Merge tag 'for-6.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / base / property.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/phy.h>
19
20 struct fwnode_handle *__dev_fwnode(struct device *dev)
21 {
22         return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23                 of_fwnode_handle(dev->of_node) : dev->fwnode;
24 }
25 EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28 {
29         return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30                 of_fwnode_handle(dev->of_node) : dev->fwnode;
31 }
32 EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34 /**
35  * device_property_present - check if a property of a device is present
36  * @dev: Device whose property is being checked
37  * @propname: Name of the property
38  *
39  * Check if property @propname is present in the device firmware description.
40  *
41  * Return: true if property @propname is present. Otherwise, returns false.
42  */
43 bool device_property_present(const struct device *dev, const char *propname)
44 {
45         return fwnode_property_present(dev_fwnode(dev), propname);
46 }
47 EXPORT_SYMBOL_GPL(device_property_present);
48
49 /**
50  * fwnode_property_present - check if a property of a firmware node is present
51  * @fwnode: Firmware node whose property to check
52  * @propname: Name of the property
53  *
54  * Return: true if property @propname is present. Otherwise, returns false.
55  */
56 bool fwnode_property_present(const struct fwnode_handle *fwnode,
57                              const char *propname)
58 {
59         bool ret;
60
61         if (IS_ERR_OR_NULL(fwnode))
62                 return false;
63
64         ret = fwnode_call_bool_op(fwnode, property_present, propname);
65         if (ret)
66                 return ret;
67
68         return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69 }
70 EXPORT_SYMBOL_GPL(fwnode_property_present);
71
72 /**
73  * device_property_read_u8_array - return a u8 array property of a device
74  * @dev: Device to get the property of
75  * @propname: Name of the property
76  * @val: The values are stored here or %NULL to return the number of values
77  * @nval: Size of the @val array
78  *
79  * Function reads an array of u8 properties with @propname from the device
80  * firmware description and stores them to @val if found.
81  *
82  * It's recommended to call device_property_count_u8() instead of calling
83  * this function with @val equals %NULL and @nval equals 0.
84  *
85  * Return: number of values if @val was %NULL,
86  *         %0 if the property was found (success),
87  *         %-EINVAL if given arguments are not valid,
88  *         %-ENODATA if the property does not have a value,
89  *         %-EPROTO if the property is not an array of numbers,
90  *         %-EOVERFLOW if the size of the property is not as expected.
91  *         %-ENXIO if no suitable firmware interface is present.
92  */
93 int device_property_read_u8_array(const struct device *dev, const char *propname,
94                                   u8 *val, size_t nval)
95 {
96         return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97 }
98 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99
100 /**
101  * device_property_read_u16_array - return a u16 array property of a device
102  * @dev: Device to get the property of
103  * @propname: Name of the property
104  * @val: The values are stored here or %NULL to return the number of values
105  * @nval: Size of the @val array
106  *
107  * Function reads an array of u16 properties with @propname from the device
108  * firmware description and stores them to @val if found.
109  *
110  * It's recommended to call device_property_count_u16() instead of calling
111  * this function with @val equals %NULL and @nval equals 0.
112  *
113  * Return: number of values if @val was %NULL,
114  *         %0 if the property was found (success),
115  *         %-EINVAL if given arguments are not valid,
116  *         %-ENODATA if the property does not have a value,
117  *         %-EPROTO if the property is not an array of numbers,
118  *         %-EOVERFLOW if the size of the property is not as expected.
119  *         %-ENXIO if no suitable firmware interface is present.
120  */
121 int device_property_read_u16_array(const struct device *dev, const char *propname,
122                                    u16 *val, size_t nval)
123 {
124         return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125 }
126 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127
128 /**
129  * device_property_read_u32_array - return a u32 array property of a device
130  * @dev: Device to get the property of
131  * @propname: Name of the property
132  * @val: The values are stored here or %NULL to return the number of values
133  * @nval: Size of the @val array
134  *
135  * Function reads an array of u32 properties with @propname from the device
136  * firmware description and stores them to @val if found.
137  *
138  * It's recommended to call device_property_count_u32() instead of calling
139  * this function with @val equals %NULL and @nval equals 0.
140  *
141  * Return: number of values if @val was %NULL,
142  *         %0 if the property was found (success),
143  *         %-EINVAL if given arguments are not valid,
144  *         %-ENODATA if the property does not have a value,
145  *         %-EPROTO if the property is not an array of numbers,
146  *         %-EOVERFLOW if the size of the property is not as expected.
147  *         %-ENXIO if no suitable firmware interface is present.
148  */
149 int device_property_read_u32_array(const struct device *dev, const char *propname,
150                                    u32 *val, size_t nval)
151 {
152         return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153 }
154 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155
156 /**
157  * device_property_read_u64_array - return a u64 array property of a device
158  * @dev: Device to get the property of
159  * @propname: Name of the property
160  * @val: The values are stored here or %NULL to return the number of values
161  * @nval: Size of the @val array
162  *
163  * Function reads an array of u64 properties with @propname from the device
164  * firmware description and stores them to @val if found.
165  *
166  * It's recommended to call device_property_count_u64() instead of calling
167  * this function with @val equals %NULL and @nval equals 0.
168  *
169  * Return: number of values if @val was %NULL,
170  *         %0 if the property was found (success),
171  *         %-EINVAL if given arguments are not valid,
172  *         %-ENODATA if the property does not have a value,
173  *         %-EPROTO if the property is not an array of numbers,
174  *         %-EOVERFLOW if the size of the property is not as expected.
175  *         %-ENXIO if no suitable firmware interface is present.
