Merge tag '5.3-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / drivers / base / regmap / regmap-irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21         struct mutex lock;
22         struct irq_chip irq_chip;
23
24         struct regmap *map;
25         const struct regmap_irq_chip *chip;
26
27         int irq_base;
28         struct irq_domain *domain;
29
30         int irq;
31         int wake_count;
32
33         void *status_reg_buf;
34         unsigned int *main_status_buf;
35         unsigned int *status_buf;
36         unsigned int *mask_buf;
37         unsigned int *mask_buf_def;
38         unsigned int *wake_buf;
39         unsigned int *type_buf;
40         unsigned int *type_buf_def;
41
42         unsigned int irq_reg_stride;
43         unsigned int type_reg_stride;
44
45         bool clear_status:1;
46 };
47
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50                                      int irq)
51 {
52         return &data->chip->irqs[irq];
53 }
54
55 static void regmap_irq_lock(struct irq_data *data)
56 {
57         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58
59         mutex_lock(&d->lock);
60 }
61
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63                                   unsigned int reg, unsigned int mask,
64                                   unsigned int val)
65 {
66         if (d->chip->mask_writeonly)
67                 return regmap_write_bits(d->map, reg, mask, val);
68         else
69                 return regmap_update_bits(d->map, reg, mask, val);
70 }
71
72 static void regmap_irq_sync_unlock(struct irq_data *data)
73 {
74         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75         struct regmap *map = d->map;
76         int i, ret;
77         u32 reg;
78         u32 unmask_offset;
79         u32 val;
80
81         if (d->chip->runtime_pm) {
82                 ret = pm_runtime_get_sync(map->dev);
83                 if (ret < 0)
84                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85                                 ret);
86         }
87
88         if (d->clear_status) {
89                 for (i = 0; i < d->chip->num_regs; i++) {
90                         reg = d->chip->status_base +
91                                 (i * map->reg_stride * d->irq_reg_stride);
92
93                         ret = regmap_read(map, reg, &val);
94                         if (ret)
95                                 dev_err(d->map->dev,
96                                         "Failed to clear the interrupt status bits\n");
97                 }
98
99                 d->clear_status = false;
100         }
101
102         /*
103          * If there's been a change in the mask write it back to the
104          * hardware.  We rely on the use of the regmap core cache to
105          * suppress pointless writes.
106          */
107         for (i = 0; i < d->chip->num_regs; i++) {
108                 if (!d->chip->mask_base)
109                         continue;
110
111                 reg = d->chip->mask_base +
112                         (i * map->reg_stride * d->irq_reg_stride);
113                 if (d->chip->mask_invert) {
114                         ret = regmap_irq_update_bits(d, reg,
115                                          d->mask_buf_def[i], ~d->mask_buf[i]);
116                 } else if (d->chip->unmask_base) {
117                         /* set mask with mask_base register */
118                         ret = regmap_irq_update_bits(d, reg,
119                                         d->mask_buf_def[i], ~d->mask_buf[i]);
120                         if (ret < 0)
121                                 dev_err(d->map->dev,
122                                         "Failed to sync unmasks in %x\n",
123                                         reg);
124                         unmask_offset = d->chip->unmask_base -
125                                                         d->chip->mask_base;
126                         /* clear mask with unmask_base register */
127                         ret = regmap_irq_update_bits(d,
128                                         reg + unmask_offset,
129                                         d->mask_buf_def[i],
130                                         d->mask_buf[i]);
131                 } else {
132                         ret = regmap_irq_update_bits(d, reg,
133                                          d->mask_buf_def[i], d->mask_buf[i]);
134                 }
135                 if (ret != 0)
136                         dev_err(d->map->dev, "Failed to sync masks in %x\n",
137                                 reg);
138
139                 reg = d->chip->wake_base +
140                         (i * map->reg_stride * d->irq_reg_stride);
141                 if (d->wake_buf) {
142                         if (d->chip->wake_invert)
143                                 ret = regmap_irq_update_bits(d, reg,
144                                                          d->mask_buf_def[i],
145                                                          ~d->wake_buf[i]);
