Merge tag 'gvt-next-fixes-2021-04-21' of https://github.com/intel/gvt-linux into...
[linux-2.6-microblaze.git] / drivers / base / property.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20
21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23         return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24                 &dev->of_node->fwnode : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27
28 /**
29  * device_property_present - check if a property of a device is present
30  * @dev: Device whose property is being checked
31  * @propname: Name of the property
32  *
33  * Check if property @propname is present in the device firmware description.
34  */
35 bool device_property_present(struct device *dev, const char *propname)
36 {
37         return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40
41 /**
42  * fwnode_property_present - check if a property of a firmware node is present
43  * @fwnode: Firmware node whose property to check
44  * @propname: Name of the property
45  */
46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47                              const char *propname)
48 {
49         bool ret;
50
51         ret = fwnode_call_bool_op(fwnode, property_present, propname);
52         if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53             !IS_ERR_OR_NULL(fwnode->secondary))
54                 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55                                          propname);
56         return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60 /**
61  * device_property_read_u8_array - return a u8 array property of a device
62  * @dev: Device to get the property of
63  * @propname: Name of the property
64  * @val: The values are stored here or %NULL to return the number of values
65  * @nval: Size of the @val array
66  *
67  * Function reads an array of u8 properties with @propname from the device
68  * firmware description and stores them to @val if found.
69  *
70  * Return: number of values if @val was %NULL,
71  *         %0 if the property was found (success),
72  *         %-EINVAL if given arguments are not valid,
73  *         %-ENODATA if the property does not have a value,
74  *         %-EPROTO if the property is not an array of numbers,
75  *         %-EOVERFLOW if the size of the property is not as expected.
76  *         %-ENXIO if no suitable firmware interface is present.
77  */
78 int device_property_read_u8_array(struct device *dev, const char *propname,
79                                   u8 *val, size_t nval)
80 {
81         return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85 /**
86  * device_property_read_u16_array - return a u16 array property of a device
87  * @dev: Device to get the property of
88  * @propname: Name of the property
89  * @val: The values are stored here or %NULL to return the number of values
90  * @nval: Size of the @val array
91  *
92  * Function reads an array of u16 properties with @propname from the device
93  * firmware description and stores them to @val if found.
94  *
95  * Return: number of values if @val was %NULL,
96  *         %0 if the property was found (success),
97  *         %-EINVAL if given arguments are not valid,
98  *         %-ENODATA if the property does not have a value,
99  *         %-EPROTO if the property is not an array of numbers,
100  *         %-EOVERFLOW if the size of the property is not as expected.
101  *         %-ENXIO if no suitable firmware interface is present.
102  */
103 int device_property_read_u16_array(struct device *dev, const char *propname,
104                                    u16 *val, size_t nval)
105 {
106         return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110 /**
111  * device_property_read_u32_array - return a u32 array property of a device
112  * @dev: Device to get the property of
113  * @propname: Name of the property
114  * @val: The values are stored here or %NULL to return the number of values
115  * @nval: Size of the @val array
116  *
117  * Function reads an array of u32 properties with @propname from the device
118  * firmware description and stores them to @val if found.
119  *
120  * Return: number of values if @val was %NULL,
121  *         %0 if the property was found (success),
122  *         %-EINVAL if given arguments are not valid,
123  *         %-ENODATA if the property does not have a value,
124  *         %-EPROTO if the property is not an array of numbers,
125  *         %-EOVERFLOW if the size of the property is not as expected.
126  *         %-ENXIO if no suitable firmware interface is present.
127  */
128 int device_property_read_u32_array(struct device *dev, const char *propname,
129                                    u32 *val, size_t nval)
130 {
131         return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135 /**
136  * device_property_read_u64_array - return a u64 array property of a device
137  * @dev: Device to get the property of
138  * @propname: Name of the property
139  * @val: The values are stored here or %NULL to return the number of values
140  * @nval: Size of the @val array
141  *
142  * Function reads an array of u64 properties with @propname from the device
143  * firmware description and stores them to @val if found.
144  *
145  * Return: number of values if @val was %NULL,
146  *         %0 if the property was found (success),
147  *         %-EINVAL if given arguments are not valid,
148  *         %-ENODATA if the property does not have a value,
149  *         %-EPROTO if the property is not an array of numbers,
150  *         %-EOVERFLOW if the size of the property is not as expected.
151  *         %-ENXIO if no suitable firmware interface is present.
152  */
153 int device_property_read_u64_array(struct device *dev, const char *propname,
154                                    u64 *val, size_t nval)
155 {
156         return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160 /**
161  * device_property_read_string_array - return a string array property of device
162  * @dev: Device to get the property of
163  * @propname: Name of the property
164  * @val: The values are stored here or %NULL to return the number of values
165  * @nval: Size of the @val array
166  *
167  * Function reads an array of string properties with @propname from the device
168  * firmware description and stores them to @val if found.