176  */
177 int device_property_read_u64_array(const struct device *dev, const char *propname,
178                                    u64 *val, size_t nval)
179 {
180         return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181 }
182 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183
184 /**
185  * device_property_read_string_array - return a string array property of device
186  * @dev: Device to get the property of
187  * @propname: Name of the property
188  * @val: The values are stored here or %NULL to return the number of values
189  * @nval: Size of the @val array
190  *
191  * Function reads an array of string properties with @propname from the device
192  * firmware description and stores them to @val if found.
193  *
194  * It's recommended to call device_property_string_array_count() instead of calling
195  * this function with @val equals %NULL and @nval equals 0.
196  *
197  * Return: number of values read on success if @val is non-NULL,
198  *         number of values available on success if @val is NULL,
199  *         %-EINVAL if given arguments are not valid,
200  *         %-ENODATA if the property does not have a value,
201  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
202  *         %-EOVERFLOW if the size of the property is not as expected.
203  *         %-ENXIO if no suitable firmware interface is present.
204  */
205 int device_property_read_string_array(const struct device *dev, const char *propname,
206                                       const char **val, size_t nval)
207 {
208         return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209 }
210 EXPORT_SYMBOL_GPL(device_property_read_string_array);
211
212 /**
213  * device_property_read_string - return a string property of a device
214  * @dev: Device to get the property of
215  * @propname: Name of the property
216  * @val: The value is stored here
217  *
218  * Function reads property @propname from the device firmware description and
219  * stores the value into @val if found. The value is checked to be a string.
220  *
221  * Return: %0 if the property was found (success),
222  *         %-EINVAL if given arguments are not valid,
223  *         %-ENODATA if the property does not have a value,
224  *         %-EPROTO or %-EILSEQ if the property type is not a string.
225  *         %-ENXIO if no suitable firmware interface is present.
226  */
227 int device_property_read_string(const struct device *dev, const char *propname,
228                                 const char **val)
229 {
230         return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231 }
232 EXPORT_SYMBOL_GPL(device_property_read_string);
233
234 /**
235  * device_property_match_string - find a string in an array and return index
236  * @dev: Device to get the property of
237  * @propname: Name of the property holding the array
238  * @string: String to look for
239  *
240  * Find a given string in a string array and if it is found return the
241  * index back.
242  *
243  * Return: index, starting from %0, if the property was found (success),
244  *         %-EINVAL if given arguments are not valid,
245  *         %-ENODATA if the property does not have a value,
246  *         %-EPROTO if the property is not an array of strings,
247  *         %-ENXIO if no suitable firmware interface is present.
248  */
249 int device_property_match_string(const struct device *dev, const char *propname,
250                                  const char *string)
251 {
252         return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253 }
254 EXPORT_SYMBOL_GPL(device_property_match_string);
255
256 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257                                           const char *propname,
258                                           unsigned int elem_size, void *val,
259                                           size_t nval)
260 {
261         int ret;
262
263         if (IS_ERR_OR_NULL(fwnode))
264                 return -EINVAL;
265
266         ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267                                  elem_size, val, nval);
268         if (ret != -EINVAL)
269                 return ret;
270
271         return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272                                   elem_size, val, nval);
273 }
274
275 /**
276  * fwnode_property_read_u8_array - return a u8 array property of firmware node
277  * @fwnode: Firmware node to get the property of
278  * @propname: Name of the property
279  * @val: The values are stored here or %NULL to return the number of values
280  * @nval: Size of the @val array
281  *
282  * Read an array of u8 properties with @propname from @fwnode and stores them to
283  * @val if found.
284  *
285  * It's recommended to call fwnode_property_count_u8() instead of calling
286  * this function with @val equals %NULL and @nval equals 0.
287  *
288  * Return: number of values if @val was %NULL,
289  *         %0 if the property was found (success),
290  *         %-EINVAL if given arguments are not valid,
291  *         %-ENODATA if the property does not have a value,
292  *         %-EPROTO if the property is not an array of numbers,
293  *         %-EOVERFLOW if the size of the property is not as expected,
294  *         %-ENXIO if no suitable firmware interface is present.
295  */
296 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297                                   const char *propname, u8 *val, size_t nval)
298 {
299         return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
300                                               val, nval);
301 }
302 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303
304 /**
305  * fwnode_property_read_u16_array - return a u16 array property of firmware node
306  * @fwnode: Firmware node to get the property of
307  * @propname: Name of the property
308  * @val: The values are stored here or %NULL to return the number of values
309  * @nval: Size of the @val array
310  *
311  * Read an array of u16 properties with @propname from @fwnode and store them to
312  * @val if found.
313  *
314  * It's recommended to call fwnode_property_count_u16() instead of calling
315  * this function with @val equals %NULL and @nval equals 0.
316  *
317  * Return: number of values if @val was %NULL,
318  *         %0 if the property was found (success),
319  *         %-EINVAL if given arguments are not valid,
320  *         %-ENODATA if the property does not have a value,
321  *         %-EPROTO if the property is not an array of numbers,
322  *         %-EOVERFLOW if the size of the property is not as expected,
323  *         %-ENXIO if no suitable firmware interface is present.
324  */
325 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326                                    const char *propname, u16 *val, size_t nval)
327 {
328         return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
329                                               val, nval);
330 }
331 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332
333 /**
334  * fwnode_property_read_u32_array - return a u32 array property of firmware node
335  * @fwnode: Firmware node to get the property of
336  * @propname: Name of the property
337  * @val: The values are stored here or %NULL to return the number of values
338  * @nval: Size of the @val array
339  *
340  * Read an array of u32 properties with @propname from @fwnode store them to
341  * @val if found.
