Merge tag 'spi-fix-v4.19-rc4' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27
28 #include "internal.h"
29
30 /*
31  * Sometimes for failures during very early init the trace
32  * infrastructure isn't available early enough to be used.  For this
33  * sort of problem defining LOG_DEVICE will add printks for basic
34  * register I/O on a specific device.
35  */
36 #undef LOG_DEVICE
37
38 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
39                                unsigned int mask, unsigned int val,
40                                bool *change, bool force_write);
41
42 static int _regmap_bus_reg_read(void *context, unsigned int reg,
43                                 unsigned int *val);
44 static int _regmap_bus_read(void *context, unsigned int reg,
45                             unsigned int *val);
46 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
47                                        unsigned int val);
48 static int _regmap_bus_reg_write(void *context, unsigned int reg,
49                                  unsigned int val);
50 static int _regmap_bus_raw_write(void *context, unsigned int reg,
51                                  unsigned int val);
52
53 bool regmap_reg_in_ranges(unsigned int reg,
54                           const struct regmap_range *ranges,
55                           unsigned int nranges)
56 {
57         const struct regmap_range *r;
58         int i;
59
60         for (i = 0, r = ranges; i < nranges; i++, r++)
61                 if (regmap_reg_in_range(reg, r))
62                         return true;
63         return false;
64 }
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66
67 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
68                               const struct regmap_access_table *table)
69 {
70         /* Check "no ranges" first */
71         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
72                 return false;
73
74         /* In case zero "yes ranges" are supplied, any reg is OK */
75         if (!table->n_yes_ranges)
76                 return true;
77
78         return regmap_reg_in_ranges(reg, table->yes_ranges,
79                                     table->n_yes_ranges);
80 }
81 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82
83 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 {
85         if (map->max_register && reg > map->max_register)
86                 return false;
87
88         if (map->writeable_reg)
89                 return map->writeable_reg(map->dev, reg);
90
91         if (map->wr_table)
92                 return regmap_check_range_table(map, reg, map->wr_table);
93
94         return true;
95 }
96
97 bool regmap_cached(struct regmap *map, unsigned int reg)
98 {
99         int ret;
100         unsigned int val;
101
102         if (map->cache_type == REGCACHE_NONE)
103                 return false;
104
105         if (!map->cache_ops)
106                 return false;
107
108         if (map->max_register && reg > map->max_register)
109                 return false;
110
111         map->lock(map->lock_arg);
112         ret = regcache_read(map, reg, &val);
113         map->unlock(map->lock_arg);
114         if (ret)
115                 return false;
116
117         return true;
118 }
119
120 bool regmap_readable(struct regmap *map, unsigned int reg)
121 {
122         if (!map->reg_read)
123                 return false;
124
125         if (map->max_register && reg > map->max_register)
126                 return false;
127
128         if (map->format.format_write)
129                 return false;
130
131         if (map->readable_reg)
132                 return map->readable_reg(map->dev, reg);
133
134         if (map->rd_table)
135                 return regmap_check_range_table(map, reg, map->rd_table);
136
137         return true;
138 }
139
140 bool regmap_volatile(struct regmap *map, unsigned int reg)
141 {
142         if (!map->format.format_write && !regmap_readable(map, reg))
143                 return false;
144
145         if (map->volatile_reg)
146                 return map->volatile_reg(map->dev, reg);
147
148         if (map->volatile_table)
149                 return regmap_check_range_table(map, reg, map->volatile_table);
150
151         if (map->cache_ops)
152                 return false;
153         else
154                 return true;
155 }
156
157 bool regmap_precious(struct regmap *map, unsigned int reg)
158 {
159         if (!regmap_readable(map, reg))
160                 return false;
161
162         if (map->precious_reg)
163                 return map->precious_reg(map->dev, reg);
164
165         if (map->precious_table)
166                 return regmap_check_range_table(map, reg, map->precious_table);
167
168         return false;
169 }
170
171 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
172 {
173         if (map->readable_noinc_reg)
174                 return map->readable_noinc_reg(map->dev, reg);
175
176         if (map->rd_noinc_table)
177                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
178
179         return true;
180 }
181
182 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
183         size_t num)
184 {
185         unsigned int i;
186
187         for (i = 0; i < num; i++)
188                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
189                         return false;
190
191         return true;
192 }
193
194 static void regmap_format_2_6_write(struct regmap *map,
195                                      unsigned int reg, unsigned int val)
196 {
197         u8 *out = map->work_buf;
198
199         *out = (reg << 6) | val;
200 }
201
202 static void regmap_format_4_12_write(struct regmap *map,
203                                      unsigned int reg, unsigned int val)
204 {
205         __be16 *out = map->work_buf;
206         *out = cpu_to_be16((reg << 12) | val);
207 }
208
209 static void regmap_format_7_9_write(struct regmap *map,
210                                     unsigned int reg, unsigned int val)
211 {
212         __be16 *out = map->work_buf;
213         *out = cpu_to_be16((reg << 9) | val);
214 }
215
216 static void regmap_format_10_14_write(struct regmap *map,
217                                     unsigned int reg, unsigned int val)
218 {
219         u8 *out = map->work_buf;
220
221         out[2] = val;
222         out[1] = (val >> 8) | (reg << 6);
223         out[0] = reg >> 2;
224 }
225
226 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
227 {
228         u8 *b = buf;
229
230         b[0] = val << shift;
231 }
232
233 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
234 {
235         __be16 *b = buf;
236
237         b[0] = cpu_to_be16(val << shift);
238 }
239
240 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
241 {
242         __le16 *b = buf;
243
244         b[0] = cpu_to_le16(val << shift);
245 }
246
247 static void regmap_format_16_native(void *buf, unsigned int val,
248                                     unsigned int shift)
249 {
250         *(u16 *)buf = val << shift;
251 }
252
253 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
254 {
255         u8 *b = buf;
256
257         val <<= shift;
258
259         b[0] = val >> 16;
260         b[1] = val >> 8;
261         b[2] = val;
262 }
263
264 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
265 {
266         __be32 *b = buf;
267
268         b[0] = cpu_to_be32(val << shift);
269 }
270
271 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
272 {
273         __le32 *b = buf;
274
275         b[0] = cpu_to_le32(val << shift);
276 }
277
278 static void regmap_format_32_native(void *buf, unsigned int val,
279                                     unsigned int shift)
280 {
281         *(u32 *)buf = val << shift;
282 }
283
284 #ifdef CONFIG_64BIT
285 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
286 {
287         __be64 *b = buf;
288
289         b[0] = cpu_to_be64((u64)val << shift);
290 }
291
292 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
293 {
294         __le64 *b = buf;
295
296         b[0] = cpu_to_le64((u64)val << shift);
297 }
298
299 static void regmap_format_64_native(void *buf, unsigned int val,
300                                     unsigned int shift)
301 {
302         *(u64 *)buf = (u64)val << shift;
303 }
304 #endif
305
306 static void regmap_parse_inplace_noop(void *buf)
307 {
308 }
309
310 static unsigned int regmap_parse_8(const void *buf)
311 {
312         const u8 *b = buf;
313
314         return b[0];
315 }
316
317 static unsigned int regmap_parse_16_be(const void *buf)
318 {
319         const __be16 *b = buf;
320
321         return be16_to_cpu(b[0]);
322 }
323
324 static unsigned int regmap_parse_16_le(const void *buf)
325 {
326         const __le16 *b = buf;
327
328         return le16_to_cpu(b[0]);
329 }
330
331 static void regmap_parse_16_be_inplace(void *buf)
332 {
333         __be16 *b = buf;
334
335         b[0] = be16_to_cpu(b[0]);
336 }
337
338 static void regmap_parse_16_le_inplace(void *buf)
339 {
340         __le16 *b = buf;
341
342         b[0] = le16_to_cpu(b[0]);
343 }
344
345 static unsigned int regmap_parse_16_native(const void *buf)
346 {
347         return *(u16 *)buf;
348 }
349
350 static unsigned int regmap_parse_24(const void *buf)
351 {
352         const u8 *b = buf;
353         unsigned int ret = b[2];
354         ret |= ((unsigned int)b[1]) << 8;
355         ret |= ((unsigned int)b[0]) << 16;
356
357         return ret;
358 }
359
360 static unsigned int regmap_parse_32_be(const void *buf)
361 {
362         const __be32 *b = buf;
363
364         return be32_to_cpu(b[0]);
365 }
366
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369         const __le32 *b = buf;
370
371         return le32_to_cpu(b[0]);
372 }
373
374 static void regmap_parse_32_be_inplace(void *buf)
375 {
376         __be32 *b = buf;
377
378         b[0] = be32_to_cpu(b[0]);
379 }
380
381 static void regmap_parse_32_le_inplace(void *buf)
382 {
383         __le32 *b = buf;
384
385         b[0] = le32_to_cpu(b[0]);
386 }
387
388 static unsigned int regmap_parse_32_native(const void *buf)
389 {
390         return *(u32 *)buf;
391 }
392
393 #ifdef CONFIG_64BIT
394 static unsigned int regmap_parse_64_be(const void *buf)
395 {
396         const __be64 *b = buf;
397
398         return be64_to_cpu(b[0]);
399 }
400
401 static unsigned int regmap_parse_64_le(const void *buf)
402 {
403         const __le64 *b = buf;
404
405         return le64_to_cpu(b[0]);
406 }
407
408 static void regmap_parse_64_be_inplace(void *buf)
409 {
410         __be64 *b = buf;
411
412         b[0] = be64_to_cpu(b[0]);
413 }
414
415 static void regmap_parse_64_le_inplace(void *buf)
416 {
417         __le64 *b = buf;
418
419         b[0] = le64_to_cpu(b[0]);
420 }
421
422 static unsigned int regmap_parse_64_native(const void *buf)
423 {
424         return *(u64 *)buf;
425 }
426 #endif
427
428 static void regmap_lock_hwlock(void *__map)
429 {
430         struct regmap *map = __map;
431
432         hwspin_lock_timeout(map->hwlock, UINT_MAX);
433 }
434
435 static void regmap_lock_hwlock_irq(void *__map)
436 {
437         struct regmap *map = __map;
438
439         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
440 }
441
442 static void regmap_lock_hwlock_irqsave(void *__map)
443 {
444         struct regmap *map = __map;
445
446         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
447                                     &map->spinlock_flags);
448 }
449
450 static void regmap_unlock_hwlock(void *__map)
451 {
452         struct regmap *map = __map;
453
454         hwspin_unlock(map->hwlock);
455 }
456
457 static void regmap_unlock_hwlock_irq(void *__map)
458 {
459         struct regmap *map = __map;
460
461         hwspin_unlock_irq(map->hwlock);
462 }
463
464 static void regmap_unlock_hwlock_irqrestore(void *__map)
465 {
466         struct regmap *map = __map;
467
468         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
469 }
470
471 static void regmap_lock_unlock_none(void *__map)
472 {
473
474 }
475
476 static void regmap_lock_mutex(void *__map)
477 {
478         struct regmap *map = __map;
479         mutex_lock(&map->mutex);
480 }
481
482 static void regmap_unlock_mutex(void *__map)
483 {
484         struct regmap *map = __map;
485         mutex_unlock(&map->mutex);
486 }
487
488 static void regmap_lock_spinlock(void *__map)
489 __acquires(&map->spinlock)
490 {
491         struct regmap *map = __map;
492         unsigned long flags;
493
494         spin_lock_irqsave(&map->spinlock, flags);
495         map->spinlock_flags = flags;
496 }
497
498 static void regmap_unlock_spinlock(void *__map)
499 __releases(&map->spinlock)
500 {
501         struct regmap *map = __map;
502         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
503 }
504
505 static void dev_get_regmap_release(struct device *dev, void *res)
506 {
507         /*
508          * We don't actually have anything to do here; the goal here
509          * is not to manage the regmap but to provide a simple way to
510          * get the regmap back given a struct device.
