                 memcpy(serial_no, &buf[8], buflen);
1878         kfree(buf);
1879         return;
1880 }
1881
1882 /*
1883  * cciss_add_disk sets up the block device queue for a logical drive
1884  */
1885 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1886                                 int drv_index)
1887 {
1888         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1889         if (!disk->queue)
1890                 goto init_queue_failure;
1891         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1892         disk->major = h->major;
1893         disk->first_minor = drv_index << NWD_SHIFT;
1894         disk->fops = &cciss_fops;
1895         if (cciss_create_ld_sysfs_entry(h, drv_index))
1896                 goto cleanup_queue;
1897         disk->private_data = h->drv[drv_index];
1898         disk->driverfs_dev = &h->drv[drv_index]->dev;
1899
1900         /* Set up queue information */
1901         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1902
1903         /* This is a hardware imposed limit. */
1904         blk_queue_max_segments(disk->queue, h->maxsgentries);
1905
1906         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1907
1908         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1909
1910         disk->queue->queuedata = h;
1911
1912         blk_queue_logical_block_size(disk->queue,
1913                                      h->drv[drv_index]->block_size);
1914
1915         /* Make sure all queue data is written out before */
1916         /* setting h->drv[drv_index]->queue, as setting this */
1917         /* allows the interrupt handler to start the queue */
1918         wmb();
1919         h->drv[drv_index]->queue = disk->queue;
1920         add_disk(disk);
1921         return 0;
1922
1923 cleanup_queue:
1924         blk_cleanup_queue(disk->queue);
1925         disk->queue = NULL;
1926 init_queue_failure:
1927         return -1;
1928 }
1929
1930 /* This function will check the usage_count of the drive to be updated/added.
1931  * If the usage_count is zero and it is a heretofore unknown drive, or,
1932  * the drive's capacity, geometry, or serial number has changed,
1933  * then the drive information will be updated and the disk will be
1934  * re-registered with the kernel.  If these conditions don't hold,
1935  * then it will be left alone for the next reboot.  The exception to this
1936  * is disk 0 which will always be left registered with the kernel since it
1937  * is also the controller node.  Any changes to disk 0 will show up on
1938  * the next reboot.
1939  */
1940 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1941         int first_time, int via_ioctl)
1942 {
1943         struct gendisk *disk;
1944         InquiryData_struct *inq_buff = NULL;
1945         unsigned int block_size;
1946         sector_t total_size;
1947         unsigned long flags = 0;
1948         int ret = 0;
1949         drive_info_struct *drvinfo;
1950
1951         /* Get information about the disk and modify the driver structure */
1952         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1953         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1954         if (inq_buff == NULL || drvinfo == NULL)
1955                 goto mem_msg;
1956
1957         /* testing to see if 16-byte CDBs are already being used */
1958         if (h->cciss_read == CCISS_READ_16) {
1959                 cciss_read_capacity_16(h, drv_index,
1960                         &total_size, &block_size);
1961
1962         } else {
1963                 cciss_read_capacity(h, drv_index, &total_size, &block_size);
1964                 /* if read_capacity returns all F's this volume is >2TB */
1965                 /* in size so we switch to 16-byte CDB's for all */
1966                 /* read/write ops */
1967                 if (total_size == 0xFFFFFFFFULL) {
1968                         cciss_read_capacity_16(h, drv_index,
1969                         &total_size, &block_size);
1970                         h->cciss_read = CCISS_READ_16;
1971                         h->cciss_write = CCISS_WRITE_16;
1972                 } else {
1973                         h->cciss_read = CCISS_READ_10;
1974                         h->cciss_write = CCISS_WRITE_10;
1975                 }
1976         }
1977
1978         cciss_geometry_inquiry(h, drv_index, total_size, block_size,
1979                                inq_buff, drvinfo);
1980         drvinfo->block_size = block_size;
1981         drvinfo->nr_blocks = total_size + 1;
1982
1983         cciss_get_device_descr(h, drv_index, drvinfo->vendor,
1984                                 drvinfo->model, drvinfo->rev);
1985         cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
1986                         sizeof(drvinfo->serial_no));
1987         /* Save the lunid in case we deregister the disk, below. */
1988         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1989                 sizeof(drvinfo->LunID));
1990
1991         /* Is it the same disk we already know, and nothing's changed? */
1992         if (h->drv[drv_index]->raid_level != -1 &&
1993                 ((memcmp(drvinfo->serial_no,
1994                                 h->drv[drv_index]->serial_no, 16) == 0) &&
1995                 drvinfo->block_size == h->drv[drv_index]->block_size &&
1996                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1997                 drvinfo->heads == h->drv[drv_index]->heads &&
1998                 drvinfo->sectors == h->drv[drv_index]->sectors &&
1999                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2000                         /* The disk is unchanged, nothing to update */
2001                         goto freeret;
2002
2003         /* If we get here it's not the same disk, or something's changed,
2004          * so we need to * deregister it, and re-register it, if it's not
2005          * in use.
2006          * If the disk already exists then deregister it before proceeding
2007          * (unless it's the first disk (for the controller node).
2008          */
2009         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2010                 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2011                 spin_lock_irqsave(&h->lock, flags);
2012                 h->drv[drv_index]->busy_configuring = 1;
2013                 spin_unlock_irqrestore(&h->lock, flags);
2014
2015                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2016                  * which keeps the interrupt handler from starting
2017                  * the queue.
2018                  */
2019                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2020         }
2021
2022         /* If the disk is in use return */
2023         if (ret)
2024                 goto freeret;
2025
2026         /* Save the new information from cciss_geometry_inquiry
2027          * and serial number inquiry.  If the disk was deregistered
2028          * above, then h->drv[drv_index] will be NULL.
2029          */
2030         if (h->drv[drv_index] == NULL) {
2031                 drvinfo->device_initialized = 0;
2032                 h->drv[drv_index] = drvinfo;
2033                 drvinfo = NULL; /* so it won't be freed below. */
2034         } else {
2035                 /* special case for cxd0 */
2036                 h->drv[drv_index]->block_size = drvinfo->block_size;
2037                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2038                 h->drv[drv_index]->heads = drvinfo->heads;
2039                 h->drv[drv_index]->sectors = drvinfo->sectors;
2040                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2041                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2042                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2043                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2044                         VENDOR_LEN + 1);
2045                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2046                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2047         }
2048
2049         ++h->num_luns;
2050         disk = h->gendisk[drv_index];
2051         set_capacity(disk, h->drv[drv_index]->nr_blocks);
2052
2053         /* If it's not disk 0 (drv_index != 0)
2054          * or if it was disk 0, but there was previously
2055          * no actual corresponding configured logical drive
2056          * (raid_leve == -1) then we want to update the
2057          * logical drive's information.
2058          */
2059         if (drv_index || first_time) {
2060                 if (cciss_add_disk(h, disk, drv_index) != 0) {
2061                         cciss_free_gendisk(h, drv_index);
2062                         cciss_free_drive_info(h, drv_index);
2063                         dev_warn(&h->pdev->dev, "could not update disk %d\n",
2064                                 drv_index);
2065                         --h->num_luns;
2066                 }
2067         }
2068
2069 freeret:
2070         kfree(inq_buff);
2071         kfree(drvinfo);
2072         return;
2073 mem_msg:
2074         dev_err(&h->pdev->dev, "out of memory\n");
2075         goto freeret;
2076 }
2077
2078 /* This function will find the first index of the controllers drive array
2079  * that has a null drv pointer and allocate the drive info struct and
2080  * will return that index   This is where new drives will be added.
2081  * If the index to be returned is greater than the highest_lun index for
2082  * the controller then highest_lun is set * to this new index.
2083  * If there are no available indexes or if tha allocation fails, then -1
2084  * is returned.  * "controller_node" is used to know if this is a real
2085  * logical drive, or just the controller node, which determines if this
2086  * counts towards highest_lun.
2087  */
2088 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2089 {
2090         int i;
2091         drive_info_struct *drv;
2092
2093         /* Search for an empty slot for our drive info */
2094         for (i = 0; i < CISS_MAX_LUN; i++) {
2095
2096                 /* if not cxd0 case, and it's occupied, skip it. */
2097                 if (h->drv[i] && i != 0)
2098                         continue;
2099                 /*
2100                  * If it's cxd0 case, and drv is alloc'ed already, and a
2101                  * disk is configured there, skip it.
2102                  */
2103                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2104                         continue;
2105
2106                 /*
2107                  * We've found an empty slot.  Update highest_lun
2108                  * provided this isn't just the fake cxd0 controller node.
2109                  */
2110                 if (i > h->highest_lun && !controller_node)
2111                         h->highest_lun = i;
2112
2113                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2114                 if (i == 0 && h->drv[i] != NULL)
2115                         return i;
2116
2117                 /*
2118                  * Found an empty slot, not already alloc'ed.  Allocate it.
2119                  * Mark it with raid_level == -1, so we know it's new later on.
2120                  */
2121                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2122                 if (!drv)
2123                         return -1;
2124                 drv->raid_level = -1; /* so we know it's new */
2125                 h->drv[i] = drv;
2126                 return i;
2127         }
2128         return -1;
2129 }
2130
2131 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2132 {
2133         kfree(h->drv[drv_index]);
2134         h->drv[drv_index] = NULL;
2135 }
2136
2137 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2138 {
2139         put_disk(h->gendisk[drv_index]);
2140         h->gendisk[drv_index] = NULL;
2141 }
2142
2143 /* cciss_add_gendisk finds a free hba[]->drv structure
2144  * and allocates a gendisk if needed, and sets the lunid
2145  * in the drvinfo structure.   It returns the index into
2146  * the ->drv[] array, or -1 if none are free.
2147  * is_controller_node indicates whether highest_lun should
2148  * count this disk, or if it's only being added to provide
2149  * a means to talk to the controller in case no logical
2150  * drives have yet been configured.
2151  */
2152 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2153         int controller_node)
2154 {
2155         int drv_index;
2156
2157         drv_index = cciss_alloc_drive_info(h, controller_node);
2158         if (drv_index == -1)
2159                 return -1;
2160
2161         /*Check if the gendisk needs to be allocated */
2162         if (!h->gendisk[drv_index]) {
2163                 h->gendisk[drv_index] =
2164                         alloc_disk(1 << NWD_SHIFT);
2165                 if (!h->gendisk[drv_index]) {
2166                         dev_err(&h->pdev->dev,
2167                                 "could not allocate a new disk %d\n",
2168                                 drv_index);
2169                         goto err_free_drive_info;
2170                 }
2171         }
2172         memcpy(h->drv[drv_index]->LunID, lunid,
2173                 sizeof(h->drv[drv_index]->LunID));
2174         if (cciss_create_ld_sysfs_entry(h, drv_index))
2175                 goto err_free_disk;
2176         /* Don't need to mark this busy because nobody */
2177         /* else knows about this disk yet to contend */
2178         /* for access to it. */
2179         h->drv[drv_index]->busy_configuring = 0;
2180         wmb();
2181         return drv_index;
2182
2183 err_free_disk:
2184         cciss_free_gendisk(h, drv_index);
2185 err_free_drive_info:
2186         cciss_free_drive_info(h, drv_index);
2187         return -1;
2188 }
2189
2190 /* This is for the special case of a controller which
2191  * has no logical drives.  In this case, we still need
2192  * to register a disk so the controller can be accessed
2193  * by the Array Config Utility.
2194  */
2195 static void cciss_add_controller_node(ctlr_info_t *h)
2196 {
2197         struct gendisk *disk;
2198         int drv_index;
2199
2200         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2201                 return;
2202
2203         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2204         if (drv_index == -1)
2205                 goto error;
2206         h->drv[drv_index]->block_size = 512;
2207         h->drv[drv_index]->nr_blocks = 0;
2208         h->drv[drv_index]->heads = 0;
2209         h->drv[drv_index]->sectors = 0;
2210         h->drv[drv_index]->cylinders = 0;
2211         h->drv[drv_index]->raid_level = -1;
2212         memset(h->drv[drv_index]->serial_no, 0, 16);
2213         disk = h->gendisk[drv_index];
2214         if (cciss_add_disk(h, disk, drv_index) == 0)
2215                 return;
2216         cciss_free_gendisk(h, drv_index);
2217         cciss_free_drive_info(h, drv_index);
2218 error:
2219         dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2220         return;
2221 }
2222
2223 /* This function will add and remove logical drives from the Logical
2224  * drive array of the controller and maintain persistency of ordering
2225  * so that mount points are preserved until the next reboot.  This allows
2226  * for the removal of logical drives in the middle of the drive array
2227  * without a re-ordering of those drives.
2228  * INPUT
2229  * h            = The controller to perform the operations on
2230  */
2231 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2232         int via_ioctl)
2233 {
2234         int num_luns;
2235         ReportLunData_struct *ld_buff = NULL;
2236         int return_code;
2237         int listlength = 0;
2238         int i;
2239         int drv_found;
2240         int drv_index = 0;
2241         unsigned char lunid[8] = CTLR_LUNID;
2242         unsigned long flags;
2243
2244         if (!capable(CAP_SYS_RAWIO))
2245                 return -EPERM;
2246
2247         /* Set busy_configuring flag for this operation */
2248         spin_lock_irqsave(&h->lock, flags);
2249         if (h->busy_configuring) {
2250                 spin_unlock_irqrestore(&h->lock, flags);
2251                 return -EBUSY;
2252         }
2253         h->busy_configuring = 1;
2254         spin_unlock_irqrestore(&h->lock, flags);
2255
2256         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2257         if (ld_buff == NULL)
2258                 goto mem_msg;
2259
2260         return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2261                                       sizeof(ReportLunData_struct),
2262                                       0, CTLR_LUNID, TYPE_CMD);
2263
2264         if (return_code == IO_OK)
2265                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2266         else {  /* reading number of logical volumes failed */
2267                 dev_warn(&h->pdev->dev,
2268                         "report logical volume command failed\n");
2269                 listlength = 0;
2270                 goto freeret;
2271         }
2272
2273         num_luns = listlength / 8;      /* 8 bytes per entry */
2274         if (num_luns > CISS_MAX_LUN) {
2275                 num_luns = CISS_MAX_LUN;
2276                 dev_warn(&h->pdev->dev, "more luns configured"
2277                        " on controller than can be handled by"
2278                        " this driver.\n");
2279         }
2280
2281         if (num_luns == 0)
2282                 cciss_add_controller_node(h);
2283
2284         /* Compare controller drive array to driver's drive array
2285          * to see if any drives are missing on the controller due
2286          * to action of Array Config Utility (user deletes drive)
2287          * and deregister logical drives which have disappeared.