342  *
343  * It's recommended to call fwnode_property_count_u32() instead of calling
344  * this function with @val equals %NULL and @nval equals 0.
345  *
346  * Return: number of values if @val was %NULL,
347  *         %0 if the property was found (success),
348  *         %-EINVAL if given arguments are not valid,
349  *         %-ENODATA if the property does not have a value,
350  *         %-EPROTO if the property is not an array of numbers,
351  *         %-EOVERFLOW if the size of the property is not as expected,
352  *         %-ENXIO if no suitable firmware interface is present.
353  */
354 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355                                    const char *propname, u32 *val, size_t nval)
356 {
357         return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
358                                               val, nval);
359 }
360 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361
362 /**
363  * fwnode_property_read_u64_array - return a u64 array property firmware node
364  * @fwnode: Firmware node to get the property of
365  * @propname: Name of the property
366  * @val: The values are stored here or %NULL to return the number of values
367  * @nval: Size of the @val array
368  *
369  * Read an array of u64 properties with @propname from @fwnode and store them to
370  * @val if found.
371  *
372  * It's recommended to call fwnode_property_count_u64() instead of calling
373  * this function with @val equals %NULL and @nval equals 0.
374  *
375  * Return: number of values if @val was %NULL,
376  *         %0 if the property was found (success),
377  *         %-EINVAL if given arguments are not valid,
378  *         %-ENODATA if the property does not have a value,
379  *         %-EPROTO if the property is not an array of numbers,
380  *         %-EOVERFLOW if the size of the property is not as expected,
381  *         %-ENXIO if no suitable firmware interface is present.
382  */
383 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384                                    const char *propname, u64 *val, size_t nval)
385 {
386         return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
387                                               val, nval);
388 }
389 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390
391 /**
392  * fwnode_property_read_string_array - return string array property of a node
393  * @fwnode: Firmware node to get the property of
394  * @propname: Name of the property
395  * @val: The values are stored here or %NULL to return the number of values
396  * @nval: Size of the @val array
397  *
398  * Read an string list property @propname from the given firmware node and store
399  * them to @val if found.
400  *
401  * It's recommended to call fwnode_property_string_array_count() instead of calling
402  * this function with @val equals %NULL and @nval equals 0.
403  *
404  * Return: number of values read on success if @val is non-NULL,
405  *         number of values available on success if @val is NULL,
406  *         %-EINVAL if given arguments are not valid,
407  *         %-ENODATA if the property does not have a value,
408  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
409  *         %-EOVERFLOW if the size of the property is not as expected,
410  *         %-ENXIO if no suitable firmware interface is present.
411  */
412 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413                                       const char *propname, const char **val,
414                                       size_t nval)
415 {
416         int ret;
417
418         if (IS_ERR_OR_NULL(fwnode))
419                 return -EINVAL;
420
421         ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422                                  val, nval);
423         if (ret != -EINVAL)
424                 return ret;
425
426         return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427                                   val, nval);
428 }
429 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430
431 /**
432  * fwnode_property_read_string - return a string property of a firmware node
433  * @fwnode: Firmware node to get the property of
434  * @propname: Name of the property
435  * @val: The value is stored here
436  *
437  * Read property @propname from the given firmware node and store the value into
438  * @val if found.  The value is checked to be a string.
439  *
440  * Return: %0 if the property was found (success),
441  *         %-EINVAL if given arguments are not valid,
442  *         %-ENODATA if the property does not have a value,
443  *         %-EPROTO or %-EILSEQ if the property is not a string,
444  *         %-ENXIO if no suitable firmware interface is present.
445  */
446 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447                                 const char *propname, const char **val)
448 {
449         int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450
451         return ret < 0 ? ret : 0;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454
455 /**
456  * fwnode_property_match_string - find a string in an array and return index
457  * @fwnode: Firmware node to get the property of
458  * @propname: Name of the property holding the array
459  * @string: String to look for
460  *
461  * Find a given string in a string array and if it is found return the
462  * index back.
463  *
464  * Return: index, starting from %0, if the property was found (success),
465  *         %-EINVAL if given arguments are not valid,
466  *         %-ENODATA if the property does not have a value,
467  *         %-EPROTO if the property is not an array of strings,
468  *         %-ENXIO if no suitable firmware interface is present.
469  */
470 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471         const char *propname, const char *string)
472 {
473         const char **values;
474         int nval, ret;
475
476         nval = fwnode_property_string_array_count(fwnode, propname);
477         if (nval < 0)
478                 return nval;
479
480         if (nval == 0)
481                 return -ENODATA;
482
483         values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
484         if (!values)
485                 return -ENOMEM;
486
487         ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488         if (ret < 0)
489                 goto out_free;
490
491         ret = match_string(values, nval, string);
492         if (ret < 0)
493                 ret = -ENODATA;
494
495 out_free:
496         kfree(values);
497         return ret;
498 }
499 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500
501 /**
502  * fwnode_property_match_property_string - find a property string value in an array and return index
503  * @fwnode: Firmware node to get the property of
504  * @propname: Name of the property holding the string value
505  * @array: String array to search in
506  * @n: Size of the @array
507  *
508  * Find a property string value in a given @array and if it is found return
509  * the index back.
510  *
511  * Return: index, starting from %0, if the string value was found in the @array (success),
512  *         %-ENOENT when the string value was not found in the @array,
513  *         %-EINVAL if given arguments are not valid,
514  *         %-ENODATA if the property does not have a value,
515  *         %-EPROTO or %-EILSEQ if the property is not a string,
516  *         %-ENXIO if no suitable firmware interface is present.