511          */
512 }
513
514 static bool _regmap_range_add(struct regmap *map,
515                               struct regmap_range_node *data)
516 {
517         struct rb_root *root = &map->range_tree;
518         struct rb_node **new = &(root->rb_node), *parent = NULL;
519
520         while (*new) {
521                 struct regmap_range_node *this =
522                         rb_entry(*new, struct regmap_range_node, node);
523
524                 parent = *new;
525                 if (data->range_max < this->range_min)
526                         new = &((*new)->rb_left);
527                 else if (data->range_min > this->range_max)
528                         new = &((*new)->rb_right);
529                 else
530                         return false;
531         }
532
533         rb_link_node(&data->node, parent, new);
534         rb_insert_color(&data->node, root);
535
536         return true;
537 }
538
539 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
540                                                       unsigned int reg)
541 {
542         struct rb_node *node = map->range_tree.rb_node;
543
544         while (node) {
545                 struct regmap_range_node *this =
546                         rb_entry(node, struct regmap_range_node, node);
547
548                 if (reg < this->range_min)
549                         node = node->rb_left;
550                 else if (reg > this->range_max)
551                         node = node->rb_right;
552                 else
553                         return this;
554         }
555
556         return NULL;
557 }
558
559 static void regmap_range_exit(struct regmap *map)
560 {
561         struct rb_node *next;
562         struct regmap_range_node *range_node;
563
564         next = rb_first(&map->range_tree);
565         while (next) {
566                 range_node = rb_entry(next, struct regmap_range_node, node);
567                 next = rb_next(&range_node->node);
568                 rb_erase(&range_node->node, &map->range_tree);
569                 kfree(range_node);
570         }
571
572         kfree(map->selector_work_buf);
573 }
574
575 int regmap_attach_dev(struct device *dev, struct regmap *map,
576                       const struct regmap_config *config)
577 {
578         struct regmap **m;
579
580         map->dev = dev;
581
582         regmap_debugfs_init(map, config->name);
583
584         /* Add a devres resource for dev_get_regmap() */
585         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
586         if (!m) {
587                 regmap_debugfs_exit(map);
588                 return -ENOMEM;
589         }
590         *m = map;
591         devres_add(dev, m);
592
593         return 0;
594 }
595 EXPORT_SYMBOL_GPL(regmap_attach_dev);
596
597 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
598                                         const struct regmap_config *config)
599 {
600         enum regmap_endian endian;
601
602         /* Retrieve the endianness specification from the regmap config */
603         endian = config->reg_format_endian;
604
605         /* If the regmap config specified a non-default value, use that */
606         if (endian != REGMAP_ENDIAN_DEFAULT)
607                 return endian;
608
609         /* Retrieve the endianness specification from the bus config */
610         if (bus && bus->reg_format_endian_default)
611                 endian = bus->reg_format_endian_default;
612
613         /* If the bus specified a non-default value, use that */
614         if (endian != REGMAP_ENDIAN_DEFAULT)
615                 return endian;
616
617         /* Use this if no other value was found */
618         return REGMAP_ENDIAN_BIG;
619 }
620
621 enum regmap_endian regmap_get_val_endian(struct device *dev,
622                                          const struct regmap_bus *bus,
623                                          const struct regmap_config *config)
624 {
625         struct device_node *np;
626         enum regmap_endian endian;
627
628         /* Retrieve the endianness specification from the regmap config */
629         endian = config->val_format_endian;
630
631         /* If the regmap config specified a non-default value, use that */
632         if (endian != REGMAP_ENDIAN_DEFAULT)
633                 return endian;
634
635         /* If the dev and dev->of_node exist try to get endianness from DT */
636         if (dev && dev->of_node) {
637                 np = dev->of_node;
638
639                 /* Parse the device's DT node for an endianness specification */
640                 if (of_property_read_bool(np, "big-endian"))
641                         endian = REGMAP_ENDIAN_BIG;
642                 else if (of_property_read_bool(np, "little-endian"))
643                         endian = REGMAP_ENDIAN_LITTLE;
644                 else if (of_property_read_bool(np, "native-endian"))
645                         endian = REGMAP_ENDIAN_NATIVE;
646
647                 /* If the endianness was specified in DT, use that */
648                 if (endian != REGMAP_ENDIAN_DEFAULT)
649                         return endian;
650         }
651
652         /* Retrieve the endianness specification from the bus config */
653         if (bus && bus->val_format_endian_default)
654                 endian = bus->val_format_endian_default;
655
656         /* If the bus specified a non-default value, use that */
657         if (endian != REGMAP_ENDIAN_DEFAULT)
658                 return endian;
659
660         /* Use this if no other value was found */
661         return REGMAP_ENDIAN_BIG;
662 }
663 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
664
665 struct regmap *__regmap_init(struct device *dev,
666                              const struct regmap_bus *bus,
667                              void *bus_context,
668                              const struct regmap_config *config,
669                              struct lock_class_key *lock_key,
670                              const char *lock_name)
671 {
672         struct regmap *map;
673         int ret = -EINVAL;
674         enum regmap_endian reg_endian, val_endian;
675         int i, j;
676
677         if (!config)
678                 goto err;
679
680         map = kzalloc(sizeof(*map), GFP_KERNEL);
681         if (map == NULL) {
682                 ret = -ENOMEM;
683                 goto err;
684         }
685
686         if (config->name) {
687                 map->name = kstrdup_const(config->name, GFP_KERNEL);
688                 if (!map->name) {
689                         ret = -ENOMEM;
690                         goto err_map;
691                 }
692         }
693
694         if (config->disable_locking) {
695                 map->lock = map->unlock = regmap_lock_unlock_none;
696                 regmap_debugfs_disable(map);
697         } else if (config->lock && config->unlock) {
698                 map->lock = config->lock;
699                 map->unlock = config->unlock;
700                 map->lock_arg = config->lock_arg;
701         } else if (config->use_hwlock) {
702                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
703                 if (!map->hwlock) {
704                         ret = -ENXIO;
705                         goto err_name;
706                 }
707
708                 switch (config->hwlock_mode) {
709                 case HWLOCK_IRQSTATE:
710                         map->lock = regmap_lock_hwlock_irqsave;
711                         map->unlock = regmap_unlock_hwlock_irqrestore;
712                         break;
713                 case HWLOCK_IRQ:
714                         map->lock = regmap_lock_hwlock_irq;
715                         map->unlock = regmap_unlock_hwlock_irq;
716                         break;
717                 default:
718                         map->lock = regmap_lock_hwlock;
719                         map->unlock = regmap_unlock_hwlock;
720                         break;
721                 }
722
723                 map->lock_arg = map;
724         } else {
725                 if ((bus && bus->fast_io) ||
726                     config->fast_io) {
727                         spin_lock_init(&map->spinlock);
728                         map->lock = regmap_lock_spinlock;
729                         map->unlock = regmap_unlock_spinlock;
730                         lockdep_set_class_and_name(&map->spinlock,
731                                                    lock_key, lock_name);
732                 } else {
733                         mutex_init(&map->mutex);
734                         map->lock = regmap_lock_mutex;
735                         map->unlock = regmap_unlock_mutex;
736                         lockdep_set_class_and_name(&map->mutex,
737                                                    lock_key, lock_name);
738                 }
739                 map->lock_arg = map;
740         }
741
742         /*
743          * When we write in fast-paths with regmap_bulk_write() don't allocate
744          * scratch buffers with sleeping allocations.