2288          */
2289         for (i = 0; i <= h->highest_lun; i++) {
2290                 int j;
2291                 drv_found = 0;
2292
2293                 /* skip holes in the array from already deleted drives */
2294                 if (h->drv[i] == NULL)
2295                         continue;
2296
2297                 for (j = 0; j < num_luns; j++) {
2298                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2299                         if (memcmp(h->drv[i]->LunID, lunid,
2300                                 sizeof(lunid)) == 0) {
2301                                 drv_found = 1;
2302                                 break;
2303                         }
2304                 }
2305                 if (!drv_found) {
2306                         /* Deregister it from the OS, it's gone. */
2307                         spin_lock_irqsave(&h->lock, flags);
2308                         h->drv[i]->busy_configuring = 1;
2309                         spin_unlock_irqrestore(&h->lock, flags);
2310                         return_code = deregister_disk(h, i, 1, via_ioctl);
2311                         if (h->drv[i] != NULL)
2312                                 h->drv[i]->busy_configuring = 0;
2313                 }
2314         }
2315
2316         /* Compare controller drive array to driver's drive array.
2317          * Check for updates in the drive information and any new drives
2318          * on the controller due to ACU adding logical drives, or changing
2319          * a logical drive's size, etc.  Reregister any new/changed drives
2320          */
2321         for (i = 0; i < num_luns; i++) {
2322                 int j;
2323
2324                 drv_found = 0;
2325
2326                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2327                 /* Find if the LUN is already in the drive array
2328                  * of the driver.  If so then update its info
2329                  * if not in use.  If it does not exist then find
2330                  * the first free index and add it.
2331                  */
2332                 for (j = 0; j <= h->highest_lun; j++) {
2333                         if (h->drv[j] != NULL &&
2334                                 memcmp(h->drv[j]->LunID, lunid,
2335                                         sizeof(h->drv[j]->LunID)) == 0) {
2336                                 drv_index = j;
2337                                 drv_found = 1;
2338                                 break;
2339                         }
2340                 }
2341
2342                 /* check if the drive was found already in the array */
2343                 if (!drv_found) {
2344                         drv_index = cciss_add_gendisk(h, lunid, 0);
2345                         if (drv_index == -1)
2346                                 goto freeret;
2347                 }
2348                 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2349         }               /* end for */
2350
2351 freeret:
2352         kfree(ld_buff);
2353         h->busy_configuring = 0;
2354         /* We return -1 here to tell the ACU that we have registered/updated
2355          * all of the drives that we can and to keep it from calling us
2356          * additional times.
2357          */
2358         return -1;
2359 mem_msg:
2360         dev_err(&h->pdev->dev, "out of memory\n");
2361         h->busy_configuring = 0;
2362         goto freeret;
2363 }
2364
2365 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2366 {
2367         /* zero out the disk size info */
2368         drive_info->nr_blocks = 0;
2369         drive_info->block_size = 0;
2370         drive_info->heads = 0;
2371         drive_info->sectors = 0;
2372         drive_info->cylinders = 0;
2373         drive_info->raid_level = -1;
2374         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2375         memset(drive_info->model, 0, sizeof(drive_info->model));
2376         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2377         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2378         /*
2379          * don't clear the LUNID though, we need to remember which
2380          * one this one is.
2381          */
2382 }
2383
2384 /* This function will deregister the disk and it's queue from the
2385  * kernel.  It must be called with the controller lock held and the
2386  * drv structures busy_configuring flag set.  It's parameters are:
2387  *
2388  * disk = This is the disk to be deregistered
2389  * drv  = This is the drive_info_struct associated with the disk to be
2390  *        deregistered.  It contains information about the disk used
2391  *        by the driver.
2392  * clear_all = This flag determines whether or not the disk information
2393  *             is going to be completely cleared out and the highest_lun
2394  *             reset.  Sometimes we want to clear out information about
2395  *             the disk in preparation for re-adding it.  In this case
2396  *             the highest_lun should be left unchanged and the LunID
2397  *             should not be cleared.
2398  * via_ioctl
2399  *    This indicates whether we've reached this path via ioctl.
2400  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2401  *    If this path is reached via ioctl(), then the max_usage_count will
2402  *    be 1, as the process calling ioctl() has got to have the device open.
2403  *    If we get here via sysfs, then the max usage count will be zero.
2404 */
2405 static int deregister_disk(ctlr_info_t *h, int drv_index,
2406                            int clear_all, int via_ioctl)
2407 {
2408         int i;
2409         struct gendisk *disk;
2410         drive_info_struct *drv;
2411         int recalculate_highest_lun;
2412
2413         if (!capable(CAP_SYS_RAWIO))
2414                 return -EPERM;
2415
2416         drv = h->drv[drv_index];
2417         disk = h->gendisk[drv_index];
2418
2419         /* make sure logical volume is NOT is use */
2420         if (clear_all || (h->gendisk[0] == disk)) {
2421                 if (drv->usage_count > via_ioctl)
2422                         return -EBUSY;
2423         } else if (drv->usage_count > 0)
2424                 return -EBUSY;
2425
2426         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2427
2428         /* invalidate the devices and deregister the disk.  If it is disk
2429          * zero do not deregister it but just zero out it's values.  This
2430          * allows us to delete disk zero but keep the controller registered.
2431          */
2432         if (h->gendisk[0] != disk) {
2433                 struct request_queue *q = disk->queue;
2434                 if (disk->flags & GENHD_FL_UP) {
2435                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2436                         del_gendisk(disk);
2437                 }
2438                 if (q)
2439                         blk_cleanup_queue(q);
2440                 /* If clear_all is set then we are deleting the logical
2441                  * drive, not just refreshing its info.  For drives
2442                  * other than disk 0 we will call put_disk.  We do not
2443                  * do this for disk 0 as we need it to be able to
2444                  * configure the controller.
2445                  */
2446                 if (clear_all){
2447                         /* This isn't pretty, but we need to find the
2448                          * disk in our array and NULL our the pointer.
2449                          * This is so that we will call alloc_disk if
2450                          * this index is used again later.
2451                          */
2452                         for (i=0; i < CISS_MAX_LUN; i++){
2453                                 if (h->gendisk[i] == disk) {
2454                                         h->gendisk[i] = NULL;
2455                                         break;
2456                                 }
2457                         }
2458                         put_disk(disk);
2459                 }
2460         } else {
2461                 set_capacity(disk, 0);
2462                 cciss_clear_drive_info(drv);
2463         }
2464
2465         --h->num_luns;
2466
2467         /* if it was the last disk, find the new hightest lun */
2468         if (clear_all && recalculate_highest_lun) {
2469                 int newhighest = -1;
2470                 for (i = 0; i <= h->highest_lun; i++) {
2471                         /* if the disk has size > 0, it is available */
2472                         if (h->drv[i] && h->drv[i]->heads)
2473                                 newhighest = i;
2474                 }
2475                 h->highest_lun = newhighest;
2476         }
2477         return 0;
2478 }
2479
2480 static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2481         u8 reset_type)
2482 {
2483         CommandList_struct *c;
2484         int return_status;
2485
2486         c = cmd_alloc(h);
2487         if (!c)
2488                 return -ENOMEM;
2489         return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2490                 CTLR_LUNID, TYPE_MSG);
2491         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2492         if (return_status != IO_OK) {
2493                 cmd_special_free(h, c);
2494                 return return_status;
2495         }
2496         c->waiting = NULL;
2497         enqueue_cmd_and_start_io(h, c);
2498         /* Don't wait for completion, the reset won't complete.  Don't free
2499          * the command either.  This is the last command we will send before
2500          * re-initializing everything, so it doesn't matter and won't leak.
2501          */
2502         return 0;
2503 }
2504
2505 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2506                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2507                 int cmd_type)
2508 {
2509         u64bit buff_dma_handle;
2510         int status = IO_OK;
2511
2512         c->cmd_type = CMD_IOCTL_PEND;
2513         c->Header.ReplyQueue = 0;
2514         if (buff != NULL) {
2515                 c->Header.SGList = 1;
2516                 c->Header.SGTotal = 1;
2517         } else {
2518                 c->Header.SGList = 0;
2519                 c->Header.SGTotal = 0;
2520         }
2521         c->Header.Tag.lower = c->busaddr;
2522         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2523
2524         c->Request.Type.Type = cmd_type;
2525         if (cmd_type == TYPE_CMD) {
2526                 switch (cmd) {
2527                 case CISS_INQUIRY:
2528                         /* are we trying to read a vital product page */
2529                         if (page_code != 0) {
2530                                 c->Request.CDB[1] = 0x01;
2531                                 c->Request.CDB[2] = page_code;
2532                         }
2533                         c->Request.CDBLen = 6;
2534                         c->Request.Type.Attribute = ATTR_SIMPLE;
2535                         c->Request.Type.Direction = XFER_READ;
2536                         c->Request.Timeout = 0;
2537                         c->Request.CDB[0] = CISS_INQUIRY;
2538                         c->Request.CDB[4] = size & 0xFF;
2539                         break;
2540                 case CISS_REPORT_LOG:
2541                 case CISS_REPORT_PHYS:
2542                         /* Talking to controller so It's a physical command
2543                            mode = 00 target = 0.  Nothing to write.
2544                          */
2545                         c->Request.CDBLen = 12;
2546                         c->Request.Type.Attribute = ATTR_SIMPLE;
2547                         c->Request.Type.Direction = XFER_READ;
2548                         c->Request.Timeout = 0;
2549                         c->Request.CDB[0] = cmd;
2550                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2551                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2552                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2553                         c->Request.CDB[9] = size & 0xFF;
2554                         break;
2555
2556                 case CCISS_READ_CAPACITY:
2557                         c->Request.CDBLen = 10;
2558                         c->Request.Type.Attribute = ATTR_SIMPLE;
2559                         c->Request.Type.Direction = XFER_READ;
2560                         c->Request.Timeout = 0;
2561                         c->Request.CDB[0] = cmd;
2562                         break;
2563                 case CCISS_READ_CAPACITY_16:
2564                         c->Request.CDBLen = 16;
2565                         c->Request.Type.Attribute = ATTR_SIMPLE;
2566                         c->Request.Type.Direction = XFER_READ;
2567                         c->Request.Timeout = 0;
2568                         c->Request.CDB[0] = cmd;
2569                         c->Request.CDB[1] = 0x10;
2570                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2571                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2572                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2573                         c->Request.CDB[13] = size & 0xFF;
2574                         c->Request.Timeout = 0;
2575                         c->Request.CDB[0] = cmd;
2576                         break;
2577                 case CCISS_CACHE_FLUSH:
2578                         c->Request.CDBLen = 12;
2579                         c->Request.Type.Attribute = ATTR_SIMPLE;
2580                         c->Request.Type.Direction = XFER_WRITE;
2581                         c->Request.Timeout = 0;
2582                         c->Request.CDB[0] = BMIC_WRITE;
2583                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2584                         break;
2585                 case TEST_UNIT_READY:
2586                         c->Request.CDBLen = 6;
2587                         c->Request.Type.Attribute = ATTR_SIMPLE;
2588                         c->Request.Type.Direction = XFER_NONE;
2589                         c->Request.Timeout = 0;
2590                         break;
2591                 default:
2592                         dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2593                         return IO_ERROR;
2594                 }
2595         } else if (cmd_type == TYPE_MSG) {
2596                 switch (cmd) {
2597                 case CCISS_ABORT_MSG:
2598                         c->Request.CDBLen = 12;
2599                         c->Request.Type.Attribute = ATTR_SIMPLE;
2600                         c->Request.Type.Direction = XFER_WRITE;
2601                         c->Request.Timeout = 0;
2602                         c->Request.CDB[0] = cmd;        /* abort */
2603                         c->Request.CDB[1] = 0;  /* abort a command */
2604                         /* buff contains the tag of the command to abort */
2605                         memcpy(&c->Request.CDB[4], buff, 8);
2606                         break;
2607                 case CCISS_RESET_MSG:
2608                         c->Request.CDBLen = 16;
2609                         c->Request.Type.Attribute = ATTR_SIMPLE;
2610                         c->Request.Type.Direction = XFER_NONE;
2611                         c->Request.Timeout = 0;
2612                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2613                         c->Request.CDB[0] = cmd;        /* reset */
2614                         c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2615                         break;
2616                 case CCISS_NOOP_MSG:
2617                         c->Request.CDBLen = 1;
2618                         c->Request.Type.Attribute = ATTR_SIMPLE;
2619                         c->Request.Type.Direction = XFER_WRITE;
2620                         c->Request.Timeout = 0;
2621                         c->Request.CDB[0] = cmd;
2622                         break;
2623                 default:
2624                         dev_warn(&h->pdev->dev,
2625                                 "unknown message type %d\n", cmd);
2626                         return IO_ERROR;
2627                 }
2628         } else {
2629                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2630                 return IO_ERROR;
2631         }
2632         /* Fill in the scatter gather information */
2633         if (size > 0) {
2634                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2635                                                              buff, size,
2636                                                              PCI_DMA_BIDIRECTIONAL);
2637                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2638                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2639                 c->SG[0].Len = size;
2640                 c->SG[0].Ext = 0;       /* we are not chaining */
2641         }
2642         return status;
2643 }
2644
2645 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2646 {
2647         switch (c->err_info->ScsiStatus) {
2648         case SAM_STAT_GOOD:
2649                 return IO_OK;
2650         case SAM_STAT_CHECK_CONDITION:
2651                 switch (0xf & c->err_info->SenseInfo[2]) {
2652                 case 0: return IO_OK; /* no sense */
2653                 case 1: return IO_OK; /* recovered error */