169  *
170  * Return: number of values read on success if @val is non-NULL,
171  *         number of values available on success if @val is NULL,
172  *         %-EINVAL if given arguments are not valid,
173  *         %-ENODATA if the property does not have a value,
174  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
175  *         %-EOVERFLOW if the size of the property is not as expected.
176  *         %-ENXIO if no suitable firmware interface is present.
177  */
178 int device_property_read_string_array(struct device *dev, const char *propname,
179                                       const char **val, size_t nval)
180 {
181         return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185 /**
186  * device_property_read_string - return a string property of a device
187  * @dev: Device to get the property of
188  * @propname: Name of the property
189  * @val: The value is stored here
190  *
191  * Function reads property @propname from the device firmware description and
192  * stores the value into @val if found. The value is checked to be a string.
193  *
194  * Return: %0 if the property was found (success),
195  *         %-EINVAL if given arguments are not valid,
196  *         %-ENODATA if the property does not have a value,
197  *         %-EPROTO or %-EILSEQ if the property type is not a string.
198  *         %-ENXIO if no suitable firmware interface is present.
199  */
200 int device_property_read_string(struct device *dev, const char *propname,
201                                 const char **val)
202 {
203         return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206
207 /**
208  * device_property_match_string - find a string in an array and return index
209  * @dev: Device to get the property of
210  * @propname: Name of the property holding the array
211  * @string: String to look for
212  *
213  * Find a given string in a string array and if it is found return the
214  * index back.
215  *
216  * Return: %0 if the property was found (success),
217  *         %-EINVAL if given arguments are not valid,
218  *         %-ENODATA if the property does not have a value,
219  *         %-EPROTO if the property is not an array of strings,
220  *         %-ENXIO if no suitable firmware interface is present.
221  */
222 int device_property_match_string(struct device *dev, const char *propname,
223                                  const char *string)
224 {
225         return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228
229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230                                           const char *propname,
231                                           unsigned int elem_size, void *val,
232                                           size_t nval)
233 {
234         int ret;
235
236         ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237                                  elem_size, val, nval);
238         if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239             !IS_ERR_OR_NULL(fwnode->secondary))
240                 ret = fwnode_call_int_op(
241                         fwnode->secondary, property_read_int_array, propname,
242                         elem_size, val, nval);
243
244         return ret;
245 }
246
247 /**
248  * fwnode_property_read_u8_array - return a u8 array property of firmware node
249  * @fwnode: Firmware node to get the property of
250  * @propname: Name of the property
251  * @val: The values are stored here or %NULL to return the number of values
252  * @nval: Size of the @val array
253  *
254  * Read an array of u8 properties with @propname from @fwnode and stores them to
255  * @val if found.
256  *
257  * Return: number of values if @val was %NULL,
258  *         %0 if the property was found (success),
259  *         %-EINVAL if given arguments are not valid,
260  *         %-ENODATA if the property does not have a value,
261  *         %-EPROTO if the property is not an array of numbers,
262  *         %-EOVERFLOW if the size of the property is not as expected,
263  *         %-ENXIO if no suitable firmware interface is present.
264  */
265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266                                   const char *propname, u8 *val, size_t nval)
267 {
268         return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269                                               val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273 /**
274  * fwnode_property_read_u16_array - return a u16 array property of firmware node
275  * @fwnode: Firmware node to get the property of
276  * @propname: Name of the property
277  * @val: The values are stored here or %NULL to return the number of values
278  * @nval: Size of the @val array
279  *
280  * Read an array of u16 properties with @propname from @fwnode and store them to
281  * @val if found.
282  *
283  * Return: number of values if @val was %NULL,
284  *         %0 if the property was found (success),
285  *         %-EINVAL if given arguments are not valid,
286  *         %-ENODATA if the property does not have a value,
287  *         %-EPROTO if the property is not an array of numbers,
288  *         %-EOVERFLOW if the size of the property is not as expected,
289  *         %-ENXIO if no suitable firmware interface is present.
290  */
291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292                                    const char *propname, u16 *val, size_t nval)
293 {
294         return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295                                               val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299 /**
300  * fwnode_property_read_u32_array - return a u32 array property of firmware node
301  * @fwnode: Firmware node to get the property of
302  * @propname: Name of the property
303  * @val: The values are stored here or %NULL to return the number of values
304  * @nval: Size of the @val array
305  *
306  * Read an array of u32 properties with @propname from @fwnode store them to
307  * @val if found.
308  *
309  * Return: number of values if @val was %NULL,
310  *         %0 if the property was found (success),
311  *         %-EINVAL if given arguments are not valid,
312  *         %-ENODATA if the property does not have a value,
313  *         %-EPROTO if the property is not an array of numbers,
314  *         %-EOVERFLOW if the size of the property is not as expected,
315  *         %-ENXIO if no suitable firmware interface is present.