745          */
746         if ((bus && bus->fast_io) || config->fast_io)
747                 map->alloc_flags = GFP_ATOMIC;
748         else
749                 map->alloc_flags = GFP_KERNEL;
750
751         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
752         map->format.pad_bytes = config->pad_bits / 8;
753         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
754         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
755                         config->val_bits + config->pad_bits, 8);
756         map->reg_shift = config->pad_bits % 8;
757         if (config->reg_stride)
758                 map->reg_stride = config->reg_stride;
759         else
760                 map->reg_stride = 1;
761         if (is_power_of_2(map->reg_stride))
762                 map->reg_stride_order = ilog2(map->reg_stride);
763         else
764                 map->reg_stride_order = -1;
765         map->use_single_read = config->use_single_rw || !bus || !bus->read;
766         map->use_single_write = config->use_single_rw || !bus || !bus->write;
767         map->can_multi_write = config->can_multi_write && bus && bus->write;
768         if (bus) {
769                 map->max_raw_read = bus->max_raw_read;
770                 map->max_raw_write = bus->max_raw_write;
771         }
772         map->dev = dev;
773         map->bus = bus;
774         map->bus_context = bus_context;
775         map->max_register = config->max_register;
776         map->wr_table = config->wr_table;
777         map->rd_table = config->rd_table;
778         map->volatile_table = config->volatile_table;
779         map->precious_table = config->precious_table;
780         map->rd_noinc_table = config->rd_noinc_table;
781         map->writeable_reg = config->writeable_reg;
782         map->readable_reg = config->readable_reg;
783         map->volatile_reg = config->volatile_reg;
784         map->precious_reg = config->precious_reg;
785         map->readable_noinc_reg = config->readable_noinc_reg;
786         map->cache_type = config->cache_type;
787
788         spin_lock_init(&map->async_lock);
789         INIT_LIST_HEAD(&map->async_list);
790         INIT_LIST_HEAD(&map->async_free);
791         init_waitqueue_head(&map->async_waitq);
792
793         if (config->read_flag_mask ||
794             config->write_flag_mask ||
795             config->zero_flag_mask) {
796                 map->read_flag_mask = config->read_flag_mask;
797                 map->write_flag_mask = config->write_flag_mask;
798         } else if (bus) {
799                 map->read_flag_mask = bus->read_flag_mask;
800         }
801
802         if (!bus) {
803                 map->reg_read  = config->reg_read;
804                 map->reg_write = config->reg_write;
805
806                 map->defer_caching = false;
807                 goto skip_format_initialization;
808         } else if (!bus->read || !bus->write) {
809                 map->reg_read = _regmap_bus_reg_read;
810                 map->reg_write = _regmap_bus_reg_write;
811
812                 map->defer_caching = false;
813                 goto skip_format_initialization;
814         } else {
815                 map->reg_read  = _regmap_bus_read;
816                 map->reg_update_bits = bus->reg_update_bits;
817         }
818
819         reg_endian = regmap_get_reg_endian(bus, config);
820         val_endian = regmap_get_val_endian(dev, bus, config);
821
822         switch (config->reg_bits + map->reg_shift) {
823         case 2:
824                 switch (config->val_bits) {
825                 case 6:
826                         map->format.format_write = regmap_format_2_6_write;
827                         break;
828                 default:
829                         goto err_hwlock;
830                 }
831                 break;
832
833         case 4:
834                 switch (config->val_bits) {
835                 case 12:
836                         map->format.format_write = regmap_format_4_12_write;
837                         break;
838                 default:
839                         goto err_hwlock;
840                 }
841                 break;
842
843         case 7:
844                 switch (config->val_bits) {
845                 case 9:
846                         map->format.format_write = regmap_format_7_9_write;
847                         break;
848                 default:
849                         goto err_hwlock;
850                 }
851                 break;
852
853         case 10:
854                 switch (config->val_bits) {
855                 case 14:
856                         map->format.format_write = regmap_format_10_14_write;
857                         break;
858                 default:
859                         goto err_hwlock;
860                 }
861                 break;
862
863         case 8:
864                 map->format.format_reg = regmap_format_8;
865                 break;
866
867         case 16:
868                 switch (reg_endian) {
869                 case REGMAP_ENDIAN_BIG:
870                         map->format.format_reg = regmap_format_16_be;
871                         break;
872                 case REGMAP_ENDIAN_LITTLE:
873                         map->format.format_reg = regmap_format_16_le;
874                         break;
875                 case REGMAP_ENDIAN_NATIVE:
876                         map->format.format_reg = regmap_format_16_native;
877                         break;
878                 default:
879                         goto err_hwlock;
880                 }
881                 break;
882
883         case 24:
884                 if (reg_endian != REGMAP_ENDIAN_BIG)
885                         goto err_hwlock;
886                 map->format.format_reg = regmap_format_24;
887                 break;
888
889         case 32:
890                 switch (reg_endian) {
891                 case REGMAP_ENDIAN_BIG:
892                         map->format.format_reg = regmap_format_32_be;
893                         break;
894                 case REGMAP_ENDIAN_LITTLE:
895                         map->format.format_reg = regmap_format_32_le;
896                         break;
897                 case REGMAP_ENDIAN_NATIVE:
898                         map->format.format_reg = regmap_format_32_native;
899                         break;
900                 default:
901                         goto err_hwlock;
902                 }
903                 break;
904
905 #ifdef CONFIG_64BIT
906         case 64:
907                 switch (reg_endian) {
908                 case REGMAP_ENDIAN_BIG:
909                         map->format.format_reg = regmap_format_64_be;
910                         break;
911                 case REGMAP_ENDIAN_LITTLE:
912                         map->format.format_reg = regmap_format_64_le;
913                         break;
914                 case REGMAP_ENDIAN_NATIVE:
915                         map->format.format_reg = regmap_format_64_native;
916                         break;
917                 default:
918                         goto err_hwlock;
919                 }
920                 break;
921 #endif
922
923         default:
924                 goto err_hwlock;
925         }
926
927         if (val_endian == REGMAP_ENDIAN_NATIVE)
928                 map->format.parse_inplace = regmap_parse_inplace_noop;
929
930         switch (config->val_bits) {
931         case 8:
932                 map->format.format_val = regmap_format_8;
933                 map->format.parse_val = regmap_parse_8;
934                 map->format.parse_inplace = regmap_parse_inplace_noop;
935                 break;
936         case 16:
937                 switch (val_endian) {
938                 case REGMAP_ENDIAN_BIG:
939                         map->format.format_val = regmap_format_16_be;
940                         map->format.parse_val = regmap_parse_16_be;
941                         map->format.parse_inplace = regmap_parse_16_be_inplace;
942                         break;
943                 case REGMAP_ENDIAN_LITTLE:
944                         map->format.format_val = regmap_format_16_le;
945                         map->format.parse_val = regmap_parse_16_le;
946                         map->format.parse_inplace = regmap_parse_16_le_inplace;
947                         break;
948                 case REGMAP_ENDIAN_NATIVE:
949                         map->format.format_val = regmap_format_16_native;
950                         map->format.parse_val = regmap_parse_16_native;
951                         break;
952                 default:
953                         goto err_hwlock;
954                 }
955                 break;
956         case 24:
957                 if (val_endian != REGMAP_ENDIAN_BIG)
958                         goto err_hwlock;
959                 map->format.format_val = regmap_format_24;
960                 map->format.parse_val = regmap_parse_24;
961                 break;
962         case 32:
963                 switch (val_endian) {
964                 case REGMAP_ENDIAN_BIG:
965                         map->format.format_val = regmap_format_32_be;
966                         map->format.parse_val = regmap_parse_32_be;
967                         map->format.parse_inplace = regmap_parse_32_be_inplace;
968                         break;
969                 case REGMAP_ENDIAN_LITTLE:
970                         map->format.format_val = regmap_format_32_le;
971                         map->format.parse_val = regmap_parse_32_le;
972                         map->format.parse_inplace = regmap_parse_32_le_inplace;
973                         break;
974                 case REGMAP_ENDIAN_NATIVE:
975                         map->format.format_val = regmap_format_32_native;
976                         map->format.parse_val = regmap_parse_32_native;
977                         break;
978                 default:
979                         goto err_hwlock;
980                 }
981                 break;
982 #ifdef CONFIG_64BIT
983         case 64:
984                 switch (val_endian) {
985                 case REGMAP_ENDIAN_BIG:
986                         map->format.format_val = regmap_format_64_be;
987                         map->format.parse_val = regmap_parse_64_be;
988                         map->format.parse_inplace = regmap_parse_64_be_inplace;
989                         break;
990                 case REGMAP_ENDIAN_LITTLE:
991                         map->format.format_val = regmap_format_64_le;
992                         map->format.parse_val = regmap_parse_64_le;
993                         map->format.parse_inplace = regmap_parse_64_le_inplace;
994                         break;
995                 case REGMAP_ENDIAN_NATIVE:
996                         map->format.format_val = regmap_format_64_native;
997                         map->format.parse_val = regmap_parse_64_native;
998                         break;
999                 default:
1000                         goto err_hwlock;
1001                 }
1002                 break;
1003 #endif
1004         }
1005
1006         if (map->format.format_write) {
1007                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1008                     (val_endian != REGMAP_ENDIAN_BIG))
1009                         goto err_hwlock;
1010                 map->use_single_write = true;
1011         }
1012
1013         if (!map->format.format_write &&
1014             !(map->format.format_reg && map->format.format_val))
1015                 goto err_hwlock;
1016
1017         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1018         if (map->work_buf == NULL) {
1019                 ret = -ENOMEM;
1020                 goto err_hwlock;
1021         }
1022
1023         if (map->format.format_write) {
1024                 map->defer_caching = false;
1025                 map->reg_write = _regmap_bus_formatted_write;
1026         } else if (map->format.format_val) {
1027                 map->defer_caching = true;
1028                 map->reg_write = _regmap_bus_raw_write;
1029         }
1030
1031 skip_format_initialization:
1032
1033         map->range_tree = RB_ROOT;
1034         for (i = 0; i < config->num_ranges; i++) {
1035                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1036                 struct regmap_range_node *new;
1037
1038                 /* Sanity check */
1039                 if (range_cfg->range_max < range_cfg->range_min) {
1040                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1041                                 range_cfg->range_max, range_cfg->range_min);
1042                         goto err_range;
1043                 }
1044
1045                 if (range_cfg->range_max > map->max_register) {
1046                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1047                                 range_cfg->range_max, map->max_register);
1048                         goto err_range;
1049                 }
1050
1051                 if (range_cfg->selector_reg > map->max_register) {
1052                         dev_err(map->dev,
1053                                 "Invalid range %d: selector out of map\n", i);
1054                         goto err_range;
1055                 }
1056
1057                 if (range_cfg->window_len == 0) {
1058                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1059                                 i);
1060                         goto err_range;
1061                 }
1062
1063                 /* Make sure, that this register range has no selector
1064                    or data window within its boundary */
1065                 for (j = 0; j < config->num_ranges; j++) {
1066                         unsigned sel_reg = config->ranges[j].selector_reg;
1067                         unsigned win_min = config->ranges[j].window_start;
1068                         unsigned win_max = win_min +
1069                                            config->ranges[j].window_len - 1;
1070
1071                         /* Allow data window inside its own virtual range */
1072                         if (j == i)
1073                                 continue;
1074
1075                         if (range_cfg->range_min <= sel_reg &&
1076                             sel_reg <= range_cfg->range_max) {
1077                                 dev_err(map->dev,
1078                                         "Range %d: selector for %d in window\n",
1079                                         i, j);
1080                                 goto err_range;
1081                         }
1082
1083                         if (!(win_max < range_cfg->range_min ||
1084                               win_min > range_cfg->range_max)) {
1085                                 dev_err(map->dev,
1086                                         "Range %d: window for %d in window\n",
1087                                         i, j);
1088                                 goto err_range;
1089                         }
1090                 }
1091
1092                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1093                 if (new == NULL) {
1094                         ret = -ENOMEM;
1095                         goto err_range;
1096                 }
1097
1098                 new->map = map;
1099                 new->name = range_cfg->name;
1100                 new->range_min = range_cfg->range_min;
1101                 new->range_max = range_cfg->range_max;
1102                 new->selector_reg = range_cfg->selector_reg;
1103                 new->selector_mask = range_cfg->selector_mask;
1104                 new->selector_shift = range_cfg->selector_shift;
1105                 new->window_start = range_cfg->window_start;
1106                 new->window_len = range_cfg->window_len;
1107
1108                 if (!_regmap_range_add(map, new)) {
1109                         dev_err(map->dev, "Failed to add range %d\n", i);
1110                         kfree(new);
1111                         goto err_range;
1112                 }
1113
1114                 if (map->selector_work_buf == NULL) {
1115                         map->selector_work_buf =
1116                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1117                         if (map->selector_work_buf == NULL) {
1118                                 ret = -ENOMEM;
1119                                 goto err_range;
1120                         }
1121                 }
1122         }
1123
1124         ret = regcache_init(map, config);
1125         if (ret != 0)
1126                 goto err_range;
1127
1128         if (dev) {
1129                 ret = regmap_attach_dev(dev, map, config);
1130                 if (ret != 0)
1131                         goto err_regcache;
1132         } else {
1133                 regmap_debugfs_init(map, config->name);
1134         }
1135
1136         return map;
1137
1138 err_regcache:
1139         regcache_exit(map);
1140 err_range:
1141         regmap_range_exit(map);
1142         kfree(map->work_buf);
1143 err_hwlock:
1144         if (map->hwlock)
1145                 hwspin_lock_free(map->hwlock);
1146 err_name:
1147         kfree_const(map->name);
1148 err_map:
1149         kfree(map);
1150 err:
1151         return ERR_PTR(ret);
1152 }
1153 EXPORT_SYMBOL_GPL(__regmap_init);
1154
1155 static void devm_regmap_release(struct device *dev, void *res)
1156 {
1157         regmap_exit(*(struct regmap **)res);
1158 }
1159
1160 struct regmap *__devm_regmap_init(struct device *dev,
1161                                   const struct regmap_bus *bus,
1162                                   void *bus_context,
1163                                   const struct regmap_config *config,
1164                                   struct lock_class_key *lock_key,
1165                                   const char *lock_name)
1166 {
1167         struct regmap **ptr, *regmap;
1168
1169         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1170         if (!ptr)
1171                 return ERR_PTR(-ENOMEM);
1172
1173         regmap = __regmap_init(dev, bus, bus_context, config,
1174                                lock_key, lock_name);
1175         if (!IS_ERR(regmap)) {
1176                 *ptr = regmap;
1177                 devres_add(dev, ptr);
1178         } else {
1179                 devres_free(ptr);
1180         }
1181
1182         return regmap;
1183 }
1184 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1185
1186 static void regmap_field_init(struct regmap_field *rm_field,
1187         struct regmap *regmap, struct reg_field reg_field)
1188 {
1189         rm_field->regmap = regmap;
1190         rm_field->reg = reg_field.reg;
1191         rm_field->shift = reg_field.lsb;
1192         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1193         rm_field->id_size = reg_field.id_size;
1194         rm_field->id_offset = reg_field.id_offset;
1195 }
1196
1197 /**
1198  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1199  *
1200  * @dev: Device that will be interacted with
1201  * @regmap: regmap bank in which this register field is located.