2654                 default:
2655                         if (check_for_unit_attention(h, c))
2656                                 return IO_NEEDS_RETRY;
2657                         dev_warn(&h->pdev->dev, "cmd 0x%02x "
2658                                 "check condition, sense key = 0x%02x\n",
2659                                 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2660                 }
2661                 break;
2662         default:
2663                 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2664                         "scsi status = 0x%02x\n",
2665                         c->Request.CDB[0], c->err_info->ScsiStatus);
2666                 break;
2667         }
2668         return IO_ERROR;
2669 }
2670
2671 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2672 {
2673         int return_status = IO_OK;
2674
2675         if (c->err_info->CommandStatus == CMD_SUCCESS)
2676                 return IO_OK;
2677
2678         switch (c->err_info->CommandStatus) {
2679         case CMD_TARGET_STATUS:
2680                 return_status = check_target_status(h, c);
2681                 break;
2682         case CMD_DATA_UNDERRUN:
2683         case CMD_DATA_OVERRUN:
2684                 /* expected for inquiry and report lun commands */
2685                 break;
2686         case CMD_INVALID:
2687                 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2688                        "reported invalid\n", c->Request.CDB[0]);
2689                 return_status = IO_ERROR;
2690                 break;
2691         case CMD_PROTOCOL_ERR:
2692                 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2693                        "protocol error\n", c->Request.CDB[0]);
2694                 return_status = IO_ERROR;
2695                 break;
2696         case CMD_HARDWARE_ERR:
2697                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2698                        " hardware error\n", c->Request.CDB[0]);
2699                 return_status = IO_ERROR;
2700                 break;
2701         case CMD_CONNECTION_LOST:
2702                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2703                        "connection lost\n", c->Request.CDB[0]);
2704                 return_status = IO_ERROR;
2705                 break;
2706         case CMD_ABORTED:
2707                 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2708                        "aborted\n", c->Request.CDB[0]);
2709                 return_status = IO_ERROR;
2710                 break;
2711         case CMD_ABORT_FAILED:
2712                 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2713                        "abort failed\n", c->Request.CDB[0]);
2714                 return_status = IO_ERROR;
2715                 break;
2716         case CMD_UNSOLICITED_ABORT:
2717                 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2718                         c->Request.CDB[0]);
2719                 return_status = IO_NEEDS_RETRY;
2720                 break;
2721         case CMD_UNABORTABLE:
2722                 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2723                 return_status = IO_ERROR;
2724                 break;
2725         default:
2726                 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2727                        "unknown status %x\n", c->Request.CDB[0],
2728                        c->err_info->CommandStatus);
2729                 return_status = IO_ERROR;
2730         }
2731         return return_status;
2732 }
2733
2734 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2735         int attempt_retry)
2736 {
2737         DECLARE_COMPLETION_ONSTACK(wait);
2738         u64bit buff_dma_handle;
2739         int return_status = IO_OK;
2740
2741 resend_cmd2:
2742         c->waiting = &wait;
2743         enqueue_cmd_and_start_io(h, c);
2744
2745         wait_for_completion(&wait);
2746
2747         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2748                 goto command_done;
2749
2750         return_status = process_sendcmd_error(h, c);
2751
2752         if (return_status == IO_NEEDS_RETRY &&
2753                 c->retry_count < MAX_CMD_RETRIES) {
2754                 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2755                         c->Request.CDB[0]);
2756                 c->retry_count++;
2757                 /* erase the old error information */
2758                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2759                 return_status = IO_OK;
2760                 INIT_COMPLETION(wait);
2761                 goto resend_cmd2;
2762         }
2763
2764 command_done:
2765         /* unlock the buffers from DMA */
2766         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2767         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2768         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2769                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2770         return return_status;
2771 }
2772
2773 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2774                            __u8 page_code, unsigned char scsi3addr[],
2775                         int cmd_type)
2776 {
2777         CommandList_struct *c;
2778         int return_status;
2779
2780         c = cmd_special_alloc(h);
2781         if (!c)
2782                 return -ENOMEM;
2783         return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2784                 scsi3addr, cmd_type);
2785         if (return_status == IO_OK)
2786                 return_status = sendcmd_withirq_core(h, c, 1);
2787
2788         cmd_special_free(h, c);
2789         return return_status;
2790 }
2791
2792 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2793                                    sector_t total_size,
2794                                    unsigned int block_size,
2795                                    InquiryData_struct *inq_buff,
2796                                    drive_info_struct *drv)
2797 {
2798         int return_code;
2799         unsigned long t;
2800         unsigned char scsi3addr[8];
2801
2802         memset(inq_buff, 0, sizeof(InquiryData_struct));
2803         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2804         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2805                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2806         if (return_code == IO_OK) {
2807                 if (inq_buff->data_byte[8] == 0xFF) {
2808                         dev_warn(&h->pdev->dev,
2809                                "reading geometry failed, volume "
2810                                "does not support reading geometry\n");
2811                         drv->heads = 255;
2812                         drv->sectors = 32;      /* Sectors per track */
2813                         drv->cylinders = total_size + 1;
2814                         drv->raid_level = RAID_UNKNOWN;
2815                 } else {
2816                         drv->heads = inq_buff->data_byte[6];
2817                         drv->sectors = inq_buff->data_byte[7];
2818                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2819                         drv->cylinders += inq_buff->data_byte[5];
2820                         drv->raid_level = inq_buff->data_byte[8];
2821                 }
2822                 drv->block_size = block_size;
2823                 drv->nr_blocks = total_size + 1;
2824                 t = drv->heads * drv->sectors;
2825                 if (t > 1) {
2826                         sector_t real_size = total_size + 1;
2827                         unsigned long rem = sector_div(real_size, t);
2828                         if (rem)
2829                                 real_size++;
2830                         drv->cylinders = real_size;
2831                 }
2832         } else {                /* Get geometry failed */
2833                 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2834         }
2835 }
2836
2837 static void
2838 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2839                     unsigned int *block_size)
2840 {
2841         ReadCapdata_struct *buf;
2842         int return_code;
2843         unsigned char scsi3addr[8];
2844
2845         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2846         if (!buf) {
2847                 dev_warn(&h->pdev->dev, "out of memory\n");
2848                 return;
2849         }
2850
2851         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2852         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2853                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2854         if (return_code == IO_OK) {
2855                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2856                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2857         } else {                /* read capacity command failed */
2858                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2859                 *total_size = 0;
2860                 *block_size = BLOCK_SIZE;
2861         }
2862         kfree(buf);
2863 }
2864
2865 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2866         sector_t *total_size, unsigned int *block_size)
2867 {
2868         ReadCapdata_struct_16 *buf;
2869         int return_code;
2870         unsigned char scsi3addr[8];
2871
2872         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2873         if (!buf) {
2874                 dev_warn(&h->pdev->dev, "out of memory\n");
2875                 return;
2876         }
2877
2878         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2879         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2880                 buf, sizeof(ReadCapdata_struct_16),
2881                         0, scsi3addr, TYPE_CMD);
2882         if (return_code == IO_OK) {
2883                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2884                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2885         } else {                /* read capacity command failed */
2886                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2887                 *total_size = 0;
2888                 *block_size = BLOCK_SIZE;
2889         }
2890         dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2891                (unsigned long long)*total_size+1, *block_size);
2892         kfree(buf);
2893 }
2894
2895 static int cciss_revalidate(struct gendisk *disk)
2896 {
2897         ctlr_info_t *h = get_host(disk);
2898         drive_info_struct *drv = get_drv(disk);
2899         int logvol;
2900         int FOUND = 0;
2901         unsigned int block_size;
2902         sector_t total_size;
2903         InquiryData_struct *inq_buff = NULL;
2904
2905         for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2906                 if (!h->drv[logvol])
2907                         continue;
2908                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2909                         sizeof(drv->LunID)) == 0) {
2910                         FOUND = 1;
2911                         break;
2912                 }
2913         }
2914
2915         if (!FOUND)
2916                 return 1;
2917
2918         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2919         if (inq_buff == NULL) {
2920                 dev_warn(&h->pdev->dev, "out of memory\n");
2921                 return 1;
2922         }
2923         if (h->cciss_read == CCISS_READ_10) {
2924                 cciss_read_capacity(h, logvol,
2925                                         &total_size, &block_size);
2926         } else {
2927                 cciss_read_capacity_16(h, logvol,
2928                                         &total_size, &block_size);
2929         }
2930         cciss_geometry_inquiry(h, logvol, total_size, block_size,
2931                                inq_buff, drv);
2932
2933         blk_queue_logical_block_size(drv->queue, drv->block_size);
2934         set_capacity(disk, drv->nr_blocks);
2935
2936         kfree(inq_buff);
2937         return 0;
2938 }
2939
2940 /*
2941  * Map (physical) PCI mem into (virtual) kernel space
2942  */
2943 static void __iomem *remap_pci_mem(ulong base, ulong size)
2944 {
2945         ulong page_base = ((ulong) base) & PAGE_MASK;
2946         ulong page_offs = ((ulong) base) - page_base;
2947         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2948
2949         return page_remapped ? (page_remapped + page_offs) : NULL;
2950 }
2951
2952 /*
2953  * Takes jobs of the Q and sends them to the hardware, then puts it on
2954  * the Q to wait for completion.
2955  */
2956 static void start_io(ctlr_info_t *h)
2957 {
2958         CommandList_struct *c;
2959
2960         while (!list_empty(&h->reqQ)) {
2961                 c = list_entry(h->reqQ.next, CommandList_struct, list);
2962                 /* can't do anything if fifo is full */
2963                 if ((h->access.fifo_full(h))) {
2964                         dev_warn(&h->pdev->dev, "fifo full\n");
2965                         break;
2966                 }
2967
2968                 /* Get the first entry from the Request Q */
2969                 removeQ(c);
2970                 h->Qdepth--;
2971
2972                 /* Tell the controller execute command */
2973                 h->access.submit_command(h, c);
2974
2975                 /* Put job onto the completed Q */
2976                 addQ(&h->cmpQ, c);
2977         }
2978 }
2979
2980 /* Assumes that h->lock is held. */
2981 /* Zeros out the error record and then resends the command back */
2982 /* to the controller */
2983 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2984 {
2985         /* erase the old error information */
2986         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2987
2988         /* add it to software queue and then send it to the controller */
2989         addQ(&h->reqQ, c);
2990         h->Qdepth++;
2991         if (h->Qdepth > h->maxQsinceinit)
2992                 h->maxQsinceinit = h->Qdepth;
2993
2994         start_io(h);
2995 }
2996
2997 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2998         unsigned int msg_byte, unsigned int host_byte,
2999         unsigned int driver_byte)
3000 {
3001         /* inverse of macros in scsi.h */
3002         return (scsi_status_byte & 0xff) |
3003                 ((msg_byte & 0xff) << 8) |
3004                 ((host_byte & 0xff) << 16) |
3005                 ((driver_byte & 0xff) << 24);
3006 }
3007
3008 static inline int evaluate_target_status(ctlr_info_t *h,
3009                         CommandList_struct *cmd, int *retry_cmd)
3010 {
3011         unsigned char sense_key;
3012         unsigned char status_byte, msg_byte, host_byte, driver_byte;
3013         int error_value;
3014
3015         *retry_cmd = 0;
3016         /* If we get in here, it means we got "target status", that is, scsi status */
3017         status_byte = cmd->err_info->ScsiStatus;
3018         driver_byte = DRIVER_OK;
3019         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3020
3021         if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3022                 host_byte = DID_PASSTHROUGH;
3023         else
3024                 host_byte = DID_OK;
3025
3026         error_value = make_status_bytes(status_byte, msg_byte,
3027                 host_byte, driver_byte);
3028
3029         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3030                 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3031                         dev_warn(&h->pdev->dev, "cmd %p "
3032                                "has SCSI Status 0x%x\n",
3033                                cmd, cmd->err_info->ScsiStatus);
3034                 return error_value;
3035         }
3036
3037         /* check the sense key */
3038         sense_key = 0xf & cmd->err_info->SenseInfo[2];
3039         /* no status or recovered error */
3040         if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3041             (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3042                 error_value = 0;
3043
3044         if (check_for_unit_attention(h, cmd)) {
3045                 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3046                 return 0;
3047         }
3048
3049         /* Not SG_IO or similar? */
3050         if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3051                 if (error_value != 0)
3052                         dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3053                                " sense key = 0x%x\n", cmd, sense_key);
3054                 return error_value;
3055         }
3056
3057         /* SG_IO or similar, copy sense data back */
3058         if (cmd->rq->sense) {
3059                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3060                         cmd->rq->sense_len = cmd->err_info->SenseLen;
3061                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3062                         cmd->rq->sense_len);
3063         } else
3064                 cmd->rq->sense_len = 0;
3065
3066         return error_value;
3067 }
3068
3069 /* checks the status of the job and calls complete buffers to mark all
3070  * buffers for the completed job. Note that this function does not need
3071  * to hold the hba/queue lock.
