Merge tag 'arm-soc-drivers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46                                unsigned int mask, unsigned int val,
47                                bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50                                 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52                             unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54                                        unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56                                  unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58                                  unsigned int val);
59
60 bool regmap_reg_in_ranges(unsigned int reg,
61                           const struct regmap_range *ranges,
62                           unsigned int nranges)
63 {
64         const struct regmap_range *r;
65         int i;
66
67         for (i = 0, r = ranges; i < nranges; i++, r++)
68                 if (regmap_reg_in_range(reg, r))
69                         return true;
70         return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75                               const struct regmap_access_table *table)
76 {
77         /* Check "no ranges" first */
78         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79                 return false;
80
81         /* In case zero "yes ranges" are supplied, any reg is OK */
82         if (!table->n_yes_ranges)
83                 return true;
84
85         return regmap_reg_in_ranges(reg, table->yes_ranges,
86                                     table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92         if (map->max_register && reg > map->max_register)
93                 return false;
94
95         if (map->writeable_reg)
96                 return map->writeable_reg(map->dev, reg);
97
98         if (map->wr_table)
99                 return regmap_check_range_table(map, reg, map->wr_table);
100
101         return true;
102 }
103
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106         int ret;
107         unsigned int val;
108
109         if (map->cache_type == REGCACHE_NONE)
110                 return false;
111
112         if (!map->cache_ops)
113                 return false;
114
115         if (map->max_register && reg > map->max_register)
116                 return false;
117
118         map->lock(map->lock_arg);
119         ret = regcache_read(map, reg, &val);
120         map->unlock(map->lock_arg);
121         if (ret)
122                 return false;
123
124         return true;
125 }
126
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129         if (!map->reg_read)
130                 return false;
131
132         if (map->max_register && reg > map->max_register)
133                 return false;
134
135         if (map->format.format_write)
136                 return false;
137
138         if (map->readable_reg)
139                 return map->readable_reg(map->dev, reg);
140
141         if (map->rd_table)
142                 return regmap_check_range_table(map, reg, map->rd_table);
143
144         return true;
145 }
146
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149         if (!map->format.format_write && !regmap_readable(map, reg))
150                 return false;
151
152         if (map->volatile_reg)
153                 return map->volatile_reg(map->dev, reg);
154
155         if (map->volatile_table)
156                 return regmap_check_range_table(map, reg, map->volatile_table);
157
158         if (map->cache_ops)
159                 return false;
160         else
161                 return true;
162 }
163
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166         if (!regmap_readable(map, reg))
167                 return false;
168
169         if (map->precious_reg)
170                 return map->precious_reg(map->dev, reg);
171
172         if (map->precious_table)
173                 return regmap_check_range_table(map, reg, map->precious_table);
174
175         return false;
176 }
177
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180         if (map->writeable_noinc_reg)
181                 return map->writeable_noinc_reg(map->dev, reg);
182
183         if (map->wr_noinc_table)
184                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186         return true;
187 }
188
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191         if (map->readable_noinc_reg)
192                 return map->readable_noinc_reg(map->dev, reg);
193
194         if (map->rd_noinc_table)
195                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197         return true;
198 }
199
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201         size_t num)
202 {
203         unsigned int i;
204
205         for (i = 0; i < num; i++)
206                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207                         return false;
208
209         return true;
210 }
211
212 static void regmap_format_12_20_write(struct regmap *map,
213                                      unsigned int reg, unsigned int val)
214 {
215         u8 *out = map->work_buf;
216
217         out[0] = reg >> 4;
218         out[1] = (reg << 4) | (val >> 16);
219         out[2] = val >> 8;
220         out[3] = val;
221 }
222
223
224 static void regmap_format_2_6_write(struct regmap *map,
225                                      unsigned int reg, unsigned int val)
226 {
227         u8 *out = map->work_buf;
228
229         *out = (reg << 6) | val;
230 }
231
232 static void regmap_format_4_12_write(struct regmap *map,
233                                      unsigned int reg, unsigned int val)
234 {
235         __be16 *out = map->work_buf;
236         *out = cpu_to_be16((reg << 12) | val);
237 }
238
239 static void regmap_format_7_9_write(struct regmap *map,
240                                     unsigned int reg, unsigned int val)
241 {
242         __be16 *out = map->work_buf;
243         *out = cpu_to_be16((reg << 9) | val);
244 }
245
246 static void regmap_format_10_14_write(struct regmap *map,
247                                     unsigned int reg, unsigned int val)
248 {
249         u8 *out = map->work_buf;
250
251         out[2] = val;
252         out[1] = (val >> 8) | (reg << 6);
253         out[0] = reg >> 2;
254 }
255
256 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 {
258         u8 *b = buf;
259
260         b[0] = val << shift;
261 }
262
263 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264 {
265         put_unaligned_be16(val << shift, buf);
266 }
267
268 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269 {
270         put_unaligned_le16(val << shift, buf);
271 }
272
273 static void regmap_format_16_native(void *buf, unsigned int val,
274                                     unsigned int shift)
275 {
276         u16 v = val << shift;
277
278         memcpy(buf, &v, sizeof(v));
279 }
280
281 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 {
283         u8 *b = buf;
284
285         val <<= shift;
286
287         b[0] = val >> 16;
288         b[1] = val >> 8;
289         b[2] = val;
290 }
291
292 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293 {
294         put_unaligned_be32(val << shift, buf);
295 }
296
297 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298 {
299         put_unaligned_le32(val << shift, buf);
300 }
301
302 static void regmap_format_32_native(void *buf, unsigned int val,
303                                     unsigned int shift)
304 {
305         u32 v = val << shift;
306
307         memcpy(buf, &v, sizeof(v));
308 }
309
310 #ifdef CONFIG_64BIT
311 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312 {
313         put_unaligned_be64((u64) val << shift, buf);
314 }
315
316 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317 {
318         put_unaligned_le64((u64) val << shift, buf);
319 }
320
321 static void regmap_format_64_native(void *buf, unsigned int val,
322                                     unsigned int shift)
323 {
324         u64 v = (u64) val << shift;
325
326         memcpy(buf, &v, sizeof(v));
327 }
328 #endif
329
330 static void regmap_parse_inplace_noop(void *buf)
331 {
332 }
333
334 static unsigned int regmap_parse_8(const void *buf)
335 {
336         const u8 *b = buf;
337
338         return b[0];
339 }
340
341 static unsigned int regmap_parse_16_be(const void *buf)
342 {
343         return get_unaligned_be16(buf);
344 }
345
346 static unsigned int regmap_parse_16_le(const void *buf)
347 {
348         return get_unaligned_le16(buf);
349 }
350
351 static void regmap_parse_16_be_inplace(void *buf)
352 {
353         u16 v = get_unaligned_be16(buf);
354
355         memcpy(buf, &v, sizeof(v));
356 }
357
358 static void regmap_parse_16_le_inplace(void *buf)
359 {
360         u16 v = get_unaligned_le16(buf);
361
362         memcpy(buf, &v, sizeof(v));
363 }
364
365 static unsigned int regmap_parse_16_native(const void *buf)
366 {
367         u16 v;
368
369         memcpy(&v, buf, sizeof(v));
370         return v;
371 }
372
373 static unsigned int regmap_parse_24(const void *buf)
374 {
375         const u8 *b = buf;
376         unsigned int ret = b[2];
377         ret |= ((unsigned int)b[1]) << 8;
378         ret |= ((unsigned int)b[0]) << 16;
379
380         return ret;
381 }
382
383 static unsigned int regmap_parse_32_be(const void *buf)
384 {
385         return get_unaligned_be32(buf);
386 }
387
388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390         return get_unaligned_le32(buf);
391 }
392
393 static void regmap_parse_32_be_inplace(void *buf)
394 {
395         u32 v = get_unaligned_be32(buf);
396
397         memcpy(buf, &v, sizeof(v));
398 }
399
400 static void regmap_parse_32_le_inplace(void *buf)
401 {
402         u32 v = get_unaligned_le32(buf);
403
404         memcpy(buf, &v, sizeof(v));
405 }
406
407 static unsigned int regmap_parse_32_native(const void *buf)
408 {
409         u32 v;
410
411         memcpy(&v, buf, sizeof(v));
412         return v;
413 }
414
415 #ifdef CONFIG_64BIT
416 static unsigned int regmap_parse_64_be(const void *buf)
417 {
418         return get_unaligned_be64(buf);
419 }
420
421 static unsigned int regmap_parse_64_le(const void *buf)
422 {
423         return get_unaligned_le64(buf);
424 }
425
426 static void regmap_parse_64_be_inplace(void *buf)
427 {
428         u64 v =  get_unaligned_be64(buf);
429
430         memcpy(buf, &v, sizeof(v));
431 }
432
433 static void regmap_parse_64_le_inplace(void *buf)
434 {
435         u64 v = get_unaligned_le64(buf);
436
437         memcpy(buf, &v, sizeof(v));
438 }
439
440 static unsigned int regmap_parse_64_native(const void *buf)
441 {
442         u64 v;
443
444         memcpy(&v, buf, sizeof(v));
445         return v;
446 }
447 #endif
448
449 static void regmap_lock_hwlock(void *__map)
450 {
451         struct regmap *map = __map;
452
453         hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455
456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458         struct regmap *map = __map;
459
460         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462
463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465         struct regmap *map = __map;
466
467         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468                                     &map->spinlock_flags);
469 }
470
471 static void regmap_unlock_hwlock(void *__map)
472 {
473         struct regmap *map = __map;
474
475         hwspin_unlock(map->hwlock);
476 }
477
478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480         struct regmap *map = __map;
481
482         hwspin_unlock_irq(map->hwlock);
483 }
484
485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487         struct regmap *map = __map;
488
489         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491
492 static void regmap_lock_unlock_none(void *__map)
493 {
494
495 }
496
497 static void regmap_lock_mutex(void *__map)
498 {
499         struct regmap *map = __map;
500         mutex_lock(&map->mutex);
501 }
502
503 static void regmap_unlock_mutex(void *__map)
504 {
505         struct regmap *map = __map;
506         mutex_unlock(&map->mutex);
507 }
508
509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512         struct regmap *map = __map;
513         unsigned long flags;
514
515         spin_lock_irqsave(&map->spinlock, flags);
516         map->spinlock_flags = flags;
517 }
518
519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522         struct regmap *map = __map;
523         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525
526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528         /*
529          * We don't actually have anything to do here; the goal here
530          * is not to manage the regmap but to provide a simple way to
531          * get the regmap back given a struct device.