146                         else
147                                 ret = regmap_irq_update_bits(d, reg,
148                                                          d->mask_buf_def[i],
149                                                          d->wake_buf[i]);
150                         if (ret != 0)
151                                 dev_err(d->map->dev,
152                                         "Failed to sync wakes in %x: %d\n",
153                                         reg, ret);
154                 }
155
156                 if (!d->chip->init_ack_masked)
157                         continue;
158                 /*
159                  * Ack all the masked interrupts unconditionally,
160                  * OR if there is masked interrupt which hasn't been Acked,
161                  * it'll be ignored in irq handler, then may introduce irq storm
162                  */
163                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164                         reg = d->chip->ack_base +
165                                 (i * map->reg_stride * d->irq_reg_stride);
166                         /* some chips ack by write 0 */
167                         if (d->chip->ack_invert)
168                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169                         else
170                                 ret = regmap_write(map, reg, d->mask_buf[i]);
171                         if (ret != 0)
172                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173                                         reg, ret);
174                 }
175         }
176
177         /* Don't update the type bits if we're using mask bits for irq type. */
178         if (!d->chip->type_in_mask) {
179                 for (i = 0; i < d->chip->num_type_reg; i++) {
180                         if (!d->type_buf_def[i])
181                                 continue;
182                         reg = d->chip->type_base +
183                                 (i * map->reg_stride * d->type_reg_stride);
184                         if (d->chip->type_invert)
185                                 ret = regmap_irq_update_bits(d, reg,
186                                         d->type_buf_def[i], ~d->type_buf[i]);
187                         else
188                                 ret = regmap_irq_update_bits(d, reg,
189                                         d->type_buf_def[i], d->type_buf[i]);
190                         if (ret != 0)
191                                 dev_err(d->map->dev, "Failed to sync type in %x\n",
192                                         reg);
193                 }
194         }
195
196         if (d->chip->runtime_pm)
197                 pm_runtime_put(map->dev);
198
199         /* If we've changed our wakeup count propagate it to the parent */
200         if (d->wake_count < 0)
201                 for (i = d->wake_count; i < 0; i++)
202                         irq_set_irq_wake(d->irq, 0);
203         else if (d->wake_count > 0)
204                 for (i = 0; i < d->wake_count; i++)
205                         irq_set_irq_wake(d->irq, 1);
206
207         d->wake_count = 0;
208
209         mutex_unlock(&d->lock);
210 }
211
212 static void regmap_irq_enable(struct irq_data *data)
213 {
214         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215         struct regmap *map = d->map;
216         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217         unsigned int mask, type;
218
219         type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220
221         /*
222          * The type_in_mask flag means that the underlying hardware uses
223          * separate mask bits for rising and falling edge interrupts, but
224          * we want to make them into a single virtual interrupt with
225          * configurable edge.
226          *
227          * If the interrupt we're enabling defines the falling or rising
228          * masks then instead of using the regular mask bits for this
229          * interrupt, use the value previously written to the type buffer
230          * at the corresponding offset in regmap_irq_set_type().
231          */
232         if (d->chip->type_in_mask && type)
233                 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234         else
235                 mask = irq_data->mask;
236
237         if (d->chip->clear_on_unmask)
238                 d->clear_status = true;
239
240         d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 }
242
243 static void regmap_irq_disable(struct irq_data *data)
244 {
245         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246         struct regmap *map = d->map;
247         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248
249         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 }
251
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253 {
254         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255         struct regmap *map = d->map;
256         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257         int reg;