3072  */
3073 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3074                                     int timeout)
3075 {
3076         int retry_cmd = 0;
3077         struct request *rq = cmd->rq;
3078
3079         rq->errors = 0;
3080
3081         if (timeout)
3082                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3083
3084         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3085                 goto after_error_processing;
3086
3087         switch (cmd->err_info->CommandStatus) {
3088         case CMD_TARGET_STATUS:
3089                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3090                 break;
3091         case CMD_DATA_UNDERRUN:
3092                 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3093                         dev_warn(&h->pdev->dev, "cmd %p has"
3094                                " completed with data underrun "
3095                                "reported\n", cmd);
3096                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3097                 }
3098                 break;
3099         case CMD_DATA_OVERRUN:
3100                 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3101                         dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3102                                " completed with data overrun "
3103                                "reported\n", cmd);
3104                 break;
3105         case CMD_INVALID:
3106                 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3107                        "reported invalid\n", cmd);
3108                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3109                         cmd->err_info->CommandStatus, DRIVER_OK,
3110                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3111                                 DID_PASSTHROUGH : DID_ERROR);
3112                 break;
3113         case CMD_PROTOCOL_ERR:
3114                 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3115                        "protocol error\n", cmd);
3116                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3117                         cmd->err_info->CommandStatus, DRIVER_OK,
3118                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3119                                 DID_PASSTHROUGH : DID_ERROR);
3120                 break;
3121         case CMD_HARDWARE_ERR:
3122                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3123                        " hardware error\n", cmd);
3124                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3125                         cmd->err_info->CommandStatus, DRIVER_OK,
3126                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3127                                 DID_PASSTHROUGH : DID_ERROR);
3128                 break;
3129         case CMD_CONNECTION_LOST:
3130                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3131                        "connection lost\n", cmd);
3132                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3133                         cmd->err_info->CommandStatus, DRIVER_OK,
3134                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3135                                 DID_PASSTHROUGH : DID_ERROR);
3136                 break;
3137         case CMD_ABORTED:
3138                 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3139                        "aborted\n", cmd);
3140                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3141                         cmd->err_info->CommandStatus, DRIVER_OK,
3142                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3143                                 DID_PASSTHROUGH : DID_ABORT);
3144                 break;
3145         case CMD_ABORT_FAILED:
3146                 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3147                        "abort failed\n", cmd);
3148                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3149                         cmd->err_info->CommandStatus, DRIVER_OK,
3150                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3151                                 DID_PASSTHROUGH : DID_ERROR);
3152                 break;
3153         case CMD_UNSOLICITED_ABORT:
3154                 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3155                        "abort %p\n", h->ctlr, cmd);
3156                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3157                         retry_cmd = 1;
3158                         dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3159                         cmd->retry_count++;
3160                 } else
3161                         dev_warn(&h->pdev->dev,
3162                                 "%p retried too many times\n", cmd);
3163                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3164                         cmd->err_info->CommandStatus, DRIVER_OK,
3165                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3166                                 DID_PASSTHROUGH : DID_ABORT);
3167                 break;
3168         case CMD_TIMEOUT:
3169                 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3170                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3171                         cmd->err_info->CommandStatus, DRIVER_OK,
3172                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3173                                 DID_PASSTHROUGH : DID_ERROR);
3174                 break;
3175         case CMD_UNABORTABLE:
3176                 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3177                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3178                         cmd->err_info->CommandStatus, DRIVER_OK,
3179                         cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3180                                 DID_PASSTHROUGH : DID_ERROR);
3181                 break;
3182         default:
3183                 dev_warn(&h->pdev->dev, "cmd %p returned "
3184                        "unknown status %x\n", cmd,
3185                        cmd->err_info->CommandStatus);
3186                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3187                         cmd->err_info->CommandStatus, DRIVER_OK,
3188                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3189                                 DID_PASSTHROUGH : DID_ERROR);
3190         }
3191
3192 after_error_processing:
3193
3194         /* We need to return this command */
3195         if (retry_cmd) {
3196                 resend_cciss_cmd(h, cmd);
3197                 return;
3198         }
3199         cmd->rq->completion_data = cmd;
3200         blk_complete_request(cmd->rq);
3201 }
3202
3203 static inline u32 cciss_tag_contains_index(u32 tag)
3204 {
3205 #define DIRECT_LOOKUP_BIT 0x10
3206         return tag & DIRECT_LOOKUP_BIT;
3207 }
3208
3209 static inline u32 cciss_tag_to_index(u32 tag)
3210 {
3211 #define DIRECT_LOOKUP_SHIFT 5
3212         return tag >> DIRECT_LOOKUP_SHIFT;
3213 }
3214
3215 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3216 {
3217 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3218 #define CCISS_SIMPLE_ERROR_BITS 0x03
3219         if (likely(h->transMethod & CFGTBL_Trans_Performant))
3220                 return tag & ~CCISS_PERF_ERROR_BITS;
3221         return tag & ~CCISS_SIMPLE_ERROR_BITS;
3222 }
3223
3224 static inline void cciss_mark_tag_indexed(u32 *tag)
3225 {
3226         *tag |= DIRECT_LOOKUP_BIT;
3227 }
3228
3229 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3230 {
3231         *tag |= (index << DIRECT_LOOKUP_SHIFT);
3232 }
3233
3234 /*
3235  * Get a request and submit it to the controller.
3236  */
3237 static void do_cciss_request(struct request_queue *q)
3238 {
3239         ctlr_info_t *h = q->queuedata;
3240         CommandList_struct *c;
3241         sector_t start_blk;
3242         int seg;
3243         struct request *creq;
3244         u64bit temp64;
3245         struct scatterlist *tmp_sg;
3246         SGDescriptor_struct *curr_sg;
3247         drive_info_struct *drv;
3248         int i, dir;
3249         int sg_index = 0;
3250         int chained = 0;
3251
3252       queue:
3253         creq = blk_peek_request(q);
3254         if (!creq)
3255                 goto startio;
3256
3257         BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3258
3259         c = cmd_alloc(h);
3260         if (!c)
3261                 goto full;
3262
3263         blk_start_request(creq);
3264
3265         tmp_sg = h->scatter_list[c->cmdindex];
3266         spin_unlock_irq(q->queue_lock);
3267
3268         c->cmd_type = CMD_RWREQ;
3269         c->rq = creq;
3270
3271         /* fill in the request */
3272         drv = creq->rq_disk->private_data;
3273         c->Header.ReplyQueue = 0;       /* unused in simple mode */
3274         /* got command from pool, so use the command block index instead */
3275         /* for direct lookups. */
3276         /* The first 2 bits are reserved for controller error reporting. */
3277         cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3278         cciss_mark_tag_indexed(&c->Header.Tag.lower);
3279         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3280         c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3281         c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3282         c->Request.Type.Attribute = ATTR_SIMPLE;
3283         c->Request.Type.Direction =
3284             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3285         c->Request.Timeout = 0; /* Don't time out */
3286         c->Request.CDB[0] =
3287             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3288         start_blk = blk_rq_pos(creq);
3289         dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3290                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3291         sg_init_table(tmp_sg, h->maxsgentries);
3292         seg = blk_rq_map_sg(q, creq, tmp_sg);
3293
3294         /* get the DMA records for the setup */
3295         if (c->Request.Type.Direction == XFER_READ)
3296                 dir = PCI_DMA_FROMDEVICE;
3297         else
3298                 dir = PCI_DMA_TODEVICE;
3299
3300         curr_sg = c->SG;
3301         sg_index = 0;
3302         chained = 0;
3303
3304         for (i = 0; i < seg; i++) {
3305                 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3306                         !chained && ((seg - i) > 1)) {
3307                         /* Point to next chain block. */
3308                         curr_sg = h->cmd_sg_list[c->cmdindex];
3309                         sg_index = 0;
3310                         chained = 1;
3311                 }
3312                 curr_sg[sg_index].Len = tmp_sg[i].length;
3313                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3314                                                 tmp_sg[i].offset,
3315                                                 tmp_sg[i].length, dir);
3316                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3317                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3318                 curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3319                 ++sg_index;
3320         }
3321         if (chained)
3322                 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3323                         (seg - (h->max_cmd_sgentries - 1)) *
3324                                 sizeof(SGDescriptor_struct));
3325
3326         /* track how many SG entries we are using */
3327         if (seg > h->maxSG)
3328                 h->maxSG = seg;
3329
3330         dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3331                         "chained[%d]\n",
3332                         blk_rq_sectors(creq), seg, chained);
3333
3334         c->Header.SGTotal = seg + chained;
3335         if (seg <= h->max_cmd_sgentries)
3336                 c->Header.SGList = c->Header.SGTotal;
3337         else
3338                 c->Header.SGList = h->max_cmd_sgentries;
3339         set_performant_mode(h, c);
3340
3341         if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3342                 if(h->cciss_read == CCISS_READ_10) {
3343                         c->Request.CDB[1] = 0;
3344                         c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3345                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3346                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3347                         c->Request.CDB[5] = start_blk & 0xff;
3348                         c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3349                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3350                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3351                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3352                 } else {
3353                         u32 upper32 = upper_32_bits(start_blk);
3354
3355                         c->Request.CDBLen = 16;
3356                         c->Request.CDB[1]= 0;
3357                         c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3358                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3359                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3360                         c->Request.CDB[5]= upper32 & 0xff;
3361                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3362                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3363                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3364                         c->Request.CDB[9]= start_blk & 0xff;
3365                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3366                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3367                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3368                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3369                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3370                 }
3371         } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3372                 c->Request.CDBLen = creq->cmd_len;
3373                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3374         } else {
3375                 dev_warn(&h->pdev->dev, "bad request type %d\n",
3376                         creq->cmd_type);
3377                 BUG();
3378         }
3379
3380         spin_lock_irq(q->queue_lock);
3381
3382         addQ(&h->reqQ, c);
3383         h->Qdepth++;
3384         if (h->Qdepth > h->maxQsinceinit)
3385                 h->maxQsinceinit = h->Qdepth;
3386
3387         goto queue;
3388 full:
3389         blk_stop_queue(q);
3390 startio:
3391         /* We will already have the driver lock here so not need
3392          * to lock it.
3393          */
3394         start_io(h);
3395 }
3396
3397 static inline unsigned long get_next_completion(ctlr_info_t *h)
3398 {
3399         return h->access.command_completed(h);
3400 }
3401
3402 static inline int interrupt_pending(ctlr_info_t *h)
3403 {
3404         return h->access.intr_pending(h);
3405 }
3406
3407 static inline long interrupt_not_for_us(ctlr_info_t *h)
3408 {
3409         return ((h->access.intr_pending(h) == 0) ||
3410                 (h->interrupts_enabled == 0));
3411 }
3412
3413 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3414                         u32 raw_tag)
3415 {
3416         if (unlikely(tag_index >= h->nr_cmds)) {
3417                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3418                 return 1;
3419         }
3420         return 0;
3421 }
3422
3423 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3424                                 u32 raw_tag)
3425 {
3426         removeQ(c);
3427         if (likely(c->cmd_type == CMD_RWREQ))
3428                 complete_command(h, c, 0);
3429         else if (c->cmd_type == CMD_IOCTL_PEND)
3430                 complete(c->waiting);
3431 #ifdef CONFIG_CISS_SCSI_TAPE
3432         else if (c->cmd_type == CMD_SCSI)
3433                 complete_scsi_command(c, 0, raw_tag);
3434 #endif
3435 }
3436
3437 static inline u32 next_command(ctlr_info_t *h)
3438 {
3439         u32 a;
3440
3441         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3442                 return h->access.command_completed(h);
3443
3444         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3445                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3446                 (h->reply_pool_head)++;
3447                 h->commands_outstanding--;
3448         } else {
3449                 a = FIFO_EMPTY;
3450         }
3451         /* Check for wraparound */
3452         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3453                 h->reply_pool_head = h->reply_pool;
3454                 h->reply_pool_wraparound ^= 1;
3455         }
3456         return a;
3457 }
3458
3459 /* process completion of an indexed ("direct lookup") command */
3460 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3461 {
3462         u32 tag_index;
3463         CommandList_struct *c;
3464
3465         tag_index = cciss_tag_to_index(raw_tag);
3466         if (bad_tag(h, tag_index, raw_tag))
3467                 return next_command(h);
3468         c = h->cmd_pool + tag_index;
3469         finish_cmd(h, c, raw_tag);
3470         return next_command(h);
3471 }
3472
3473 /* process completion of a non-indexed command */
3474 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3475 {
3476         CommandList_struct *c = NULL;
3477         __u32 busaddr_masked, tag_masked;
3478
3479         tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3480         list_for_each_entry(c, &h->cmpQ, list) {
3481                 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3482                 if (busaddr_masked == tag_masked) {
3483                         finish_cmd(h, c, raw_tag);
3484                         return next_command(h);
3485                 }
3486         }
3487         bad_tag(h, h->nr_cmds + 1, raw_tag);
3488         return next_command(h);
3489 }
3490
3491 /* Some controllers, like p400, will give us one interrupt
3492  * after a soft reset, even if we turned interrupts off.
3493  * Only need to check for this in the cciss_xxx_discard_completions
3494  * functions.
3495  */
3496 static int ignore_bogus_interrupt(ctlr_info_t *h)
3497 {
3498         if (likely(!reset_devices))
3499                 return 0;
3500
3501         if (likely(h->interrupts_enabled))
3502                 return 0;
3503
3504         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3505                 "(known firmware bug.)  Ignoring.\n");
3506
3507         return 1;
3508 }
3509
3510 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3511 {
3512         ctlr_info_t *h = dev_id;
3513         unsigned long flags;
3514         u32 raw_tag;
3515
3516         if (ignore_bogus_interrupt(h))
3517                 return IRQ_NONE;
3518
3519         if (interrupt_not_for_us(h))
3520                 return IRQ_NONE;
3521         spin_lock_irqsave(&h->lock, flags);
3522         while (interrupt_pending(h)) {
3523                 raw_tag = get_next_completion(h);
3524                 while (raw_tag != FIFO_EMPTY)
3525                         raw_tag = next_command(h);
3526         }
3527         spin_unlock_irqrestore(&h->lock, flags);
3528         return IRQ_HANDLED;
3529 }
3530
3531 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3532 {
3533         ctlr_info_t *h = dev_id;
3534         unsigned long flags;
3535         u32 raw_tag;
3536
3537         if (ignore_bogus_interrupt(h))
3538                 return IRQ_NONE;
3539
3540         spin_lock_irqsave(&h->lock, flags);
3541         raw_tag = get_next_completion(h);
3542         while (raw_tag != FIFO_EMPTY)
3543                 raw_tag = next_command(h);
3544         spin_unlock_irqrestore(&h->lock, flags);
3545         return IRQ_HANDLED;
3546 }
3547
3548 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3549 {
3550         ctlr_info_t *h = dev_id;
3551         unsigned long flags;
3552         u32 raw_tag;
3553
3554         if (interrupt_not_for_us(h))
3555                 return IRQ_NONE;
3556         spin_lock_irqsave(&h->lock, flags);
3557         while (interrupt_pending(h)) {
3558                 raw_tag = get_next_completion(h);
3559                 while (raw_tag != FIFO_EMPTY) {
3560                         if (cciss_tag_contains_index(raw_tag))
3561                                 raw_tag = process_indexed_cmd(h, raw_tag);
3562                         else
3563                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3564                 }
3565         }
3566         spin_unlock_irqrestore(&h->lock, flags);
3567         return IRQ_HANDLED;
3568 }
3569
3570 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3571  * check the interrupt pending register because it is not set.