532          */
533 }
534
535 static bool _regmap_range_add(struct regmap *map,
536                               struct regmap_range_node *data)
537 {
538         struct rb_root *root = &map->range_tree;
539         struct rb_node **new = &(root->rb_node), *parent = NULL;
540
541         while (*new) {
542                 struct regmap_range_node *this =
543                         rb_entry(*new, struct regmap_range_node, node);
544
545                 parent = *new;
546                 if (data->range_max < this->range_min)
547                         new = &((*new)->rb_left);
548                 else if (data->range_min > this->range_max)
549                         new = &((*new)->rb_right);
550                 else
551                         return false;
552         }
553
554         rb_link_node(&data->node, parent, new);
555         rb_insert_color(&data->node, root);
556
557         return true;
558 }
559
560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561                                                       unsigned int reg)
562 {
563         struct rb_node *node = map->range_tree.rb_node;
564
565         while (node) {
566                 struct regmap_range_node *this =
567                         rb_entry(node, struct regmap_range_node, node);
568
569                 if (reg < this->range_min)
570                         node = node->rb_left;
571                 else if (reg > this->range_max)
572                         node = node->rb_right;
573                 else
574                         return this;
575         }
576
577         return NULL;
578 }
579
580 static void regmap_range_exit(struct regmap *map)
581 {
582         struct rb_node *next;
583         struct regmap_range_node *range_node;
584
585         next = rb_first(&map->range_tree);
586         while (next) {
587                 range_node = rb_entry(next, struct regmap_range_node, node);
588                 next = rb_next(&range_node->node);
589                 rb_erase(&range_node->node, &map->range_tree);
590                 kfree(range_node);
591         }
592
593         kfree(map->selector_work_buf);
594 }
595
596 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597 {
598         if (config->name) {
599                 const char *name = kstrdup_const(config->name, GFP_KERNEL);
600
601                 if (!name)
602                         return -ENOMEM;
603
604                 kfree_const(map->name);
605                 map->name = name;
606         }
607
608         return 0;
609 }
610
611 int regmap_attach_dev(struct device *dev, struct regmap *map,
612                       const struct regmap_config *config)
613 {
614         struct regmap **m;
615         int ret;
616
617         map->dev = dev;
618
619         ret = regmap_set_name(map, config);
620         if (ret)
621                 return ret;
622
623         regmap_debugfs_init(map);
624
625         /* Add a devres resource for dev_get_regmap() */
626         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
627         if (!m) {
628                 regmap_debugfs_exit(map);
629                 return -ENOMEM;
630         }
631         *m = map;
632         devres_add(dev, m);
633
634         return 0;
635 }
636 EXPORT_SYMBOL_GPL(regmap_attach_dev);
637
638 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
639                                         const struct regmap_config *config)
640 {
641         enum regmap_endian endian;
642
643         /* Retrieve the endianness specification from the regmap config */
644         endian = config->reg_format_endian;
645
646         /* If the regmap config specified a non-default value, use that */
647         if (endian != REGMAP_ENDIAN_DEFAULT)
648                 return endian;
649
650         /* Retrieve the endianness specification from the bus config */
651         if (bus && bus->reg_format_endian_default)
652                 endian = bus->reg_format_endian_default;
653
654         /* If the bus specified a non-default value, use that */
655         if (endian != REGMAP_ENDIAN_DEFAULT)
656                 return endian;
657
658         /* Use this if no other value was found */
659         return REGMAP_ENDIAN_BIG;
660 }
661
662 enum regmap_endian regmap_get_val_endian(struct device *dev,
663                                          const struct regmap_bus *bus,
664                                          const struct regmap_config *config)
665 {
666         struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
667         enum regmap_endian endian;
668
669         /* Retrieve the endianness specification from the regmap config */
670         endian = config->val_format_endian;
671
672         /* If the regmap config specified a non-default value, use that */
673         if (endian != REGMAP_ENDIAN_DEFAULT)
674                 return endian;
675
676         /* If the firmware node exist try to get endianness from it */
677         if (fwnode_property_read_bool(fwnode, "big-endian"))
678                 endian = REGMAP_ENDIAN_BIG;
679         else if (fwnode_property_read_bool(fwnode, "little-endian"))
680                 endian = REGMAP_ENDIAN_LITTLE;
681         else if (fwnode_property_read_bool(fwnode, "native-endian"))
682                 endian = REGMAP_ENDIAN_NATIVE;
683
684         /* If the endianness was specified in fwnode, use that */
685         if (endian != REGMAP_ENDIAN_DEFAULT)
686                 return endian;
687
688         /* Retrieve the endianness specification from the bus config */
689         if (bus && bus->val_format_endian_default)
690                 endian = bus->val_format_endian_default;
691
692         /* If the bus specified a non-default value, use that */
693         if (endian != REGMAP_ENDIAN_DEFAULT)
694                 return endian;
695
696         /* Use this if no other value was found */
697         return REGMAP_ENDIAN_BIG;
698 }
699 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
700
701 struct regmap *__regmap_init(struct device *dev,
702                              const struct regmap_bus *bus,
703                              void *bus_context,
704                              const struct regmap_config *config,
705                              struct lock_class_key *lock_key,
706                              const char *lock_name)
707 {
708         struct regmap *map;
709         int ret = -EINVAL;
710         enum regmap_endian reg_endian, val_endian;
711         int i, j;
712
713         if (!config)
714                 goto err;
715
716         map = kzalloc(sizeof(*map), GFP_KERNEL);
717         if (map == NULL) {
718                 ret = -ENOMEM;
719                 goto err;
720         }
721
722         ret = regmap_set_name(map, config);
723         if (ret)
724                 goto err_map;
725
726         ret = -EINVAL; /* Later error paths rely on this */
727
728         if (config->disable_locking) {
729                 map->lock = map->unlock = regmap_lock_unlock_none;
730                 map->can_sleep = config->can_sleep;
731                 regmap_debugfs_disable(map);
732         } else if (config->lock && config->unlock) {
733                 map->lock = config->lock;
734                 map->unlock = config->unlock;
735                 map->lock_arg = config->lock_arg;
736                 map->can_sleep = config->can_sleep;
737         } else if (config->use_hwlock) {
738                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
739                 if (!map->hwlock) {
740                         ret = -ENXIO;
741                         goto err_name;
742                 }
743
744                 switch (config->hwlock_mode) {
745                 case HWLOCK_IRQSTATE:
746                         map->lock = regmap_lock_hwlock_irqsave;
747                         map->unlock = regmap_unlock_hwlock_irqrestore;
748                         break;
749                 case HWLOCK_IRQ:
750                         map->lock = regmap_lock_hwlock_irq;
751                         map->unlock = regmap_unlock_hwlock_irq;
752                         break;
753                 default:
754                         map->lock = regmap_lock_hwlock;
755                         map->unlock = regmap_unlock_hwlock;
756                         break;
757                 }
758
759                 map->lock_arg = map;
760         } else {
761                 if ((bus && bus->fast_io) ||
762                     config->fast_io) {
763                         spin_lock_init(&map->spinlock);
764                         map->lock = regmap_lock_spinlock;
765                         map->unlock = regmap_unlock_spinlock;
766                         lockdep_set_class_and_name(&map->spinlock,
767                                                    lock_key, lock_name);
768                 } else {
769                         mutex_init(&map->mutex);
770                         map->lock = regmap_lock_mutex;
771                         map->unlock = regmap_unlock_mutex;
772                         map->can_sleep = true;
773                         lockdep_set_class_and_name(&map->mutex,
774                                                    lock_key, lock_name);
775                 }
776                 map->lock_arg = map;
777         }
778
779         /*
780          * When we write in fast-paths with regmap_bulk_write() don't allocate
781          * scratch buffers with sleeping allocations.
782          */
783         if ((bus && bus->fast_io) || config->fast_io)
784                 map->alloc_flags = GFP_ATOMIC;
785         else
786                 map->alloc_flags = GFP_KERNEL;
787
788         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
789         map->format.pad_bytes = config->pad_bits / 8;
790         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
791         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
792                         config->val_bits + config->pad_bits, 8);
793         map->reg_shift = config->pad_bits % 8;
794         if (config->reg_stride)
795                 map->reg_stride = config->reg_stride;
796         else
797                 map->reg_stride = 1;
798         if (is_power_of_2(map->reg_stride))
799                 map->reg_stride_order = ilog2(map->reg_stride);
800         else
801                 map->reg_stride_order = -1;
802         map->use_single_read = config->use_single_read || !bus || !bus->read;
803         map->use_single_write = config->use_single_write || !bus || !bus->write;
804         map->can_multi_write = config->can_multi_write && bus && bus->write;
805         if (bus) {
806                 map->max_raw_read = bus->max_raw_read;
807                 map->max_raw_write = bus->max_raw_write;
808         }
809         map->dev = dev;
810         map->bus = bus;
811         map->bus_context = bus_context;
812         map->max_register = config->max_register;
813         map->wr_table = config->wr_table;
814         map->rd_table = config->rd_table;
815         map->volatile_table = config->volatile_table;
816         map->precious_table = config->precious_table;
817         map->wr_noinc_table = config->wr_noinc_table;
818         map->rd_noinc_table = config->rd_noinc_table;
819         map->writeable_reg = config->writeable_reg;
820         map->readable_reg = config->readable_reg;
821         map->volatile_reg = config->volatile_reg;
822         map->precious_reg = config->precious_reg;
823         map->writeable_noinc_reg = config->writeable_noinc_reg;
824         map->readable_noinc_reg = config->readable_noinc_reg;
825         map->cache_type = config->cache_type;
826
827         spin_lock_init(&map->async_lock);
828         INIT_LIST_HEAD(&map->async_list);
829         INIT_LIST_HEAD(&map->async_free);
830         init_waitqueue_head(&map->async_waitq);
831
832         if (config->read_flag_mask ||
833             config->write_flag_mask ||
834             config->zero_flag_mask) {
835                 map->read_flag_mask = config->read_flag_mask;
836                 map->write_flag_mask = config->write_flag_mask;
837         } else if (bus) {
838                 map->read_flag_mask = bus->read_flag_mask;
839         }
840
841         if (!bus) {
842                 map->reg_read  = config->reg_read;
843                 map->reg_write = config->reg_write;
844
845                 map->defer_caching = false;
846                 goto skip_format_initialization;
847         } else if (!bus->read || !bus->write) {
848                 map->reg_read = _regmap_bus_reg_read;
849                 map->reg_write = _regmap_bus_reg_write;
850                 map->reg_update_bits = bus->reg_update_bits;
851
852                 map->defer_caching = false;
853                 goto skip_format_initialization;
854         } else {
855                 map->reg_read  = _regmap_bus_read;
856                 map->reg_update_bits = bus->reg_update_bits;
857         }
858
859         reg_endian = regmap_get_reg_endian(bus, config);
860         val_endian = regmap_get_val_endian(dev, bus, config);
861
862         switch (config->reg_bits + map->reg_shift) {
863         case 2:
864                 switch (config->val_bits) {
865                 case 6:
866                         map->format.format_write = regmap_format_2_6_write;
867                         break;
868                 default:
869                         goto err_hwlock;
870                 }
871                 break;
872
873         case 4:
874                 switch (config->val_bits) {
875                 case 12:
876                         map->format.format_write = regmap_format_4_12_write;
877                         break;
878                 default:
879                         goto err_hwlock;
880                 }
881                 break;
882
883         case 7:
884                 switch (config->val_bits) {
885                 case 9:
886                         map->format.format_write = regmap_format_7_9_write;
887                         break;
888                 default:
889                         goto err_hwlock;
890                 }
891                 break;
892
893         case 10:
894                 switch (config->val_bits) {
895                 case 14:
896                         map->format.format_write = regmap_format_10_14_write;
897                         break;
898                 default:
899                         goto err_hwlock;
900                 }
901                 break;
902
903         case 12:
904                 switch (config->val_bits) {
905                 case 20:
906                         map->format.format_write = regmap_format_12_20_write;
907                         break;
908                 default:
909                         goto err_hwlock;
910                 }
911                 break;
912
913         case 8:
914                 map->format.format_reg = regmap_format_8;
915                 break;
916
917         case 16:
918                 switch (reg_endian) {
919                 case REGMAP_ENDIAN_BIG:
920                         map->format.format_reg = regmap_format_16_be;
921                         break;
922                 case REGMAP_ENDIAN_LITTLE:
923                         map->format.format_reg = regmap_format_16_le;
924                         break;
925                 case REGMAP_ENDIAN_NATIVE:
926                         map->format.format_reg = regmap_format_16_native;
927                         break;
928                 default:
929                         goto err_hwlock;
930                 }
931                 break;
932
933         case 24:
934                 if (reg_endian != REGMAP_ENDIAN_BIG)
935                         goto err_hwlock;
936                 map->format.format_reg = regmap_format_24;
937                 break;
938
939         case 32:
940                 switch (reg_endian) {
941                 case REGMAP_ENDIAN_BIG:
942                         map->format.format_reg = regmap_format_32_be;
943                         break;
944                 case REGMAP_ENDIAN_LITTLE:
945                         map->format.format_reg = regmap_format_32_le;
946                         break;
947                 case REGMAP_ENDIAN_NATIVE:
948                         map->format.format_reg = regmap_format_32_native;
949                         break;
950                 default:
951                         goto err_hwlock;
952                 }
953                 break;
954
955 #ifdef CONFIG_64BIT
956         case 64:
957                 switch (reg_endian) {
958                 case REGMAP_ENDIAN_BIG:
959                         map->format.format_reg = regmap_format_64_be;
960                         break;
961                 case REGMAP_ENDIAN_LITTLE:
962                         map->format.format_reg = regmap_format_64_le;
963                         break;
964                 case REGMAP_ENDIAN_NATIVE:
965                         map->format.format_reg = regmap_format_64_native;
966                         break;
967                 default:
968                         goto err_hwlock;
969                 }
970                 break;
971 #endif
972
973         default:
974                 goto err_hwlock;
975         }
976
977         if (val_endian == REGMAP_ENDIAN_NATIVE)
978                 map->format.parse_inplace = regmap_parse_inplace_noop;
979
980         switch (config->val_bits) {
981         case 8:
982                 map->format.format_val = regmap_format_8;
983                 map->format.parse_val = regmap_parse_8;
984                 map->format.parse_inplace = regmap_parse_inplace_noop;
985                 break;
986         case 16:
987                 switch (val_endian) {
988                 case REGMAP_ENDIAN_BIG:
989                         map->format.format_val = regmap_format_16_be;
990                         map->format.parse_val = regmap_parse_16_be;
991                         map->format.parse_inplace = regmap_parse_16_be_inplace;
992                         break;
993                 case REGMAP_ENDIAN_LITTLE:
994                         map->format.format_val = regmap_format_16_le;
995                         map->format.parse_val = regmap_parse_16_le;
996                         map->format.parse_inplace = regmap_parse_16_le_inplace;
997                         break;
998                 case REGMAP_ENDIAN_NATIVE:
999                         map->format.format_val = regmap_format_16_native;
1000                         map->format.parse_val = regmap_parse_16_native;
1001                         break;
1002                 default:
1003                         goto err_hwlock;
1004                 }
1005                 break;
1006         case 24:
1007                 if (val_endian != REGMAP_ENDIAN_BIG)
1008                         goto err_hwlock;
1009                 map->format.format_val = regmap_format_24;
1010                 map->format.parse_val = regmap_parse_24;
1011                 break;
1012         case 32:
1013                 switch (val_endian) {
1014                 case REGMAP_ENDIAN_BIG:
1015                         map->format.format_val = regmap_format_32_be;
1016                         map->format.parse_val = regmap_parse_32_be;
1017                         map->format.parse_inplace = regmap_parse_32_be_inplace;
1018                         break;
1019                 case REGMAP_ENDIAN_LITTLE:
1020                         map->format.format_val = regmap_format_32_le;
1021                         map->format.parse_val = regmap_parse_32_le;
1022                         map->format.parse_inplace = regmap_parse_32_le_inplace;
1023                         break;
1024                 case REGMAP_ENDIAN_NATIVE:
1025                         map->format.format_val = regmap_format_32_native;
1026                         map->format.parse_val = regmap_parse_32_native;
1027                         break;
1028                 default:
1029                         goto err_hwlock;
1030                 }
1031                 break;
1032 #ifdef CONFIG_64BIT
1033         case 64:
1034                 switch (val_endian) {
1035                 case REGMAP_ENDIAN_BIG:
1036                         map->format.format_val = regmap_format_64_be;
1037                         map->format.parse_val = regmap_parse_64_be;
1038                         map->format.parse_inplace = regmap_parse_64_be_inplace;
1039                         break;
1040                 case REGMAP_ENDIAN_LITTLE:
1041                         map->format.format_val = regmap_format_64_le;
1042                         map->format.parse_val = regmap_parse_64_le;
1043                         map->format.parse_inplace = regmap_parse_64_le_inplace;
1044                         break;
1045                 case REGMAP_ENDIAN_NATIVE:
1046                         map->format.format_val = regmap_format_64_native;
1047                         map->format.parse_val = regmap_parse_64_native;
1048                         break;
1049                 default:
1050                         goto err_hwlock;
1051                 }
1052                 break;
1053 #endif
1054         }
1055
1056         if (map->format.format_write) {
1057                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1058                     (val_endian != REGMAP_ENDIAN_BIG))
1059                         goto err_hwlock;
1060                 map->use_single_write = true;
1061         }
1062
1063         if (!map->format.format_write &&
1064             !(map->format.format_reg && map->format.format_val))
1065                 goto err_hwlock;
1066
1067         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1068         if (map->work_buf == NULL) {
1069                 ret = -ENOMEM;
1070                 goto err_hwlock;
1071         }
1072
1073         if (map->format.format_write) {
1074                 map->defer_caching = false;
1075                 map->reg_write = _regmap_bus_formatted_write;
1076         } else if (map->format.format_val) {
1077                 map->defer_caching = true;
1078                 map->reg_write = _regmap_bus_raw_write;
1079         }
1080
1081 skip_format_initialization:
1082
1083         map->range_tree = RB_ROOT;
1084         for (i = 0; i < config->num_ranges; i++) {
1085                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1086                 struct regmap_range_node *new;
1087
1088                 /* Sanity check */
1089                 if (range_cfg->range_max < range_cfg->range_min) {
1090                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1091                                 range_cfg->range_max, range_cfg->range_min);
1092                         goto err_range;
1093                 }
1094
1095                 if (range_cfg->range_max > map->max_register) {
1096                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1097                                 range_cfg->range_max, map->max_register);
1098                         goto err_range;
1099                 }
1100
1101                 if (range_cfg->selector_reg > map->max_register) {
1102                         dev_err(map->dev,
1103                                 "Invalid range %d: selector out of map\n", i);
1104                         goto err_range;
1105                 }
1106
1107                 if (range_cfg->window_len == 0) {
1108                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1109                                 i);
1110                         goto err_range;
1111                 }
1112
1113                 /* Make sure, that this register range has no selector
1114                    or data window within its boundary */
1115                 for (j = 0; j < config->num_ranges; j++) {
1116                         unsigned sel_reg = config->ranges[j].selector_reg;
1117                         unsigned win_min = config->ranges[j].window_start;
1118                         unsigned win_max = win_min +
1119                                            config->ranges[j].window_len - 1;
1120
1121                         /* Allow data window inside its own virtual range */
1122                         if (j == i)
1123                                 continue;
1124
1125                         if (range_cfg->range_min <= sel_reg &&
1126                             sel_reg <= range_cfg->range_max) {
1127                                 dev_err(map->dev,
1128                                         "Range %d: selector for %d in window\n",
1129                                         i, j);
1130                                 goto err_range;
1131                         }
1132
1133                         if (!(win_max < range_cfg->range_min ||
1134                               win_min > range_cfg->range_max)) {
1135                                 dev_err(map->dev,
1136                                         "Range %d: window for %d in window\n",
1137                                         i, j);
1138                                 goto err_range;
1139                         }
1140                 }
1141
1142                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1143                 if (new == NULL) {
1144                         ret = -ENOMEM;
1145                         goto err_range;
1146                 }
1147
1148                 new->map = map;
1149                 new->name = range_cfg->name;
1150                 new->range_min = range_cfg->range_min;
1151                 new->range_max = range_cfg->range_max;
1152                 new->selector_reg = range_cfg->selector_reg;
1153                 new->selector_mask = range_cfg->selector_mask;
1154                 new->selector_shift = range_cfg->selector_shift;
1155                 new->window_start = range_cfg->window_start;
1156                 new->window_len = range_cfg->window_len;
1157
1158                 if (!_regmap_range_add(map, new)) {
1159                         dev_err(map->dev, "Failed to add range %d\n", i);
1160                         kfree(new);
1161                         goto err_range;
1162                 }
1163
1164                 if (map->selector_work_buf == NULL) {
1165                         map->selector_work_buf =
1166                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1167                         if (map->selector_work_buf == NULL) {
1168                                 ret = -ENOMEM;
1169                                 goto err_range;
1170                         }
1171                 }
1172         }
1173
1174         ret = regcache_init(map, config);
1175         if (ret != 0)
1176                 goto err_range;
1177
1178         if (dev) {
1179                 ret = regmap_attach_dev(dev, map, config);
1180                 if (ret != 0)
1181                         goto err_regcache;
1182         } else {
1183                 regmap_debugfs_init(map);
1184         }
1185
1186         return map;
1187
1188 err_regcache:
1189         regcache_exit(map);
1190 err_range:
1191         regmap_range_exit(map);
1192         kfree(map->work_buf);
1193 err_hwlock:
1194         if (map->hwlock)
1195                 hwspin_lock_free(map->hwlock);
1196 err_name:
1197         kfree_const(map->name);
1198 err_map:
1199         kfree(map);
1200 err:
1201         return ERR_PTR(ret);
1202 }
1203 EXPORT_SYMBOL_GPL(__regmap_init);
1204
1205 static void devm_regmap_release(struct device *dev, void *res)
1206 {
1207         regmap_exit(*(struct regmap **)res);
1208 }
1209
1210 struct regmap *__devm_regmap_init(struct device *dev,
1211                                   const struct regmap_bus *bus,
1212                                   void *bus_context,
1213                                   const struct regmap_config *config,
1214                                   struct lock_class_key *lock_key,
1215                                   const char *lock_name)
1216 {
1217         struct regmap **ptr, *regmap;
1218
1219         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1220         if (!ptr)
1221                 return ERR_PTR(-ENOMEM);
1222
1223         regmap = __regmap_init(dev, bus, bus_context, config,
1224                                lock_key, lock_name);
1225         if (!IS_ERR(regmap)) {
1226                 *ptr = regmap;
1227                 devres_add(dev, ptr);
1228         } else {
1229                 devres_free(ptr);
1230         }
1231
1232         return regmap;
1233 }
1234 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1235
1236 static void regmap_field_init(struct regmap_field *rm_field,
1237         struct regmap *regmap, struct reg_field reg_field)
1238 {
1239         rm_field->regmap = regmap;
1240         rm_field->reg = reg_field.reg;
1241         rm_field->shift = reg_field.lsb;
1242         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1243         rm_field->id_size = reg_field.id_size;
1244         rm_field->id_offset = reg_field.id_offset;
1245 }
1246
1247 /**
1248  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1249  *
1250  * @dev: Device that will be interacted with
1251  * @regmap: regmap bank in which this register field is located.
1252  * @reg_field: Register field with in the bank.
1253  *
1254  * The return value will be an ERR_PTR() on error or a valid pointer
1255  * to a struct regmap_field. The regmap_field will be automatically freed
1256  * by the device management code.
1257  */
1258 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1259                 struct regmap *regmap, struct reg_field reg_field)
1260 {
1261         struct regmap_field *rm_field = devm_kzalloc(dev,
1262                                         sizeof(*rm_field), GFP_KERNEL);
1263         if (!rm_field)
1264                 return ERR_PTR(-ENOMEM);
1265
1266         regmap_field_init(rm_field, regmap, reg_field);
1267
1268         return rm_field;
1269
1270 }
1271 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1272
1273
1274 /**
1275  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1276  *
1277  * @regmap: regmap bank in which this register field is located.
1278  * @rm_field: regmap register fields within the bank.
1279  * @reg_field: Register fields within the bank.
1280  * @num_fields: Number of register fields.
1281  *
1282  * The return value will be an -ENOMEM on error or zero for success.
1283  * Newly allocated regmap_fields should be freed by calling
1284  * regmap_field_bulk_free()
1285  */
1286 int regmap_field_bulk_alloc(struct regmap *regmap,
1287                             struct regmap_field **rm_field,
1288                             struct reg_field *reg_field,
1289                             int num_fields)
1290 {
1291         struct regmap_field *rf;
1292         int i;
1293
1294         rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1295         if (!rf)
1296                 return -ENOMEM;
1297
1298         for (i = 0; i < num_fields; i++) {
1299                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1300                 rm_field[i] = &rf[i];
1301         }
1302
1303         return 0;
1304 }
1305 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1306
1307 /**
1308  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1309  * fields.