258         const struct regmap_irq_type *t = &irq_data->type;
259
260         if ((t->types_supported & type) != type)
261                 return 0;
262
263         reg = t->type_reg_offset / map->reg_stride;
264
265         if (t->type_reg_mask)
266                 d->type_buf[reg] &= ~t->type_reg_mask;
267         else
268                 d->type_buf[reg] &= ~(t->type_falling_val |
269                                       t->type_rising_val |
270                                       t->type_level_low_val |
271                                       t->type_level_high_val);
272         switch (type) {
273         case IRQ_TYPE_EDGE_FALLING:
274                 d->type_buf[reg] |= t->type_falling_val;
275                 break;
276
277         case IRQ_TYPE_EDGE_RISING:
278                 d->type_buf[reg] |= t->type_rising_val;
279                 break;
280
281         case IRQ_TYPE_EDGE_BOTH:
282                 d->type_buf[reg] |= (t->type_falling_val |
283                                         t->type_rising_val);
284                 break;
285
286         case IRQ_TYPE_LEVEL_HIGH:
287                 d->type_buf[reg] |= t->type_level_high_val;
288                 break;
289
290         case IRQ_TYPE_LEVEL_LOW:
291                 d->type_buf[reg] |= t->type_level_low_val;
292                 break;
293         default:
294                 return -EINVAL;
295         }
296         return 0;
297 }
298
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300 {
301         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302         struct regmap *map = d->map;
303         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304
305         if (on) {
306                 if (d->wake_buf)
307                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
308                                 &= ~irq_data->mask;
309                 d->wake_count++;
310         } else {
311                 if (d->wake_buf)
312                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
313                                 |= irq_data->mask;
314                 d->wake_count--;
315         }
316
317         return 0;
318 }
319
320 static const struct irq_chip regmap_irq_chip = {
321         .irq_bus_lock           = regmap_irq_lock,
322         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
323         .irq_disable            = regmap_irq_disable,
324         .irq_enable             = regmap_irq_enable,
325         .irq_set_type           = regmap_irq_set_type,
326         .irq_set_wake           = regmap_irq_set_wake,
327 };
328
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330                                            unsigned int b)
331 {
332         const struct regmap_irq_chip *chip = data->chip;
333         struct regmap *map = data->map;
334         struct regmap_irq_sub_irq_map *subreg;
335         int i, ret = 0;
336
337         if (!chip->sub_reg_offsets) {
338                 /* Assume linear mapping */
339                 ret = regmap_read(map, chip->status_base +
340                                   (b * map->reg_stride * data->irq_reg_stride),
341                                    &data->status_buf[b]);
342         } else {
343                 subreg = &chip->sub_reg_offsets[b];
344                 for (i = 0; i < subreg->num_regs; i++) {
345                         unsigned int offset = subreg->offset[i];
346
347                         ret = regmap_read(map, chip->status_base + offset,
348                                           &data->status_buf[offset]);
349                         if (ret)
350                                 break;
351                 }
352         }
353         return ret;
354 }
355
356 static irqreturn_t regmap_irq_thread(int irq, void *d)
357 {
358         struct regmap_irq_chip_data *data = d;
359         const struct regmap_irq_chip *chip = data->chip;
360         struct regmap *map = data->map;
361         int ret, i;
362         bool handled = false;
363         u32 reg;
364
365         if (chip->handle_pre_irq)
366                 chip->handle_pre_irq(chip->irq_drv_data);
367
368         if (chip->runtime_pm) {
369                 ret = pm_runtime_get_sync(map->dev);
370                 if (ret < 0) {
371                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372                                 ret);
373                         pm_runtime_put(map->dev);
374                         goto exit;
375                 }
376         }
377
378         /*
379          * Read only registers with active IRQs if the chip has 'main status
380          * register'. Else read in the statuses, using a single bulk read if
381          * possible in order to reduce the I/O overheads.
382          */
383
384         if (chip->num_main_regs) {
385                 unsigned int max_main_bits;
386                 unsigned long size;
387
388                 size = chip->num_regs * sizeof(unsigned int);
389
390                 max_main_bits = (chip->num_main_status_bits) ?