1202  * @reg_field: Register field with in the bank.
1203  *
1204  * The return value will be an ERR_PTR() on error or a valid pointer
1205  * to a struct regmap_field. The regmap_field will be automatically freed
1206  * by the device management code.
1207  */
1208 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1209                 struct regmap *regmap, struct reg_field reg_field)
1210 {
1211         struct regmap_field *rm_field = devm_kzalloc(dev,
1212                                         sizeof(*rm_field), GFP_KERNEL);
1213         if (!rm_field)
1214                 return ERR_PTR(-ENOMEM);
1215
1216         regmap_field_init(rm_field, regmap, reg_field);
1217
1218         return rm_field;
1219
1220 }
1221 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1222
1223 /**
1224  * devm_regmap_field_free() - Free a register field allocated using
1225  *                            devm_regmap_field_alloc.
1226  *
1227  * @dev: Device that will be interacted with
1228  * @field: regmap field which should be freed.
1229  *
1230  * Free register field allocated using devm_regmap_field_alloc(). Usually
1231  * drivers need not call this function, as the memory allocated via devm
1232  * will be freed as per device-driver life-cyle.
1233  */
1234 void devm_regmap_field_free(struct device *dev,
1235         struct regmap_field *field)
1236 {
1237         devm_kfree(dev, field);
1238 }
1239 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1240
1241 /**
1242  * regmap_field_alloc() - Allocate and initialise a register field.
1243  *
1244  * @regmap: regmap bank in which this register field is located.
1245  * @reg_field: Register field with in the bank.
1246  *
1247  * The return value will be an ERR_PTR() on error or a valid pointer
1248  * to a struct regmap_field. The regmap_field should be freed by the
1249  * user once its finished working with it using regmap_field_free().
1250  */
1251 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1252                 struct reg_field reg_field)
1253 {
1254         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1255
1256         if (!rm_field)
1257                 return ERR_PTR(-ENOMEM);
1258
1259         regmap_field_init(rm_field, regmap, reg_field);
1260
1261         return rm_field;
1262 }
1263 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1264
1265 /**
1266  * regmap_field_free() - Free register field allocated using
1267  *                       regmap_field_alloc.
1268  *
1269  * @field: regmap field which should be freed.
1270  */
1271 void regmap_field_free(struct regmap_field *field)
1272 {
1273         kfree(field);
1274 }
1275 EXPORT_SYMBOL_GPL(regmap_field_free);
1276
1277 /**
1278  * regmap_reinit_cache() - Reinitialise the current register cache
1279  *
1280  * @map: Register map to operate on.
1281  * @config: New configuration.  Only the cache data will be used.
1282  *
1283  * Discard any existing register cache for the map and initialize a
1284  * new cache.  This can be used to restore the cache to defaults or to
1285  * update the cache configuration to reflect runtime discovery of the
1286  * hardware.
1287  *
1288  * No explicit locking is done here, the user needs to ensure that
1289  * this function will not race with other calls to regmap.
1290  */
1291 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1292 {
1293         regcache_exit(map);
1294         regmap_debugfs_exit(map);
1295
1296         map->max_register = config->max_register;
1297         map->writeable_reg = config->writeable_reg;
1298         map->readable_reg = config->readable_reg;
1299         map->volatile_reg = config->volatile_reg;
1300         map->precious_reg = config->precious_reg;
1301         map->readable_noinc_reg = config->readable_noinc_reg;
1302         map->cache_type = config->cache_type;
1303
1304         regmap_debugfs_init(map, config->name);
1305
1306         map->cache_bypass = false;
1307         map->cache_only = false;
1308
1309         return regcache_init(map, config);
1310 }
1311 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1312
1313 /**
1314  * regmap_exit() - Free a previously allocated register map
1315  *
1316  * @map: Register map to operate on.
1317  */
1318 void regmap_exit(struct regmap *map)
1319 {
1320         struct regmap_async *async;
1321
1322         regcache_exit(map);
1323         regmap_debugfs_exit(map);
1324         regmap_range_exit(map);
1325         if (map->bus && map->bus->free_context)
1326                 map->bus->free_context(map->bus_context);
1327         kfree(map->work_buf);
1328         while (!list_empty(&map->async_free)) {
1329                 async = list_first_entry_or_null(&map->async_free,
1330                                                  struct regmap_async,
1331                                                  list);
1332                 list_del(&async->list);
1333                 kfree(async->work_buf);
1334                 kfree(async);
1335         }
1336         if (map->hwlock)
1337                 hwspin_lock_free(map->hwlock);
1338         kfree_const(map->name);
1339         kfree(map);
1340 }
1341 EXPORT_SYMBOL_GPL(regmap_exit);
1342
1343 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1344 {
1345         struct regmap **r = res;
1346         if (!r || !*r) {
1347                 WARN_ON(!r || !*r);
1348                 return 0;
1349         }
1350
1351         /* If the user didn't specify a name match any */
1352         if (data)
1353                 return (*r)->name == data;
1354         else
1355                 return 1;
1356 }
1357
1358 /**
1359  * dev_get_regmap() - Obtain the regmap (if any) for a device
1360  *
1361  * @dev: Device to retrieve the map for
1362  * @name: Optional name for the register map, usually NULL.
1363  *
1364  * Returns the regmap for the device if one is present, or NULL.  If
1365  * name is specified then it must match the name specified when
1366  * registering the device, if it is NULL then the first regmap found
1367  * will be used.  Devices with multiple register maps are very rare,
1368  * generic code should normally not need to specify a name.
1369  */
1370 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1371 {
1372         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1373                                         dev_get_regmap_match, (void *)name);
1374
1375         if (!r)
1376                 return NULL;
1377         return *r;
1378 }
1379 EXPORT_SYMBOL_GPL(dev_get_regmap);
1380
1381 /**
1382  * regmap_get_device() - Obtain the device from a regmap
1383  *
1384  * @map: Register map to operate on.
1385  *
1386  * Returns the underlying device that the regmap has been created for.
1387  */
1388 struct device *regmap_get_device(struct regmap *map)
1389 {
1390         return map->dev;
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_get_device);
1393
1394 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1395                                struct regmap_range_node *range,
1396                                unsigned int val_num)
1397 {
1398         void *orig_work_buf;
1399         unsigned int win_offset;
1400         unsigned int win_page;
1401         bool page_chg;
1402         int ret;
1403
1404         win_offset = (*reg - range->range_min) % range->window_len;
1405         win_page = (*reg - range->range_min) / range->window_len;
1406
1407         if (val_num > 1) {
1408                 /* Bulk write shouldn't cross range boundary */
1409                 if (*reg + val_num - 1 > range->range_max)
1410                         return -EINVAL;
1411
1412                 /* ... or single page boundary */
1413                 if (val_num > range->window_len - win_offset)
1414                         return -EINVAL;
1415         }
1416
1417         /* It is possible to have selector register inside data window.
1418            In that case, selector register is located on every page and
1419            it needs no page switching, when accessed alone. */
1420         if (val_num > 1 ||
1421             range->window_start + win_offset != range->selector_reg) {
1422                 /* Use separate work_buf during page switching */
1423                 orig_work_buf = map->work_buf;
1424                 map->work_buf = map->selector_work_buf;
1425
1426                 ret = _regmap_update_bits(map, range->selector_reg,
1427                                           range->selector_mask,
1428                                           win_page << range->selector_shift,
1429                                           &page_chg, false);
1430
1431                 map->work_buf = orig_work_buf;
1432
1433                 if (ret != 0)
1434                         return ret;
1435         }
1436
1437         *reg = range->window_start + win_offset;
1438
1439         return 0;
1440 }
1441
1442 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1443                                           unsigned long mask)
1444 {
1445         u8 *buf;
1446         int i;
1447
1448         if (!mask || !map->work_buf)
1449                 return;
1450
1451         buf = map->work_buf;
1452
1453         for (i = 0; i < max_bytes; i++)
1454                 buf[i] |= (mask >> (8 * i)) & 0xff;
1455 }
1456
1457 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1458                                   const void *val, size_t val_len)
1459 {
1460         struct regmap_range_node *range;
1461         unsigned long flags;
1462         void *work_val = map->work_buf + map->format.reg_bytes +
1463                 map->format.pad_bytes;
1464         void *buf;
1465         int ret = -ENOTSUPP;
1466         size_t len;
1467         int i;
1468
1469         WARN_ON(!map->bus);
1470
1471         /* Check for unwritable registers before we start */
1472         if (map->writeable_reg)
1473                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1474                         if (!map->writeable_reg(map->dev,
1475                                                reg + regmap_get_offset(map, i)))
1476                                 return -EINVAL;
1477
1478         if (!map->cache_bypass && map->format.parse_val) {
1479                 unsigned int ival;
1480                 int val_bytes = map->format.val_bytes;
1481                 for (i = 0; i < val_len / val_bytes; i++) {
1482                         ival = map->format.parse_val(val + (i * val_bytes));
1483                         ret = regcache_write(map,
1484                                              reg + regmap_get_offset(map, i),
1485                                              ival);
1486                         if (ret) {
1487                                 dev_err(map->dev,
1488                                         "Error in caching of register: %x ret: %d\n",
1489                                         reg + i, ret);
1490                                 return ret;
1491                         }
1492                 }
1493                 if (map->cache_only) {
1494                         map->cache_dirty = true;
1495                         return 0;
1496                 }
1497         }
1498
1499         range = _regmap_range_lookup(map, reg);
1500         if (range) {
1501                 int val_num = val_len / map->format.val_bytes;
1502                 int win_offset = (reg - range->range_min) % range->window_len;
1503                 int win_residue = range->window_len - win_offset;
1504
1505                 /* If the write goes beyond the end of the window split it */
1506                 while (val_num > win_residue) {
1507                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1508                                 win_residue, val_len / map->format.val_bytes);
1509                         ret = _regmap_raw_write_impl(map, reg, val,
1510                                                      win_residue *
1511                                                      map->format.val_bytes);
1512                         if (ret != 0)
1513                                 return ret;
1514
1515                         reg += win_residue;
1516                         val_num -= win_residue;
1517                         val += win_residue * map->format.val_bytes;
1518                         val_len -= win_residue * map->format.val_bytes;
1519
1520                         win_offset = (reg - range->range_min) %
1521                                 range->window_len;
1522                         win_residue = range->window_len - win_offset;
1523                 }
1524
1525                 ret = _regmap_select_page(map, &reg, range, val_num);
1526                 if (ret != 0)
1527                         return ret;
1528         }
1529
1530         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1531         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1532                                       map->write_flag_mask);
1533
1534         /*
1535          * Essentially all I/O mechanisms will be faster with a single
1536          * buffer to write.  Since register syncs often generate raw
1537          * writes of single registers optimise that case.