1310  *
1311  * @dev: Device that will be interacted with
1312  * @regmap: regmap bank in which this register field is located.
1313  * @rm_field: regmap register fields within the bank.
1314  * @reg_field: Register fields within the bank.
1315  * @num_fields: Number of register fields.
1316  *
1317  * The return value will be an -ENOMEM on error or zero for success.
1318  * Newly allocated regmap_fields will be automatically freed by the
1319  * device management code.
1320  */
1321 int devm_regmap_field_bulk_alloc(struct device *dev,
1322                                  struct regmap *regmap,
1323                                  struct regmap_field **rm_field,
1324                                  struct reg_field *reg_field,
1325                                  int num_fields)
1326 {
1327         struct regmap_field *rf;
1328         int i;
1329
1330         rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1331         if (!rf)
1332                 return -ENOMEM;
1333
1334         for (i = 0; i < num_fields; i++) {
1335                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1336                 rm_field[i] = &rf[i];
1337         }
1338
1339         return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1342
1343 /**
1344  * regmap_field_bulk_free() - Free register field allocated using
1345  *                       regmap_field_bulk_alloc.
1346  *
1347  * @field: regmap fields which should be freed.
1348  */
1349 void regmap_field_bulk_free(struct regmap_field *field)
1350 {
1351         kfree(field);
1352 }
1353 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1354
1355 /**
1356  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1357  *                            devm_regmap_field_bulk_alloc.
1358  *
1359  * @dev: Device that will be interacted with
1360  * @field: regmap field which should be freed.
1361  *
1362  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1363  * drivers need not call this function, as the memory allocated via devm
1364  * will be freed as per device-driver life-cycle.
1365  */
1366 void devm_regmap_field_bulk_free(struct device *dev,
1367                                  struct regmap_field *field)
1368 {
1369         devm_kfree(dev, field);
1370 }
1371 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1372
1373 /**
1374  * devm_regmap_field_free() - Free a register field allocated using
1375  *                            devm_regmap_field_alloc.
1376  *
1377  * @dev: Device that will be interacted with
1378  * @field: regmap field which should be freed.
1379  *
1380  * Free register field allocated using devm_regmap_field_alloc(). Usually
1381  * drivers need not call this function, as the memory allocated via devm
1382  * will be freed as per device-driver life-cyle.
1383  */
1384 void devm_regmap_field_free(struct device *dev,
1385         struct regmap_field *field)
1386 {
1387         devm_kfree(dev, field);
1388 }
1389 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1390
1391 /**
1392  * regmap_field_alloc() - Allocate and initialise a register field.
1393  *
1394  * @regmap: regmap bank in which this register field is located.
1395  * @reg_field: Register field with in the bank.
1396  *
1397  * The return value will be an ERR_PTR() on error or a valid pointer
1398  * to a struct regmap_field. The regmap_field should be freed by the
1399  * user once its finished working with it using regmap_field_free().
1400  */
1401 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1402                 struct reg_field reg_field)
1403 {
1404         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1405
1406         if (!rm_field)
1407                 return ERR_PTR(-ENOMEM);
1408
1409         regmap_field_init(rm_field, regmap, reg_field);
1410
1411         return rm_field;
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1414
1415 /**
1416  * regmap_field_free() - Free register field allocated using
1417  *                       regmap_field_alloc.
1418  *
1419  * @field: regmap field which should be freed.
1420  */
1421 void regmap_field_free(struct regmap_field *field)
1422 {
1423         kfree(field);
1424 }
1425 EXPORT_SYMBOL_GPL(regmap_field_free);
1426
1427 /**
1428  * regmap_reinit_cache() - Reinitialise the current register cache
1429  *
1430  * @map: Register map to operate on.
1431  * @config: New configuration.  Only the cache data will be used.
1432  *
1433  * Discard any existing register cache for the map and initialize a
1434  * new cache.  This can be used to restore the cache to defaults or to
1435  * update the cache configuration to reflect runtime discovery of the
1436  * hardware.
1437  *
1438  * No explicit locking is done here, the user needs to ensure that
1439  * this function will not race with other calls to regmap.
1440  */
1441 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1442 {
1443         int ret;
1444
1445         regcache_exit(map);
1446         regmap_debugfs_exit(map);
1447
1448         map->max_register = config->max_register;
1449         map->writeable_reg = config->writeable_reg;
1450         map->readable_reg = config->readable_reg;
1451         map->volatile_reg = config->volatile_reg;
1452         map->precious_reg = config->precious_reg;
1453         map->writeable_noinc_reg = config->writeable_noinc_reg;
1454         map->readable_noinc_reg = config->readable_noinc_reg;
1455         map->cache_type = config->cache_type;
1456
1457         ret = regmap_set_name(map, config);
1458         if (ret)
1459                 return ret;
1460
1461         regmap_debugfs_init(map);
1462
1463         map->cache_bypass = false;
1464         map->cache_only = false;
1465
1466         return regcache_init(map, config);
1467 }
1468 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1469
1470 /**
1471  * regmap_exit() - Free a previously allocated register map
1472  *
1473  * @map: Register map to operate on.
1474  */
1475 void regmap_exit(struct regmap *map)
1476 {
1477         struct regmap_async *async;
1478
1479         regcache_exit(map);
1480         regmap_debugfs_exit(map);
1481         regmap_range_exit(map);
1482         if (map->bus && map->bus->free_context)
1483                 map->bus->free_context(map->bus_context);
1484         kfree(map->work_buf);
1485         while (!list_empty(&map->async_free)) {
1486                 async = list_first_entry_or_null(&map->async_free,
1487                                                  struct regmap_async,
1488                                                  list);
1489                 list_del(&async->list);
1490                 kfree(async->work_buf);
1491                 kfree(async);
1492         }
1493         if (map->hwlock)
1494                 hwspin_lock_free(map->hwlock);
1495         if (map->lock == regmap_lock_mutex)
1496                 mutex_destroy(&map->mutex);
1497         kfree_const(map->name);
1498         kfree(map->patch);
1499         kfree(map);
1500 }
1501 EXPORT_SYMBOL_GPL(regmap_exit);
1502
1503 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1504 {
1505         struct regmap **r = res;
1506         if (!r || !*r) {
1507                 WARN_ON(!r || !*r);
1508                 return 0;
1509         }
1510
1511         /* If the user didn't specify a name match any */
1512         if (data)
1513                 return !strcmp((*r)->name, data);
1514         else
1515                 return 1;
1516 }
1517
1518 /**
1519  * dev_get_regmap() - Obtain the regmap (if any) for a device
1520  *
1521  * @dev: Device to retrieve the map for
1522  * @name: Optional name for the register map, usually NULL.
1523  *
1524  * Returns the regmap for the device if one is present, or NULL.  If
1525  * name is specified then it must match the name specified when
1526  * registering the device, if it is NULL then the first regmap found
1527  * will be used.  Devices with multiple register maps are very rare,
1528  * generic code should normally not need to specify a name.
1529  */
1530 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1531 {
1532         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1533                                         dev_get_regmap_match, (void *)name);
1534
1535         if (!r)
1536                 return NULL;
1537         return *r;
1538 }
1539 EXPORT_SYMBOL_GPL(dev_get_regmap);
1540
1541 /**
1542  * regmap_get_device() - Obtain the device from a regmap
1543  *
1544  * @map: Register map to operate on.
1545  *
1546  * Returns the underlying device that the regmap has been created for.
1547  */
1548 struct device *regmap_get_device(struct regmap *map)
1549 {
1550         return map->dev;
1551 }
1552 EXPORT_SYMBOL_GPL(regmap_get_device);
1553
1554 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1555                                struct regmap_range_node *range,
1556                                unsigned int val_num)
1557 {
1558         void *orig_work_buf;
1559         unsigned int win_offset;
1560         unsigned int win_page;
1561         bool page_chg;
1562         int ret;
1563
1564         win_offset = (*reg - range->range_min) % range->window_len;
1565         win_page = (*reg - range->range_min) / range->window_len;
1566
1567         if (val_num > 1) {
1568                 /* Bulk write shouldn't cross range boundary */
1569                 if (*reg + val_num - 1 > range->range_max)
1570                         return -EINVAL;
1571
1572                 /* ... or single page boundary */
1573                 if (val_num > range->window_len - win_offset)
1574                         return -EINVAL;
1575         }
1576
1577         /* It is possible to have selector register inside data window.
1578            In that case, selector register is located on every page and
1579            it needs no page switching, when accessed alone. */
1580         if (val_num > 1 ||
1581             range->window_start + win_offset != range->selector_reg) {
1582                 /* Use separate work_buf during page switching */
1583                 orig_work_buf = map->work_buf;
1584                 map->work_buf = map->selector_work_buf;
1585
1586                 ret = _regmap_update_bits(map, range->selector_reg,
1587                                           range->selector_mask,
1588                                           win_page << range->selector_shift,
1589                                           &page_chg, false);
1590
1591                 map->work_buf = orig_work_buf;
1592
1593                 if (ret != 0)
1594                         return ret;
1595         }
1596
1597         *reg = range->window_start + win_offset;
1598
1599         return 0;
1600 }
1601
1602 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1603                                           unsigned long mask)
1604 {
1605         u8 *buf;
1606         int i;
1607
1608         if (!mask || !map->work_buf)
1609                 return;
1610
1611         buf = map->work_buf;
1612
1613         for (i = 0; i < max_bytes; i++)
1614                 buf[i] |= (mask >> (8 * i)) & 0xff;
1615 }
1616
1617 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1618                                   const void *val, size_t val_len, bool noinc)
1619 {
1620         struct regmap_range_node *range;
1621         unsigned long flags;
1622         void *work_val = map->work_buf + map->format.reg_bytes +
1623                 map->format.pad_bytes;
1624         void *buf;
1625         int ret = -ENOTSUPP;
1626         size_t len;
1627         int i;
1628
1629         WARN_ON(!map->bus);
1630
1631         /* Check for unwritable or noinc registers in range
1632          * before we start
1633          */
1634         if (!regmap_writeable_noinc(map, reg)) {
1635                 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1636                         unsigned int element =
1637                                 reg + regmap_get_offset(map, i);
1638                         if (!regmap_writeable(map, element) ||
1639                                 regmap_writeable_noinc(map, element))
1640                                 return -EINVAL;
1641                 }
1642         }
1643
1644         if (!map->cache_bypass && map->format.parse_val) {
1645                 unsigned int ival;
1646                 int val_bytes = map->format.val_bytes;
1647                 for (i = 0; i < val_len / val_bytes; i++) {
1648                         ival = map->format.parse_val(val + (i * val_bytes));
1649                         ret = regcache_write(map,
1650                                              reg + regmap_get_offset(map, i),
1651                                              ival);
1652                         if (ret) {
1653                                 dev_err(map->dev,
1654                                         "Error in caching of register: %x ret: %d\n",
1655                                         reg + i, ret);
1656                                 return ret;
1657                         }
1658                 }
1659                 if (map->cache_only) {
1660                         map->cache_dirty = true;
1661                         return 0;
1662                 }
1663         }
1664
1665         range = _regmap_range_lookup(map, reg);
1666         if (range) {
1667                 int val_num = val_len / map->format.val_bytes;
1668                 int win_offset = (reg - range->range_min) % range->window_len;
1669                 int win_residue = range->window_len - win_offset;
1670
1671                 /* If the write goes beyond the end of the window split it */
1672                 while (val_num > win_residue) {
1673                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1674                                 win_residue, val_len / map->format.val_bytes);
1675                         ret = _regmap_raw_write_impl(map, reg, val,
1676                                                      win_residue *
1677                                                      map->format.val_bytes, noinc);
1678                         if (ret != 0)
1679                                 return ret;
1680
1681                         reg += win_residue;
1682                         val_num -= win_residue;
1683                         val += win_residue * map->format.val_bytes;
1684                         val_len -= win_residue * map->format.val_bytes;
1685
1686                         win_offset = (reg - range->range_min) %
1687                                 range->window_len;
1688                         win_residue = range->window_len - win_offset;
1689                 }
1690
1691                 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1692                 if (ret != 0)
1693                         return ret;
1694         }
1695
1696         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1697         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1698                                       map->write_flag_mask);
1699
1700         /*
1701          * Essentially all I/O mechanisms will be faster with a single
1702          * buffer to write.  Since register syncs often generate raw
1703          * writes of single registers optimise that case.