391                                  chip->num_main_status_bits : chip->num_regs;
392                 /* Clear the status buf as we don't read all status regs */
393                 memset(data->status_buf, 0, size);
394
395                 /* We could support bulk read for main status registers
396                  * but I don't expect to see devices with really many main
397                  * status registers so let's only support single reads for the
398                  * sake of simplicity. and add bulk reads only if needed
399                  */
400                 for (i = 0; i < chip->num_main_regs; i++) {
401                         ret = regmap_read(map, chip->main_status +
402                                   (i * map->reg_stride
403                                    * data->irq_reg_stride),
404                                   &data->main_status_buf[i]);
405                         if (ret) {
406                                 dev_err(map->dev,
407                                         "Failed to read IRQ status %d\n",
408                                         ret);
409                                 goto exit;
410                         }
411                 }
412
413                 /* Read sub registers with active IRQs */
414                 for (i = 0; i < chip->num_main_regs; i++) {
415                         unsigned int b;
416                         const unsigned long mreg = data->main_status_buf[i];
417
418                         for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
419                                 if (i * map->format.val_bytes * 8 + b >
420                                     max_main_bits)
421                                         break;
422                                 ret = read_sub_irq_data(data, b);
423
424                                 if (ret != 0) {
425                                         dev_err(map->dev,
426                                                 "Failed to read IRQ status %d\n",
427                                                 ret);
428                                         if (chip->runtime_pm)
429                                                 pm_runtime_put(map->dev);
430                                         goto exit;
431                                 }
432                         }
433
434                 }
435         } else if (!map->use_single_read && map->reg_stride == 1 &&
436                    data->irq_reg_stride == 1) {
437
438                 u8 *buf8 = data->status_reg_buf;
439                 u16 *buf16 = data->status_reg_buf;
440                 u32 *buf32 = data->status_reg_buf;
441
442                 BUG_ON(!data->status_reg_buf);
443
444                 ret = regmap_bulk_read(map, chip->status_base,
445                                        data->status_reg_buf,
446                                        chip->num_regs);
447                 if (ret != 0) {
448                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
449                                 ret);
450                         goto exit;
451                 }
452
453                 for (i = 0; i < data->chip->num_regs; i++) {
454                         switch (map->format.val_bytes) {
455                         case 1:
456                                 data->status_buf[i] = buf8[i];
457                                 break;
458                         case 2:
459                                 data->status_buf[i] = buf16[i];
460                                 break;
461                         case 4:
462                                 data->status_buf[i] = buf32[i];
463                                 break;
464                         default:
465                                 BUG();
466                                 goto exit;
467                         }
468                 }
469
470         } else {
471                 for (i = 0; i < data->chip->num_regs; i++) {
472                         ret = regmap_read(map, chip->status_base +
473                                           (i * map->reg_stride
474                                            * data->irq_reg_stride),
475                                           &data->status_buf[i]);
476
477                         if (ret != 0) {
478                                 dev_err(map->dev,
479                                         "Failed to read IRQ status: %d\n",
480                                         ret);
481                                 if (chip->runtime_pm)
482                                         pm_runtime_put(map->dev);
483                                 goto exit;
484                         }
485                 }
486         }
487
488         /*
489          * Ignore masked IRQs and ack if we need to; we ack early so
490          * there is no race between handling and acknowleding the
491          * interrupt.  We assume that typically few of the interrupts
492          * will fire simultaneously so don't worry about overhead from
493          * doing a write per register.
494          */
495         for (i = 0; i < data->chip->num_regs; i++) {
496                 data->status_buf[i] &= ~data->mask_buf[i];
497
498                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
499                         reg = chip->ack_base +
500                                 (i * map->reg_stride * data->irq_reg_stride);
501                         ret = regmap_write(map, reg, data->status_buf[i]);
502                         if (ret != 0)
503                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
504                                         reg, ret);
505                 }
506         }
507
508         for (i = 0; i < chip->num_irqs; i++) {
509                 if (data->status_buf[chip->irqs[i].reg_offset /
510                                      map->reg_stride] & chip->irqs[i].mask) {
511                         handle_nested_irq(irq_find_mapping(data->domain, i));
512                         handled = true;
513                 }
514         }
515
516         if (chip->runtime_pm)
517                 pm_runtime_put(map->dev);
518
519 exit:
520         if (chip->handle_post_irq)
521                 chip->handle_post_irq(chip->irq_drv_data);
522
523         if (handled)
524                 return IRQ_HANDLED;
525         else
526                 return IRQ_NONE;
527 }
528
529 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
530                           irq_hw_number_t hw)
531 {
532         struct regmap_irq_chip_data *data = h->host_data;
533
534         irq_set_chip_data(virq, data);
535         irq_set_chip(virq, &data->irq_chip);
536         irq_set_nested_thread(virq, 1);
537         irq_set_parent(virq, data->irq);
538         irq_set_noprobe(virq);
539
540         return 0;
541 }
542
543 static const struct irq_domain_ops regmap_domain_ops = {
544         .map    = regmap_irq_map,
545         .xlate  = irq_domain_xlate_onetwocell,
546 };
547
548 /**
549  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
550  *
551  * @map: The regmap for the device.
552  * @irq: The IRQ the device uses to signal interrupts.