1538          */
1539         if (val != work_val && val_len == map->format.val_bytes) {
1540                 memcpy(work_val, val, map->format.val_bytes);
1541                 val = work_val;
1542         }
1543
1544         if (map->async && map->bus->async_write) {
1545                 struct regmap_async *async;
1546
1547                 trace_regmap_async_write_start(map, reg, val_len);
1548
1549                 spin_lock_irqsave(&map->async_lock, flags);
1550                 async = list_first_entry_or_null(&map->async_free,
1551                                                  struct regmap_async,
1552                                                  list);
1553                 if (async)
1554                         list_del(&async->list);
1555                 spin_unlock_irqrestore(&map->async_lock, flags);
1556
1557                 if (!async) {
1558                         async = map->bus->async_alloc();
1559                         if (!async)
1560                                 return -ENOMEM;
1561
1562                         async->work_buf = kzalloc(map->format.buf_size,
1563                                                   GFP_KERNEL | GFP_DMA);
1564                         if (!async->work_buf) {
1565                                 kfree(async);
1566                                 return -ENOMEM;
1567                         }
1568                 }
1569
1570                 async->map = map;
1571
1572                 /* If the caller supplied the value we can use it safely. */
1573                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1574                        map->format.reg_bytes + map->format.val_bytes);
1575
1576                 spin_lock_irqsave(&map->async_lock, flags);
1577                 list_add_tail(&async->list, &map->async_list);
1578                 spin_unlock_irqrestore(&map->async_lock, flags);
1579
1580                 if (val != work_val)
1581                         ret = map->bus->async_write(map->bus_context,
1582                                                     async->work_buf,
1583                                                     map->format.reg_bytes +
1584                                                     map->format.pad_bytes,
1585                                                     val, val_len, async);
1586                 else
1587                         ret = map->bus->async_write(map->bus_context,
1588                                                     async->work_buf,
1589                                                     map->format.reg_bytes +
1590                                                     map->format.pad_bytes +
1591                                                     val_len, NULL, 0, async);
1592
1593                 if (ret != 0) {
1594                         dev_err(map->dev, "Failed to schedule write: %d\n",
1595                                 ret);
1596
1597                         spin_lock_irqsave(&map->async_lock, flags);
1598                         list_move(&async->list, &map->async_free);
1599                         spin_unlock_irqrestore(&map->async_lock, flags);
1600                 }
1601
1602                 return ret;
1603         }
1604
1605         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1606
1607         /* If we're doing a single register write we can probably just
1608          * send the work_buf directly, otherwise try to do a gather
1609          * write.
1610          */
1611         if (val == work_val)
1612                 ret = map->bus->write(map->bus_context, map->work_buf,
1613                                       map->format.reg_bytes +
1614                                       map->format.pad_bytes +
1615                                       val_len);
1616         else if (map->bus->gather_write)
1617                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1618                                              map->format.reg_bytes +
1619                                              map->format.pad_bytes,
1620                                              val, val_len);
1621
1622         /* If that didn't work fall back on linearising by hand. */
1623         if (ret == -ENOTSUPP) {
1624                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1625                 buf = kzalloc(len, GFP_KERNEL);
1626                 if (!buf)
1627                         return -ENOMEM;
1628
1629                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1630                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1631                        val, val_len);
1632                 ret = map->bus->write(map->bus_context, buf, len);
1633
1634                 kfree(buf);
1635         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1636                 /* regcache_drop_region() takes lock that we already have,
1637                  * thus call map->cache_ops->drop() directly
1638                  */
1639                 if (map->cache_ops && map->cache_ops->drop)
1640                         map->cache_ops->drop(map, reg, reg + 1);
1641         }
1642
1643         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1644
1645         return ret;
1646 }
1647
1648 /**
1649  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1650  *
1651  * @map: Map to check.
1652  */
1653 bool regmap_can_raw_write(struct regmap *map)
1654 {
1655         return map->bus && map->bus->write && map->format.format_val &&
1656                 map->format.format_reg;
1657 }
1658 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1659
1660 /**
1661  * regmap_get_raw_read_max - Get the maximum size we can read
1662  *
1663  * @map: Map to check.
1664  */
1665 size_t regmap_get_raw_read_max(struct regmap *map)
1666 {
1667         return map->max_raw_read;
1668 }
1669 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1670
1671 /**
1672  * regmap_get_raw_write_max - Get the maximum size we can read
1673  *
1674  * @map: Map to check.
1675  */
1676 size_t regmap_get_raw_write_max(struct regmap *map)
1677 {
1678         return map->max_raw_write;
1679 }
1680 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1681
1682 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1683                                        unsigned int val)
1684 {
1685         int ret;
1686         struct regmap_range_node *range;
1687         struct regmap *map = context;
1688
1689         WARN_ON(!map->bus || !map->format.format_write);
1690
1691         range = _regmap_range_lookup(map, reg);
1692         if (range) {
1693                 ret = _regmap_select_page(map, &reg, range, 1);
1694                 if (ret != 0)
1695                         return ret;
1696         }
1697
1698         map->format.format_write(map, reg, val);
1699
1700         trace_regmap_hw_write_start(map, reg, 1);
1701
1702         ret = map->bus->write(map->bus_context, map->work_buf,
1703                               map->format.buf_size);
1704
1705         trace_regmap_hw_write_done(map, reg, 1);
1706
1707         return ret;
1708 }
1709
1710 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1711                                  unsigned int val)
1712 {
1713         struct regmap *map = context;
1714
1715         return map->bus->reg_write(map->bus_context, reg, val);
1716 }
1717
1718 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1719                                  unsigned int val)
1720 {
1721         struct regmap *map = context;
1722
1723         WARN_ON(!map->bus || !map->format.format_val);
1724
1725         map->format.format_val(map->work_buf + map->format.reg_bytes
1726                                + map->format.pad_bytes, val, 0);
1727         return _regmap_raw_write_impl(map, reg,
1728                                       map->work_buf +
1729                                       map->format.reg_bytes +
1730                                       map->format.pad_bytes,
1731                                       map->format.val_bytes);
1732 }
1733
1734 static inline void *_regmap_map_get_context(struct regmap *map)
1735 {
1736         return (map->bus) ? map : map->bus_context;
1737 }
1738
1739 int _regmap_write(struct regmap *map, unsigned int reg,
1740                   unsigned int val)
1741 {
1742         int ret;
1743         void *context = _regmap_map_get_context(map);
1744
1745         if (!regmap_writeable(map, reg))
1746                 return -EIO;
1747
1748         if (!map->cache_bypass && !map->defer_caching) {
1749                 ret = regcache_write(map, reg, val);
1750                 if (ret != 0)
1751                         return ret;
1752                 if (map->cache_only) {
1753                         map->cache_dirty = true;
1754                         return 0;
1755                 }
1756         }
1757
1758 #ifdef LOG_DEVICE
1759         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1760                 dev_info(map->dev, "%x <= %x\n", reg, val);
1761 #endif
1762
1763         trace_regmap_reg_write(map, reg, val);
1764
1765         return map->reg_write(context, reg, val);
1766 }
1767
1768 /**
1769  * regmap_write() - Write a value to a single register
1770  *
1771  * @map: Register map to write to
1772  * @reg: Register to write to
1773  * @val: Value to be written
1774  *
1775  * A value of zero will be returned on success, a negative errno will
1776  * be returned in error cases.
1777  */
1778 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1779 {
1780         int ret;
1781
1782         if (!IS_ALIGNED(reg, map->reg_stride))
1783                 return -EINVAL;
1784
1785         map->lock(map->lock_arg);
1786
1787         ret = _regmap_write(map, reg, val);
1788
1789         map->unlock(map->lock_arg);
1790
1791         return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(regmap_write);
1794
1795 /**
1796  * regmap_write_async() - Write a value to a single register asynchronously
1797  *
1798  * @map: Register map to write to
1799  * @reg: Register to write to
1800  * @val: Value to be written
1801  *
1802  * A value of zero will be returned on success, a negative errno will
1803  * be returned in error cases.
1804  */
1805 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1806 {
1807         int ret;
1808
1809         if (!IS_ALIGNED(reg, map->reg_stride))
1810                 return -EINVAL;
1811
1812         map->lock(map->lock_arg);
1813
1814         map->async = true;
1815
1816         ret = _regmap_write(map, reg, val);
1817
1818         map->async = false;
1819
1820         map->unlock(map->lock_arg);
1821
1822         return ret;
1823 }
1824 EXPORT_SYMBOL_GPL(regmap_write_async);
1825
1826 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1827                       const void *val, size_t val_len)
1828 {
1829         size_t val_bytes = map->format.val_bytes;
1830         size_t val_count = val_len / val_bytes;
1831         size_t chunk_count, chunk_bytes;
1832         size_t chunk_regs = val_count;
1833         int ret, i;
1834
1835         if (!val_count)
1836                 return -EINVAL;
1837
1838         if (map->use_single_write)
1839                 chunk_regs = 1;
1840         else if (map->max_raw_write && val_len > map->max_raw_write)
1841                 chunk_regs = map->max_raw_write / val_bytes;
1842
1843         chunk_count = val_count / chunk_regs;
1844         chunk_bytes = chunk_regs * val_bytes;
1845
1846         /* Write as many bytes as possible with chunk_size */
1847         for (i = 0; i < chunk_count; i++) {
1848                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1849                 if (ret)
1850                         return ret;
1851
1852                 reg += regmap_get_offset(map, chunk_regs);
1853                 val += chunk_bytes;
1854                 val_len -= chunk_bytes;
1855         }
1856
1857         /* Write remaining bytes */
1858         if (val_len)
1859                 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1860
1861         return ret;
1862 }
1863
1864 /**
1865  * regmap_raw_write() - Write raw values to one or more registers
1866  *
1867  * @map: Register map to write to
1868  * @reg: Initial register to write to
1869  * @val: Block of data to be written, laid out for direct transmission to the
1870  *       device
1871  * @val_len: Length of data pointed to by val.
1872  *
1873  * This function is intended to be used for things like firmware
1874  * download where a large block of data needs to be transferred to the
1875  * device.  No formatting will be done on the data provided.
1876  *
1877  * A value of zero will be returned on success, a negative errno will
1878  * be returned in error cases.