1704          */
1705         if (val != work_val && val_len == map->format.val_bytes) {
1706                 memcpy(work_val, val, map->format.val_bytes);
1707                 val = work_val;
1708         }
1709
1710         if (map->async && map->bus->async_write) {
1711                 struct regmap_async *async;
1712
1713                 trace_regmap_async_write_start(map, reg, val_len);
1714
1715                 spin_lock_irqsave(&map->async_lock, flags);
1716                 async = list_first_entry_or_null(&map->async_free,
1717                                                  struct regmap_async,
1718                                                  list);
1719                 if (async)
1720                         list_del(&async->list);
1721                 spin_unlock_irqrestore(&map->async_lock, flags);
1722
1723                 if (!async) {
1724                         async = map->bus->async_alloc();
1725                         if (!async)
1726                                 return -ENOMEM;
1727
1728                         async->work_buf = kzalloc(map->format.buf_size,
1729                                                   GFP_KERNEL | GFP_DMA);
1730                         if (!async->work_buf) {
1731                                 kfree(async);
1732                                 return -ENOMEM;
1733                         }
1734                 }
1735
1736                 async->map = map;
1737
1738                 /* If the caller supplied the value we can use it safely. */
1739                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1740                        map->format.reg_bytes + map->format.val_bytes);
1741
1742                 spin_lock_irqsave(&map->async_lock, flags);
1743                 list_add_tail(&async->list, &map->async_list);
1744                 spin_unlock_irqrestore(&map->async_lock, flags);
1745
1746                 if (val != work_val)
1747                         ret = map->bus->async_write(map->bus_context,
1748                                                     async->work_buf,
1749                                                     map->format.reg_bytes +
1750                                                     map->format.pad_bytes,
1751                                                     val, val_len, async);
1752                 else
1753                         ret = map->bus->async_write(map->bus_context,
1754                                                     async->work_buf,
1755                                                     map->format.reg_bytes +
1756                                                     map->format.pad_bytes +
1757                                                     val_len, NULL, 0, async);
1758
1759                 if (ret != 0) {
1760                         dev_err(map->dev, "Failed to schedule write: %d\n",
1761                                 ret);
1762
1763                         spin_lock_irqsave(&map->async_lock, flags);
1764                         list_move(&async->list, &map->async_free);
1765                         spin_unlock_irqrestore(&map->async_lock, flags);
1766                 }
1767
1768                 return ret;
1769         }
1770
1771         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1772
1773         /* If we're doing a single register write we can probably just
1774          * send the work_buf directly, otherwise try to do a gather
1775          * write.
1776          */
1777         if (val == work_val)
1778                 ret = map->bus->write(map->bus_context, map->work_buf,
1779                                       map->format.reg_bytes +
1780                                       map->format.pad_bytes +
1781                                       val_len);
1782         else if (map->bus->gather_write)
1783                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1784                                              map->format.reg_bytes +
1785                                              map->format.pad_bytes,
1786                                              val, val_len);
1787         else
1788                 ret = -ENOTSUPP;
1789
1790         /* If that didn't work fall back on linearising by hand. */
1791         if (ret == -ENOTSUPP) {
1792                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1793                 buf = kzalloc(len, GFP_KERNEL);
1794                 if (!buf)
1795                         return -ENOMEM;
1796
1797                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1798                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1799                        val, val_len);
1800                 ret = map->bus->write(map->bus_context, buf, len);
1801
1802                 kfree(buf);
1803         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1804                 /* regcache_drop_region() takes lock that we already have,
1805                  * thus call map->cache_ops->drop() directly
1806                  */
1807                 if (map->cache_ops && map->cache_ops->drop)
1808                         map->cache_ops->drop(map, reg, reg + 1);
1809         }
1810
1811         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1812
1813         return ret;
1814 }
1815
1816 /**
1817  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1818  *
1819  * @map: Map to check.
1820  */
1821 bool regmap_can_raw_write(struct regmap *map)
1822 {
1823         return map->bus && map->bus->write && map->format.format_val &&
1824                 map->format.format_reg;
1825 }
1826 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1827
1828 /**
1829  * regmap_get_raw_read_max - Get the maximum size we can read
1830  *
1831  * @map: Map to check.
1832  */
1833 size_t regmap_get_raw_read_max(struct regmap *map)
1834 {
1835         return map->max_raw_read;
1836 }
1837 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1838
1839 /**
1840  * regmap_get_raw_write_max - Get the maximum size we can read
1841  *
1842  * @map: Map to check.
1843  */
1844 size_t regmap_get_raw_write_max(struct regmap *map)
1845 {
1846         return map->max_raw_write;
1847 }
1848 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1849
1850 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1851                                        unsigned int val)
1852 {
1853         int ret;
1854         struct regmap_range_node *range;
1855         struct regmap *map = context;
1856
1857         WARN_ON(!map->bus || !map->format.format_write);
1858
1859         range = _regmap_range_lookup(map, reg);
1860         if (range) {
1861                 ret = _regmap_select_page(map, &reg, range, 1);
1862                 if (ret != 0)
1863                         return ret;
1864         }
1865
1866         map->format.format_write(map, reg, val);
1867
1868         trace_regmap_hw_write_start(map, reg, 1);
1869
1870         ret = map->bus->write(map->bus_context, map->work_buf,
1871                               map->format.buf_size);
1872
1873         trace_regmap_hw_write_done(map, reg, 1);
1874
1875         return ret;
1876 }
1877
1878 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1879                                  unsigned int val)
1880 {
1881         struct regmap *map = context;
1882
1883         return map->bus->reg_write(map->bus_context, reg, val);
1884 }
1885
1886 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1887                                  unsigned int val)
1888 {
1889         struct regmap *map = context;
1890
1891         WARN_ON(!map->bus || !map->format.format_val);
1892
1893         map->format.format_val(map->work_buf + map->format.reg_bytes
1894                                + map->format.pad_bytes, val, 0);
1895         return _regmap_raw_write_impl(map, reg,
1896                                       map->work_buf +
1897                                       map->format.reg_bytes +
1898                                       map->format.pad_bytes,
1899                                       map->format.val_bytes,
1900                                       false);
1901 }
1902
1903 static inline void *_regmap_map_get_context(struct regmap *map)
1904 {
1905         return (map->bus) ? map : map->bus_context;
1906 }
1907
1908 int _regmap_write(struct regmap *map, unsigned int reg,
1909                   unsigned int val)
1910 {
1911         int ret;
1912         void *context = _regmap_map_get_context(map);
1913
1914         if (!regmap_writeable(map, reg))
1915                 return -EIO;
1916
1917         if (!map->cache_bypass && !map->defer_caching) {
1918                 ret = regcache_write(map, reg, val);
1919                 if (ret != 0)
1920                         return ret;
1921                 if (map->cache_only) {
1922                         map->cache_dirty = true;
1923                         return 0;
1924                 }
1925         }
1926
1927         ret = map->reg_write(context, reg, val);
1928         if (ret == 0) {
1929                 if (regmap_should_log(map))
1930                         dev_info(map->dev, "%x <= %x\n", reg, val);
1931
1932                 trace_regmap_reg_write(map, reg, val);
1933         }
1934
1935         return ret;
1936 }
1937
1938 /**
1939  * regmap_write() - Write a value to a single register
1940  *
1941  * @map: Register map to write to
1942  * @reg: Register to write to
1943  * @val: Value to be written
1944  *
1945  * A value of zero will be returned on success, a negative errno will
1946  * be returned in error cases.
1947  */
1948 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1949 {
1950         int ret;
1951
1952         if (!IS_ALIGNED(reg, map->reg_stride))
1953                 return -EINVAL;
1954
1955         map->lock(map->lock_arg);
1956
1957         ret = _regmap_write(map, reg, val);
1958
1959         map->unlock(map->lock_arg);
1960
1961         return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(regmap_write);
1964
1965 /**
1966  * regmap_write_async() - Write a value to a single register asynchronously
1967  *
1968  * @map: Register map to write to
1969  * @reg: Register to write to
1970  * @val: Value to be written
1971  *
1972  * A value of zero will be returned on success, a negative errno will
1973  * be returned in error cases.
1974  */
1975 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1976 {
1977         int ret;
1978
1979         if (!IS_ALIGNED(reg, map->reg_stride))
1980                 return -EINVAL;
1981
1982         map->lock(map->lock_arg);
1983
1984         map->async = true;
1985
1986         ret = _regmap_write(map, reg, val);
1987
1988         map->async = false;
1989
1990         map->unlock(map->lock_arg);
1991
1992         return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(regmap_write_async);
1995
1996 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1997                       const void *val, size_t val_len, bool noinc)
1998 {
1999         size_t val_bytes = map->format.val_bytes;
2000         size_t val_count = val_len / val_bytes;
2001         size_t chunk_count, chunk_bytes;
2002         size_t chunk_regs = val_count;
2003         int ret, i;
2004
2005         if (!val_count)
2006                 return -EINVAL;
2007
2008         if (map->use_single_write)
2009                 chunk_regs = 1;
2010         else if (map->max_raw_write && val_len > map->max_raw_write)
2011                 chunk_regs = map->max_raw_write / val_bytes;
2012
2013         chunk_count = val_count / chunk_regs;
2014         chunk_bytes = chunk_regs * val_bytes;
2015
2016         /* Write as many bytes as possible with chunk_size */
2017         for (i = 0; i < chunk_count; i++) {
2018                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2019                 if (ret)
2020                         return ret;
2021
2022                 reg += regmap_get_offset(map, chunk_regs);
2023                 val += chunk_bytes;
2024                 val_len -= chunk_bytes;
2025         }
2026
2027         /* Write remaining bytes */
2028         if (val_len)
2029                 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2030
2031         return ret;
2032 }
2033
2034 /**
2035  * regmap_raw_write() - Write raw values to one or more registers
2036  *
2037  * @map: Register map to write to
2038  * @reg: Initial register to write to
2039  * @val: Block of data to be written, laid out for direct transmission to the
2040  *       device
2041  * @val_len: Length of data pointed to by val.
2042  *
2043  * This function is intended to be used for things like firmware
2044  * download where a large block of data needs to be transferred to the
2045  * device.  No formatting will be done on the data provided.
2046  *
2047  * A value of zero will be returned on success, a negative errno will
2048  * be returned in error cases.
2049  */
2050 int regmap_raw_write(struct regmap *map, unsigned int reg,
2051                      const void *val, size_t val_len)
2052 {
2053         int ret;
2054
2055         if (!regmap_can_raw_write(map))
2056                 return -EINVAL;
2057         if (val_len % map->format.val_bytes)
2058                 return -EINVAL;
2059
2060         map->lock(map->lock_arg);
2061
2062         ret = _regmap_raw_write(map, reg, val, val_len, false);
2063
2064         map->unlock(map->lock_arg);
2065
2066         return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(regmap_raw_write);
2069
2070 /**
2071  * regmap_noinc_write(): Write data from a register without incrementing the
2072  *                      register number
2073  *
2074  * @map: Register map to write to
2075  * @reg: Register to write to
2076  * @val: Pointer to data buffer
2077  * @val_len: Length of output buffer in bytes.