553  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
554  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
555  * @chip: Configuration for the interrupt controller.
556  * @data: Runtime data structure for the controller, allocated on success.
557  *
558  * Returns 0 on success or an errno on failure.
559  *
560  * In order for this to be efficient the chip really should use a
561  * register cache.  The chip driver is responsible for restoring the
562  * register values used by the IRQ controller over suspend and resume.
563  */
564 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
565                         int irq_base, const struct regmap_irq_chip *chip,
566                         struct regmap_irq_chip_data **data)
567 {
568         struct regmap_irq_chip_data *d;
569         int i;
570         int ret = -ENOMEM;
571         int num_type_reg;
572         u32 reg;
573         u32 unmask_offset;
574
575         if (chip->num_regs <= 0)
576                 return -EINVAL;
577
578         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
579                 return -EINVAL;
580
581         for (i = 0; i < chip->num_irqs; i++) {
582                 if (chip->irqs[i].reg_offset % map->reg_stride)
583                         return -EINVAL;
584                 if (chip->irqs[i].reg_offset / map->reg_stride >=
585                     chip->num_regs)
586                         return -EINVAL;
587         }
588
589         if (irq_base) {
590                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
591                 if (irq_base < 0) {
592                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
593                                  irq_base);
594                         return irq_base;
595                 }
596         }
597
598         d = kzalloc(sizeof(*d), GFP_KERNEL);
599         if (!d)
600                 return -ENOMEM;
601
602         if (chip->num_main_regs) {
603                 d->main_status_buf = kcalloc(chip->num_main_regs,
604                                              sizeof(unsigned int),
605                                              GFP_KERNEL);
606
607                 if (!d->main_status_buf)
608                         goto err_alloc;
609         }
610
611         d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
612                                 GFP_KERNEL);
613         if (!d->status_buf)
614                 goto err_alloc;
615
616         d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
617                               GFP_KERNEL);
618         if (!d->mask_buf)
619                 goto err_alloc;
620
621         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
622                                   GFP_KERNEL);
623         if (!d->mask_buf_def)
624                 goto err_alloc;
625
626         if (chip->wake_base) {
627                 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
628                                       GFP_KERNEL);
629                 if (!d->wake_buf)
630                         goto err_alloc;
631         }
632
633         num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
634         if (num_type_reg) {
635                 d->type_buf_def = kcalloc(num_type_reg,
636                                           sizeof(unsigned int), GFP_KERNEL);
637                 if (!d->type_buf_def)
638                         goto err_alloc;
639
640                 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
641                                       GFP_KERNEL);
642                 if (!d->type_buf)
643                         goto err_alloc;
644         }
645
646         d->irq_chip = regmap_irq_chip;
647         d->irq_chip.name = chip->name;
648         d->irq = irq;
649         d->map = map;
650         d->chip = chip;
651         d->irq_base = irq_base;
652
653         if (chip->irq_reg_stride)
654                 d->irq_reg_stride = chip->irq_reg_stride;
655         else
656                 d->irq_reg_stride = 1;
657
658         if (chip->type_reg_stride)
659                 d->type_reg_stride = chip->type_reg_stride;
660         else
661                 d->type_reg_stride = 1;
662
663         if (!map->use_single_read && map->reg_stride == 1 &&
664             d->irq_reg_stride == 1) {
665                 d->status_reg_buf = kmalloc_array(chip->num_regs,
666                                                   map->format.val_bytes,
667                                                   GFP_KERNEL);
668                 if (!d->status_reg_buf)
669                         goto err_alloc;
670         }
671
672         mutex_init(&d->lock);
673
674         for (i = 0; i < chip->num_irqs; i++)
675                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
676                         |= chip->irqs[i].mask;
677
678         /* Mask all the interrupts by default */
679         for (i = 0; i < chip->num_regs; i++) {
680                 d->mask_buf[i] = d->mask_buf_def[i];
681                 if (!chip->mask_base)
682                         continue;
683
684                 reg = chip->mask_base +
685                         (i * map->reg_stride * d->irq_reg_stride);
686                 if (chip->mask_invert)
687                         ret = regmap_irq_update_bits(d, reg,
688                                          d->mask_buf[i], ~d->mask_buf[i]);
689                 else if (d->chip->unmask_base) {
690                         unmask_offset = d->chip->unmask_base -
691                                         d->chip->mask_base;
692                         ret = regmap_irq_update_bits(d,
693                                         reg + unmask_offset,