1879  */
1880 int regmap_raw_write(struct regmap *map, unsigned int reg,
1881                      const void *val, size_t val_len)
1882 {
1883         int ret;
1884
1885         if (!regmap_can_raw_write(map))
1886                 return -EINVAL;
1887         if (val_len % map->format.val_bytes)
1888                 return -EINVAL;
1889
1890         map->lock(map->lock_arg);
1891
1892         ret = _regmap_raw_write(map, reg, val, val_len);
1893
1894         map->unlock(map->lock_arg);
1895
1896         return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(regmap_raw_write);
1899
1900 /**
1901  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1902  *                                   register field.
1903  *
1904  * @field: Register field to write to
1905  * @mask: Bitmask to change
1906  * @val: Value to be written
1907  * @change: Boolean indicating if a write was done
1908  * @async: Boolean indicating asynchronously
1909  * @force: Boolean indicating use force update
1910  *
1911  * Perform a read/modify/write cycle on the register field with change,
1912  * async, force option.
1913  *
1914  * A value of zero will be returned on success, a negative errno will
1915  * be returned in error cases.
1916  */
1917 int regmap_field_update_bits_base(struct regmap_field *field,
1918                                   unsigned int mask, unsigned int val,
1919                                   bool *change, bool async, bool force)
1920 {
1921         mask = (mask << field->shift) & field->mask;
1922
1923         return regmap_update_bits_base(field->regmap, field->reg,
1924                                        mask, val << field->shift,
1925                                        change, async, force);
1926 }
1927 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1928
1929 /**
1930  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1931  *                                    register field with port ID
1932  *
1933  * @field: Register field to write to
1934  * @id: port ID
1935  * @mask: Bitmask to change
1936  * @val: Value to be written
1937  * @change: Boolean indicating if a write was done
1938  * @async: Boolean indicating asynchronously
1939  * @force: Boolean indicating use force update
1940  *
1941  * A value of zero will be returned on success, a negative errno will
1942  * be returned in error cases.
1943  */
1944 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1945                                    unsigned int mask, unsigned int val,
1946                                    bool *change, bool async, bool force)
1947 {
1948         if (id >= field->id_size)
1949                 return -EINVAL;
1950
1951         mask = (mask << field->shift) & field->mask;
1952
1953         return regmap_update_bits_base(field->regmap,
1954                                        field->reg + (field->id_offset * id),
1955                                        mask, val << field->shift,
1956                                        change, async, force);
1957 }
1958 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1959
1960 /**
1961  * regmap_bulk_write() - Write multiple registers to the device
1962  *
1963  * @map: Register map to write to
1964  * @reg: First register to be write from
1965  * @val: Block of data to be written, in native register size for device
1966  * @val_count: Number of registers to write
1967  *
1968  * This function is intended to be used for writing a large block of
1969  * data to the device either in single transfer or multiple transfer.
1970  *
1971  * A value of zero will be returned on success, a negative errno will
1972  * be returned in error cases.
1973  */
1974 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1975                      size_t val_count)
1976 {
1977         int ret = 0, i;
1978         size_t val_bytes = map->format.val_bytes;
1979
1980         if (!IS_ALIGNED(reg, map->reg_stride))
1981                 return -EINVAL;
1982
1983         /*
1984          * Some devices don't support bulk write, for them we have a series of
1985          * single write operations.
1986          */
1987         if (!map->bus || !map->format.parse_inplace) {
1988                 map->lock(map->lock_arg);
1989                 for (i = 0; i < val_count; i++) {
1990                         unsigned int ival;
1991
1992                         switch (val_bytes) {
1993                         case 1:
1994                                 ival = *(u8 *)(val + (i * val_bytes));
1995                                 break;
1996                         case 2:
1997                                 ival = *(u16 *)(val + (i * val_bytes));
1998                                 break;
1999                         case 4:
2000                                 ival = *(u32 *)(val + (i * val_bytes));
2001                                 break;
2002 #ifdef CONFIG_64BIT
2003                         case 8:
2004                                 ival = *(u64 *)(val + (i * val_bytes));
2005                                 break;
2006 #endif
2007                         default:
2008                                 ret = -EINVAL;
2009                                 goto out;
2010                         }
2011
2012                         ret = _regmap_write(map,
2013                                             reg + regmap_get_offset(map, i),
2014                                             ival);
2015                         if (ret != 0)
2016                                 goto out;
2017                 }
2018 out:
2019                 map->unlock(map->lock_arg);
2020         } else {
2021                 void *wval;
2022
2023                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2024                 if (!wval)
2025                         return -ENOMEM;
2026
2027                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2028                         map->format.parse_inplace(wval + i);
2029
2030                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2031
2032                 kfree(wval);
2033         }
2034         return ret;
2035 }
2036 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2037
2038 /*
2039  * _regmap_raw_multi_reg_write()
2040  *
2041  * the (register,newvalue) pairs in regs have not been formatted, but
2042  * they are all in the same page and have been changed to being page
2043  * relative. The page register has been written if that was necessary.
2044  */
2045 static int _regmap_raw_multi_reg_write(struct regmap *map,
2046                                        const struct reg_sequence *regs,
2047                                        size_t num_regs)
2048 {
2049         int ret;
2050         void *buf;
2051         int i;
2052         u8 *u8;
2053         size_t val_bytes = map->format.val_bytes;
2054         size_t reg_bytes = map->format.reg_bytes;
2055         size_t pad_bytes = map->format.pad_bytes;
2056         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2057         size_t len = pair_size * num_regs;
2058
2059         if (!len)
2060                 return -EINVAL;
2061
2062         buf = kzalloc(len, GFP_KERNEL);
2063         if (!buf)
2064                 return -ENOMEM;
2065
2066         /* We have to linearise by hand. */
2067
2068         u8 = buf;
2069
2070         for (i = 0; i < num_regs; i++) {
2071                 unsigned int reg = regs[i].reg;
2072                 unsigned int val = regs[i].def;
2073                 trace_regmap_hw_write_start(map, reg, 1);
2074                 map->format.format_reg(u8, reg, map->reg_shift);
2075                 u8 += reg_bytes + pad_bytes;
2076                 map->format.format_val(u8, val, 0);
2077                 u8 += val_bytes;
2078         }
2079         u8 = buf;
2080         *u8 |= map->write_flag_mask;
2081
2082         ret = map->bus->write(map->bus_context, buf, len);
2083
2084         kfree(buf);
2085
2086         for (i = 0; i < num_regs; i++) {
2087                 int reg = regs[i].reg;
2088                 trace_regmap_hw_write_done(map, reg, 1);
2089         }
2090         return ret;
2091 }
2092
2093 static unsigned int _regmap_register_page(struct regmap *map,
2094                                           unsigned int reg,
2095                                           struct regmap_range_node *range)
2096 {
2097         unsigned int win_page = (reg - range->range_min) / range->window_len;
2098
2099         return win_page;
2100 }
2101
2102 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2103                                                struct reg_sequence *regs,
2104                                                size_t num_regs)
2105 {
2106         int ret;
2107         int i, n;
2108         struct reg_sequence *base;
2109         unsigned int this_page = 0;
2110         unsigned int page_change = 0;
2111         /*
2112          * the set of registers are not neccessarily in order, but
2113          * since the order of write must be preserved this algorithm
2114          * chops the set each time the page changes. This also applies
2115          * if there is a delay required at any point in the sequence.
2116          */
2117         base = regs;
2118         for (i = 0, n = 0; i < num_regs; i++, n++) {
2119                 unsigned int reg = regs[i].reg;
2120                 struct regmap_range_node *range;
2121
2122                 range = _regmap_range_lookup(map, reg);
2123                 if (range) {
2124                         unsigned int win_page = _regmap_register_page(map, reg,
2125                                                                       range);
2126
2127                         if (i == 0)
2128                                 this_page = win_page;
2129                         if (win_page != this_page) {
2130                                 this_page = win_page;
2131                                 page_change = 1;
2132                         }
2133                 }
2134
2135                 /* If we have both a page change and a delay make sure to
2136                  * write the regs and apply the delay before we change the
2137                  * page.
2138                  */
2139
2140                 if (page_change || regs[i].delay_us) {
2141
2142                                 /* For situations where the first write requires
2143                                  * a delay we need to make sure we don't call
2144                                  * raw_multi_reg_write with n=0
2145                                  * This can't occur with page breaks as we
2146                                  * never write on the first iteration
2147                                  */
2148                                 if (regs[i].delay_us && i == 0)
2149                                         n = 1;
2150
2151                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2152                                 if (ret != 0)
2153                                         return ret;
2154
2155                                 if (regs[i].delay_us)
2156                                         udelay(regs[i].delay_us);
2157
2158                                 base += n;
2159                                 n = 0;
2160
2161                                 if (page_change) {
2162                                         ret = _regmap_select_page(map,
2163                                                                   &base[n].reg,
2164                                                                   range, 1);
2165                                         if (ret != 0)
2166                                                 return ret;
2167
2168                                         page_change = 0;
2169                                 }
2170
2171                 }
2172
2173         }
2174         if (n > 0)
2175                 return _regmap_raw_multi_reg_write(map, base, n);
2176         return 0;
2177 }
2178
2179 static int _regmap_multi_reg_write(struct regmap *map,
2180                                    const struct reg_sequence *regs,
2181                                    size_t num_regs)
2182 {
2183         int i;
2184         int ret;
2185
2186         if (!map->can_multi_write) {
2187                 for (i = 0; i < num_regs; i++) {
2188                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2189                         if (ret != 0)
2190                                 return ret;
2191
2192                         if (regs[i].delay_us)
2193                                 udelay(regs[i].delay_us);
2194                 }
2195                 return 0;
2196         }
2197
2198         if (!map->format.parse_inplace)
2199                 return -EINVAL;
2200
2201         if (map->writeable_reg)
2202                 for (i = 0; i < num_regs; i++) {
2203                         int reg = regs[i].reg;
2204                         if (!map->writeable_reg(map->dev, reg))
2205                                 return -EINVAL;
2206                         if (!IS_ALIGNED(reg, map->reg_stride))
2207                                 return -EINVAL;
2208                 }
2209
2210         if (!map->cache_bypass) {
2211                 for (i = 0; i < num_regs; i++) {
2212                         unsigned int val = regs[i].def;
2213                         unsigned int reg = regs[i].reg;
2214                         ret = regcache_write(map, reg, val);
2215                         if (ret) {
2216                                 dev_err(map->dev,
2217                                 "Error in caching of register: %x ret: %d\n",
2218                                                                 reg, ret);
2219                                 return ret;
2220                         }
2221                 }
2222                 if (map->cache_only) {
2223                         map->cache_dirty = true;
2224                         return 0;
2225                 }
2226         }
2227
2228         WARN_ON(!map->bus);
2229
2230         for (i = 0; i < num_regs; i++) {
2231                 unsigned int reg = regs[i].reg;
2232                 struct regmap_range_node *range;
2233
2234                 /* Coalesce all the writes between a page break or a delay
2235                  * in a sequence
2236                  */
2237                 range = _regmap_range_lookup(map, reg);
2238                 if (range || regs[i].delay_us) {
2239                         size_t len = sizeof(struct reg_sequence)*num_regs;
2240                         struct reg_sequence *base = kmemdup(regs, len,
2241                                                            GFP_KERNEL);
2242                         if (!base)
2243                                 return -ENOMEM;
2244                         ret = _regmap_range_multi_paged_reg_write(map, base,
2245                                                                   num_regs);
2246                         kfree(base);
2247
2248                         return ret;
2249                 }
2250         }
2251         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2252 }
2253
2254 /**
2255  * regmap_multi_reg_write() - Write multiple registers to the device
2256  *
2257  * @map: Register map to write to
2258  * @regs: Array of structures containing register,value to be written
2259  * @num_regs: Number of registers to write
2260  *
2261  * Write multiple registers to the device where the set of register, value
2262  * pairs are supplied in any order, possibly not all in a single range.