2078  *
2079  * The regmap API usually assumes that bulk bus write operations will write a
2080  * range of registers. Some devices have certain registers for which a write
2081  * operation can write to an internal FIFO.
2082  *
2083  * The target register must be volatile but registers after it can be
2084  * completely unrelated cacheable registers.
2085  *
2086  * This will attempt multiple writes as required to write val_len bytes.
2087  *
2088  * A value of zero will be returned on success, a negative errno will be
2089  * returned in error cases.
2090  */
2091 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2092                       const void *val, size_t val_len)
2093 {
2094         size_t write_len;
2095         int ret;
2096
2097         if (!map->bus)
2098                 return -EINVAL;
2099         if (!map->bus->write)
2100                 return -ENOTSUPP;
2101         if (val_len % map->format.val_bytes)
2102                 return -EINVAL;
2103         if (!IS_ALIGNED(reg, map->reg_stride))
2104                 return -EINVAL;
2105         if (val_len == 0)
2106                 return -EINVAL;
2107
2108         map->lock(map->lock_arg);
2109
2110         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2111                 ret = -EINVAL;
2112                 goto out_unlock;
2113         }
2114
2115         while (val_len) {
2116                 if (map->max_raw_write && map->max_raw_write < val_len)
2117                         write_len = map->max_raw_write;
2118                 else
2119                         write_len = val_len;
2120                 ret = _regmap_raw_write(map, reg, val, write_len, true);
2121                 if (ret)
2122                         goto out_unlock;
2123                 val = ((u8 *)val) + write_len;
2124                 val_len -= write_len;
2125         }
2126
2127 out_unlock:
2128         map->unlock(map->lock_arg);
2129         return ret;
2130 }
2131 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2132
2133 /**
2134  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2135  *                                   register field.
2136  *
2137  * @field: Register field to write to
2138  * @mask: Bitmask to change
2139  * @val: Value to be written
2140  * @change: Boolean indicating if a write was done
2141  * @async: Boolean indicating asynchronously
2142  * @force: Boolean indicating use force update
2143  *
2144  * Perform a read/modify/write cycle on the register field with change,
2145  * async, force option.
2146  *
2147  * A value of zero will be returned on success, a negative errno will
2148  * be returned in error cases.
2149  */
2150 int regmap_field_update_bits_base(struct regmap_field *field,
2151                                   unsigned int mask, unsigned int val,
2152                                   bool *change, bool async, bool force)
2153 {
2154         mask = (mask << field->shift) & field->mask;
2155
2156         return regmap_update_bits_base(field->regmap, field->reg,
2157                                        mask, val << field->shift,
2158                                        change, async, force);
2159 }
2160 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2161
2162 /**
2163  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2164  *                                    register field with port ID
2165  *
2166  * @field: Register field to write to
2167  * @id: port ID
2168  * @mask: Bitmask to change
2169  * @val: Value to be written
2170  * @change: Boolean indicating if a write was done
2171  * @async: Boolean indicating asynchronously
2172  * @force: Boolean indicating use force update
2173  *
2174  * A value of zero will be returned on success, a negative errno will
2175  * be returned in error cases.
2176  */
2177 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2178                                    unsigned int mask, unsigned int val,
2179                                    bool *change, bool async, bool force)
2180 {
2181         if (id >= field->id_size)
2182                 return -EINVAL;
2183
2184         mask = (mask << field->shift) & field->mask;
2185
2186         return regmap_update_bits_base(field->regmap,
2187                                        field->reg + (field->id_offset * id),
2188                                        mask, val << field->shift,
2189                                        change, async, force);
2190 }
2191 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2192
2193 /**
2194  * regmap_bulk_write() - Write multiple registers to the device
2195  *
2196  * @map: Register map to write to
2197  * @reg: First register to be write from
2198  * @val: Block of data to be written, in native register size for device
2199  * @val_count: Number of registers to write
2200  *
2201  * This function is intended to be used for writing a large block of
2202  * data to the device either in single transfer or multiple transfer.
2203  *
2204  * A value of zero will be returned on success, a negative errno will
2205  * be returned in error cases.
2206  */
2207 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2208                      size_t val_count)
2209 {
2210         int ret = 0, i;
2211         size_t val_bytes = map->format.val_bytes;
2212
2213         if (!IS_ALIGNED(reg, map->reg_stride))
2214                 return -EINVAL;
2215
2216         /*
2217          * Some devices don't support bulk write, for them we have a series of
2218          * single write operations.
2219          */
2220         if (!map->bus || !map->format.parse_inplace) {
2221                 map->lock(map->lock_arg);
2222                 for (i = 0; i < val_count; i++) {
2223                         unsigned int ival;
2224
2225                         switch (val_bytes) {
2226                         case 1:
2227                                 ival = *(u8 *)(val + (i * val_bytes));
2228                                 break;
2229                         case 2:
2230                                 ival = *(u16 *)(val + (i * val_bytes));
2231                                 break;
2232                         case 4:
2233                                 ival = *(u32 *)(val + (i * val_bytes));
2234                                 break;
2235 #ifdef CONFIG_64BIT
2236                         case 8:
2237                                 ival = *(u64 *)(val + (i * val_bytes));
2238                                 break;
2239 #endif
2240                         default:
2241                                 ret = -EINVAL;
2242                                 goto out;
2243                         }
2244
2245                         ret = _regmap_write(map,
2246                                             reg + regmap_get_offset(map, i),
2247                                             ival);
2248                         if (ret != 0)
2249                                 goto out;
2250                 }
2251 out:
2252                 map->unlock(map->lock_arg);
2253         } else {
2254                 void *wval;
2255
2256                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2257                 if (!wval)
2258                         return -ENOMEM;
2259
2260                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2261                         map->format.parse_inplace(wval + i);
2262
2263                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2264
2265                 kfree(wval);
2266         }
2267         return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2270
2271 /*
2272  * _regmap_raw_multi_reg_write()
2273  *
2274  * the (register,newvalue) pairs in regs have not been formatted, but
2275  * they are all in the same page and have been changed to being page
2276  * relative. The page register has been written if that was necessary.
2277  */
2278 static int _regmap_raw_multi_reg_write(struct regmap *map,
2279                                        const struct reg_sequence *regs,
2280                                        size_t num_regs)
2281 {
2282         int ret;
2283         void *buf;
2284         int i;
2285         u8 *u8;
2286         size_t val_bytes = map->format.val_bytes;
2287         size_t reg_bytes = map->format.reg_bytes;
2288         size_t pad_bytes = map->format.pad_bytes;
2289         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2290         size_t len = pair_size * num_regs;
2291
2292         if (!len)
2293                 return -EINVAL;
2294
2295         buf = kzalloc(len, GFP_KERNEL);
2296         if (!buf)
2297                 return -ENOMEM;
2298
2299         /* We have to linearise by hand. */
2300
2301         u8 = buf;
2302
2303         for (i = 0; i < num_regs; i++) {
2304                 unsigned int reg = regs[i].reg;
2305                 unsigned int val = regs[i].def;
2306                 trace_regmap_hw_write_start(map, reg, 1);
2307                 map->format.format_reg(u8, reg, map->reg_shift);
2308                 u8 += reg_bytes + pad_bytes;
2309                 map->format.format_val(u8, val, 0);
2310                 u8 += val_bytes;
2311         }
2312         u8 = buf;
2313         *u8 |= map->write_flag_mask;
2314
2315         ret = map->bus->write(map->bus_context, buf, len);
2316
2317         kfree(buf);
2318
2319         for (i = 0; i < num_regs; i++) {
2320                 int reg = regs[i].reg;
2321                 trace_regmap_hw_write_done(map, reg, 1);
2322         }
2323         return ret;
2324 }
2325
2326 static unsigned int _regmap_register_page(struct regmap *map,
2327                                           unsigned int reg,
2328                                           struct regmap_range_node *range)
2329 {
2330         unsigned int win_page = (reg - range->range_min) / range->window_len;
2331
2332         return win_page;
2333 }
2334
2335 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2336                                                struct reg_sequence *regs,
2337                                                size_t num_regs)
2338 {
2339         int ret;
2340         int i, n;
2341         struct reg_sequence *base;
2342         unsigned int this_page = 0;
2343         unsigned int page_change = 0;
2344         /*
2345          * the set of registers are not neccessarily in order, but
2346          * since the order of write must be preserved this algorithm
2347          * chops the set each time the page changes. This also applies
2348          * if there is a delay required at any point in the sequence.
2349          */
2350         base = regs;
2351         for (i = 0, n = 0; i < num_regs; i++, n++) {
2352                 unsigned int reg = regs[i].reg;
2353                 struct regmap_range_node *range;
2354
2355                 range = _regmap_range_lookup(map, reg);
2356                 if (range) {
2357                         unsigned int win_page = _regmap_register_page(map, reg,
2358                                                                       range);
2359
2360                         if (i == 0)
2361                                 this_page = win_page;
2362                         if (win_page != this_page) {
2363                                 this_page = win_page;
2364                                 page_change = 1;
2365                         }
2366                 }
2367
2368                 /* If we have both a page change and a delay make sure to
2369                  * write the regs and apply the delay before we change the
2370                  * page.
2371                  */
2372
2373                 if (page_change || regs[i].delay_us) {
2374
2375                                 /* For situations where the first write requires
2376                                  * a delay we need to make sure we don't call
2377                                  * raw_multi_reg_write with n=0
2378                                  * This can't occur with page breaks as we
2379                                  * never write on the first iteration
2380                                  */
2381                                 if (regs[i].delay_us && i == 0)
2382                                         n = 1;
2383
2384                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2385                                 if (ret != 0)
2386                                         return ret;
2387
2388                                 if (regs[i].delay_us) {
2389                                         if (map->can_sleep)
2390                                                 fsleep(regs[i].delay_us);
2391                                         else
2392                                                 udelay(regs[i].delay_us);
2393                                 }
2394
2395                                 base += n;
2396                                 n = 0;
2397
2398                                 if (page_change) {
2399                                         ret = _regmap_select_page(map,
2400                                                                   &base[n].reg,
2401                                                                   range, 1);
2402                                         if (ret != 0)
2403                                                 return ret;
2404
2405                                         page_change = 0;
2406                                 }
2407
2408                 }
2409
2410         }
2411         if (n > 0)
2412                 return _regmap_raw_multi_reg_write(map, base, n);
2413         return 0;
2414 }
2415
2416 static int _regmap_multi_reg_write(struct regmap *map,
2417                                    const struct reg_sequence *regs,
2418                                    size_t num_regs)
2419 {
2420         int i;
2421         int ret;
2422
2423         if (!map->can_multi_write) {
2424                 for (i = 0; i < num_regs; i++) {
2425                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2426                         if (ret != 0)
2427                                 return ret;
2428
2429                         if (regs[i].delay_us) {
2430                                 if (map->can_sleep)
2431                                         fsleep(regs[i].delay_us);
2432                                 else
2433                                         udelay(regs[i].delay_us);
2434                         }
2435                 }
2436                 return 0;
2437         }
2438
2439         if (!map->format.parse_inplace)
2440                 return -EINVAL;
2441
2442         if (map->writeable_reg)
2443                 for (i = 0; i < num_regs; i++) {
2444                         int reg = regs[i].reg;
2445                         if (!map->writeable_reg(map->dev, reg))
2446                                 return -EINVAL;
2447                         if (!IS_ALIGNED(reg, map->reg_stride))
2448                                 return -EINVAL;
2449                 }
2450
2451         if (!map->cache_bypass) {
2452                 for (i = 0; i < num_regs; i++) {
2453                         unsigned int val = regs[i].def;
2454                         unsigned int reg = regs[i].reg;
2455                         ret = regcache_write(map, reg, val);
2456                         if (ret) {
2457                                 dev_err(map->dev,
2458                                 "Error in caching of register: %x ret: %d\n",
2459                                                                 reg, ret);
2460                                 return ret;
2461                         }
2462                 }
2463                 if (map->cache_only) {
2464                         map->cache_dirty = true;
2465                         return 0;
2466                 }
2467         }
2468
2469         WARN_ON(!map->bus);
2470
2471         for (i = 0; i < num_regs; i++) {
2472                 unsigned int reg = regs[i].reg;
2473                 struct regmap_range_node *range;
2474
2475                 /* Coalesce all the writes between a page break or a delay
2476                  * in a sequence
2477                  */
2478                 range = _regmap_range_lookup(map, reg);
2479                 if (range || regs[i].delay_us) {
2480                         size_t len = sizeof(struct reg_sequence)*num_regs;
2481                         struct reg_sequence *base = kmemdup(regs, len,
2482                                                            GFP_KERNEL);
2483                         if (!base)
2484                                 return -ENOMEM;
2485                         ret = _regmap_range_multi_paged_reg_write(map, base,
2486                                                                   num_regs);
2487                         kfree(base);
2488
2489                         return ret;
2490                 }
2491         }
2492         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2493 }
2494
2495 /**
2496  * regmap_multi_reg_write() - Write multiple registers to the device
2497  *
2498  * @map: Register map to write to
2499  * @regs: Array of structures containing register,value to be written
2500  * @num_regs: Number of registers to write
2501  *
2502  * Write multiple registers to the device where the set of register, value
2503  * pairs are supplied in any order, possibly not all in a single range.