3572  */
3573 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3574 {
3575         ctlr_info_t *h = dev_id;
3576         unsigned long flags;
3577         u32 raw_tag;
3578
3579         spin_lock_irqsave(&h->lock, flags);
3580         raw_tag = get_next_completion(h);
3581         while (raw_tag != FIFO_EMPTY) {
3582                 if (cciss_tag_contains_index(raw_tag))
3583                         raw_tag = process_indexed_cmd(h, raw_tag);
3584                 else
3585                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3586         }
3587         spin_unlock_irqrestore(&h->lock, flags);
3588         return IRQ_HANDLED;
3589 }
3590
3591 /**
3592  * add_to_scan_list() - add controller to rescan queue
3593  * @h:                Pointer to the controller.
3594  *
3595  * Adds the controller to the rescan queue if not already on the queue.
3596  *
3597  * returns 1 if added to the queue, 0 if skipped (could be on the
3598  * queue already, or the controller could be initializing or shutting
3599  * down).
3600  **/
3601 static int add_to_scan_list(struct ctlr_info *h)
3602 {
3603         struct ctlr_info *test_h;
3604         int found = 0;
3605         int ret = 0;
3606
3607         if (h->busy_initializing)
3608                 return 0;
3609
3610         if (!mutex_trylock(&h->busy_shutting_down))
3611                 return 0;
3612
3613         mutex_lock(&scan_mutex);
3614         list_for_each_entry(test_h, &scan_q, scan_list) {
3615                 if (test_h == h) {
3616                         found = 1;
3617                         break;
3618                 }
3619         }
3620         if (!found && !h->busy_scanning) {
3621                 INIT_COMPLETION(h->scan_wait);
3622                 list_add_tail(&h->scan_list, &scan_q);
3623                 ret = 1;
3624         }
3625         mutex_unlock(&scan_mutex);
3626         mutex_unlock(&h->busy_shutting_down);
3627
3628         return ret;
3629 }
3630
3631 /**
3632  * remove_from_scan_list() - remove controller from rescan queue
3633  * @h:                     Pointer to the controller.
3634  *
3635  * Removes the controller from the rescan queue if present. Blocks if
3636  * the controller is currently conducting a rescan.  The controller
3637  * can be in one of three states:
3638  * 1. Doesn't need a scan
3639  * 2. On the scan list, but not scanning yet (we remove it)
3640  * 3. Busy scanning (and not on the list). In this case we want to wait for
3641  *    the scan to complete to make sure the scanning thread for this
3642  *    controller is completely idle.
3643  **/
3644 static void remove_from_scan_list(struct ctlr_info *h)
3645 {
3646         struct ctlr_info *test_h, *tmp_h;
3647
3648         mutex_lock(&scan_mutex);
3649         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3650                 if (test_h == h) { /* state 2. */
3651                         list_del(&h->scan_list);
3652                         complete_all(&h->scan_wait);
3653                         mutex_unlock(&scan_mutex);
3654                         return;
3655                 }
3656         }
3657         if (h->busy_scanning) { /* state 3. */
3658                 mutex_unlock(&scan_mutex);
3659                 wait_for_completion(&h->scan_wait);
3660         } else { /* state 1, nothing to do. */
3661                 mutex_unlock(&scan_mutex);
3662         }
3663 }
3664
3665 /**
3666  * scan_thread() - kernel thread used to rescan controllers
3667  * @data:        Ignored.
3668  *
3669  * A kernel thread used scan for drive topology changes on
3670  * controllers. The thread processes only one controller at a time
3671  * using a queue.  Controllers are added to the queue using
3672  * add_to_scan_list() and removed from the queue either after done
3673  * processing or using remove_from_scan_list().
3674  *
3675  * returns 0.
3676  **/
3677 static int scan_thread(void *data)
3678 {
3679         struct ctlr_info *h;
3680
3681         while (1) {
3682                 set_current_state(TASK_INTERRUPTIBLE);
3683                 schedule();
3684                 if (kthread_should_stop())
3685                         break;
3686
3687                 while (1) {
3688                         mutex_lock(&scan_mutex);
3689                         if (list_empty(&scan_q)) {
3690                                 mutex_unlock(&scan_mutex);
3691                                 break;
3692                         }
3693
3694                         h = list_entry(scan_q.next,
3695                                        struct ctlr_info,
3696                                        scan_list);
3697                         list_del(&h->scan_list);
3698                         h->busy_scanning = 1;
3699                         mutex_unlock(&scan_mutex);
3700
3701                         rebuild_lun_table(h, 0, 0);
3702                         complete_all(&h->scan_wait);
3703                         mutex_lock(&scan_mutex);
3704                         h->busy_scanning = 0;
3705                         mutex_unlock(&scan_mutex);
3706                 }
3707         }
3708
3709         return 0;
3710 }
3711
3712 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3713 {
3714         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3715                 return 0;
3716
3717         switch (c->err_info->SenseInfo[12]) {
3718         case STATE_CHANGED:
3719                 dev_warn(&h->pdev->dev, "a state change "
3720                         "detected, command retried\n");
3721                 return 1;
3722         break;
3723         case LUN_FAILED:
3724                 dev_warn(&h->pdev->dev, "LUN failure "
3725                         "detected, action required\n");
3726                 return 1;
3727         break;
3728         case REPORT_LUNS_CHANGED:
3729                 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3730         /*
3731          * Here, we could call add_to_scan_list and wake up the scan thread,
3732          * except that it's quite likely that we will get more than one
3733          * REPORT_LUNS_CHANGED condition in quick succession, which means
3734          * that those which occur after the first one will likely happen
3735          * *during* the scan_thread's rescan.  And the rescan code is not
3736          * robust enough to restart in the middle, undoing what it has already
3737          * done, and it's not clear that it's even possible to do this, since
3738          * part of what it does is notify the block layer, which starts
3739          * doing it's own i/o to read partition tables and so on, and the
3740          * driver doesn't have visibility to know what might need undoing.
3741          * In any event, if possible, it is horribly complicated to get right
3742          * so we just don't do it for now.
3743          *
3744          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3745          */
3746                 return 1;
3747         break;
3748         case POWER_OR_RESET:
3749                 dev_warn(&h->pdev->dev,
3750                         "a power on or device reset detected\n");
3751                 return 1;
3752         break;
3753         case UNIT_ATTENTION_CLEARED:
3754                 dev_warn(&h->pdev->dev,
3755                         "unit attention cleared by another initiator\n");
3756                 return 1;
3757         break;
3758         default:
3759                 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3760                 return 1;
3761         }
3762 }
3763
3764 /*
3765  *  We cannot read the structure directly, for portability we must use
3766  *   the io functions.
3767  *   This is for debug only.
3768  */
3769 static void print_cfg_table(ctlr_info_t *h)
3770 {
3771         int i;
3772         char temp_name[17];
3773         CfgTable_struct *tb = h->cfgtable;
3774
3775         dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3776         dev_dbg(&h->pdev->dev, "------------------------------------\n");
3777         for (i = 0; i < 4; i++)
3778                 temp_name[i] = readb(&(tb->Signature[i]));
3779         temp_name[4] = '\0';
3780         dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3781         dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3782                 readl(&(tb->SpecValence)));
3783         dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3784                readl(&(tb->TransportSupport)));
3785         dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3786                readl(&(tb->TransportActive)));
3787         dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3788                readl(&(tb->HostWrite.TransportRequest)));
3789         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3790                readl(&(tb->HostWrite.CoalIntDelay)));
3791         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3792                readl(&(tb->HostWrite.CoalIntCount)));
3793         dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3794                readl(&(tb->CmdsOutMax)));
3795         dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3796                 readl(&(tb->BusTypes)));
3797         for (i = 0; i < 16; i++)
3798                 temp_name[i] = readb(&(tb->ServerName[i]));
3799         temp_name[16] = '\0';
3800         dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3801         dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3802                 readl(&(tb->HeartBeat)));
3803 }
3804
3805 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3806 {
3807         int i, offset, mem_type, bar_type;
3808         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3809                 return 0;
3810         offset = 0;
3811         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3812                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3813                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3814                         offset += 4;
3815                 else {
3816                         mem_type = pci_resource_flags(pdev, i) &
3817                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3818                         switch (mem_type) {
3819                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3820                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3821                                 offset += 4;    /* 32 bit */
3822                                 break;
3823                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3824                                 offset += 8;
3825                                 break;
3826                         default:        /* reserved in PCI 2.2 */
3827                                 dev_warn(&pdev->dev,
3828                                        "Base address is invalid\n");
3829                                 return -1;
3830                                 break;
3831                         }
3832                 }
3833                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3834                         return i + 1;
3835         }
3836         return -1;
3837 }
3838
3839 /* Fill in bucket_map[], given nsgs (the max number of
3840  * scatter gather elements supported) and bucket[],
3841  * which is an array of 8 integers.  The bucket[] array
3842  * contains 8 different DMA transfer sizes (in 16
3843  * byte increments) which the controller uses to fetch
3844  * commands.  This function fills in bucket_map[], which
3845  * maps a given number of scatter gather elements to one of
3846  * the 8 DMA transfer sizes.  The point of it is to allow the
3847  * controller to only do as much DMA as needed to fetch the
3848  * command, with the DMA transfer size encoded in the lower
3849  * bits of the command address.
3850  */
3851 static void  calc_bucket_map(int bucket[], int num_buckets,
3852         int nsgs, int *bucket_map)
3853 {
3854         int i, j, b, size;
3855
3856         /* even a command with 0 SGs requires 4 blocks */
3857 #define MINIMUM_TRANSFER_BLOCKS 4
3858 #define NUM_BUCKETS 8
3859         /* Note, bucket_map must have nsgs+1 entries. */
3860         for (i = 0; i <= nsgs; i++) {
3861                 /* Compute size of a command with i SG entries */
3862                 size = i + MINIMUM_TRANSFER_BLOCKS;
3863                 b = num_buckets; /* Assume the biggest bucket */
3864                 /* Find the bucket that is just big enough */
3865                 for (j = 0; j < 8; j++) {
3866                         if (bucket[j] >= size) {
3867                                 b = j;
3868                                 break;
3869                         }
3870                 }
3871                 /* for a command with i SG entries, use bucket b. */
3872                 bucket_map[i] = b;
3873         }
3874 }
3875
3876 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3877 {
3878         int i;
3879
3880         /* under certain very rare conditions, this can take awhile.
3881          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3882          * as we enter this code.) */
3883         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3884                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3885                         break;
3886                 usleep_range(10000, 20000);
3887         }
3888 }
3889
3890 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3891         u32 use_short_tags)
3892 {
3893         /* This is a bit complicated.  There are 8 registers on
3894          * the controller which we write to to tell it 8 different
3895          * sizes of commands which there may be.  It's a way of
3896          * reducing the DMA done to fetch each command.  Encoded into
3897          * each command's tag are 3 bits which communicate to the controller
3898          * which of the eight sizes that command fits within.  The size of
3899          * each command depends on how many scatter gather entries there are.
3900          * Each SG entry requires 16 bytes.  The eight registers are programmed
3901          * with the number of 16-byte blocks a command of that size requires.
3902          * The smallest command possible requires 5 such 16 byte blocks.
3903          * the largest command possible requires MAXSGENTRIES + 4 16-byte
3904          * blocks.  Note, this only extends to the SG entries contained
3905          * within the command block, and does not extend to chained blocks
3906          * of SG elements.   bft[] contains the eight values we write to
3907          * the registers.  They are not evenly distributed, but have more
3908          * sizes for small commands, and fewer sizes for larger commands.
3909          */
3910         __u32 trans_offset;
3911         int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3912                         /*
3913                          *  5 = 1 s/g entry or 4k
3914                          *  6 = 2 s/g entry or 8k
3915                          *  8 = 4 s/g entry or 16k
3916                          * 10 = 6 s/g entry or 24k
3917                          */
3918         unsigned long register_value;
3919         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3920
3921         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3922
3923         /* Controller spec: zero out this buffer. */
3924         memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3925         h->reply_pool_head = h->reply_pool;
3926
3927         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3928         calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3929                                 h->blockFetchTable);
3930         writel(bft[0], &h->transtable->BlockFetch0);
3931         writel(bft[1], &h->transtable->BlockFetch1);
3932         writel(bft[2], &h->transtable->BlockFetch2);
3933         writel(bft[3], &h->transtable->BlockFetch3);
3934         writel(bft[4], &h->transtable->BlockFetch4);
3935         writel(bft[5], &h->transtable->BlockFetch5);
3936         writel(bft[6], &h->transtable->BlockFetch6);
3937         writel(bft[7], &h->transtable->BlockFetch7);
3938
3939         /* size of controller ring buffer */
3940         writel(h->max_commands, &h->transtable->RepQSize);
3941         writel(1, &h->transtable->RepQCount);
3942         writel(0, &h->transtable->RepQCtrAddrLow32);
3943         writel(0, &h->transtable->RepQCtrAddrHigh32);
3944         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3945         writel(0, &h->transtable->RepQAddr0High32);
3946         writel(CFGTBL_Trans_Performant | use_short_tags,
3947                         &(h->cfgtable->HostWrite.TransportRequest));
3948
3949         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3950         cciss_wait_for_mode_change_ack(h);
3951         register_value = readl(&(h->cfgtable->TransportActive));
3952         if (!(register_value & CFGTBL_Trans_Performant))
3953                 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3954                                         " performant mode\n");
3955 }
3956
3957 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3958 {
3959         __u32 trans_support;
3960
3961         dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3962         /* Attempt to put controller into performant mode if supported */
3963         /* Does board support performant mode? */
3964         trans_support = readl(&(h->cfgtable->TransportSupport));
3965         if (!(trans_support & PERFORMANT_MODE))
3966                 return;
3967
3968         dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
3969         /* Performant mode demands commands on a 32 byte boundary
3970          * pci_alloc_consistent aligns on page boundarys already.