517  */
518 int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
519         const char *propname, const char * const *array, size_t n)
520 {
521         const char *string;
522         int ret;
523
524         ret = fwnode_property_read_string(fwnode, propname, &string);
525         if (ret)
526                 return ret;
527
528         ret = match_string(array, n, string);
529         if (ret < 0)
530                 ret = -ENOENT;
531
532         return ret;
533 }
534 EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
535
536 /**
537  * fwnode_property_get_reference_args() - Find a reference with arguments
538  * @fwnode:     Firmware node where to look for the reference
539  * @prop:       The name of the property
540  * @nargs_prop: The name of the property telling the number of
541  *              arguments in the referred node. NULL if @nargs is known,
542  *              otherwise @nargs is ignored. Only relevant on OF.
543  * @nargs:      Number of arguments. Ignored if @nargs_prop is non-NULL.
544  * @index:      Index of the reference, from zero onwards.
545  * @args:       Result structure with reference and integer arguments.
546  *              May be NULL.
547  *
548  * Obtain a reference based on a named property in an fwnode, with
549  * integer arguments.
550  *
551  * The caller is responsible for calling fwnode_handle_put() on the returned
552  * @args->fwnode pointer.
553  *
554  * Return: %0 on success
555  *          %-ENOENT when the index is out of bounds, the index has an empty
556  *                   reference or the property was not found
557  *          %-EINVAL on parse error
558  */
559 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
560                                        const char *prop, const char *nargs_prop,
561                                        unsigned int nargs, unsigned int index,
562                                        struct fwnode_reference_args *args)
563 {
564         int ret;
565
566         if (IS_ERR_OR_NULL(fwnode))
567                 return -ENOENT;
568
569         ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
570                                  nargs, index, args);
571         if (ret == 0)
572                 return ret;
573
574         if (IS_ERR_OR_NULL(fwnode->secondary))
575                 return ret;
576
577         return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
578                                   nargs, index, args);
579 }
580 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
581
582 /**
583  * fwnode_find_reference - Find named reference to a fwnode_handle
584  * @fwnode: Firmware node where to look for the reference
585  * @name: The name of the reference
586  * @index: Index of the reference
587  *
588  * @index can be used when the named reference holds a table of references.
589  *
590  * The caller is responsible for calling fwnode_handle_put() on the returned
591  * fwnode pointer.
592  *
593  * Return: a pointer to the reference fwnode, when found. Otherwise,
594  * returns an error pointer.
595  */
596 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
597                                             const char *name,
598                                             unsigned int index)
599 {
600         struct fwnode_reference_args args;
601         int ret;
602
603         ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
604                                                  &args);
605         return ret ? ERR_PTR(ret) : args.fwnode;
606 }
607 EXPORT_SYMBOL_GPL(fwnode_find_reference);
608
609 /**
610  * fwnode_get_name - Return the name of a node
611  * @fwnode: The firmware node
612  *
613  * Return: a pointer to the node name, or %NULL.
614  */
615 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
616 {
617         return fwnode_call_ptr_op(fwnode, get_name);
618 }
619 EXPORT_SYMBOL_GPL(fwnode_get_name);
620
621 /**
622  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
623  * @fwnode: The firmware node
624  *
625  * Return: the prefix of a node, intended to be printed right before the node.
626  * The prefix works also as a separator between the nodes.
627  */
628 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
629 {
630         return fwnode_call_ptr_op(fwnode, get_name_prefix);
631 }
632
633 /**
634  * fwnode_name_eq - Return true if node name is equal
635  * @fwnode: The firmware node
636  * @name: The name to which to compare the node name
637  *
638  * Compare the name provided as an argument to the name of the node, stopping
639  * the comparison at either NUL or '@' character, whichever comes first. This
640  * function is generally used for comparing node names while ignoring the
641  * possible unit address of the node.
642  *
643  * Return: true if the node name matches with the name provided in the @name
644  * argument, false otherwise.
645  */
646 bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
647 {
648         const char *node_name;
649         ptrdiff_t len;
650
651         node_name = fwnode_get_name(fwnode);
652         if (!node_name)
653                 return false;
654
655         len = strchrnul(node_name, '@') - node_name;
656
657         return str_has_prefix(node_name, name) == len;
658 }
659 EXPORT_SYMBOL_GPL(fwnode_name_eq);
660
661 /**
662  * fwnode_get_parent - Return parent firwmare node
663  * @fwnode: Firmware whose parent is retrieved
664  *
665  * The caller is responsible for calling fwnode_handle_put() on the returned
666  * fwnode pointer.
667  *
668  * Return: parent firmware node of the given node if possible or %NULL if no
669  * parent was available.
670  */
671 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
672 {
673         return fwnode_call_ptr_op(fwnode, get_parent);
674 }
675 EXPORT_SYMBOL_GPL(fwnode_get_parent);
676
677 /**
678  * fwnode_get_next_parent - Iterate to the node's parent
679  * @fwnode: Firmware whose parent is retrieved
680  *
681  * This is like fwnode_get_parent() except that it drops the refcount
682  * on the passed node, making it suitable for iterating through a
683  * node's parents.
684  *
685  * The caller is responsible for calling fwnode_handle_put() on the returned
686  * fwnode pointer. Note that this function also puts a reference to @fwnode
687  * unconditionally.
688  *
689  * Return: parent firmware node of the given node if possible or %NULL if no
690  * parent was available.
691  */
692 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
693 {
694         struct fwnode_handle *parent = fwnode_get_parent(fwnode);
695
696         fwnode_handle_put(fwnode);
697
698         return parent;
699 }
700 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
701
702 /**
703  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
704  * @fwnode: firmware node
705  *
706  * Given a firmware node (@fwnode), this function finds its closest ancestor
707  * firmware node that has a corresponding struct device and returns that struct
708  * device.