316  */
317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318                                    const char *propname, u32 *val, size_t nval)
319 {
320         return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321                                               val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325 /**
326  * fwnode_property_read_u64_array - return a u64 array property firmware node
327  * @fwnode: Firmware node to get the property of
328  * @propname: Name of the property
329  * @val: The values are stored here or %NULL to return the number of values
330  * @nval: Size of the @val array
331  *
332  * Read an array of u64 properties with @propname from @fwnode and store them to
333  * @val if found.
334  *
335  * Return: number of values if @val was %NULL,
336  *         %0 if the property was found (success),
337  *         %-EINVAL if given arguments are not valid,
338  *         %-ENODATA if the property does not have a value,
339  *         %-EPROTO if the property is not an array of numbers,
340  *         %-EOVERFLOW if the size of the property is not as expected,
341  *         %-ENXIO if no suitable firmware interface is present.
342  */
343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344                                    const char *propname, u64 *val, size_t nval)
345 {
346         return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347                                               val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351 /**
352  * fwnode_property_read_string_array - return string array property of a node
353  * @fwnode: Firmware node to get the property of
354  * @propname: Name of the property
355  * @val: The values are stored here or %NULL to return the number of values
356  * @nval: Size of the @val array
357  *
358  * Read an string list property @propname from the given firmware node and store
359  * them to @val if found.
360  *
361  * Return: number of values read on success if @val is non-NULL,
362  *         number of values available on success if @val is NULL,
363  *         %-EINVAL if given arguments are not valid,
364  *         %-ENODATA if the property does not have a value,
365  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
366  *         %-EOVERFLOW if the size of the property is not as expected,
367  *         %-ENXIO if no suitable firmware interface is present.
368  */
369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370                                       const char *propname, const char **val,
371                                       size_t nval)
372 {
373         int ret;
374
375         ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376                                  val, nval);
377         if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378             !IS_ERR_OR_NULL(fwnode->secondary))
379                 ret = fwnode_call_int_op(fwnode->secondary,
380                                          property_read_string_array, propname,
381                                          val, nval);
382         return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386 /**
387  * fwnode_property_read_string - return a string property of a firmware node
388  * @fwnode: Firmware node to get the property of
389  * @propname: Name of the property
390  * @val: The value is stored here
391  *
392  * Read property @propname from the given firmware node and store the value into
393  * @val if found.  The value is checked to be a string.
394  *
395  * Return: %0 if the property was found (success),
396  *         %-EINVAL if given arguments are not valid,
397  *         %-ENODATA if the property does not have a value,
398  *         %-EPROTO or %-EILSEQ if the property is not a string,
399  *         %-ENXIO if no suitable firmware interface is present.
400  */
401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402                                 const char *propname, const char **val)
403 {
404         int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406         return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410 /**
411  * fwnode_property_match_string - find a string in an array and return index
412  * @fwnode: Firmware node to get the property of
413  * @propname: Name of the property holding the array
414  * @string: String to look for
415  *
416  * Find a given string in a string array and if it is found return the
417  * index back.
418  *
419  * Return: %0 if the property was found (success),
420  *         %-EINVAL if given arguments are not valid,
421  *         %-ENODATA if the property does not have a value,
422  *         %-EPROTO if the property is not an array of strings,
423  *         %-ENXIO if no suitable firmware interface is present.
424  */
425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426         const char *propname, const char *string)
427 {
428         const char **values;
429         int nval, ret;
430
431         nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432         if (nval < 0)
433                 return nval;
434
435         if (nval == 0)
436                 return -ENODATA;
437
438         values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439         if (!values)
440                 return -ENOMEM;
441
442         ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443         if (ret < 0)
444                 goto out;
445
446         ret = match_string(values, nval, string);
447         if (ret < 0)
448                 ret = -ENODATA;
449 out:
450         kfree(values);
451         return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455 /**
456  * fwnode_property_get_reference_args() - Find a reference with arguments
457  * @fwnode:     Firmware node where to look for the reference
458  * @prop:       The name of the property
459  * @nargs_prop: The name of the property telling the number of
460  *              arguments in the referred node. NULL if @nargs is known,
461  *              otherwise @nargs is ignored. Only relevant on OF.
462  * @nargs:      Number of arguments. Ignored if @nargs_prop is non-NULL.
463  * @index:      Index of the reference, from zero onwards.
464  * @args:       Result structure with reference and integer arguments.
465  *
466  * Obtain a reference based on a named property in an fwnode, with
467  * integer arguments.
468  *
469  * Caller is responsible to call fwnode_handle_put() on the returned
470  * args->fwnode pointer.
