PM: sleep: core: Do not skip callbacks in the resume phase
[linux-2.6-microblaze.git] / drivers / base / power / main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17
18 #define pr_fmt(fmt) "PM: " fmt
19
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm-trace.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44         list_for_each_entry_rcu(pos, head, member, \
45                         device_links_read_lock_held())
46
47 /*
48  * The entries in the dpm_list list are in a depth first order, simply
49  * because children are guaranteed to be discovered after parents, and
50  * are inserted at the back of the list on discovery.
51  *
52  * Since device_pm_add() may be called with a device lock held,
53  * we must never try to acquire a device lock while holding
54  * dpm_list_mutex.
55  */
56
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62
63 struct suspend_stats suspend_stats;
64 static DEFINE_MUTEX(dpm_list_mtx);
65 static pm_message_t pm_transition;
66
67 static int async_error;
68
69 static const char *pm_verb(int event)
70 {
71         switch (event) {
72         case PM_EVENT_SUSPEND:
73                 return "suspend";
74         case PM_EVENT_RESUME:
75                 return "resume";
76         case PM_EVENT_FREEZE:
77                 return "freeze";
78         case PM_EVENT_QUIESCE:
79                 return "quiesce";
80         case PM_EVENT_HIBERNATE:
81                 return "hibernate";
82         case PM_EVENT_THAW:
83                 return "thaw";
84         case PM_EVENT_RESTORE:
85                 return "restore";
86         case PM_EVENT_RECOVER:
87                 return "recover";
88         default:
89                 return "(unknown PM event)";
90         }
91 }
92
93 /**
94  * device_pm_sleep_init - Initialize system suspend-related device fields.
95  * @dev: Device object being initialized.
96  */
97 void device_pm_sleep_init(struct device *dev)
98 {
99         dev->power.is_prepared = false;
100         dev->power.is_suspended = false;
101         dev->power.is_noirq_suspended = false;
102         dev->power.is_late_suspended = false;
103         init_completion(&dev->power.completion);
104         complete_all(&dev->power.completion);
105         dev->power.wakeup = NULL;
106         INIT_LIST_HEAD(&dev->power.entry);
107 }
108
109 /**
110  * device_pm_lock - Lock the list of active devices used by the PM core.
111  */
112 void device_pm_lock(void)
113 {
114         mutex_lock(&dpm_list_mtx);
115 }
116
117 /**
118  * device_pm_unlock - Unlock the list of active devices used by the PM core.
119  */
120 void device_pm_unlock(void)
121 {
122         mutex_unlock(&dpm_list_mtx);
123 }
124
125 /**
126  * device_pm_add - Add a device to the PM core's list of active devices.
127  * @dev: Device to add to the list.
128  */
129 void device_pm_add(struct device *dev)
130 {
131         /* Skip PM setup/initialization. */
132         if (device_pm_not_required(dev))
133                 return;
134
135         pr_debug("Adding info for %s:%s\n",
136                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137         device_pm_check_callbacks(dev);
138         mutex_lock(&dpm_list_mtx);
139         if (dev->parent && dev->parent->power.is_prepared)
140                 dev_warn(dev, "parent %s should not be sleeping\n",
141                         dev_name(dev->parent));
142         list_add_tail(&dev->power.entry, &dpm_list);
143         dev->power.in_dpm_list = true;
144         mutex_unlock(&dpm_list_mtx);
145 }
146
147 /**
148  * device_pm_remove - Remove a device from the PM core's list of active devices.
149  * @dev: Device to be removed from the list.
150  */
151 void device_pm_remove(struct device *dev)
152 {
153         if (device_pm_not_required(dev))
154                 return;
155
156         pr_debug("Removing info for %s:%s\n",
157                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158         complete_all(&dev->power.completion);
159         mutex_lock(&dpm_list_mtx);
160         list_del_init(&dev->power.entry);
161         dev->power.in_dpm_list = false;
162         mutex_unlock(&dpm_list_mtx);
163         device_wakeup_disable(dev);
164         pm_runtime_remove(dev);
165         device_pm_check_callbacks(dev);
166 }
167
168 /**
169  * device_pm_move_before - Move device in the PM core's list of active devices.
170  * @deva: Device to move in dpm_list.
171  * @devb: Device @deva should come before.
172  */
173 void device_pm_move_before(struct device *deva, struct device *devb)
174 {
175         pr_debug("Moving %s:%s before %s:%s\n",
176                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178         /* Delete deva from dpm_list and reinsert before devb. */
179         list_move_tail(&deva->power.entry, &devb->power.entry);
180 }
181
182 /**
183  * device_pm_move_after - Move device in the PM core's list of active devices.