709  *
710  * The caller is responsible for calling put_device() on the returned device
711  * pointer.
712  *
713  * Return: a pointer to the device of the @fwnode's closest ancestor.
714  */
715 struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
716 {
717         struct fwnode_handle *parent;
718         struct device *dev;
719
720         fwnode_for_each_parent_node(fwnode, parent) {
721                 dev = get_dev_from_fwnode(parent);
722                 if (dev) {
723                         fwnode_handle_put(parent);
724                         return dev;
725                 }
726         }
727         return NULL;
728 }
729
730 /**
731  * fwnode_count_parents - Return the number of parents a node has
732  * @fwnode: The node the parents of which are to be counted
733  *
734  * Return: the number of parents a node has.
735  */
736 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
737 {
738         struct fwnode_handle *parent;
739         unsigned int count = 0;
740
741         fwnode_for_each_parent_node(fwnode, parent)
742                 count++;
743
744         return count;
745 }
746 EXPORT_SYMBOL_GPL(fwnode_count_parents);
747
748 /**
749  * fwnode_get_nth_parent - Return an nth parent of a node
750  * @fwnode: The node the parent of which is requested
751  * @depth: Distance of the parent from the node
752  *
753  * The caller is responsible for calling fwnode_handle_put() on the returned
754  * fwnode pointer.
755  *
756  * Return: the nth parent of a node. If there is no parent at the requested
757  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
758  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
759  */
760 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
761                                             unsigned int depth)
762 {
763         struct fwnode_handle *parent;
764
765         if (depth == 0)
766                 return fwnode_handle_get(fwnode);
767
768         fwnode_for_each_parent_node(fwnode, parent) {
769                 if (--depth == 0)
770                         return parent;
771         }
772         return NULL;
773 }
774 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
775
776 /**
777  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
778  * @ancestor: Firmware which is tested for being an ancestor
779  * @child: Firmware which is tested for being the child
780  *
781  * A node is considered an ancestor of itself too.
782  *
783  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
784  */
785 bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
786 {
787         struct fwnode_handle *parent;
788
789         if (IS_ERR_OR_NULL(ancestor))
790                 return false;
791
792         if (child == ancestor)
793                 return true;
794
795         fwnode_for_each_parent_node(child, parent) {
796                 if (parent == ancestor) {
797                         fwnode_handle_put(parent);
798                         return true;
799                 }
800         }
801         return false;
802 }
803
804 /**
805  * fwnode_get_next_child_node - Return the next child node handle for a node
806  * @fwnode: Firmware node to find the next child node for.
807  * @child: Handle to one of the node's child nodes or a %NULL handle.
808  *
809  * The caller is responsible for calling fwnode_handle_put() on the returned
810  * fwnode pointer. Note that this function also puts a reference to @child
811  * unconditionally.
812  */
813 struct fwnode_handle *
814 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
815                            struct fwnode_handle *child)
816 {
817         return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
818 }
819 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
820
821 /**
822  * fwnode_get_next_available_child_node - Return the next available child node handle for a node
823  * @fwnode: Firmware node to find the next child node for.
824  * @child: Handle to one of the node's child nodes or a %NULL handle.
825  *
826  * The caller is responsible for calling fwnode_handle_put() on the returned
827  * fwnode pointer. Note that this function also puts a reference to @child
828  * unconditionally.
829  */
830 struct fwnode_handle *
831 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
832                                      struct fwnode_handle *child)
833 {
834         struct fwnode_handle *next_child = child;
835
836         if (IS_ERR_OR_NULL(fwnode))
837                 return NULL;
838
839         do {
840                 next_child = fwnode_get_next_child_node(fwnode, next_child);
841                 if (!next_child)
842                         return NULL;
843         } while (!fwnode_device_is_available(next_child));
844
845         return next_child;
846 }
847 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
848
849 /**
850  * device_get_next_child_node - Return the next child node handle for a device
851  * @dev: Device to find the next child node for.
852  * @child: Handle to one of the device's child nodes or a %NULL handle.
853  *
854  * The caller is responsible for calling fwnode_handle_put() on the returned
855  * fwnode pointer. Note that this function also puts a reference to @child
856  * unconditionally.
857  */
858 struct fwnode_handle *device_get_next_child_node(const struct device *dev,
859                                                  struct fwnode_handle *child)
860 {
861         const struct fwnode_handle *fwnode = dev_fwnode(dev);
862         struct fwnode_handle *next;
863
864         if (IS_ERR_OR_NULL(fwnode))
865                 return NULL;
866
867         /* Try to find a child in primary fwnode */
868         next = fwnode_get_next_child_node(fwnode, child);
869         if (next)
870                 return next;
871
872         /* When no more children in primary, continue with secondary */
873         return fwnode_get_next_child_node(fwnode->secondary, child);
874 }
875 EXPORT_SYMBOL_GPL(device_get_next_child_node);
876
877 /**
878  * fwnode_get_named_child_node - Return first matching named child node handle
879  * @fwnode: Firmware node to find the named child node for.
880  * @childname: String to match child node name against.
881  *
882  * The caller is responsible for calling fwnode_handle_put() on the returned
883  * fwnode pointer.
884  */
885 struct fwnode_handle *
886 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
887                             const char *childname)
888 {
889         return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
890 }
891 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
892
893 /**
894  * device_get_named_child_node - Return first matching named child node handle
895  * @dev: Device to find the named child node for.
896  * @childname: String to match child node name against.
897  *
898  * The caller is responsible for calling fwnode_handle_put() on the returned
899  * fwnode pointer.