2504  *
2505  * The 'normal' block write mode will send ultimately send data on the
2506  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2507  * addressed. However, this alternative block multi write mode will send
2508  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2509  * must of course support the mode.
2510  *
2511  * A value of zero will be returned on success, a negative errno will be
2512  * returned in error cases.
2513  */
2514 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2515                            int num_regs)
2516 {
2517         int ret;
2518
2519         map->lock(map->lock_arg);
2520
2521         ret = _regmap_multi_reg_write(map, regs, num_regs);
2522
2523         map->unlock(map->lock_arg);
2524
2525         return ret;
2526 }
2527 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2528
2529 /**
2530  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2531  *                                     device but not the cache
2532  *
2533  * @map: Register map to write to
2534  * @regs: Array of structures containing register,value to be written
2535  * @num_regs: Number of registers to write
2536  *
2537  * Write multiple registers to the device but not the cache where the set
2538  * of register are supplied in any order.
2539  *
2540  * This function is intended to be used for writing a large block of data
2541  * atomically to the device in single transfer for those I2C client devices
2542  * that implement this alternative block write mode.
2543  *
2544  * A value of zero will be returned on success, a negative errno will
2545  * be returned in error cases.
2546  */
2547 int regmap_multi_reg_write_bypassed(struct regmap *map,
2548                                     const struct reg_sequence *regs,
2549                                     int num_regs)
2550 {
2551         int ret;
2552         bool bypass;
2553
2554         map->lock(map->lock_arg);
2555
2556         bypass = map->cache_bypass;
2557         map->cache_bypass = true;
2558
2559         ret = _regmap_multi_reg_write(map, regs, num_regs);
2560
2561         map->cache_bypass = bypass;
2562
2563         map->unlock(map->lock_arg);
2564
2565         return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2568
2569 /**
2570  * regmap_raw_write_async() - Write raw values to one or more registers
2571  *                            asynchronously
2572  *
2573  * @map: Register map to write to
2574  * @reg: Initial register to write to
2575  * @val: Block of data to be written, laid out for direct transmission to the
2576  *       device.  Must be valid until regmap_async_complete() is called.
2577  * @val_len: Length of data pointed to by val.
2578  *
2579  * This function is intended to be used for things like firmware
2580  * download where a large block of data needs to be transferred to the
2581  * device.  No formatting will be done on the data provided.
2582  *
2583  * If supported by the underlying bus the write will be scheduled
2584  * asynchronously, helping maximise I/O speed on higher speed buses
2585  * like SPI.  regmap_async_complete() can be called to ensure that all
2586  * asynchrnous writes have been completed.
2587  *
2588  * A value of zero will be returned on success, a negative errno will
2589  * be returned in error cases.
2590  */
2591 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2592                            const void *val, size_t val_len)
2593 {
2594         int ret;
2595
2596         if (val_len % map->format.val_bytes)
2597                 return -EINVAL;
2598         if (!IS_ALIGNED(reg, map->reg_stride))
2599                 return -EINVAL;
2600
2601         map->lock(map->lock_arg);
2602
2603         map->async = true;
2604
2605         ret = _regmap_raw_write(map, reg, val, val_len, false);
2606
2607         map->async = false;
2608
2609         map->unlock(map->lock_arg);
2610
2611         return ret;
2612 }
2613 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2614
2615 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2616                             unsigned int val_len, bool noinc)
2617 {
2618         struct regmap_range_node *range;
2619         int ret;
2620
2621         WARN_ON(!map->bus);
2622
2623         if (!map->bus || !map->bus->read)
2624                 return -EINVAL;
2625
2626         range = _regmap_range_lookup(map, reg);
2627         if (range) {
2628                 ret = _regmap_select_page(map, &reg, range,
2629                                           noinc ? 1 : val_len / map->format.val_bytes);
2630                 if (ret != 0)
2631                         return ret;
2632         }
2633
2634         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2635         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2636                                       map->read_flag_mask);
2637         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2638
2639         ret = map->bus->read(map->bus_context, map->work_buf,
2640                              map->format.reg_bytes + map->format.pad_bytes,
2641                              val, val_len);
2642
2643         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2644
2645         return ret;
2646 }
2647
2648 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2649                                 unsigned int *val)
2650 {
2651         struct regmap *map = context;
2652
2653         return map->bus->reg_read(map->bus_context, reg, val);
2654 }
2655
2656 static int _regmap_bus_read(void *context, unsigned int reg,
2657                             unsigned int *val)
2658 {
2659         int ret;
2660         struct regmap *map = context;
2661         void *work_val = map->work_buf + map->format.reg_bytes +
2662                 map->format.pad_bytes;
2663
2664         if (!map->format.parse_val)
2665                 return -EINVAL;
2666
2667         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2668         if (ret == 0)
2669                 *val = map->format.parse_val(work_val);
2670
2671         return ret;
2672 }
2673
2674 static int _regmap_read(struct regmap *map, unsigned int reg,
2675                         unsigned int *val)
2676 {
2677         int ret;
2678         void *context = _regmap_map_get_context(map);
2679
2680         if (!map->cache_bypass) {
2681                 ret = regcache_read(map, reg, val);
2682                 if (ret == 0)
2683                         return 0;
2684         }
2685
2686         if (map->cache_only)
2687                 return -EBUSY;
2688
2689         if (!regmap_readable(map, reg))
2690                 return -EIO;
2691
2692         ret = map->reg_read(context, reg, val);
2693         if (ret == 0) {
2694                 if (regmap_should_log(map))
2695                         dev_info(map->dev, "%x => %x\n", reg, *val);
2696
2697                 trace_regmap_reg_read(map, reg, *val);
2698
2699                 if (!map->cache_bypass)
2700                         regcache_write(map, reg, *val);
2701         }
2702
2703         return ret;
2704 }
2705
2706 /**
2707  * regmap_read() - Read a value from a single register
2708  *
2709  * @map: Register map to read from
2710  * @reg: Register to be read from
2711  * @val: Pointer to store read value
2712  *
2713  * A value of zero will be returned on success, a negative errno will
2714  * be returned in error cases.
2715  */
2716 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2717 {
2718         int ret;
2719
2720         if (!IS_ALIGNED(reg, map->reg_stride))
2721                 return -EINVAL;
2722
2723         map->lock(map->lock_arg);
2724
2725         ret = _regmap_read(map, reg, val);
2726
2727         map->unlock(map->lock_arg);
2728
2729         return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(regmap_read);
2732
2733 /**
2734  * regmap_raw_read() - Read raw data from the device
2735  *
2736  * @map: Register map to read from
2737  * @reg: First register to be read from
2738  * @val: Pointer to store read value
2739  * @val_len: Size of data to read
2740  *
2741  * A value of zero will be returned on success, a negative errno will
2742  * be returned in error cases.
2743  */
2744 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2745                     size_t val_len)
2746 {
2747         size_t val_bytes = map->format.val_bytes;
2748         size_t val_count = val_len / val_bytes;
2749         unsigned int v;
2750         int ret, i;
2751
2752         if (!map->bus)
2753                 return -EINVAL;
2754         if (val_len % map->format.val_bytes)
2755                 return -EINVAL;
2756         if (!IS_ALIGNED(reg, map->reg_stride))
2757                 return -EINVAL;
2758         if (val_count == 0)
2759                 return -EINVAL;
2760
2761         map->lock(map->lock_arg);
2762
2763         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2764             map->cache_type == REGCACHE_NONE) {
2765                 size_t chunk_count, chunk_bytes;
2766                 size_t chunk_regs = val_count;
2767
2768                 if (!map->bus->read) {
2769                         ret = -ENOTSUPP;
2770                         goto out;
2771                 }
2772
2773                 if (map->use_single_read)
2774                         chunk_regs = 1;
2775                 else if (map->max_raw_read && val_len > map->max_raw_read)
2776                         chunk_regs = map->max_raw_read / val_bytes;
2777
2778                 chunk_count = val_count / chunk_regs;
2779                 chunk_bytes = chunk_regs * val_bytes;
2780
2781                 /* Read bytes that fit into whole chunks */
2782                 for (i = 0; i < chunk_count; i++) {
2783                         ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2784                         if (ret != 0)
2785                                 goto out;
2786
2787                         reg += regmap_get_offset(map, chunk_regs);
2788                         val += chunk_bytes;
2789                         val_len -= chunk_bytes;
2790                 }
2791
2792                 /* Read remaining bytes */
2793                 if (val_len) {
2794                         ret = _regmap_raw_read(map, reg, val, val_len, false);
2795                         if (ret != 0)
2796                                 goto out;
2797                 }
2798         } else {
2799                 /* Otherwise go word by word for the cache; should be low
2800                  * cost as we expect to hit the cache.
2801                  */
2802                 for (i = 0; i < val_count; i++) {
2803                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2804                                            &v);
2805                         if (ret != 0)
2806                                 goto out;
2807
2808                         map->format.format_val(val + (i * val_bytes), v, 0);
2809                 }
2810         }
2811
2812  out:
2813         map->unlock(map->lock_arg);
2814
2815         return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(regmap_raw_read);
2818
2819 /**
2820  * regmap_noinc_read(): Read data from a register without incrementing the
2821  *                      register number
2822  *
2823  * @map: Register map to read from
2824  * @reg: Register to read from
2825  * @val: Pointer to data buffer
2826  * @val_len: Length of output buffer in bytes.
2827  *
2828  * The regmap API usually assumes that bulk bus read operations will read a
2829  * range of registers. Some devices have certain registers for which a read
2830  * operation read will read from an internal FIFO.
2831  *
2832  * The target register must be volatile but registers after it can be
2833  * completely unrelated cacheable registers.
2834  *
2835  * This will attempt multiple reads as required to read val_len bytes.
2836  *
2837  * A value of zero will be returned on success, a negative errno will be
2838  * returned in error cases.
2839  */
2840 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2841                       void *val, size_t val_len)
2842 {
2843         size_t read_len;
2844         int ret;
2845
2846         if (!map->bus)
2847                 return -EINVAL;
2848         if (!map->bus->read)
2849                 return -ENOTSUPP;
2850         if (val_len % map->format.val_bytes)
2851                 return -EINVAL;
2852         if (!IS_ALIGNED(reg, map->reg_stride))
2853                 return -EINVAL;
2854         if (val_len == 0)
2855                 return -EINVAL;
2856
2857         map->lock(map->lock_arg);
2858
2859         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2860                 ret = -EINVAL;
2861                 goto out_unlock;
2862         }
2863
2864         while (val_len) {
2865                 if (map->max_raw_read && map->max_raw_read < val_len)
2866                         read_len = map->max_raw_read;
2867                 else
2868                         read_len = val_len;
2869                 ret = _regmap_raw_read(map, reg, val, read_len, true);
2870                 if (ret)
2871                         goto out_unlock;
2872                 val = ((u8 *)val) + read_len;
2873                 val_len -= read_len;
2874         }
2875
2876 out_unlock:
2877         map->unlock(map->lock_arg);
2878         return ret;
2879 }
2880 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2881
2882 /**
2883  * regmap_field_read(): Read a value to a single register field
2884  *
2885  * @field: Register field to read from
2886  * @val: Pointer to store read value
2887  *
2888  * A value of zero will be returned on success, a negative errno will
2889  * be returned in error cases.