3971          * Just need to check if divisible by 32
3972          */
3973         if ((sizeof(CommandList_struct) % 32) != 0) {
3974                 dev_warn(&h->pdev->dev, "%s %d %s\n",
3975                         "cciss info: command size[",
3976                         (int)sizeof(CommandList_struct),
3977                         "] not divisible by 32, no performant mode..\n");
3978                 return;
3979         }
3980
3981         /* Performant mode ring buffer and supporting data structures */
3982         h->reply_pool = (__u64 *)pci_alloc_consistent(
3983                 h->pdev, h->max_commands * sizeof(__u64),
3984                 &(h->reply_pool_dhandle));
3985
3986         /* Need a block fetch table for performant mode */
3987         h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3988                 sizeof(__u32)), GFP_KERNEL);
3989
3990         if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3991                 goto clean_up;
3992
3993         cciss_enter_performant_mode(h,
3994                 trans_support & CFGTBL_Trans_use_short_tags);
3995
3996         /* Change the access methods to the performant access methods */
3997         h->access = SA5_performant_access;
3998         h->transMethod = CFGTBL_Trans_Performant;
3999
4000         return;
4001 clean_up:
4002         kfree(h->blockFetchTable);
4003         if (h->reply_pool)
4004                 pci_free_consistent(h->pdev,
4005                                 h->max_commands * sizeof(__u64),
4006                                 h->reply_pool,
4007                                 h->reply_pool_dhandle);
4008         return;
4009
4010 } /* cciss_put_controller_into_performant_mode */
4011
4012 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4013  * controllers that are capable. If not, we use IO-APIC mode.
4014  */
4015
4016 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4017 {
4018 #ifdef CONFIG_PCI_MSI
4019         int err;
4020         struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4021         {0, 2}, {0, 3}
4022         };
4023
4024         /* Some boards advertise MSI but don't really support it */
4025         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4026             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4027                 goto default_int_mode;
4028
4029         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4030                 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4031                 if (!err) {
4032                         h->intr[0] = cciss_msix_entries[0].vector;
4033                         h->intr[1] = cciss_msix_entries[1].vector;
4034                         h->intr[2] = cciss_msix_entries[2].vector;
4035                         h->intr[3] = cciss_msix_entries[3].vector;
4036                         h->msix_vector = 1;
4037                         return;
4038                 }
4039                 if (err > 0) {
4040                         dev_warn(&h->pdev->dev,
4041                                 "only %d MSI-X vectors available\n", err);
4042                         goto default_int_mode;
4043                 } else {
4044                         dev_warn(&h->pdev->dev,
4045                                 "MSI-X init failed %d\n", err);
4046                         goto default_int_mode;
4047                 }
4048         }
4049         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4050                 if (!pci_enable_msi(h->pdev))
4051                         h->msi_vector = 1;
4052                 else
4053                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4054         }
4055 default_int_mode:
4056 #endif                          /* CONFIG_PCI_MSI */
4057         /* if we get here we're going to use the default interrupt mode */
4058         h->intr[PERF_MODE_INT] = h->pdev->irq;
4059         return;
4060 }
4061
4062 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4063 {
4064         int i;
4065         u32 subsystem_vendor_id, subsystem_device_id;
4066
4067         subsystem_vendor_id = pdev->subsystem_vendor;
4068         subsystem_device_id = pdev->subsystem_device;
4069         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4070                         subsystem_vendor_id;
4071
4072         for (i = 0; i < ARRAY_SIZE(products); i++)
4073                 if (*board_id == products[i].board_id)
4074                         return i;
4075         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4076                 *board_id);
4077         return -ENODEV;
4078 }
4079
4080 static inline bool cciss_board_disabled(ctlr_info_t *h)
4081 {
4082         u16 command;
4083
4084         (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4085         return ((command & PCI_COMMAND_MEMORY) == 0);
4086 }
4087
4088 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4089         unsigned long *memory_bar)
4090 {
4091         int i;
4092
4093         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4094                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4095                         /* addressing mode bits already removed */
4096                         *memory_bar = pci_resource_start(pdev, i);
4097                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4098                                 *memory_bar);
4099                         return 0;
4100                 }
4101         dev_warn(&pdev->dev, "no memory BAR found\n");
4102         return -ENODEV;
4103 }
4104
4105 static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4106         void __iomem *vaddr, int wait_for_ready)
4107 #define BOARD_READY 1
4108 #define BOARD_NOT_READY 0
4109 {
4110         int i, iterations;
4111         u32 scratchpad;
4112
4113         if (wait_for_ready)
4114                 iterations = CCISS_BOARD_READY_ITERATIONS;
4115         else
4116                 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4117
4118         for (i = 0; i < iterations; i++) {
4119                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4120                 if (wait_for_ready) {
4121                         if (scratchpad == CCISS_FIRMWARE_READY)
4122                                 return 0;
4123                 } else {
4124                         if (scratchpad != CCISS_FIRMWARE_READY)
4125                                 return 0;
4126                 }
4127                 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4128         }
4129         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4130         return -ENODEV;
4131 }
4132
4133 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4134         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4135         u64 *cfg_offset)
4136 {
4137         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4138         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4139         *cfg_base_addr &= (u32) 0x0000ffff;
4140         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4141         if (*cfg_base_addr_index == -1) {
4142                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4143                         "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4144                 return -ENODEV;
4145         }
4146         return 0;
4147 }
4148
4149 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4150 {
4151         u64 cfg_offset;
4152         u32 cfg_base_addr;
4153         u64 cfg_base_addr_index;
4154         u32 trans_offset;
4155         int rc;
4156
4157         rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4158                 &cfg_base_addr_index, &cfg_offset);
4159         if (rc)
4160                 return rc;
4161         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4162                 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4163         if (!h->cfgtable)
4164                 return -ENOMEM;
4165         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4166         if (rc)
4167                 return rc;
4168         /* Find performant mode table. */
4169         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4170         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4171                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4172                                 sizeof(*h->transtable));
4173         if (!h->transtable)
4174                 return -ENOMEM;
4175         return 0;
4176 }
4177
4178 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4179 {
4180         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4181
4182         /* Limit commands in memory limited kdump scenario. */
4183         if (reset_devices && h->max_commands > 32)
4184                 h->max_commands = 32;
4185
4186         if (h->max_commands < 16) {
4187                 dev_warn(&h->pdev->dev, "Controller reports "
4188                         "max supported commands of %d, an obvious lie. "
4189                         "Using 16.  Ensure that firmware is up to date.\n",
4190                         h->max_commands);
4191                 h->max_commands = 16;
4192         }
4193 }
4194
4195 /* Interrogate the hardware for some limits:
4196  * max commands, max SG elements without chaining, and with chaining,
4197  * SG chain block size, etc.
4198  */
4199 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4200 {
4201         cciss_get_max_perf_mode_cmds(h);
4202         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4203         h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4204         /*
4205          * Limit in-command s/g elements to 32 save dma'able memory.
4206          * Howvever spec says if 0, use 31
4207          */
4208         h->max_cmd_sgentries = 31;
4209         if (h->maxsgentries > 512) {
4210                 h->max_cmd_sgentries = 32;
4211                 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4212                 h->maxsgentries--; /* save one for chain pointer */
4213         } else {
4214                 h->maxsgentries = 31; /* default to traditional values */
4215                 h->chainsize = 0;
4216         }
4217 }
4218
4219 static inline bool CISS_signature_present(ctlr_info_t *h)
4220 {
4221         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4222             (readb(&h->cfgtable->Signature[1]) != 'I') ||
4223             (readb(&h->cfgtable->Signature[2]) != 'S') ||
4224             (readb(&h->cfgtable->Signature[3]) != 'S')) {
4225                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4226                 return false;
4227         }
4228         return true;
4229 }
4230
4231 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4232 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4233 {
4234 #ifdef CONFIG_X86
4235         u32 prefetch;
4236
4237         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4238         prefetch |= 0x100;
4239         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4240 #endif
4241 }
4242
4243 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4244  * in a prefetch beyond physical memory.
4245  */
4246 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4247 {
4248         u32 dma_prefetch;
4249         __u32 dma_refetch;
4250
4251         if (h->board_id != 0x3225103C)
4252                 return;
4253         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4254         dma_prefetch |= 0x8000;
4255         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4256         pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4257         dma_refetch |= 0x1;
4258         pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4259 }
4260
4261 static int __devinit cciss_pci_init(ctlr_info_t *h)
4262 {
4263         int prod_index, err;
4264
4265         prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4266         if (prod_index < 0)
4267                 return -ENODEV;
4268         h->product_name = products[prod_index].product_name;
4269         h->access = *(products[prod_index].access);
4270
4271         if (cciss_board_disabled(h)) {
4272                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4273                 return -ENODEV;
4274         }
4275         err = pci_enable_device(h->pdev);
4276         if (err) {
4277                 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4278                 return err;
4279         }
4280
4281         err = pci_request_regions(h->pdev, "cciss");
4282         if (err) {
4283                 dev_warn(&h->pdev->dev,
4284                         "Cannot obtain PCI resources, aborting\n");
4285                 return err;
4286         }
4287
4288         dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4289         dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4290
4291 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4292  * else we use the IO-APIC interrupt assigned to us by system ROM.
4293  */
4294         cciss_interrupt_mode(h);
4295         err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4296         if (err)
4297                 goto err_out_free_res;
4298         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4299         if (!h->vaddr) {
4300                 err = -ENOMEM;
4301                 goto err_out_free_res;
4302         }
4303         err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4304         if (err)
4305                 goto err_out_free_res;
4306         err = cciss_find_cfgtables(h);
4307         if (err)
4308                 goto err_out_free_res;
4309         print_cfg_table(h);
4310         cciss_find_board_params(h);
4311
4312         if (!CISS_signature_present(h)) {
4313                 err = -ENODEV;
4314                 goto err_out_free_res;
4315         }
4316         cciss_enable_scsi_prefetch(h);
4317         cciss_p600_dma_prefetch_quirk(h);
4318         cciss_put_controller_into_performant_mode(h);
4319         return 0;
4320
4321 err_out_free_res:
4322         /*
4323          * Deliberately omit pci_disable_device(): it does something nasty to
4324          * Smart Array controllers that pci_enable_device does not undo
4325          */
4326         if (h->transtable)
4327                 iounmap(h->transtable);
4328         if (h->cfgtable)
4329                 iounmap(h->cfgtable);
4330         if (h->vaddr)
4331                 iounmap(h->vaddr);
4332         pci_release_regions(h->pdev);
4333         return err;
4334 }
4335
4336 /* Function to find the first free pointer into our hba[] array
4337  * Returns -1 if no free entries are left.
4338  */
4339 static int alloc_cciss_hba(struct pci_dev *pdev)
4340 {
4341         int i;
4342
4343         for (i = 0; i < MAX_CTLR; i++) {
4344                 if (!hba[i]) {
4345                         ctlr_info_t *h;
4346
4347                         h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4348                         if (!h)
4349                                 goto Enomem;
4350                         hba[i] = h;
4351                         return i;
4352                 }
4353         }
4354         dev_warn(&pdev->dev, "This driver supports a maximum"
4355                " of %d controllers.\n", MAX_CTLR);
4356         return -1;
4357 Enomem:
4358         dev_warn(&pdev->dev, "out of memory.\n");
4359         return -1;
4360 }
4361
4362 static void free_hba(ctlr_info_t *h)
4363 {
4364         int i;
4365
4366         hba[h->ctlr] = NULL;
4367         for (i = 0; i < h->highest_lun + 1; i++)
4368                 if (h->gendisk[i] != NULL)
4369                         put_disk(h->gendisk[i]);
4370         kfree(h);
4371 }
4372
4373 /* Send a message CDB to the firmware. */
4374 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4375 {
4376         typedef struct {
4377                 CommandListHeader_struct CommandHeader;
4378                 RequestBlock_struct Request;
4379                 ErrDescriptor_struct ErrorDescriptor;
4380         } Command;
4381         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4382         Command *cmd;
4383         dma_addr_t paddr64;
4384         uint32_t paddr32, tag;
4385         void __iomem *vaddr;
4386         int i, err;
4387
4388         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4389         if (vaddr == NULL)
4390                 return -ENOMEM;
4391
4392         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4393            CCISS commands, so they must be allocated from the lower 4GiB of
4394            memory. */
4395         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4396         if (err) {
4397                 iounmap(vaddr);
4398                 return -ENOMEM;
4399         }
4400
4401         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4402         if (cmd == NULL) {
4403                 iounmap(vaddr);
4404                 return -ENOMEM;
4405         }
4406
4407         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
4408            although there's no guarantee, we assume that the address is at
4409            least 4-byte aligned (most likely, it's page-aligned). */
4410         paddr32 = paddr64;
4411
4412         cmd->CommandHeader.ReplyQueue = 0;
4413         cmd->CommandHeader.SGList = 0;
4414         cmd->CommandHeader.SGTotal = 0;
4415         cmd->CommandHeader.Tag.lower = paddr32;
4416         cmd->CommandHeader.Tag.upper = 0;
4417         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4418
4419         cmd->Request.CDBLen = 16;
4420         cmd->Request.Type.Type = TYPE_MSG;
4421         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4422         cmd->Request.Type.Direction = XFER_NONE;
4423         cmd->Request.Timeout = 0; /* Don't time out */
4424         cmd->Request.CDB[0] = opcode;
4425         cmd->Request.CDB[1] = type;
4426         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4427
4428         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4429         cmd->ErrorDescriptor.Addr.upper = 0;
4430         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4431
4432         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4433
4434         for (i = 0; i < 10; i++) {
4435                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4436                 if ((tag & ~3) == paddr32)
4437                         break;
4438                 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4439         }
4440
4441         iounmap(vaddr);
4442
4443         /* we leak the DMA buffer here ... no choice since the controller could
4444            still complete the command. */
4445         if (i == 10) {
4446                 dev_err(&pdev->dev,
4447                         "controller message %02x:%02x timed out\n",
4448                         opcode, type);
4449                 return -ETIMEDOUT;
4450         }
4451
4452         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4453
4454         if (tag & 2) {
4455                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4456                         opcode, type);
4457                 return -EIO;
4458         }
4459
4460         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4461                 opcode, type);
4462         return 0;
4463 }
4464
4465 #define cciss_noop(p) cciss_message(p, 3, 0)
4466
4467 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4468         void * __iomem vaddr, u32 use_doorbell)
4469 {
4470         u16 pmcsr;
4471         int pos;
4472
4473         if (use_doorbell) {
4474                 /* For everything after the P600, the PCI power state method
4475                  * of resetting the controller doesn't work, so we have this
4476                  * other way using the doorbell register.