471  *
472  * Returns: %0 on success
473  *          %-ENOENT when the index is out of bounds, the index has an empty
474  *                   reference or the property was not found
475  *          %-EINVAL on parse error
476  */
477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478                                        const char *prop, const char *nargs_prop,
479                                        unsigned int nargs, unsigned int index,
480                                        struct fwnode_reference_args *args)
481 {
482         return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483                                   nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487 /**
488  * fwnode_find_reference - Find named reference to a fwnode_handle
489  * @fwnode: Firmware node where to look for the reference
490  * @name: The name of the reference
491  * @index: Index of the reference
492  *
493  * @index can be used when the named reference holds a table of references.
494  *
495  * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496  * call fwnode_handle_put() on the returned fwnode pointer.
497  */
498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499                                             const char *name,
500                                             unsigned int index)
501 {
502         struct fwnode_reference_args args;
503         int ret;
504
505         ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506                                                  &args);
507         return ret ? ERR_PTR(ret) : args.fwnode;
508 }
509 EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511 /**
512  * device_remove_properties - Remove properties from a device object.
513  * @dev: Device whose properties to remove.
514  *
515  * The function removes properties previously associated to the device
516  * firmware node with device_add_properties(). Memory allocated to the
517  * properties will also be released.
518  */
519 void device_remove_properties(struct device *dev)
520 {
521         struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523         if (!fwnode)
524                 return;
525
526         if (is_software_node(fwnode->secondary)) {
527                 fwnode_remove_software_node(fwnode->secondary);
528                 set_secondary_fwnode(dev, NULL);
529         }
530 }
531 EXPORT_SYMBOL_GPL(device_remove_properties);
532
533 /**
534  * device_add_properties - Add a collection of properties to a device object.
535  * @dev: Device to add properties to.
536  * @properties: Collection of properties to add.
537  *
538  * Associate a collection of device properties represented by @properties with
539  * @dev. The function takes a copy of @properties.
540  *
541  * WARNING: The callers should not use this function if it is known that there
542  * is no real firmware node associated with @dev! In that case the callers
543  * should create a software node and assign it to @dev directly.
544  */
545 int device_add_properties(struct device *dev,
546                           const struct property_entry *properties)
547 {
548         struct fwnode_handle *fwnode;
549
550         fwnode = fwnode_create_software_node(properties, NULL);
551         if (IS_ERR(fwnode))
552                 return PTR_ERR(fwnode);
553
554         set_secondary_fwnode(dev, fwnode);
555         return 0;
556 }
557 EXPORT_SYMBOL_GPL(device_add_properties);
558
559 /**
560  * fwnode_get_name - Return the name of a node
561  * @fwnode: The firmware node
562  *
563  * Returns a pointer to the node name.
564  */
565 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566 {
567         return fwnode_call_ptr_op(fwnode, get_name);
568 }
569 EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571 /**
572  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573  * @fwnode: The firmware node
574  *
575  * Returns the prefix of a node, intended to be printed right before the node.
576  * The prefix works also as a separator between the nodes.
577  */
578 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579 {
580         return fwnode_call_ptr_op(fwnode, get_name_prefix);
581 }
582
583 /**
584  * fwnode_get_parent - Return parent firwmare node
585  * @fwnode: Firmware whose parent is retrieved
586  *
587  * Return parent firmware node of the given node if possible or %NULL if no
588  * parent was available.
589  */
590 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591 {
592         return fwnode_call_ptr_op(fwnode, get_parent);
593 }
594 EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596 /**
597  * fwnode_get_next_parent - Iterate to the node's parent
598  * @fwnode: Firmware whose parent is retrieved
599  *
600  * This is like fwnode_get_parent() except that it drops the refcount
601  * on the passed node, making it suitable for iterating through a
602  * node's parents.
603  *
604  * Returns a node pointer with refcount incremented, use
605  * fwnode_handle_node() on it when done.
606  */
607 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608 {
609         struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611         fwnode_handle_put(fwnode);
612
613         return parent;
614 }
615 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617 /**
618  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
619  * @fwnode: firmware node
620  *
621  * Given a firmware node (@fwnode), this function finds its closest ancestor
622  * firmware node that has a corresponding struct device and returns that struct
623  * device.
624  *
625  * The caller of this function is expected to call put_device() on the returned
626  * device when they are done.
627  */
628 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
629 {
630         struct device *dev = NULL;
631
632         fwnode_handle_get(fwnode);
633         do {
634                 fwnode = fwnode_get_next_parent(fwnode);
635                 if (fwnode)
636                         dev = get_dev_from_fwnode(fwnode);
637         } while (fwnode && !dev);
638         fwnode_handle_put(fwnode);
639         return dev;
640 }
641
642 /**
643  * fwnode_count_parents - Return the number of parents a node has
644  * @fwnode: The node the parents of which are to be counted
645  *
646  * Returns the number of parents a node has.