2890  */
2891 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2892 {
2893         int ret;
2894         unsigned int reg_val;
2895         ret = regmap_read(field->regmap, field->reg, &reg_val);
2896         if (ret != 0)
2897                 return ret;
2898
2899         reg_val &= field->mask;
2900         reg_val >>= field->shift;
2901         *val = reg_val;
2902
2903         return ret;
2904 }
2905 EXPORT_SYMBOL_GPL(regmap_field_read);
2906
2907 /**
2908  * regmap_fields_read() - Read a value to a single register field with port ID
2909  *
2910  * @field: Register field to read from
2911  * @id: port ID
2912  * @val: Pointer to store read value
2913  *
2914  * A value of zero will be returned on success, a negative errno will
2915  * be returned in error cases.
2916  */
2917 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2918                        unsigned int *val)
2919 {
2920         int ret;
2921         unsigned int reg_val;
2922
2923         if (id >= field->id_size)
2924                 return -EINVAL;
2925
2926         ret = regmap_read(field->regmap,
2927                           field->reg + (field->id_offset * id),
2928                           &reg_val);
2929         if (ret != 0)
2930                 return ret;
2931
2932         reg_val &= field->mask;
2933         reg_val >>= field->shift;
2934         *val = reg_val;
2935
2936         return ret;
2937 }
2938 EXPORT_SYMBOL_GPL(regmap_fields_read);
2939
2940 /**
2941  * regmap_bulk_read() - Read multiple registers from the device
2942  *
2943  * @map: Register map to read from
2944  * @reg: First register to be read from
2945  * @val: Pointer to store read value, in native register size for device
2946  * @val_count: Number of registers to read
2947  *
2948  * A value of zero will be returned on success, a negative errno will
2949  * be returned in error cases.
2950  */
2951 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2952                      size_t val_count)
2953 {
2954         int ret, i;
2955         size_t val_bytes = map->format.val_bytes;
2956         bool vol = regmap_volatile_range(map, reg, val_count);
2957
2958         if (!IS_ALIGNED(reg, map->reg_stride))
2959                 return -EINVAL;
2960         if (val_count == 0)
2961                 return -EINVAL;
2962
2963         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2964                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2965                 if (ret != 0)
2966                         return ret;
2967
2968                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2969                         map->format.parse_inplace(val + i);
2970         } else {
2971 #ifdef CONFIG_64BIT
2972                 u64 *u64 = val;
2973 #endif
2974                 u32 *u32 = val;
2975                 u16 *u16 = val;
2976                 u8 *u8 = val;
2977
2978                 map->lock(map->lock_arg);
2979
2980                 for (i = 0; i < val_count; i++) {
2981                         unsigned int ival;
2982
2983                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2984                                            &ival);
2985                         if (ret != 0)
2986                                 goto out;
2987
2988                         switch (map->format.val_bytes) {
2989 #ifdef CONFIG_64BIT
2990                         case 8:
2991                                 u64[i] = ival;
2992                                 break;
2993 #endif
2994                         case 4:
2995                                 u32[i] = ival;
2996                                 break;
2997                         case 2:
2998                                 u16[i] = ival;
2999                                 break;
3000                         case 1:
3001                                 u8[i] = ival;
3002                                 break;
3003                         default:
3004                                 ret = -EINVAL;
3005                                 goto out;
3006                         }
3007                 }
3008
3009 out:
3010                 map->unlock(map->lock_arg);
3011         }
3012
3013         return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3016
3017 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3018                                unsigned int mask, unsigned int val,
3019                                bool *change, bool force_write)
3020 {
3021         int ret;
3022         unsigned int tmp, orig;
3023
3024         if (change)
3025                 *change = false;
3026
3027         if (regmap_volatile(map, reg) && map->reg_update_bits) {
3028                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3029                 if (ret == 0 && change)
3030                         *change = true;
3031         } else {
3032                 ret = _regmap_read(map, reg, &orig);
3033                 if (ret != 0)
3034                         return ret;
3035
3036                 tmp = orig & ~mask;
3037                 tmp |= val & mask;
3038
3039                 if (force_write || (tmp != orig)) {
3040                         ret = _regmap_write(map, reg, tmp);
3041                         if (ret == 0 && change)
3042                                 *change = true;
3043                 }
3044         }
3045
3046         return ret;
3047 }
3048
3049 /**
3050  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3051  *
3052  * @map: Register map to update
3053  * @reg: Register to update
3054  * @mask: Bitmask to change
3055  * @val: New value for bitmask
3056  * @change: Boolean indicating if a write was done
3057  * @async: Boolean indicating asynchronously
3058  * @force: Boolean indicating use force update
3059  *
3060  * Perform a read/modify/write cycle on a register map with change, async, force
3061  * options.
3062  *
3063  * If async is true:
3064  *
3065  * With most buses the read must be done synchronously so this is most useful
3066  * for devices with a cache which do not need to interact with the hardware to
3067  * determine the current register value.
3068  *
3069  * Returns zero for success, a negative number on error.
3070  */
3071 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3072                             unsigned int mask, unsigned int val,
3073                             bool *change, bool async, bool force)
3074 {
3075         int ret;
3076
3077         map->lock(map->lock_arg);
3078
3079         map->async = async;
3080
3081         ret = _regmap_update_bits(map, reg, mask, val, change, force);
3082
3083         map->async = false;
3084
3085         map->unlock(map->lock_arg);
3086
3087         return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3090
3091 /**
3092  * regmap_test_bits() - Check if all specified bits are set in a register.
3093  *
3094  * @map: Register map to operate on
3095  * @reg: Register to read from
3096  * @bits: Bits to test
3097  *
3098  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3099  * bits are set and a negative error number if the underlying regmap_read()
3100  * fails.
3101  */
3102 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3103 {
3104         unsigned int val, ret;
3105
3106         ret = regmap_read(map, reg, &val);
3107         if (ret)
3108                 return ret;
3109
3110         return (val & bits) == bits;
3111 }
3112 EXPORT_SYMBOL_GPL(regmap_test_bits);
3113
3114 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3115 {
3116         struct regmap *map = async->map;
3117         bool wake;
3118
3119         trace_regmap_async_io_complete(map);
3120
3121         spin_lock(&map->async_lock);
3122         list_move(&async->list, &map->async_free);
3123         wake = list_empty(&map->async_list);
3124
3125         if (ret != 0)
3126                 map->async_ret = ret;
3127
3128         spin_unlock(&map->async_lock);
3129
3130         if (wake)
3131                 wake_up(&map->async_waitq);
3132 }
3133 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3134
3135 static int regmap_async_is_done(struct regmap *map)
3136 {
3137         unsigned long flags;
3138         int ret;
3139
3140         spin_lock_irqsave(&map->async_lock, flags);
3141         ret = list_empty(&map->async_list);
3142         spin_unlock_irqrestore(&map->async_lock, flags);
3143
3144         return ret;
3145 }
3146
3147 /**
3148  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3149  *
3150  * @map: Map to operate on.
3151  *
3152  * Blocks until any pending asynchronous I/O has completed.  Returns
3153  * an error code for any failed I/O operations.
3154  */
3155 int regmap_async_complete(struct regmap *map)
3156 {
3157         unsigned long flags;
3158         int ret;
3159
3160         /* Nothing to do with no async support */
3161         if (!map->bus || !map->bus->async_write)
3162                 return 0;
3163
3164         trace_regmap_async_complete_start(map);
3165
3166         wait_event(map->async_waitq, regmap_async_is_done(map));
3167
3168         spin_lock_irqsave(&map->async_lock, flags);
3169         ret = map->async_ret;
3170         map->async_ret = 0;
3171         spin_unlock_irqrestore(&map->async_lock, flags);
3172
3173         trace_regmap_async_complete_done(map);
3174
3175         return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(regmap_async_complete);
3178
3179 /**
3180  * regmap_register_patch - Register and apply register updates to be applied
3181  *                         on device initialistion
3182  *
3183  * @map: Register map to apply updates to.
3184  * @regs: Values to update.
3185  * @num_regs: Number of entries in regs.
3186  *
3187  * Register a set of register updates to be applied to the device
3188  * whenever the device registers are synchronised with the cache and
3189  * apply them immediately.  Typically this is used to apply
3190  * corrections to be applied to the device defaults on startup, such
3191  * as the updates some vendors provide to undocumented registers.
3192  *
3193  * The caller must ensure that this function cannot be called
3194  * concurrently with either itself or regcache_sync().
3195  */
3196 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3197                           int num_regs)
3198 {
3199         struct reg_sequence *p;
3200         int ret;
3201         bool bypass;
3202
3203         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3204             num_regs))
3205                 return 0;
3206
3207         p = krealloc(map->patch,
3208                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3209                      GFP_KERNEL);
3210         if (p) {
3211                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3212                 map->patch = p;
3213                 map->patch_regs += num_regs;
3214         } else {
3215                 return -ENOMEM;
3216         }
3217
3218         map->lock(map->lock_arg);
3219
3220         bypass = map->cache_bypass;
3221
3222         map->cache_bypass = true;
3223         map->async = true;
3224
3225         ret = _regmap_multi_reg_write(map, regs, num_regs);
3226
3227         map->async = false;
3228         map->cache_bypass = bypass;
3229
3230         map->unlock(map->lock_arg);
3231
3232         regmap_async_complete(map);
3233
3234         return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(regmap_register_patch);
3237
3238 /**
3239  * regmap_get_val_bytes() - Report the size of a register value
3240  *
3241  * @map: Register map to operate on.
3242  *
3243  * Report the size of a register value, mainly intended to for use by
3244  * generic infrastructure built on top of regmap.
3245  */
3246 int regmap_get_val_bytes(struct regmap *map)
3247 {
3248         if (map->format.format_write)
3249                 return -EINVAL;
3250
3251         return map->format.val_bytes;
3252 }
3253 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3254
3255 /**
3256  * regmap_get_max_register() - Report the max register value
3257  *
3258  * @map: Register map to operate on.
3259  *
3260  * Report the max register value, mainly intended to for use by
3261  * generic infrastructure built on top of regmap.
3262  */
3263 int regmap_get_max_register(struct regmap *map)
3264 {
3265         return map->max_register ? map->max_register : -EINVAL;
3266 }
3267 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3268
3269 /**
3270  * regmap_get_reg_stride() - Report the register address stride
3271  *
3272  * @map: Register map to operate on.
3273  *
3274  * Report the register address stride, mainly intended to for use by
3275  * generic infrastructure built on top of regmap.
3276  */
3277 int regmap_get_reg_stride(struct regmap *map)
3278 {
3279         return map->reg_stride;
3280 }
3281 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3282
3283 int regmap_parse_val(struct regmap *map, const void *buf,
3284                         unsigned int *val)
3285 {
3286         if (!map->format.parse_val)
3287                 return -EINVAL;
3288
3289         *val = map->format.parse_val(buf);
3290
3291         return 0;
3292 }
3293 EXPORT_SYMBOL_GPL(regmap_parse_val);
3294
3295 static int __init regmap_initcall(void)
3296 {
3297         regmap_debugfs_initcall();
3298
3299         return 0;
3300 }
3301 postcore_initcall(regmap_initcall);