900  */
901 struct fwnode_handle *device_get_named_child_node(const struct device *dev,
902                                                   const char *childname)
903 {
904         return fwnode_get_named_child_node(dev_fwnode(dev), childname);
905 }
906 EXPORT_SYMBOL_GPL(device_get_named_child_node);
907
908 /**
909  * fwnode_handle_get - Obtain a reference to a device node
910  * @fwnode: Pointer to the device node to obtain the reference to.
911  *
912  * The caller is responsible for calling fwnode_handle_put() on the returned
913  * fwnode pointer.
914  *
915  * Return: the fwnode handle.
916  */
917 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
918 {
919         if (!fwnode_has_op(fwnode, get))
920                 return fwnode;
921
922         return fwnode_call_ptr_op(fwnode, get);
923 }
924 EXPORT_SYMBOL_GPL(fwnode_handle_get);
925
926 /**
927  * fwnode_handle_put - Drop reference to a device node
928  * @fwnode: Pointer to the device node to drop the reference to.
929  *
930  * This has to be used when terminating device_for_each_child_node() iteration
931  * with break or return to prevent stale device node references from being left
932  * behind.
933  */
934 void fwnode_handle_put(struct fwnode_handle *fwnode)
935 {
936         fwnode_call_void_op(fwnode, put);
937 }
938 EXPORT_SYMBOL_GPL(fwnode_handle_put);
939
940 /**
941  * fwnode_device_is_available - check if a device is available for use
942  * @fwnode: Pointer to the fwnode of the device.
943  *
944  * Return: true if device is available for use. Otherwise, returns false.
945  *
946  * For fwnode node types that don't implement the .device_is_available()
947  * operation, this function returns true.
948  */
949 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
950 {
951         if (IS_ERR_OR_NULL(fwnode))
952                 return false;
953
954         if (!fwnode_has_op(fwnode, device_is_available))
955                 return true;
956
957         return fwnode_call_bool_op(fwnode, device_is_available);
958 }
959 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
960
961 /**
962  * device_get_child_node_count - return the number of child nodes for device
963  * @dev: Device to cound the child nodes for
964  *
965  * Return: the number of child nodes for a given device.
966  */
967 unsigned int device_get_child_node_count(const struct device *dev)
968 {
969         struct fwnode_handle *child;
970         unsigned int count = 0;
971
972         device_for_each_child_node(dev, child)
973                 count++;
974
975         return count;
976 }
977 EXPORT_SYMBOL_GPL(device_get_child_node_count);
978
979 bool device_dma_supported(const struct device *dev)
980 {
981         return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
982 }
983 EXPORT_SYMBOL_GPL(device_dma_supported);
984
985 enum dev_dma_attr device_get_dma_attr(const struct device *dev)
986 {
987         if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
988                 return DEV_DMA_NOT_SUPPORTED;
989
990         return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
991 }
992 EXPORT_SYMBOL_GPL(device_get_dma_attr);
993
994 /**
995  * fwnode_get_phy_mode - Get phy mode for given firmware node
996  * @fwnode:     Pointer to the given node
997  *
998  * The function gets phy interface string from property 'phy-mode' or
999  * 'phy-connection-type', and return its index in phy_modes table, or errno in
1000  * error case.
1001  */
1002 int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
1003 {
1004         const char *pm;
1005         int err, i;
1006
1007         err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1008         if (err < 0)
1009                 err = fwnode_property_read_string(fwnode,
1010                                                   "phy-connection-type", &pm);
1011         if (err < 0)
1012                 return err;
1013
1014         for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1015                 if (!strcasecmp(pm, phy_modes(i)))
1016                         return i;
1017
1018         return -ENODEV;
1019 }
1020 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1021
1022 /**
1023  * device_get_phy_mode - Get phy mode for given device
1024  * @dev:        Pointer to the given device
1025  *
1026  * The function gets phy interface string from property 'phy-mode' or
1027  * 'phy-connection-type', and return its index in phy_modes table, or errno in
1028  * error case.
1029  */
1030 int device_get_phy_mode(struct device *dev)
1031 {
1032         return fwnode_get_phy_mode(dev_fwnode(dev));
1033 }
1034 EXPORT_SYMBOL_GPL(device_get_phy_mode);
1035
1036 /**
1037  * fwnode_iomap - Maps the memory mapped IO for a given fwnode
1038  * @fwnode:     Pointer to the firmware node
1039  * @index:      Index of the IO range
1040  *
1041  * Return: a pointer to the mapped memory.
1042  */
1043 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
1044 {
1045         return fwnode_call_ptr_op(fwnode, iomap, index);
1046 }
1047 EXPORT_SYMBOL(fwnode_iomap);
1048
1049 /**
1050  * fwnode_irq_get - Get IRQ directly from a fwnode
1051  * @fwnode:     Pointer to the firmware node
1052  * @index:      Zero-based index of the IRQ
1053  *
1054  * Return: Linux IRQ number on success. Negative errno on failure.
1055  */
1056 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1057 {
1058         int ret;
1059
1060         ret = fwnode_call_int_op(fwnode, irq_get, index);
1061         /* We treat mapping errors as invalid case */
1062         if (ret == 0)
1063                 return -EINVAL;
1064
1065         return ret;
1066 }
1067 EXPORT_SYMBOL(fwnode_irq_get);
1068
1069 /**
1070  * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1071  * @fwnode:     Pointer to the firmware node
1072  * @name:       IRQ name
1073  *
1074  * Description:
1075  * Find a match to the string @name in the 'interrupt-names' string array
1076  * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1077  * number of the IRQ resource corresponding to the index of the matched
1078  * string.
1079  *
1080  * Return: Linux IRQ number on success, or negative errno otherwise.