647  */
648 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
649 {
650         struct fwnode_handle *__fwnode;
651         unsigned int count;
652
653         __fwnode = fwnode_get_parent(fwnode);
654
655         for (count = 0; __fwnode; count++)
656                 __fwnode = fwnode_get_next_parent(__fwnode);
657
658         return count;
659 }
660 EXPORT_SYMBOL_GPL(fwnode_count_parents);
661
662 /**
663  * fwnode_get_nth_parent - Return an nth parent of a node
664  * @fwnode: The node the parent of which is requested
665  * @depth: Distance of the parent from the node
666  *
667  * Returns the nth parent of a node. If there is no parent at the requested
668  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
669  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
670  *
671  * The caller is responsible for calling fwnode_handle_put() for the returned
672  * node.
673  */
674 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
675                                             unsigned int depth)
676 {
677         unsigned int i;
678
679         fwnode_handle_get(fwnode);
680
681         for (i = 0; i < depth && fwnode; i++)
682                 fwnode = fwnode_get_next_parent(fwnode);
683
684         return fwnode;
685 }
686 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
687
688 /**
689  * fwnode_is_ancestor_of - Test if @test_ancestor is ancestor of @test_child
690  * @test_ancestor: Firmware which is tested for being an ancestor
691  * @test_child: Firmware which is tested for being the child
692  *
693  * A node is considered an ancestor of itself too.
694  *
695  * Returns true if @test_ancestor is an ancestor of @test_child.
696  * Otherwise, returns false.
697  */
698 bool fwnode_is_ancestor_of(struct fwnode_handle *test_ancestor,
699                                   struct fwnode_handle *test_child)
700 {
701         if (!test_ancestor)
702                 return false;
703
704         fwnode_handle_get(test_child);
705         while (test_child) {
706                 if (test_child == test_ancestor) {
707                         fwnode_handle_put(test_child);
708                         return true;
709                 }
710                 test_child = fwnode_get_next_parent(test_child);
711         }
712         return false;
713 }
714
715 /**
716  * fwnode_get_next_child_node - Return the next child node handle for a node
717  * @fwnode: Firmware node to find the next child node for.
718  * @child: Handle to one of the node's child nodes or a %NULL handle.
719  */
720 struct fwnode_handle *
721 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
722                            struct fwnode_handle *child)
723 {
724         return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
725 }
726 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
727
728 /**
729  * fwnode_get_next_available_child_node - Return the next
730  * available child node handle for a node
731  * @fwnode: Firmware node to find the next child node for.
732  * @child: Handle to one of the node's child nodes or a %NULL handle.
733  */
734 struct fwnode_handle *
735 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
736                                      struct fwnode_handle *child)
737 {
738         struct fwnode_handle *next_child = child;
739
740         if (!fwnode)
741                 return NULL;
742
743         do {
744                 next_child = fwnode_get_next_child_node(fwnode, next_child);
745
746                 if (!next_child || fwnode_device_is_available(next_child))
747                         break;
748         } while (next_child);
749
750         return next_child;
751 }
752 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
753
754 /**
755  * device_get_next_child_node - Return the next child node handle for a device
756  * @dev: Device to find the next child node for.
757  * @child: Handle to one of the device's child nodes or a null handle.
758  */
759 struct fwnode_handle *device_get_next_child_node(struct device *dev,
760                                                  struct fwnode_handle *child)
761 {
762         struct acpi_device *adev = ACPI_COMPANION(dev);
763         struct fwnode_handle *fwnode = NULL, *next;
764
765         if (dev->of_node)
766                 fwnode = &dev->of_node->fwnode;
767         else if (adev)
768                 fwnode = acpi_fwnode_handle(adev);
769
770         /* Try to find a child in primary fwnode */
771         next = fwnode_get_next_child_node(fwnode, child);
772         if (next)
773                 return next;
774
775         /* When no more children in primary, continue with secondary */
776         if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
777                 next = fwnode_get_next_child_node(fwnode->secondary, child);
778
779         return next;
780 }
781 EXPORT_SYMBOL_GPL(device_get_next_child_node);
782
783 /**
784  * fwnode_get_named_child_node - Return first matching named child node handle
785  * @fwnode: Firmware node to find the named child node for.
786  * @childname: String to match child node name against.
787  */
788 struct fwnode_handle *
789 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
790                             const char *childname)
791 {
792         return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
793 }
794 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
795
796 /**
797  * device_get_named_child_node - Return first matching named child node handle
798  * @dev: Device to find the named child node for.
799  * @childname: String to match child node name against.
800  */
801 struct fwnode_handle *device_get_named_child_node(struct device *dev,
802                                                   const char *childname)
803 {
804         return fwnode_get_named_child_node(dev_fwnode(dev), childname);
805 }
806 EXPORT_SYMBOL_GPL(device_get_named_child_node);
807
808 /**
809  * fwnode_handle_get - Obtain a reference to a device node
810  * @fwnode: Pointer to the device node to obtain the reference to.
811  *
812  * Returns the fwnode handle.