184  * @deva: Device to move in dpm_list.
185  * @devb: Device @deva should come after.
186  */
187 void device_pm_move_after(struct device *deva, struct device *devb)
188 {
189         pr_debug("Moving %s:%s after %s:%s\n",
190                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192         /* Delete deva from dpm_list and reinsert after devb. */
193         list_move(&deva->power.entry, &devb->power.entry);
194 }
195
196 /**
197  * device_pm_move_last - Move device to end of the PM core's list of devices.
198  * @dev: Device to move in dpm_list.
199  */
200 void device_pm_move_last(struct device *dev)
201 {
202         pr_debug("Moving %s:%s to end of list\n",
203                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204         list_move_tail(&dev->power.entry, &dpm_list);
205 }
206
207 static ktime_t initcall_debug_start(struct device *dev, void *cb)
208 {
209         if (!pm_print_times_enabled)
210                 return 0;
211
212         dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213                  task_pid_nr(current),
214                  dev->parent ? dev_name(dev->parent) : "none");
215         return ktime_get();
216 }
217
218 static void initcall_debug_report(struct device *dev, ktime_t calltime,
219                                   void *cb, int error)
220 {
221         ktime_t rettime;
222         s64 nsecs;
223
224         if (!pm_print_times_enabled)
225                 return;
226
227         rettime = ktime_get();
228         nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
229
230         dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
231                  (unsigned long long)nsecs >> 10);
232 }
233
234 /**
235  * dpm_wait - Wait for a PM operation to complete.
236  * @dev: Device to wait for.
237  * @async: If unset, wait only if the device's power.async_suspend flag is set.
238  */
239 static void dpm_wait(struct device *dev, bool async)
240 {
241         if (!dev)
242                 return;
243
244         if (async || (pm_async_enabled && dev->power.async_suspend))
245                 wait_for_completion(&dev->power.completion);
246 }
247
248 static int dpm_wait_fn(struct device *dev, void *async_ptr)
249 {
250         dpm_wait(dev, *((bool *)async_ptr));
251         return 0;
252 }
253
254 static void dpm_wait_for_children(struct device *dev, bool async)
255 {
256        device_for_each_child(dev, &async, dpm_wait_fn);
257 }
258
259 static void dpm_wait_for_suppliers(struct device *dev, bool async)
260 {
261         struct device_link *link;
262         int idx;
263
264         idx = device_links_read_lock();
265
266         /*
267          * If the supplier goes away right after we've checked the link to it,
268          * we'll wait for its completion to change the state, but that's fine,
269          * because the only things that will block as a result are the SRCU
270          * callbacks freeing the link objects for the links in the list we're
271          * walking.
272          */
273         list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
274                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
275                         dpm_wait(link->supplier, async);
276
277         device_links_read_unlock(idx);
278 }
279
280 static bool dpm_wait_for_superior(struct device *dev, bool async)
281 {
282         struct device *parent;
283
284         /*
285          * If the device is resumed asynchronously and the parent's callback
286          * deletes both the device and the parent itself, the parent object may
287          * be freed while this function is running, so avoid that by reference
288          * counting the parent once more unless the device has been deleted
289          * already (in which case return right away).
290          */
291         mutex_lock(&dpm_list_mtx);
292
293         if (!device_pm_initialized(dev)) {
294                 mutex_unlock(&dpm_list_mtx);
295                 return false;
296         }
297
298         parent = get_device(dev->parent);
299
300         mutex_unlock(&dpm_list_mtx);
301
302         dpm_wait(parent, async);
303         put_device(parent);
304
305         dpm_wait_for_suppliers(dev, async);
306
307         /*
308          * If the parent's callback has deleted the device, attempting to resume
309          * it would be invalid, so avoid doing that then.
310          */
311         return device_pm_initialized(dev);
312 }
313
314 static void dpm_wait_for_consumers(struct device *dev, bool async)
315 {
316         struct device_link *link;
317         int idx;
318
319         idx = device_links_read_lock();
320
321         /*
322          * The status of a device link can only be changed from "dormant" by a
323          * probe, but that cannot happen during system suspend/resume.  In
324          * theory it can change to "dormant" at that time, but then it is
325          * reasonable to wait for the target device anyway (eg. if it goes
326          * away, it's better to wait for it to go away completely and then
327          * continue instead of trying to continue in parallel with its
328          * unregistration).