1081  */
1082 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1083 {
1084         int index;
1085
1086         if (!name)
1087                 return -EINVAL;
1088
1089         index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1090         if (index < 0)
1091                 return index;
1092
1093         return fwnode_irq_get(fwnode, index);
1094 }
1095 EXPORT_SYMBOL(fwnode_irq_get_byname);
1096
1097 /**
1098  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1099  * @fwnode: Pointer to the parent firmware node
1100  * @prev: Previous endpoint node or %NULL to get the first
1101  *
1102  * The caller is responsible for calling fwnode_handle_put() on the returned
1103  * fwnode pointer. Note that this function also puts a reference to @prev
1104  * unconditionally.
1105  *
1106  * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1107  * are available.
1108  */
1109 struct fwnode_handle *
1110 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1111                                struct fwnode_handle *prev)
1112 {
1113         struct fwnode_handle *ep, *port_parent = NULL;
1114         const struct fwnode_handle *parent;
1115
1116         /*
1117          * If this function is in a loop and the previous iteration returned
1118          * an endpoint from fwnode->secondary, then we need to use the secondary
1119          * as parent rather than @fwnode.
1120          */
1121         if (prev) {
1122                 port_parent = fwnode_graph_get_port_parent(prev);
1123                 parent = port_parent;
1124         } else {
1125                 parent = fwnode;
1126         }
1127         if (IS_ERR_OR_NULL(parent))
1128                 return NULL;
1129
1130         ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1131         if (ep)
1132                 goto out_put_port_parent;
1133
1134         ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1135
1136 out_put_port_parent:
1137         fwnode_handle_put(port_parent);
1138         return ep;
1139 }
1140 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1141
1142 /**
1143  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1144  * @endpoint: Endpoint firmware node of the port
1145  *
1146  * The caller is responsible for calling fwnode_handle_put() on the returned
1147  * fwnode pointer.
1148  *
1149  * Return: the firmware node of the device the @endpoint belongs to.
1150  */
1151 struct fwnode_handle *
1152 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1153 {
1154         struct fwnode_handle *port, *parent;
1155
1156         port = fwnode_get_parent(endpoint);
1157         parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1158
1159         fwnode_handle_put(port);
1160
1161         return parent;
1162 }
1163 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1164
1165 /**
1166  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1167  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1168  *
1169  * Extracts firmware node of a remote device the @fwnode points to.
1170  *
1171  * The caller is responsible for calling fwnode_handle_put() on the returned
1172  * fwnode pointer.
1173  */
1174 struct fwnode_handle *
1175 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1176 {
1177         struct fwnode_handle *endpoint, *parent;
1178
1179         endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1180         parent = fwnode_graph_get_port_parent(endpoint);
1181
1182         fwnode_handle_put(endpoint);
1183
1184         return parent;
1185 }
1186 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1187
1188 /**
1189  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1190  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1191  *
1192  * Extracts firmware node of a remote port the @fwnode points to.
1193  *
1194  * The caller is responsible for calling fwnode_handle_put() on the returned
1195  * fwnode pointer.
1196  */
1197 struct fwnode_handle *
1198 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1199 {
1200         return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1201 }
1202 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1203
1204 /**
1205  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1206  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1207  *
1208  * Extracts firmware node of a remote endpoint the @fwnode points to.
1209  *
1210  * The caller is responsible for calling fwnode_handle_put() on the returned
1211  * fwnode pointer.
1212  */
1213 struct fwnode_handle *
1214 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1215 {
1216         return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1217 }
1218 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1219
1220 static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1221 {
1222         struct fwnode_handle *dev_node;
1223         bool available;
1224
1225         dev_node = fwnode_graph_get_remote_port_parent(ep);
1226         available = fwnode_device_is_available(dev_node);
1227         fwnode_handle_put(dev_node);
1228
1229         return available;
1230 }
1231
1232 /**
1233  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1234  * @fwnode: parent fwnode_handle containing the graph
1235  * @port: identifier of the port node
1236  * @endpoint: identifier of the endpoint node under the port node
1237  * @flags: fwnode lookup flags
1238  *
1239  * The caller is responsible for calling fwnode_handle_put() on the returned
1240  * fwnode pointer.
1241  *
1242  * Return: the fwnode handle of the local endpoint corresponding the port and
1243  * endpoint IDs or %NULL if not found.
1244  *
1245  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1246  * has not been found, look for the closest endpoint ID greater than the
1247  * specified one and return the endpoint that corresponds to it, if present.
1248  *
1249  * Does not return endpoints that belong to disabled devices or endpoints that
1250  * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1251  */
1252 struct fwnode_handle *
1253 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1254                                 u32 port, u32 endpoint, unsigned long flags)
1255 {
1256         struct fwnode_handle *ep, *best_ep = NULL;
1257         unsigned int best_ep_id = 0;
1258         bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1259         bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1260
1261         fwnode_graph_for_each_endpoint(fwnode, ep) {
1262                 struct fwnode_endpoint fwnode_ep = { 0 };
1263                 int ret;
1264
1265                 if (enabled_only && !fwnode_graph_remote_available(ep))
1266                         continue;
1267
1268                 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1269                 if (ret < 0)
1270                         continue;
1271
1272                 if (fwnode_ep.port != port)
1273                         continue;
1274
1275                 if (fwnode_ep.id == endpoint)
1276                         return ep;
1277
1278                 if (!endpoint_next)
1279                         continue;
1280
1281                 /*
1282                  * If the endpoint that has just been found is not the first
1283                  * matching one and the ID of the one found previously is closer
1284                  * to the requested endpoint ID, skip it.