4477                  */
4478                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4479                 writel(use_doorbell, vaddr + SA5_DOORBELL);
4480         } else { /* Try to do it the PCI power state way */
4481
4482                 /* Quoting from the Open CISS Specification: "The Power
4483                  * Management Control/Status Register (CSR) controls the power
4484                  * state of the device.  The normal operating state is D0,
4485                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4486                  * the controller, place the interface device in D3 then to D0,
4487                  * this causes a secondary PCI reset which will reset the
4488                  * controller." */
4489
4490                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4491                 if (pos == 0) {
4492                         dev_err(&pdev->dev,
4493                                 "cciss_controller_hard_reset: "
4494                                 "PCI PM not supported\n");
4495                         return -ENODEV;
4496                 }
4497                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4498                 /* enter the D3hot power management state */
4499                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4500                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4501                 pmcsr |= PCI_D3hot;
4502                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4503
4504                 msleep(500);
4505
4506                 /* enter the D0 power management state */
4507                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4508                 pmcsr |= PCI_D0;
4509                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4510         }
4511         return 0;
4512 }
4513
4514 static __devinit void init_driver_version(char *driver_version, int len)
4515 {
4516         memset(driver_version, 0, len);
4517         strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4518 }
4519
4520 static __devinit int write_driver_ver_to_cfgtable(
4521         CfgTable_struct __iomem *cfgtable)
4522 {
4523         char *driver_version;
4524         int i, size = sizeof(cfgtable->driver_version);
4525
4526         driver_version = kmalloc(size, GFP_KERNEL);
4527         if (!driver_version)
4528                 return -ENOMEM;
4529
4530         init_driver_version(driver_version, size);
4531         for (i = 0; i < size; i++)
4532                 writeb(driver_version[i], &cfgtable->driver_version[i]);
4533         kfree(driver_version);
4534         return 0;
4535 }
4536
4537 static __devinit void read_driver_ver_from_cfgtable(
4538         CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4539 {
4540         int i;
4541
4542         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4543                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4544 }
4545
4546 static __devinit int controller_reset_failed(
4547         CfgTable_struct __iomem *cfgtable)
4548 {
4549
4550         char *driver_ver, *old_driver_ver;
4551         int rc, size = sizeof(cfgtable->driver_version);
4552
4553         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4554         if (!old_driver_ver)
4555                 return -ENOMEM;
4556         driver_ver = old_driver_ver + size;
4557
4558         /* After a reset, the 32 bytes of "driver version" in the cfgtable
4559          * should have been changed, otherwise we know the reset failed.
4560          */
4561         init_driver_version(old_driver_ver, size);
4562         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4563         rc = !memcmp(driver_ver, old_driver_ver, size);
4564         kfree(old_driver_ver);
4565         return rc;
4566 }
4567
4568 /* This does a hard reset of the controller using PCI power management
4569  * states or using the doorbell register. */
4570 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4571 {
4572         u64 cfg_offset;
4573         u32 cfg_base_addr;
4574         u64 cfg_base_addr_index;
4575         void __iomem *vaddr;
4576         unsigned long paddr;
4577         u32 misc_fw_support;
4578         int rc;
4579         CfgTable_struct __iomem *cfgtable;
4580         u32 use_doorbell;
4581         u32 board_id;
4582         u16 command_register;
4583
4584         /* For controllers as old a the p600, this is very nearly
4585          * the same thing as
4586          *
4587          * pci_save_state(pci_dev);
4588          * pci_set_power_state(pci_dev, PCI_D3hot);
4589          * pci_set_power_state(pci_dev, PCI_D0);
4590          * pci_restore_state(pci_dev);
4591          *
4592          * For controllers newer than the P600, the pci power state
4593          * method of resetting doesn't work so we have another way
4594          * using the doorbell register.
4595          */
4596
4597         /* Exclude 640x boards.  These are two pci devices in one slot
4598          * which share a battery backed cache module.  One controls the
4599          * cache, the other accesses the cache through the one that controls
4600          * it.  If we reset the one controlling the cache, the other will
4601          * likely not be happy.  Just forbid resetting this conjoined mess.
4602          */
4603         cciss_lookup_board_id(pdev, &board_id);
4604         if (board_id == 0x409C0E11 || board_id == 0x409D0E11) {
4605                 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4606                                 "due to shared cache module.");
4607                 return -ENODEV;
4608         }
4609
4610         /* Save the PCI command register */
4611         pci_read_config_word(pdev, 4, &command_register);
4612         /* Turn the board off.  This is so that later pci_restore_state()
4613          * won't turn the board on before the rest of config space is ready.
4614          */
4615         pci_disable_device(pdev);
4616         pci_save_state(pdev);
4617
4618         /* find the first memory BAR, so we can find the cfg table */
4619         rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4620         if (rc)
4621                 return rc;
4622         vaddr = remap_pci_mem(paddr, 0x250);
4623         if (!vaddr)
4624                 return -ENOMEM;
4625
4626         /* find cfgtable in order to check if reset via doorbell is supported */
4627         rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4628                                         &cfg_base_addr_index, &cfg_offset);
4629         if (rc)
4630                 goto unmap_vaddr;
4631         cfgtable = remap_pci_mem(pci_resource_start(pdev,
4632                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4633         if (!cfgtable) {
4634                 rc = -ENOMEM;
4635                 goto unmap_vaddr;
4636         }
4637         rc = write_driver_ver_to_cfgtable(cfgtable);
4638         if (rc)
4639                 goto unmap_vaddr;
4640
4641         /* If reset via doorbell register is supported, use that.
4642          * There are two such methods.  Favor the newest method.
4643          */
4644         misc_fw_support = readl(&cfgtable->misc_fw_support);
4645         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4646         if (use_doorbell) {
4647                 use_doorbell = DOORBELL_CTLR_RESET2;
4648         } else {
4649                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4650                 if (use_doorbell)
4651                         use_doorbell = DOORBELL_CTLR_RESET;
4652         }
4653
4654         rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4655         if (rc)
4656                 goto unmap_cfgtable;
4657         pci_restore_state(pdev);
4658         rc = pci_enable_device(pdev);
4659         if (rc) {
4660                 dev_warn(&pdev->dev, "failed to enable device.\n");
4661                 goto unmap_cfgtable;
4662         }
4663         pci_write_config_word(pdev, 4, command_register);
4664
4665         /* Some devices (notably the HP Smart Array 5i Controller)
4666            need a little pause here */
4667         msleep(CCISS_POST_RESET_PAUSE_MSECS);
4668
4669         /* Wait for board to become not ready, then ready. */
4670         dev_info(&pdev->dev, "Waiting for board to reset.\n");
4671         rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4672         if (rc) {
4673                 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4674                                 "  Will try soft reset.\n");
4675                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4676                 goto unmap_cfgtable;
4677         }
4678         rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4679         if (rc) {
4680                 dev_warn(&pdev->dev,
4681                         "failed waiting for board to become ready "
4682                         "after hard reset\n");
4683                 goto unmap_cfgtable;
4684         }
4685
4686         rc = controller_reset_failed(vaddr);
4687         if (rc < 0)
4688                 goto unmap_cfgtable;
4689         if (rc) {
4690                 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4691                         "controller. Will try soft reset.\n");
4692                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4693         } else {
4694                 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4695         }
4696
4697 unmap_cfgtable:
4698         iounmap(cfgtable);
4699
4700 unmap_vaddr:
4701         iounmap(vaddr);
4702         return rc;
4703 }
4704
4705 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4706 {
4707         int rc, i;
4708
4709         if (!reset_devices)
4710                 return 0;
4711
4712         /* Reset the controller with a PCI power-cycle or via doorbell */
4713         rc = cciss_kdump_hard_reset_controller(pdev);
4714
4715         /* -ENOTSUPP here means we cannot reset the controller
4716          * but it's already (and still) up and running in
4717          * "performant mode".  Or, it might be 640x, which can't reset
4718          * due to concerns about shared bbwc between 6402/6404 pair.
4719          */
4720         if (rc == -ENOTSUPP)
4721                 return rc; /* just try to do the kdump anyhow. */
4722         if (rc)
4723                 return -ENODEV;
4724
4725         /* Now try to get the controller to respond to a no-op */
4726         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4727         for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4728                 if (cciss_noop(pdev) == 0)
4729                         break;
4730                 else
4731                         dev_warn(&pdev->dev, "no-op failed%s\n",
4732                                 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4733                                         "; re-trying" : ""));
4734                 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4735         }
4736         return 0;
4737 }
4738
4739 static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4740 {
4741         h->cmd_pool_bits = kmalloc(
4742                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4743                 sizeof(unsigned long), GFP_KERNEL);
4744         h->cmd_pool = pci_alloc_consistent(h->pdev,
4745                 h->nr_cmds * sizeof(CommandList_struct),
4746                 &(h->cmd_pool_dhandle));
4747         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4748                 h->nr_cmds * sizeof(ErrorInfo_struct),
4749                 &(h->errinfo_pool_dhandle));
4750         if ((h->cmd_pool_bits == NULL)
4751                 || (h->cmd_pool == NULL)
4752                 || (h->errinfo_pool == NULL)) {
4753                 dev_err(&h->pdev->dev, "out of memory");
4754                 return -ENOMEM;
4755         }
4756         return 0;
4757 }
4758
4759 static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4760 {
4761         int i;
4762
4763         /* zero it, so that on free we need not know how many were alloc'ed */
4764         h->scatter_list = kzalloc(h->max_commands *
4765                                 sizeof(struct scatterlist *), GFP_KERNEL);
4766         if (!h->scatter_list)
4767                 return -ENOMEM;
4768
4769         for (i = 0; i < h->nr_cmds; i++) {
4770                 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4771                                                 h->maxsgentries, GFP_KERNEL);
4772                 if (h->scatter_list[i] == NULL) {
4773                         dev_err(&h->pdev->dev, "could not allocate "
4774                                 "s/g lists\n");
4775                         return -ENOMEM;
4776                 }
4777         }
4778         return 0;
4779 }
4780
4781 static void cciss_free_scatterlists(ctlr_info_t *h)
4782 {
4783         int i;
4784
4785         if (h->scatter_list) {
4786                 for (i = 0; i < h->nr_cmds; i++)
4787                         kfree(h->scatter_list[i]);
4788                 kfree(h->scatter_list);
4789         }
4790 }
4791
4792 static void cciss_free_cmd_pool(ctlr_info_t *h)
4793 {
4794         kfree(h->cmd_pool_bits);
4795         if (h->cmd_pool)
4796                 pci_free_consistent(h->pdev,
4797                         h->nr_cmds * sizeof(CommandList_struct),
4798                         h->cmd_pool, h->cmd_pool_dhandle);
4799         if (h->errinfo_pool)
4800                 pci_free_consistent(h->pdev,
4801                         h->nr_cmds * sizeof(ErrorInfo_struct),
4802                         h->errinfo_pool, h->errinfo_pool_dhandle);
4803 }
4804
4805 static int cciss_request_irq(ctlr_info_t *h,
4806         irqreturn_t (*msixhandler)(int, void *),
4807         irqreturn_t (*intxhandler)(int, void *))
4808 {
4809         if (h->msix_vector || h->msi_vector) {
4810                 if (!request_irq(h->intr[PERF_MODE_INT], msixhandler,
4811                                 IRQF_DISABLED, h->devname, h))
4812                         return 0;
4813                 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4814                         " for %s\n", h->intr[PERF_MODE_INT],
4815                         h->devname);
4816                 return -1;
4817         }
4818
4819         if (!request_irq(h->intr[PERF_MODE_INT], intxhandler,
4820                         IRQF_DISABLED, h->devname, h))
4821                 return 0;
4822         dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4823                 h->intr[PERF_MODE_INT], h->devname);
4824         return -1;
4825 }
4826
4827 static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4828 {
4829         if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4830                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4831                 return -EIO;
4832         }
4833
4834         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4835         if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4836                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4837                 return -1;
4838         }
4839
4840         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4841         if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4842                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4843                         "after soft reset.\n");
4844                 return -1;
4845         }
4846
4847         return 0;
4848 }
4849
4850 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4851 {
4852         int ctlr = h->ctlr;
4853
4854         free_irq(h->intr[PERF_MODE_INT], h);
4855 #ifdef CONFIG_PCI_MSI
4856         if (h->msix_vector)
4857                 pci_disable_msix(h->pdev);
4858         else if (h->msi_vector)
4859                 pci_disable_msi(h->pdev);
4860 #endif /* CONFIG_PCI_MSI */
4861         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4862         cciss_free_scatterlists(h);
4863         cciss_free_cmd_pool(h);
4864         kfree(h->blockFetchTable);
4865         if (h->reply_pool)
4866                 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4867                                 h->reply_pool, h->reply_pool_dhandle);
4868         if (h->transtable)
4869                 iounmap(h->transtable);
4870         if (h->cfgtable)
4871                 iounmap(h->cfgtable);
4872         if (h->vaddr)
4873                 iounmap(h->vaddr);
4874         unregister_blkdev(h->major, h->devname);
4875         cciss_destroy_hba_sysfs_entry(h);
4876         pci_release_regions(h->pdev);
4877         kfree(h);
4878         hba[ctlr] = NULL;
4879 }
4880
4881 /*
4882  *  This is it.  Find all the controllers and register them.  I really hate
4883  *  stealing all these major device numbers.