813  */
814 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
815 {
816         if (!fwnode_has_op(fwnode, get))
817                 return fwnode;
818
819         return fwnode_call_ptr_op(fwnode, get);
820 }
821 EXPORT_SYMBOL_GPL(fwnode_handle_get);
822
823 /**
824  * fwnode_handle_put - Drop reference to a device node
825  * @fwnode: Pointer to the device node to drop the reference to.
826  *
827  * This has to be used when terminating device_for_each_child_node() iteration
828  * with break or return to prevent stale device node references from being left
829  * behind.
830  */
831 void fwnode_handle_put(struct fwnode_handle *fwnode)
832 {
833         fwnode_call_void_op(fwnode, put);
834 }
835 EXPORT_SYMBOL_GPL(fwnode_handle_put);
836
837 /**
838  * fwnode_device_is_available - check if a device is available for use
839  * @fwnode: Pointer to the fwnode of the device.
840  *
841  * For fwnode node types that don't implement the .device_is_available()
842  * operation, this function returns true.
843  */
844 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
845 {
846         if (!fwnode_has_op(fwnode, device_is_available))
847                 return true;
848
849         return fwnode_call_bool_op(fwnode, device_is_available);
850 }
851 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
852
853 /**
854  * device_get_child_node_count - return the number of child nodes for device
855  * @dev: Device to cound the child nodes for
856  */
857 unsigned int device_get_child_node_count(struct device *dev)
858 {
859         struct fwnode_handle *child;
860         unsigned int count = 0;
861
862         device_for_each_child_node(dev, child)
863                 count++;
864
865         return count;
866 }
867 EXPORT_SYMBOL_GPL(device_get_child_node_count);
868
869 bool device_dma_supported(struct device *dev)
870 {
871         /* For DT, this is always supported.
872          * For ACPI, this depends on CCA, which
873          * is determined by the acpi_dma_supported().
874          */
875         if (IS_ENABLED(CONFIG_OF) && dev->of_node)
876                 return true;
877
878         return acpi_dma_supported(ACPI_COMPANION(dev));
879 }
880 EXPORT_SYMBOL_GPL(device_dma_supported);
881
882 enum dev_dma_attr device_get_dma_attr(struct device *dev)
883 {
884         enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
885
886         if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
887                 if (of_dma_is_coherent(dev->of_node))
888                         attr = DEV_DMA_COHERENT;
889                 else
890                         attr = DEV_DMA_NON_COHERENT;
891         } else
892                 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
893
894         return attr;
895 }
896 EXPORT_SYMBOL_GPL(device_get_dma_attr);
897
898 /**
899  * fwnode_get_phy_mode - Get phy mode for given firmware node
900  * @fwnode:     Pointer to the given node
901  *
902  * The function gets phy interface string from property 'phy-mode' or
903  * 'phy-connection-type', and return its index in phy_modes table, or errno in
904  * error case.
905  */
906 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
907 {
908         const char *pm;
909         int err, i;
910
911         err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
912         if (err < 0)
913                 err = fwnode_property_read_string(fwnode,
914                                                   "phy-connection-type", &pm);
915         if (err < 0)
916                 return err;
917
918         for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
919                 if (!strcasecmp(pm, phy_modes(i)))
920                         return i;
921
922         return -ENODEV;
923 }
924 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
925
926 /**
927  * device_get_phy_mode - Get phy mode for given device
928  * @dev:        Pointer to the given device
929  *
930  * The function gets phy interface string from property 'phy-mode' or
931  * 'phy-connection-type', and return its index in phy_modes table, or errno in
932  * error case.
933  */
934 int device_get_phy_mode(struct device *dev)
935 {
936         return fwnode_get_phy_mode(dev_fwnode(dev));
937 }
938 EXPORT_SYMBOL_GPL(device_get_phy_mode);
939
940 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
941                                  const char *name, char *addr,
942                                  int alen)
943 {
944         int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
945
946         if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
947                 return addr;
948         return NULL;
949 }
950
951 /**
952  * fwnode_get_mac_address - Get the MAC from the firmware node
953  * @fwnode:     Pointer to the firmware node
954  * @addr:       Address of buffer to store the MAC in
955  * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
956  *
957  * Search the firmware node for the best MAC address to use.  'mac-address' is
958  * checked first, because that is supposed to contain to "most recent" MAC
959  * address. If that isn't set, then 'local-mac-address' is checked next,
960  * because that is the default address.  If that isn't set, then the obsolete
961  * 'address' is checked, just in case we're using an old device tree.
962  *
963  * Note that the 'address' property is supposed to contain a virtual address of
964  * the register set, but some DTS files have redefined that property to be the
965  * MAC address.
966  *
967  * All-zero MAC addresses are rejected, because those could be properties that
968  * exist in the firmware tables, but were not updated by the firmware.  For
969  * example, the DTS could define 'mac-address' and 'local-mac-address', with
970  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
971  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
972  * exists but is all zeros.