1285                  */
1286                 if (fwnode_ep.id < endpoint ||
1287                     (best_ep && best_ep_id < fwnode_ep.id))
1288                         continue;
1289
1290                 fwnode_handle_put(best_ep);
1291                 best_ep = fwnode_handle_get(ep);
1292                 best_ep_id = fwnode_ep.id;
1293         }
1294
1295         return best_ep;
1296 }
1297 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1298
1299 /**
1300  * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1301  * @fwnode: The node related to a device
1302  * @flags: fwnode lookup flags
1303  * Count endpoints in a device node.
1304  *
1305  * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1306  * and endpoints connected to disabled devices are counted.
1307  */
1308 unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1309                                              unsigned long flags)
1310 {
1311         struct fwnode_handle *ep;
1312         unsigned int count = 0;
1313
1314         fwnode_graph_for_each_endpoint(fwnode, ep) {
1315                 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1316                     fwnode_graph_remote_available(ep))
1317                         count++;
1318         }
1319
1320         return count;
1321 }
1322 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1323
1324 /**
1325  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1326  * @fwnode: pointer to endpoint fwnode_handle
1327  * @endpoint: pointer to the fwnode endpoint data structure
1328  *
1329  * Parse @fwnode representing a graph endpoint node and store the
1330  * information in @endpoint. The caller must hold a reference to
1331  * @fwnode.
1332  */
1333 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1334                                 struct fwnode_endpoint *endpoint)
1335 {
1336         memset(endpoint, 0, sizeof(*endpoint));
1337
1338         return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1339 }
1340 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1341
1342 const void *device_get_match_data(const struct device *dev)
1343 {
1344         return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1345 }
1346 EXPORT_SYMBOL_GPL(device_get_match_data);
1347
1348 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1349                                                 const char *con_id, void *data,
1350                                                 devcon_match_fn_t match,
1351                                                 void **matches,
1352                                                 unsigned int matches_len)
1353 {
1354         struct fwnode_handle *node;
1355         struct fwnode_handle *ep;
1356         unsigned int count = 0;
1357         void *ret;
1358
1359         fwnode_graph_for_each_endpoint(fwnode, ep) {
1360                 if (matches && count >= matches_len) {
1361                         fwnode_handle_put(ep);
1362                         break;
1363                 }
1364
1365                 node = fwnode_graph_get_remote_port_parent(ep);
1366                 if (!fwnode_device_is_available(node)) {
1367                         fwnode_handle_put(node);
1368                         continue;
1369                 }
1370
1371                 ret = match(node, con_id, data);
1372                 fwnode_handle_put(node);
1373                 if (ret) {
1374                         if (matches)
1375                                 matches[count] = ret;
1376                         count++;
1377                 }
1378         }
1379         return count;
1380 }
1381
1382 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1383                                           const char *con_id, void *data,
1384                                           devcon_match_fn_t match,
1385                                           void **matches,
1386                                           unsigned int matches_len)
1387 {
1388         struct fwnode_handle *node;
1389         unsigned int count = 0;
1390         unsigned int i;
1391         void *ret;
1392
1393         for (i = 0; ; i++) {
1394                 if (matches && count >= matches_len)
1395                         break;
1396
1397                 node = fwnode_find_reference(fwnode, con_id, i);
1398                 if (IS_ERR(node))
1399                         break;
1400
1401                 ret = match(node, NULL, data);
1402                 fwnode_handle_put(node);
1403                 if (ret) {
1404                         if (matches)
1405                                 matches[count] = ret;
1406                         count++;
1407                 }
1408         }
1409
1410         return count;
1411 }
1412
1413 /**
1414  * fwnode_connection_find_match - Find connection from a device node
1415  * @fwnode: Device node with the connection
1416  * @con_id: Identifier for the connection
1417  * @data: Data for the match function
1418  * @match: Function to check and convert the connection description
1419  *
1420  * Find a connection with unique identifier @con_id between @fwnode and another
1421  * device node. @match will be used to convert the connection description to
1422  * data the caller is expecting to be returned.
1423  */
1424 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1425                                    const char *con_id, void *data,
1426                                    devcon_match_fn_t match)
1427 {
1428         unsigned int count;
1429         void *ret;
1430
1431         if (!fwnode || !match)
1432                 return NULL;
1433
1434         count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1435         if (count)
1436                 return ret;
1437
1438         count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1439         return count ? ret : NULL;
1440 }
1441 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1442
1443 /**
1444  * fwnode_connection_find_matches - Find connections from a device node
1445  * @fwnode: Device node with the connection
1446  * @con_id: Identifier for the connection
1447  * @data: Data for the match function
1448  * @match: Function to check and convert the connection description
1449  * @matches: (Optional) array of pointers to fill with matches
1450  * @matches_len: Length of @matches
1451  *
1452  * Find up to @matches_len connections with unique identifier @con_id between
1453  * @fwnode and other device nodes. @match will be used to convert the
1454  * connection description to data the caller is expecting to be returned
1455  * through the @matches array.
1456  *
1457  * If @matches is %NULL @matches_len is ignored and the total number of resolved
1458  * matches is returned.
1459  *
1460  * Return: Number of matches resolved, or negative errno.
1461  */
1462 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1463                                    const char *con_id, void *data,
1464                                    devcon_match_fn_t match,
1465                                    void **matches, unsigned int matches_len)
1466 {
1467         unsigned int count_graph;
1468         unsigned int count_ref;
1469
1470         if (!fwnode || !match)
1471                 return -EINVAL;
1472
1473         count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1474                                                   matches, matches_len);
1475
1476         if (matches) {
1477                 matches += count_graph;
1478                 matches_len -= count_graph;
1479         }
1480
1481         count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1482                                           matches, matches_len);
1483
1484         return count_graph + count_ref;
1485 }
1486 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);