694                                         d->mask_buf[i],
695                                         d->mask_buf[i]);
696                 } else
697                         ret = regmap_irq_update_bits(d, reg,
698                                          d->mask_buf[i], d->mask_buf[i]);
699                 if (ret != 0) {
700                         dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
701                                 reg, ret);
702                         goto err_alloc;
703                 }
704
705                 if (!chip->init_ack_masked)
706                         continue;
707
708                 /* Ack masked but set interrupts */
709                 reg = chip->status_base +
710                         (i * map->reg_stride * d->irq_reg_stride);
711                 ret = regmap_read(map, reg, &d->status_buf[i]);
712                 if (ret != 0) {
713                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
714                                 ret);
715                         goto err_alloc;
716                 }
717
718                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
719                         reg = chip->ack_base +
720                                 (i * map->reg_stride * d->irq_reg_stride);
721                         if (chip->ack_invert)
722                                 ret = regmap_write(map, reg,
723                                         ~(d->status_buf[i] & d->mask_buf[i]));
724                         else
725                                 ret = regmap_write(map, reg,
726                                         d->status_buf[i] & d->mask_buf[i]);
727                         if (ret != 0) {
728                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
729                                         reg, ret);
730                                 goto err_alloc;
731                         }
732                 }
733         }
734
735         /* Wake is disabled by default */
736         if (d->wake_buf) {
737                 for (i = 0; i < chip->num_regs; i++) {
738                         d->wake_buf[i] = d->mask_buf_def[i];
739                         reg = chip->wake_base +
740                                 (i * map->reg_stride * d->irq_reg_stride);
741
742                         if (chip->wake_invert)
743                                 ret = regmap_irq_update_bits(d, reg,
744                                                          d->mask_buf_def[i],
745                                                          0);
746                         else
747                                 ret = regmap_irq_update_bits(d, reg,
748                                                          d->mask_buf_def[i],
749                                                          d->wake_buf[i]);
750                         if (ret != 0) {
751                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
752                                         reg, ret);
753                                 goto err_alloc;
754                         }
755                 }
756         }
757
758         if (chip->num_type_reg && !chip->type_in_mask) {
759                 for (i = 0; i < chip->num_type_reg; ++i) {
760                         reg = chip->type_base +
761                                 (i * map->reg_stride * d->type_reg_stride);
762
763                         ret = regmap_read(map, reg, &d->type_buf_def[i]);
764
765                         if (d->chip->type_invert)
766                                 d->type_buf_def[i] = ~d->type_buf_def[i];
767
768                         if (ret) {
769                                 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
770                                         reg, ret);
771                                 goto err_alloc;
772                         }
773                 }
774         }
775
776         if (irq_base)
777                 d->domain = irq_domain_add_legacy(map->dev->of_node,
778                                                   chip->num_irqs, irq_base, 0,
779                                                   &regmap_domain_ops, d);
780         else
781                 d->domain = irq_domain_add_linear(map->dev->of_node,
782                                                   chip->num_irqs,
783                                                   &regmap_domain_ops, d);
784         if (!d->domain) {
785                 dev_err(map->dev, "Failed to create IRQ domain\n");
786                 ret = -ENOMEM;
787                 goto err_alloc;
788         }
789
790         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
791                                    irq_flags | IRQF_ONESHOT,
792                                    chip->name, d);
793         if (ret != 0) {
794                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
795                         irq, chip->name, ret);
796                 goto err_domain;
797         }
798
799         *data = d;
800
801         return 0;
802
803 err_domain:
804         /* Should really dispose of the domain but... */
805 err_alloc:
806         kfree(d->type_buf);
807         kfree(d->type_buf_def);
808         kfree(d->wake_buf);
809         kfree(d->mask_buf_def);
810         kfree(d->mask_buf);
811         kfree(d->status_buf);
812         kfree(d->status_reg_buf);
813         kfree(d);
814         return ret;
815 }
816 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
817
818 /**
819  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
820  *
821  * @irq: Primary IRQ for the device
822  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
823  *
824  * This function also disposes of all mapped IRQs on the chip.