973 */
974 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
975 {
976         char *res;
977
978         res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
979         if (res)
980                 return res;
981
982         res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
983         if (res)
984                 return res;
985
986         return fwnode_get_mac_addr(fwnode, "address", addr, alen);
987 }
988 EXPORT_SYMBOL(fwnode_get_mac_address);
989
990 /**
991  * device_get_mac_address - Get the MAC for a given device
992  * @dev:        Pointer to the device
993  * @addr:       Address of buffer to store the MAC in
994  * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
995  */
996 void *device_get_mac_address(struct device *dev, char *addr, int alen)
997 {
998         return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
999 }
1000 EXPORT_SYMBOL(device_get_mac_address);
1001
1002 /**
1003  * fwnode_irq_get - Get IRQ directly from a fwnode
1004  * @fwnode:     Pointer to the firmware node
1005  * @index:      Zero-based index of the IRQ
1006  *
1007  * Returns Linux IRQ number on success. Other values are determined
1008  * accordingly to acpi_/of_ irq_get() operation.
1009  */
1010 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1011 {
1012         struct device_node *of_node = to_of_node(fwnode);
1013         struct resource res;
1014         int ret;
1015
1016         if (IS_ENABLED(CONFIG_OF) && of_node)
1017                 return of_irq_get(of_node, index);
1018
1019         ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1020         if (ret)
1021                 return ret;
1022
1023         return res.start;
1024 }
1025 EXPORT_SYMBOL(fwnode_irq_get);
1026
1027 /**
1028  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1029  * @fwnode: Pointer to the parent firmware node
1030  * @prev: Previous endpoint node or %NULL to get the first
1031  *
1032  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1033  * are available.
1034  */
1035 struct fwnode_handle *
1036 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1037                                struct fwnode_handle *prev)
1038 {
1039         return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1040 }
1041 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1042
1043 /**
1044  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1045  * @endpoint: Endpoint firmware node of the port
1046  *
1047  * Return: the firmware node of the device the @endpoint belongs to.
1048  */
1049 struct fwnode_handle *
1050 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1051 {
1052         struct fwnode_handle *port, *parent;
1053
1054         port = fwnode_get_parent(endpoint);
1055         parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1056
1057         fwnode_handle_put(port);
1058
1059         return parent;
1060 }
1061 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1062
1063 /**
1064  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1065  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1066  *
1067  * Extracts firmware node of a remote device the @fwnode points to.
1068  */
1069 struct fwnode_handle *
1070 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1071 {
1072         struct fwnode_handle *endpoint, *parent;
1073
1074         endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1075         parent = fwnode_graph_get_port_parent(endpoint);
1076
1077         fwnode_handle_put(endpoint);
1078
1079         return parent;
1080 }
1081 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1082
1083 /**
1084  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1085  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1086  *
1087  * Extracts firmware node of a remote port the @fwnode points to.
1088  */
1089 struct fwnode_handle *
1090 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1091 {
1092         return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1093 }
1094 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1095
1096 /**
1097  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1098  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099  *
1100  * Extracts firmware node of a remote endpoint the @fwnode points to.
1101  */
1102 struct fwnode_handle *
1103 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1104 {
1105         return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1106 }
1107 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1108
1109 /**
1110  * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1111  * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1112  * @port_id: identifier of the parent port node
1113  * @endpoint_id: identifier of the endpoint node
1114  *
1115  * Return: Remote fwnode handle associated with remote endpoint node linked
1116  *         to @node. Use fwnode_node_put() on it when done.
1117  */
1118 struct fwnode_handle *
1119 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1120                              u32 endpoint_id)
1121 {
1122         struct fwnode_handle *endpoint = NULL;
1123
1124         while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1125                 struct fwnode_endpoint fwnode_ep;
1126                 struct fwnode_handle *remote;
1127                 int ret;
1128
1129                 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1130                 if (ret < 0)
1131                         continue;
1132
1133                 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1134                         continue;
1135
1136                 remote = fwnode_graph_get_remote_port_parent(endpoint);
1137                 if (!remote)
1138                         return NULL;
1139
1140                 return fwnode_device_is_available(remote) ? remote : NULL;
1141         }
1142
1143         return NULL;
1144 }
1145 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1146
1147 /**
1148  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1149  * @fwnode: parent fwnode_handle containing the graph
1150  * @port: identifier of the port node
1151  * @endpoint: identifier of the endpoint node under the port node
1152  * @flags: fwnode lookup flags
1153  *
1154  * Return the fwnode handle of the local endpoint corresponding the port and
1155  * endpoint IDs or NULL if not found.
1156  *
1157  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1158  * has not been found, look for the closest endpoint ID greater than the
1159  * specified one and return the endpoint that corresponds to it, if present.
1160  *
1161  * Do not return endpoints that belong to disabled devices, unless
1162  * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1163  *
1164  * The returned endpoint needs to be released by calling fwnode_handle_put() on
1165  * it when it is not needed any more.