2263  *
2264  * The 'normal' block write mode will send ultimately send data on the
2265  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2266  * addressed. However, this alternative block multi write mode will send
2267  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2268  * must of course support the mode.
2269  *
2270  * A value of zero will be returned on success, a negative errno will be
2271  * returned in error cases.
2272  */
2273 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2274                            int num_regs)
2275 {
2276         int ret;
2277
2278         map->lock(map->lock_arg);
2279
2280         ret = _regmap_multi_reg_write(map, regs, num_regs);
2281
2282         map->unlock(map->lock_arg);
2283
2284         return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2287
2288 /**
2289  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2290  *                                     device but not the cache
2291  *
2292  * @map: Register map to write to
2293  * @regs: Array of structures containing register,value to be written
2294  * @num_regs: Number of registers to write
2295  *
2296  * Write multiple registers to the device but not the cache where the set
2297  * of register are supplied in any order.
2298  *
2299  * This function is intended to be used for writing a large block of data
2300  * atomically to the device in single transfer for those I2C client devices
2301  * that implement this alternative block write mode.
2302  *
2303  * A value of zero will be returned on success, a negative errno will
2304  * be returned in error cases.
2305  */
2306 int regmap_multi_reg_write_bypassed(struct regmap *map,
2307                                     const struct reg_sequence *regs,
2308                                     int num_regs)
2309 {
2310         int ret;
2311         bool bypass;
2312
2313         map->lock(map->lock_arg);
2314
2315         bypass = map->cache_bypass;
2316         map->cache_bypass = true;
2317
2318         ret = _regmap_multi_reg_write(map, regs, num_regs);
2319
2320         map->cache_bypass = bypass;
2321
2322         map->unlock(map->lock_arg);
2323
2324         return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2327
2328 /**
2329  * regmap_raw_write_async() - Write raw values to one or more registers
2330  *                            asynchronously
2331  *
2332  * @map: Register map to write to
2333  * @reg: Initial register to write to
2334  * @val: Block of data to be written, laid out for direct transmission to the
2335  *       device.  Must be valid until regmap_async_complete() is called.
2336  * @val_len: Length of data pointed to by val.
2337  *
2338  * This function is intended to be used for things like firmware
2339  * download where a large block of data needs to be transferred to the
2340  * device.  No formatting will be done on the data provided.
2341  *
2342  * If supported by the underlying bus the write will be scheduled
2343  * asynchronously, helping maximise I/O speed on higher speed buses
2344  * like SPI.  regmap_async_complete() can be called to ensure that all
2345  * asynchrnous writes have been completed.
2346  *
2347  * A value of zero will be returned on success, a negative errno will
2348  * be returned in error cases.
2349  */
2350 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2351                            const void *val, size_t val_len)
2352 {
2353         int ret;
2354
2355         if (val_len % map->format.val_bytes)
2356                 return -EINVAL;
2357         if (!IS_ALIGNED(reg, map->reg_stride))
2358                 return -EINVAL;
2359
2360         map->lock(map->lock_arg);
2361
2362         map->async = true;
2363
2364         ret = _regmap_raw_write(map, reg, val, val_len);
2365
2366         map->async = false;
2367
2368         map->unlock(map->lock_arg);
2369
2370         return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2373
2374 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2375                             unsigned int val_len)
2376 {
2377         struct regmap_range_node *range;
2378         int ret;
2379
2380         WARN_ON(!map->bus);
2381
2382         if (!map->bus || !map->bus->read)
2383                 return -EINVAL;
2384
2385         range = _regmap_range_lookup(map, reg);
2386         if (range) {
2387                 ret = _regmap_select_page(map, &reg, range,
2388                                           val_len / map->format.val_bytes);
2389                 if (ret != 0)
2390                         return ret;
2391         }
2392
2393         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2394         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2395                                       map->read_flag_mask);
2396         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2397
2398         ret = map->bus->read(map->bus_context, map->work_buf,
2399                              map->format.reg_bytes + map->format.pad_bytes,
2400                              val, val_len);
2401
2402         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2403
2404         return ret;
2405 }
2406
2407 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2408                                 unsigned int *val)
2409 {
2410         struct regmap *map = context;
2411
2412         return map->bus->reg_read(map->bus_context, reg, val);
2413 }
2414
2415 static int _regmap_bus_read(void *context, unsigned int reg,
2416                             unsigned int *val)
2417 {
2418         int ret;
2419         struct regmap *map = context;
2420         void *work_val = map->work_buf + map->format.reg_bytes +
2421                 map->format.pad_bytes;
2422
2423         if (!map->format.parse_val)
2424                 return -EINVAL;
2425
2426         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2427         if (ret == 0)
2428                 *val = map->format.parse_val(work_val);
2429
2430         return ret;
2431 }
2432
2433 static int _regmap_read(struct regmap *map, unsigned int reg,
2434                         unsigned int *val)
2435 {
2436         int ret;
2437         void *context = _regmap_map_get_context(map);
2438
2439         if (!map->cache_bypass) {
2440                 ret = regcache_read(map, reg, val);
2441                 if (ret == 0)
2442                         return 0;
2443         }
2444
2445         if (map->cache_only)
2446                 return -EBUSY;
2447
2448         if (!regmap_readable(map, reg))
2449                 return -EIO;
2450
2451         ret = map->reg_read(context, reg, val);
2452         if (ret == 0) {
2453 #ifdef LOG_DEVICE
2454                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2455                         dev_info(map->dev, "%x => %x\n", reg, *val);
2456 #endif
2457
2458                 trace_regmap_reg_read(map, reg, *val);
2459
2460                 if (!map->cache_bypass)
2461                         regcache_write(map, reg, *val);
2462         }
2463
2464         return ret;
2465 }
2466
2467 /**
2468  * regmap_read() - Read a value from a single register
2469  *
2470  * @map: Register map to read from
2471  * @reg: Register to be read from
2472  * @val: Pointer to store read value
2473  *
2474  * A value of zero will be returned on success, a negative errno will
2475  * be returned in error cases.
2476  */
2477 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2478 {
2479         int ret;
2480
2481         if (!IS_ALIGNED(reg, map->reg_stride))
2482                 return -EINVAL;
2483
2484         map->lock(map->lock_arg);
2485
2486         ret = _regmap_read(map, reg, val);
2487
2488         map->unlock(map->lock_arg);
2489
2490         return ret;
2491 }
2492 EXPORT_SYMBOL_GPL(regmap_read);
2493
2494 /**
2495  * regmap_raw_read() - Read raw data from the device
2496  *
2497  * @map: Register map to read from
2498  * @reg: First register to be read from
2499  * @val: Pointer to store read value
2500  * @val_len: Size of data to read
2501  *
2502  * A value of zero will be returned on success, a negative errno will
2503  * be returned in error cases.
2504  */
2505 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2506                     size_t val_len)
2507 {
2508         size_t val_bytes = map->format.val_bytes;
2509         size_t val_count = val_len / val_bytes;
2510         unsigned int v;
2511         int ret, i;
2512
2513         if (!map->bus)
2514                 return -EINVAL;
2515         if (val_len % map->format.val_bytes)
2516                 return -EINVAL;
2517         if (!IS_ALIGNED(reg, map->reg_stride))
2518                 return -EINVAL;
2519         if (val_count == 0)
2520                 return -EINVAL;
2521
2522         map->lock(map->lock_arg);
2523
2524         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2525             map->cache_type == REGCACHE_NONE) {
2526                 size_t chunk_count, chunk_bytes;
2527                 size_t chunk_regs = val_count;
2528
2529                 if (!map->bus->read) {
2530                         ret = -ENOTSUPP;
2531                         goto out;
2532                 }
2533
2534                 if (map->use_single_read)
2535                         chunk_regs = 1;
2536                 else if (map->max_raw_read && val_len > map->max_raw_read)
2537                         chunk_regs = map->max_raw_read / val_bytes;
2538
2539                 chunk_count = val_count / chunk_regs;
2540                 chunk_bytes = chunk_regs * val_bytes;
2541
2542                 /* Read bytes that fit into whole chunks */
2543                 for (i = 0; i < chunk_count; i++) {
2544                         ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2545                         if (ret != 0)
2546                                 goto out;
2547
2548                         reg += regmap_get_offset(map, chunk_regs);
2549                         val += chunk_bytes;
2550                         val_len -= chunk_bytes;
2551                 }
2552
2553                 /* Read remaining bytes */
2554                 if (val_len) {
2555                         ret = _regmap_raw_read(map, reg, val, val_len);
2556                         if (ret != 0)
2557                                 goto out;
2558                 }
2559         } else {
2560                 /* Otherwise go word by word for the cache; should be low
2561                  * cost as we expect to hit the cache.
2562                  */
2563                 for (i = 0; i < val_count; i++) {
2564                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2565                                            &v);
2566                         if (ret != 0)
2567                                 goto out;
2568
2569                         map->format.format_val(val + (i * val_bytes), v, 0);
2570                 }
2571         }
2572
2573  out:
2574         map->unlock(map->lock_arg);
2575
2576         return ret;
2577 }
2578 EXPORT_SYMBOL_GPL(regmap_raw_read);
2579
2580 /**
2581  * regmap_noinc_read(): Read data from a register without incrementing the
2582  *                      register number
2583  *
2584  * @map: Register map to read from
2585  * @reg: Register to read from
2586  * @val: Pointer to data buffer
2587  * @val_len: Length of output buffer in bytes.
2588  *
2589  * The regmap API usually assumes that bulk bus read operations will read a
2590  * range of registers. Some devices have certain registers for which a read
2591  * operation read will read from an internal FIFO.
2592  *
2593  * The target register must be volatile but registers after it can be
2594  * completely unrelated cacheable registers.
2595  *
2596  * This will attempt multiple reads as required to read val_len bytes.
2597  *
2598  * A value of zero will be returned on success, a negative errno will be
2599  * returned in error cases.