825  */
826 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
827 {
828         unsigned int virq;
829         int hwirq;
830
831         if (!d)
832                 return;
833
834         free_irq(irq, d);
835
836         /* Dispose all virtual irq from irq domain before removing it */
837         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
838                 /* Ignore hwirq if holes in the IRQ list */
839                 if (!d->chip->irqs[hwirq].mask)
840                         continue;
841
842                 /*
843                  * Find the virtual irq of hwirq on chip and if it is
844                  * there then dispose it
845                  */
846                 virq = irq_find_mapping(d->domain, hwirq);
847                 if (virq)
848                         irq_dispose_mapping(virq);
849         }
850
851         irq_domain_remove(d->domain);
852         kfree(d->type_buf);
853         kfree(d->type_buf_def);
854         kfree(d->wake_buf);
855         kfree(d->mask_buf_def);
856         kfree(d->mask_buf);
857         kfree(d->status_reg_buf);
858         kfree(d->status_buf);
859         kfree(d);
860 }
861 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
862
863 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
864 {
865         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
866
867         regmap_del_irq_chip(d->irq, d);
868 }
869
870 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
871
872 {
873         struct regmap_irq_chip_data **r = res;
874
875         if (!r || !*r) {
876                 WARN_ON(!r || !*r);
877                 return 0;
878         }
879         return *r == data;
880 }
881
882 /**
883  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
884  *
885  * @dev: The device pointer on which irq_chip belongs to.
886  * @map: The regmap for the device.
887  * @irq: The IRQ the device uses to signal interrupts
888  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
889  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
890  * @chip: Configuration for the interrupt controller.
891  * @data: Runtime data structure for the controller, allocated on success
892  *
893  * Returns 0 on success or an errno on failure.
894  *
895  * The &regmap_irq_chip_data will be automatically released when the device is
896  * unbound.
897  */
898 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
899                              int irq_flags, int irq_base,
900                              const struct regmap_irq_chip *chip,
901                              struct regmap_irq_chip_data **data)
902 {
903         struct regmap_irq_chip_data **ptr, *d;
904         int ret;
905
906         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
907                            GFP_KERNEL);
908         if (!ptr)
909                 return -ENOMEM;
910
911         ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
912                                   chip, &d);
913         if (ret < 0) {
914                 devres_free(ptr);
915                 return ret;
916         }
917
918         *ptr = d;
919         devres_add(dev, ptr);
920         *data = d;
921         return 0;
922 }
923 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
924
925 /**
926  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
927  *
928  * @dev: Device for which which resource was allocated.
929  * @irq: Primary IRQ for the device.
930  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
931  *
932  * A resource managed version of regmap_del_irq_chip().
933  */
934 void devm_regmap_del_irq_chip(struct device *dev, int irq,
935                               struct regmap_irq_chip_data *data)
936 {
937         int rc;
938
939         WARN_ON(irq != data->irq);
940         rc = devres_release(dev, devm_regmap_irq_chip_release,
941                             devm_regmap_irq_chip_match, data);
942
943         if (rc != 0)
944                 WARN_ON(rc);
945 }
946 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
947
948 /**
949  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
950  *
951  * @data: regmap irq controller to operate on.
952  *
953  * Useful for drivers to request their own IRQs.
954  */
955 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
956 {
957         WARN_ON(!data->irq_base);
958         return data->irq_base;
959 }
960 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
961
962 /**
963  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
964  *
965  * @data: regmap irq controller to operate on.
966  * @irq: index of the interrupt requested in the chip IRQs.
967  *
968  * Useful for drivers to request their own IRQs.
969  */
970 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
971 {
972         /* Handle holes in the IRQ list */
973         if (!data->chip->irqs[irq].mask)
974                 return -EINVAL;
975
976         return irq_create_mapping(data->domain, irq);
977 }
978 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
979
980 /**
981  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
982  *
983  * @data: regmap_irq controller to operate on.
984  *
985  * Useful for drivers to request their own IRQs and for integration
986  * with subsystems.  For ease of integration NULL is accepted as a
987  * domain, allowing devices to just call this even if no domain is
988  * allocated.
989  */
990 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
991 {
992         if (data)
993                 return data->domain;
994         else
995                 return NULL;
996 }
997 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);