1166  */
1167 struct fwnode_handle *
1168 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1169                                 u32 port, u32 endpoint, unsigned long flags)
1170 {
1171         struct fwnode_handle *ep = NULL, *best_ep = NULL;
1172         unsigned int best_ep_id = 0;
1173         bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1174         bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1175
1176         while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1177                 struct fwnode_endpoint fwnode_ep = { 0 };
1178                 int ret;
1179
1180                 if (enabled_only) {
1181                         struct fwnode_handle *dev_node;
1182                         bool available;
1183
1184                         dev_node = fwnode_graph_get_remote_port_parent(ep);
1185                         available = fwnode_device_is_available(dev_node);
1186                         fwnode_handle_put(dev_node);
1187                         if (!available)
1188                                 continue;
1189                 }
1190
1191                 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1192                 if (ret < 0)
1193                         continue;
1194
1195                 if (fwnode_ep.port != port)
1196                         continue;
1197
1198                 if (fwnode_ep.id == endpoint)
1199                         return ep;
1200
1201                 if (!endpoint_next)
1202                         continue;
1203
1204                 /*
1205                  * If the endpoint that has just been found is not the first
1206                  * matching one and the ID of the one found previously is closer
1207                  * to the requested endpoint ID, skip it.
1208                  */
1209                 if (fwnode_ep.id < endpoint ||
1210                     (best_ep && best_ep_id < fwnode_ep.id))
1211                         continue;
1212
1213                 fwnode_handle_put(best_ep);
1214                 best_ep = fwnode_handle_get(ep);
1215                 best_ep_id = fwnode_ep.id;
1216         }
1217
1218         if (best_ep)
1219                 return best_ep;
1220
1221         if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
1222                 return fwnode_graph_get_endpoint_by_id(fwnode->secondary, port,
1223                                                        endpoint, flags);
1224
1225         return NULL;
1226 }
1227 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1228
1229 /**
1230  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1231  * @fwnode: pointer to endpoint fwnode_handle
1232  * @endpoint: pointer to the fwnode endpoint data structure
1233  *
1234  * Parse @fwnode representing a graph endpoint node and store the
1235  * information in @endpoint. The caller must hold a reference to
1236  * @fwnode.
1237  */
1238 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1239                                 struct fwnode_endpoint *endpoint)
1240 {
1241         memset(endpoint, 0, sizeof(*endpoint));
1242
1243         return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1244 }
1245 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1246
1247 const void *device_get_match_data(struct device *dev)
1248 {
1249         return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1250 }
1251 EXPORT_SYMBOL_GPL(device_get_match_data);
1252
1253 static void *
1254 fwnode_graph_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1255                           void *data, devcon_match_fn_t match)
1256 {
1257         struct fwnode_handle *node;
1258         struct fwnode_handle *ep;
1259         void *ret;
1260
1261         fwnode_graph_for_each_endpoint(fwnode, ep) {
1262                 node = fwnode_graph_get_remote_port_parent(ep);
1263                 if (!fwnode_device_is_available(node))
1264                         continue;
1265
1266                 ret = match(node, con_id, data);
1267                 fwnode_handle_put(node);
1268                 if (ret) {
1269                         fwnode_handle_put(ep);
1270                         return ret;
1271                 }
1272         }
1273         return NULL;
1274 }
1275
1276 static void *
1277 fwnode_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1278                     void *data, devcon_match_fn_t match)
1279 {
1280         struct fwnode_handle *node;
1281         void *ret;
1282         int i;
1283
1284         for (i = 0; ; i++) {
1285                 node = fwnode_find_reference(fwnode, con_id, i);
1286                 if (IS_ERR(node))
1287                         break;
1288
1289                 ret = match(node, NULL, data);
1290                 fwnode_handle_put(node);
1291                 if (ret)
1292                         return ret;
1293         }
1294
1295         return NULL;
1296 }
1297
1298 /**
1299  * fwnode_connection_find_match - Find connection from a device node
1300  * @fwnode: Device node with the connection
1301  * @con_id: Identifier for the connection
1302  * @data: Data for the match function
1303  * @match: Function to check and convert the connection description
1304  *
1305  * Find a connection with unique identifier @con_id between @fwnode and another
1306  * device node. @match will be used to convert the connection description to
1307  * data the caller is expecting to be returned.
1308  */
1309 void *fwnode_connection_find_match(struct fwnode_handle *fwnode,
1310                                    const char *con_id, void *data,
1311                                    devcon_match_fn_t match)
1312 {
1313         void *ret;
1314
1315         if (!fwnode || !match)
1316                 return NULL;
1317
1318         ret = fwnode_graph_devcon_match(fwnode, con_id, data, match);
1319         if (ret)
1320                 return ret;
1321
1322         return fwnode_devcon_match(fwnode, con_id, data, match);
1323 }
1324 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);