2600  */
2601 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2602                       void *val, size_t val_len)
2603 {
2604         size_t read_len;
2605         int ret;
2606
2607         if (!map->bus)
2608                 return -EINVAL;
2609         if (!map->bus->read)
2610                 return -ENOTSUPP;
2611         if (val_len % map->format.val_bytes)
2612                 return -EINVAL;
2613         if (!IS_ALIGNED(reg, map->reg_stride))
2614                 return -EINVAL;
2615         if (val_len == 0)
2616                 return -EINVAL;
2617
2618         map->lock(map->lock_arg);
2619
2620         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2621                 ret = -EINVAL;
2622                 goto out_unlock;
2623         }
2624
2625         while (val_len) {
2626                 if (map->max_raw_read && map->max_raw_read < val_len)
2627                         read_len = map->max_raw_read;
2628                 else
2629                         read_len = val_len;
2630                 ret = _regmap_raw_read(map, reg, val, read_len);
2631                 if (ret)
2632                         goto out_unlock;
2633                 val = ((u8 *)val) + read_len;
2634                 val_len -= read_len;
2635         }
2636
2637 out_unlock:
2638         map->unlock(map->lock_arg);
2639         return ret;
2640 }
2641 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2642
2643 /**
2644  * regmap_field_read(): Read a value to a single register field
2645  *
2646  * @field: Register field to read from
2647  * @val: Pointer to store read value
2648  *
2649  * A value of zero will be returned on success, a negative errno will
2650  * be returned in error cases.
2651  */
2652 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2653 {
2654         int ret;
2655         unsigned int reg_val;
2656         ret = regmap_read(field->regmap, field->reg, &reg_val);
2657         if (ret != 0)
2658                 return ret;
2659
2660         reg_val &= field->mask;
2661         reg_val >>= field->shift;
2662         *val = reg_val;
2663
2664         return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(regmap_field_read);
2667
2668 /**
2669  * regmap_fields_read() - Read a value to a single register field with port ID
2670  *
2671  * @field: Register field to read from
2672  * @id: port ID
2673  * @val: Pointer to store read value
2674  *
2675  * A value of zero will be returned on success, a negative errno will
2676  * be returned in error cases.
2677  */
2678 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2679                        unsigned int *val)
2680 {
2681         int ret;
2682         unsigned int reg_val;
2683
2684         if (id >= field->id_size)
2685                 return -EINVAL;
2686
2687         ret = regmap_read(field->regmap,
2688                           field->reg + (field->id_offset * id),
2689                           &reg_val);
2690         if (ret != 0)
2691                 return ret;
2692
2693         reg_val &= field->mask;
2694         reg_val >>= field->shift;
2695         *val = reg_val;
2696
2697         return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(regmap_fields_read);
2700
2701 /**
2702  * regmap_bulk_read() - Read multiple registers from the device
2703  *
2704  * @map: Register map to read from
2705  * @reg: First register to be read from
2706  * @val: Pointer to store read value, in native register size for device
2707  * @val_count: Number of registers to read
2708  *
2709  * A value of zero will be returned on success, a negative errno will
2710  * be returned in error cases.
2711  */
2712 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2713                      size_t val_count)
2714 {
2715         int ret, i;
2716         size_t val_bytes = map->format.val_bytes;
2717         bool vol = regmap_volatile_range(map, reg, val_count);
2718
2719         if (!IS_ALIGNED(reg, map->reg_stride))
2720                 return -EINVAL;
2721         if (val_count == 0)
2722                 return -EINVAL;
2723
2724         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2725                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2726                 if (ret != 0)
2727                         return ret;
2728
2729                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2730                         map->format.parse_inplace(val + i);
2731         } else {
2732 #ifdef CONFIG_64BIT
2733                 u64 *u64 = val;
2734 #endif
2735                 u32 *u32 = val;
2736                 u16 *u16 = val;
2737                 u8 *u8 = val;
2738
2739                 map->lock(map->lock_arg);
2740
2741                 for (i = 0; i < val_count; i++) {
2742                         unsigned int ival;
2743
2744                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2745                                            &ival);
2746                         if (ret != 0)
2747                                 goto out;
2748
2749                         switch (map->format.val_bytes) {
2750 #ifdef CONFIG_64BIT
2751                         case 8:
2752                                 u64[i] = ival;
2753                                 break;
2754 #endif
2755                         case 4:
2756                                 u32[i] = ival;
2757                                 break;
2758                         case 2:
2759                                 u16[i] = ival;
2760                                 break;
2761                         case 1:
2762                                 u8[i] = ival;
2763                                 break;
2764                         default:
2765                                 ret = -EINVAL;
2766                                 goto out;
2767                         }
2768                 }
2769
2770 out:
2771                 map->unlock(map->lock_arg);
2772         }
2773
2774         return ret;
2775 }
2776 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2777
2778 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2779                                unsigned int mask, unsigned int val,
2780                                bool *change, bool force_write)
2781 {
2782         int ret;
2783         unsigned int tmp, orig;
2784
2785         if (change)
2786                 *change = false;
2787
2788         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2789                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2790                 if (ret == 0 && change)
2791                         *change = true;
2792         } else {
2793                 ret = _regmap_read(map, reg, &orig);
2794                 if (ret != 0)
2795                         return ret;
2796
2797                 tmp = orig & ~mask;
2798                 tmp |= val & mask;
2799
2800                 if (force_write || (tmp != orig)) {
2801                         ret = _regmap_write(map, reg, tmp);
2802                         if (ret == 0 && change)
2803                                 *change = true;
2804                 }
2805         }
2806
2807         return ret;
2808 }
2809
2810 /**
2811  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2812  *
2813  * @map: Register map to update
2814  * @reg: Register to update
2815  * @mask: Bitmask to change
2816  * @val: New value for bitmask
2817  * @change: Boolean indicating if a write was done
2818  * @async: Boolean indicating asynchronously
2819  * @force: Boolean indicating use force update
2820  *
2821  * Perform a read/modify/write cycle on a register map with change, async, force
2822  * options.
2823  *
2824  * If async is true:
2825  *
2826  * With most buses the read must be done synchronously so this is most useful
2827  * for devices with a cache which do not need to interact with the hardware to
2828  * determine the current register value.
2829  *
2830  * Returns zero for success, a negative number on error.
2831  */
2832 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2833                             unsigned int mask, unsigned int val,
2834                             bool *change, bool async, bool force)
2835 {
2836         int ret;
2837
2838         map->lock(map->lock_arg);
2839
2840         map->async = async;
2841
2842         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2843
2844         map->async = false;
2845
2846         map->unlock(map->lock_arg);
2847
2848         return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2851
2852 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2853 {
2854         struct regmap *map = async->map;
2855         bool wake;
2856
2857         trace_regmap_async_io_complete(map);
2858
2859         spin_lock(&map->async_lock);
2860         list_move(&async->list, &map->async_free);
2861         wake = list_empty(&map->async_list);
2862
2863         if (ret != 0)
2864                 map->async_ret = ret;
2865
2866         spin_unlock(&map->async_lock);
2867
2868         if (wake)
2869                 wake_up(&map->async_waitq);
2870 }
2871 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2872
2873 static int regmap_async_is_done(struct regmap *map)
2874 {
2875         unsigned long flags;
2876         int ret;
2877
2878         spin_lock_irqsave(&map->async_lock, flags);
2879         ret = list_empty(&map->async_list);
2880         spin_unlock_irqrestore(&map->async_lock, flags);
2881
2882         return ret;
2883 }
2884
2885 /**
2886  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2887  *
2888  * @map: Map to operate on.
2889  *
2890  * Blocks until any pending asynchronous I/O has completed.  Returns
2891  * an error code for any failed I/O operations.
2892  */
2893 int regmap_async_complete(struct regmap *map)
2894 {
2895         unsigned long flags;
2896         int ret;
2897
2898         /* Nothing to do with no async support */
2899         if (!map->bus || !map->bus->async_write)
2900                 return 0;
2901
2902         trace_regmap_async_complete_start(map);
2903
2904         wait_event(map->async_waitq, regmap_async_is_done(map));
2905
2906         spin_lock_irqsave(&map->async_lock, flags);
2907         ret = map->async_ret;
2908         map->async_ret = 0;
2909         spin_unlock_irqrestore(&map->async_lock, flags);
2910
2911         trace_regmap_async_complete_done(map);
2912
2913         return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(regmap_async_complete);
2916
2917 /**
2918  * regmap_register_patch - Register and apply register updates to be applied
2919  *                         on device initialistion
2920  *
2921  * @map: Register map to apply updates to.
2922  * @regs: Values to update.
2923  * @num_regs: Number of entries in regs.
2924  *
2925  * Register a set of register updates to be applied to the device
2926  * whenever the device registers are synchronised with the cache and
2927  * apply them immediately.  Typically this is used to apply
2928  * corrections to be applied to the device defaults on startup, such
2929  * as the updates some vendors provide to undocumented registers.
2930  *
2931  * The caller must ensure that this function cannot be called
2932  * concurrently with either itself or regcache_sync().
2933  */
2934 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2935                           int num_regs)
2936 {
2937         struct reg_sequence *p;
2938         int ret;
2939         bool bypass;
2940
2941         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2942             num_regs))
2943                 return 0;
2944
2945         p = krealloc(map->patch,
2946                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2947                      GFP_KERNEL);
2948         if (p) {
2949                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2950                 map->patch = p;
2951                 map->patch_regs += num_regs;
2952         } else {
2953                 return -ENOMEM;
2954         }
2955
2956         map->lock(map->lock_arg);
2957
2958         bypass = map->cache_bypass;
2959
2960         map->cache_bypass = true;
2961         map->async = true;
2962
2963         ret = _regmap_multi_reg_write(map, regs, num_regs);
2964
2965         map->async = false;
2966         map->cache_bypass = bypass;
2967
2968         map->unlock(map->lock_arg);
2969
2970         regmap_async_complete(map);
2971
2972         return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(regmap_register_patch);
2975
2976 /**
2977  * regmap_get_val_bytes() - Report the size of a register value
2978  *
2979  * @map: Register map to operate on.
2980  *
2981  * Report the size of a register value, mainly intended to for use by
2982  * generic infrastructure built on top of regmap.
2983  */
2984 int regmap_get_val_bytes(struct regmap *map)
2985 {
2986         if (map->format.format_write)
2987                 return -EINVAL;
2988
2989         return map->format.val_bytes;
2990 }
2991 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2992
2993 /**
2994  * regmap_get_max_register() - Report the max register value
2995  *
2996  * @map: Register map to operate on.
2997  *
2998  * Report the max register value, mainly intended to for use by
2999  * generic infrastructure built on top of regmap.
3000  */
3001 int regmap_get_max_register(struct regmap *map)
3002 {
3003         return map->max_register ? map->max_register : -EINVAL;
3004 }
3005 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3006
3007 /**
3008  * regmap_get_reg_stride() - Report the register address stride
3009  *
3010  * @map: Register map to operate on.
3011  *
3012  * Report the register address stride, mainly intended to for use by
3013  * generic infrastructure built on top of regmap.
3014  */
3015 int regmap_get_reg_stride(struct regmap *map)
3016 {
3017         return map->reg_stride;
3018 }
3019 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3020
3021 int regmap_parse_val(struct regmap *map, const void *buf,
3022                         unsigned int *val)
3023 {
3024         if (!map->format.parse_val)
3025                 return -EINVAL;
3026
3027         *val = map->format.parse_val(buf);
3028
3029         return 0;
3030 }
3031 EXPORT_SYMBOL_GPL(regmap_parse_val);
3032
3033 static int __init regmap_initcall(void)
3034 {
3035         regmap_debugfs_initcall();
3036
3037         return 0;
3038 }
3039 postcore_initcall(regmap_initcall);