4884  *  returns the number of block devices registered.
4885  */
4886 static int __devinit cciss_init_one(struct pci_dev *pdev,
4887                                     const struct pci_device_id *ent)
4888 {
4889         int i;
4890         int j = 0;
4891         int rc;
4892         int try_soft_reset = 0;
4893         int dac, return_code;
4894         InquiryData_struct *inq_buff;
4895         ctlr_info_t *h;
4896         unsigned long flags;
4897
4898         rc = cciss_init_reset_devices(pdev);
4899         if (rc) {
4900                 if (rc != -ENOTSUPP)
4901                         return rc;
4902                 /* If the reset fails in a particular way (it has no way to do
4903                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4904                  * a soft reset once we get the controller configured up to the
4905                  * point that it can accept a command.
4906                  */
4907                 try_soft_reset = 1;
4908                 rc = 0;
4909         }
4910
4911 reinit_after_soft_reset:
4912
4913         i = alloc_cciss_hba(pdev);
4914         if (i < 0)
4915                 return -1;
4916
4917         h = hba[i];
4918         h->pdev = pdev;
4919         h->busy_initializing = 1;
4920         INIT_LIST_HEAD(&h->cmpQ);
4921         INIT_LIST_HEAD(&h->reqQ);
4922         mutex_init(&h->busy_shutting_down);
4923
4924         if (cciss_pci_init(h) != 0)
4925                 goto clean_no_release_regions;
4926
4927         sprintf(h->devname, "cciss%d", i);
4928         h->ctlr = i;
4929
4930         init_completion(&h->scan_wait);
4931
4932         if (cciss_create_hba_sysfs_entry(h))
4933                 goto clean0;
4934
4935         /* configure PCI DMA stuff */
4936         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4937                 dac = 1;
4938         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4939                 dac = 0;
4940         else {
4941                 dev_err(&h->pdev->dev, "no suitable DMA available\n");
4942                 goto clean1;
4943         }
4944
4945         /*
4946          * register with the major number, or get a dynamic major number
4947          * by passing 0 as argument.  This is done for greater than
4948          * 8 controller support.
4949          */
4950         if (i < MAX_CTLR_ORIG)
4951                 h->major = COMPAQ_CISS_MAJOR + i;
4952         rc = register_blkdev(h->major, h->devname);
4953         if (rc == -EBUSY || rc == -EINVAL) {
4954                 dev_err(&h->pdev->dev,
4955                        "Unable to get major number %d for %s "
4956                        "on hba %d\n", h->major, h->devname, i);
4957                 goto clean1;
4958         } else {
4959                 if (i >= MAX_CTLR_ORIG)
4960                         h->major = rc;
4961         }
4962
4963         /* make sure the board interrupts are off */
4964         h->access.set_intr_mask(h, CCISS_INTR_OFF);
4965         rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
4966         if (rc)
4967                 goto clean2;
4968
4969         dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4970                h->devname, pdev->device, pci_name(pdev),
4971                h->intr[PERF_MODE_INT], dac ? "" : " not");
4972
4973         if (cciss_allocate_cmd_pool(h))
4974                 goto clean4;
4975
4976         if (cciss_allocate_scatterlists(h))
4977                 goto clean4;
4978
4979         h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
4980                 h->chainsize, h->nr_cmds);
4981         if (!h->cmd_sg_list && h->chainsize > 0)
4982                 goto clean4;
4983
4984         spin_lock_init(&h->lock);
4985
4986         /* Initialize the pdev driver private data.
4987            have it point to h.  */
4988         pci_set_drvdata(pdev, h);
4989         /* command and error info recs zeroed out before
4990            they are used */
4991         memset(h->cmd_pool_bits, 0,
4992                DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
4993                         * sizeof(unsigned long));
4994
4995         h->num_luns = 0;
4996         h->highest_lun = -1;
4997         for (j = 0; j < CISS_MAX_LUN; j++) {
4998                 h->drv[j] = NULL;
4999                 h->gendisk[j] = NULL;
5000         }
5001
5002         /* At this point, the controller is ready to take commands.
5003          * Now, if reset_devices and the hard reset didn't work, try
5004          * the soft reset and see if that works.
5005          */
5006         if (try_soft_reset) {
5007
5008                 /* This is kind of gross.  We may or may not get a completion
5009                  * from the soft reset command, and if we do, then the value
5010                  * from the fifo may or may not be valid.  So, we wait 10 secs
5011                  * after the reset throwing away any completions we get during
5012                  * that time.  Unregister the interrupt handler and register
5013                  * fake ones to scoop up any residual completions.
5014                  */
5015                 spin_lock_irqsave(&h->lock, flags);
5016                 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5017                 spin_unlock_irqrestore(&h->lock, flags);
5018                 free_irq(h->intr[PERF_MODE_INT], h);
5019                 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5020                                         cciss_intx_discard_completions);
5021                 if (rc) {
5022                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
5023                                 "soft reset.\n");
5024                         goto clean4;
5025                 }
5026
5027                 rc = cciss_kdump_soft_reset(h);
5028                 if (rc) {
5029                         dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5030                         goto clean4;
5031                 }
5032
5033                 dev_info(&h->pdev->dev, "Board READY.\n");
5034                 dev_info(&h->pdev->dev,
5035                         "Waiting for stale completions to drain.\n");
5036                 h->access.set_intr_mask(h, CCISS_INTR_ON);
5037                 msleep(10000);
5038                 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5039
5040                 rc = controller_reset_failed(h->cfgtable);
5041                 if (rc)
5042                         dev_info(&h->pdev->dev,
5043                                 "Soft reset appears to have failed.\n");
5044
5045                 /* since the controller's reset, we have to go back and re-init
5046                  * everything.  Easiest to just forget what we've done and do it
5047                  * all over again.
5048                  */
5049                 cciss_undo_allocations_after_kdump_soft_reset(h);
5050                 try_soft_reset = 0;
5051                 if (rc)
5052                         /* don't go to clean4, we already unallocated */
5053                         return -ENODEV;
5054
5055                 goto reinit_after_soft_reset;
5056         }
5057
5058         cciss_scsi_setup(h);
5059
5060         /* Turn the interrupts on so we can service requests */
5061         h->access.set_intr_mask(h, CCISS_INTR_ON);
5062
5063         /* Get the firmware version */
5064         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5065         if (inq_buff == NULL) {
5066                 dev_err(&h->pdev->dev, "out of memory\n");
5067                 goto clean4;
5068         }
5069
5070         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5071                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5072         if (return_code == IO_OK) {
5073                 h->firm_ver[0] = inq_buff->data_byte[32];
5074                 h->firm_ver[1] = inq_buff->data_byte[33];
5075                 h->firm_ver[2] = inq_buff->data_byte[34];
5076                 h->firm_ver[3] = inq_buff->data_byte[35];
5077         } else {         /* send command failed */
5078                 dev_warn(&h->pdev->dev, "unable to determine firmware"
5079                         " version of controller\n");
5080         }
5081         kfree(inq_buff);
5082
5083         cciss_procinit(h);
5084
5085         h->cciss_max_sectors = 8192;
5086
5087         rebuild_lun_table(h, 1, 0);
5088         h->busy_initializing = 0;
5089         return 1;
5090
5091 clean4:
5092         cciss_free_cmd_pool(h);
5093         cciss_free_scatterlists(h);
5094         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5095         free_irq(h->intr[PERF_MODE_INT], h);
5096 clean2:
5097         unregister_blkdev(h->major, h->devname);
5098 clean1:
5099         cciss_destroy_hba_sysfs_entry(h);
5100 clean0:
5101         pci_release_regions(pdev);
5102 clean_no_release_regions:
5103         h->busy_initializing = 0;
5104
5105         /*
5106          * Deliberately omit pci_disable_device(): it does something nasty to
5107          * Smart Array controllers that pci_enable_device does not undo
5108          */
5109         pci_set_drvdata(pdev, NULL);
5110         free_hba(h);
5111         return -1;
5112 }
5113
5114 static void cciss_shutdown(struct pci_dev *pdev)
5115 {
5116         ctlr_info_t *h;
5117         char *flush_buf;
5118         int return_code;
5119
5120         h = pci_get_drvdata(pdev);
5121         flush_buf = kzalloc(4, GFP_KERNEL);
5122         if (!flush_buf) {
5123                 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5124                 return;
5125         }
5126         /* write all data in the battery backed cache to disk */
5127         memset(flush_buf, 0, 4);
5128         return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5129                 4, 0, CTLR_LUNID, TYPE_CMD);
5130         kfree(flush_buf);
5131         if (return_code != IO_OK)
5132                 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5133         h->access.set_intr_mask(h, CCISS_INTR_OFF);
5134         free_irq(h->intr[PERF_MODE_INT], h);
5135 }
5136
5137 static void __devexit cciss_remove_one(struct pci_dev *pdev)
5138 {
5139         ctlr_info_t *h;
5140         int i, j;
5141
5142         if (pci_get_drvdata(pdev) == NULL) {
5143                 dev_err(&pdev->dev, "Unable to remove device\n");
5144                 return;
5145         }
5146
5147         h = pci_get_drvdata(pdev);
5148         i = h->ctlr;
5149         if (hba[i] == NULL) {
5150                 dev_err(&pdev->dev, "device appears to already be removed\n");
5151                 return;
5152         }
5153
5154         mutex_lock(&h->busy_shutting_down);
5155
5156         remove_from_scan_list(h);
5157         remove_proc_entry(h->devname, proc_cciss);
5158         unregister_blkdev(h->major, h->devname);
5159
5160         /* remove it from the disk list */
5161         for (j = 0; j < CISS_MAX_LUN; j++) {
5162                 struct gendisk *disk = h->gendisk[j];
5163                 if (disk) {
5164                         struct request_queue *q = disk->queue;
5165
5166                         if (disk->flags & GENHD_FL_UP) {
5167                                 cciss_destroy_ld_sysfs_entry(h, j, 1);
5168                                 del_gendisk(disk);
5169                         }
5170                         if (q)
5171                                 blk_cleanup_queue(q);
5172                 }
5173         }
5174
5175 #ifdef CONFIG_CISS_SCSI_TAPE
5176         cciss_unregister_scsi(h);       /* unhook from SCSI subsystem */
5177 #endif
5178
5179         cciss_shutdown(pdev);
5180
5181 #ifdef CONFIG_PCI_MSI
5182         if (h->msix_vector)
5183                 pci_disable_msix(h->pdev);
5184         else if (h->msi_vector)
5185                 pci_disable_msi(h->pdev);
5186 #endif                          /* CONFIG_PCI_MSI */
5187
5188         iounmap(h->transtable);
5189         iounmap(h->cfgtable);
5190         iounmap(h->vaddr);
5191
5192         cciss_free_cmd_pool(h);
5193         /* Free up sg elements */
5194         for (j = 0; j < h->nr_cmds; j++)
5195                 kfree(h->scatter_list[j]);
5196         kfree(h->scatter_list);
5197         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5198         kfree(h->blockFetchTable);
5199         if (h->reply_pool)
5200                 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5201                                 h->reply_pool, h->reply_pool_dhandle);
5202         /*
5203          * Deliberately omit pci_disable_device(): it does something nasty to
5204          * Smart Array controllers that pci_enable_device does not undo
5205          */
5206         pci_release_regions(pdev);
5207         pci_set_drvdata(pdev, NULL);
5208         cciss_destroy_hba_sysfs_entry(h);
5209         mutex_unlock(&h->busy_shutting_down);
5210         free_hba(h);
5211 }
5212
5213 static struct pci_driver cciss_pci_driver = {
5214         .name = "cciss",
5215         .probe = cciss_init_one,
5216         .remove = __devexit_p(cciss_remove_one),
5217         .id_table = cciss_pci_device_id,        /* id_table */
5218         .shutdown = cciss_shutdown,
5219 };
5220
5221 /*
5222  *  This is it.  Register the PCI driver information for the cards we control
5223  *  the OS will call our registered routines when it finds one of our cards.
5224  */
5225 static int __init cciss_init(void)
5226 {
5227         int err;
5228
5229         /*
5230          * The hardware requires that commands are aligned on a 64-bit
5231          * boundary. Given that we use pci_alloc_consistent() to allocate an
5232          * array of them, the size must be a multiple of 8 bytes.
5233          */
5234         BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5235         printk(KERN_INFO DRIVER_NAME "\n");
5236
5237         err = bus_register(&cciss_bus_type);
5238         if (err)
5239                 return err;
5240
5241         /* Start the scan thread */
5242         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5243         if (IS_ERR(cciss_scan_thread)) {
5244                 err = PTR_ERR(cciss_scan_thread);
5245                 goto err_bus_unregister;
5246         }
5247
5248         /* Register for our PCI devices */
5249         err = pci_register_driver(&cciss_pci_driver);
5250         if (err)
5251                 goto err_thread_stop;
5252
5253         return err;
5254
5255 err_thread_stop:
5256         kthread_stop(cciss_scan_thread);
5257 err_bus_unregister:
5258         bus_unregister(&cciss_bus_type);
5259
5260         return err;
5261 }
5262
5263 static void __exit cciss_cleanup(void)
5264 {
5265         int i;
5266
5267         pci_unregister_driver(&cciss_pci_driver);
5268         /* double check that all controller entrys have been removed */
5269         for (i = 0; i < MAX_CTLR; i++) {
5270                 if (hba[i] != NULL) {
5271                         dev_warn(&hba[i]->pdev->dev,
5272                                 "had to remove controller\n");
5273                         cciss_remove_one(hba[i]->pdev);
5274                 }
5275         }
5276         kthread_stop(cciss_scan_thread);
5277         if (proc_cciss)
5278                 remove_proc_entry("driver/cciss", NULL);
5279         bus_unregister(&cciss_bus_type);
5280 }
5281
5282 module_init(cciss_init);
5283 module_exit(cciss_cleanup);