329          */
330         list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
331                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
332                         dpm_wait(link->consumer, async);
333
334         device_links_read_unlock(idx);
335 }
336
337 static void dpm_wait_for_subordinate(struct device *dev, bool async)
338 {
339         dpm_wait_for_children(dev, async);
340         dpm_wait_for_consumers(dev, async);
341 }
342
343 /**
344  * pm_op - Return the PM operation appropriate for given PM event.
345  * @ops: PM operations to choose from.
346  * @state: PM transition of the system being carried out.
347  */
348 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
349 {
350         switch (state.event) {
351 #ifdef CONFIG_SUSPEND
352         case PM_EVENT_SUSPEND:
353                 return ops->suspend;
354         case PM_EVENT_RESUME:
355                 return ops->resume;
356 #endif /* CONFIG_SUSPEND */
357 #ifdef CONFIG_HIBERNATE_CALLBACKS
358         case PM_EVENT_FREEZE:
359         case PM_EVENT_QUIESCE:
360                 return ops->freeze;
361         case PM_EVENT_HIBERNATE:
362                 return ops->poweroff;
363         case PM_EVENT_THAW:
364         case PM_EVENT_RECOVER:
365                 return ops->thaw;
366                 break;
367         case PM_EVENT_RESTORE:
368                 return ops->restore;
369 #endif /* CONFIG_HIBERNATE_CALLBACKS */
370         }
371
372         return NULL;
373 }
374
375 /**
376  * pm_late_early_op - Return the PM operation appropriate for given PM event.
377  * @ops: PM operations to choose from.
378  * @state: PM transition of the system being carried out.
379  *
380  * Runtime PM is disabled for @dev while this function is being executed.
381  */
382 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
383                                       pm_message_t state)
384 {
385         switch (state.event) {
386 #ifdef CONFIG_SUSPEND
387         case PM_EVENT_SUSPEND:
388                 return ops->suspend_late;
389         case PM_EVENT_RESUME:
390                 return ops->resume_early;
391 #endif /* CONFIG_SUSPEND */
392 #ifdef CONFIG_HIBERNATE_CALLBACKS
393         case PM_EVENT_FREEZE:
394         case PM_EVENT_QUIESCE:
395                 return ops->freeze_late;
396         case PM_EVENT_HIBERNATE:
397                 return ops->poweroff_late;
398         case PM_EVENT_THAW:
399         case PM_EVENT_RECOVER:
400                 return ops->thaw_early;
401         case PM_EVENT_RESTORE:
402                 return ops->restore_early;
403 #endif /* CONFIG_HIBERNATE_CALLBACKS */
404         }
405
406         return NULL;
407 }
408
409 /**
410  * pm_noirq_op - Return the PM operation appropriate for given PM event.
411  * @ops: PM operations to choose from.
412  * @state: PM transition of the system being carried out.
413  *
414  * The driver of @dev will not receive interrupts while this function is being
415  * executed.
416  */
417 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
418 {
419         switch (state.event) {
420 #ifdef CONFIG_SUSPEND
421         case PM_EVENT_SUSPEND:
422                 return ops->suspend_noirq;
423         case PM_EVENT_RESUME:
424                 return ops->resume_noirq;
425 #endif /* CONFIG_SUSPEND */
426 #ifdef CONFIG_HIBERNATE_CALLBACKS
427         case PM_EVENT_FREEZE:
428         case PM_EVENT_QUIESCE:
429                 return ops->freeze_noirq;
430         case PM_EVENT_HIBERNATE:
431                 return ops->poweroff_noirq;
432         case PM_EVENT_THAW:
433         case PM_EVENT_RECOVER:
434                 return ops->thaw_noirq;
435         case PM_EVENT_RESTORE:
436                 return ops->restore_noirq;
437 #endif /* CONFIG_HIBERNATE_CALLBACKS */
438         }
439
440         return NULL;
441 }
442
443 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
444 {
445         dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
446                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
447                 ", may wakeup" : "");
448 }
449
450 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
451                         int error)
452 {
453         pr_err("Device %s failed to %s%s: error %d\n",
454                dev_name(dev), pm_verb(state.event), info, error);
455 }
456
457 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
458                           const char *info)
459 {
460         ktime_t calltime;
461         u64 usecs64;
462         int usecs;
463
464         calltime = ktime_get();
465         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
466         do_div(usecs64, NSEC_PER_USEC);
467         usecs = usecs64;
468         if (usecs == 0)
469                 usecs = 1;
470
471         pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
472                   info ?: "", info ? " " : "", pm_verb(state.event),
473                   error ? "aborted" : "complete",
474                   usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
475 }
476
477 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
478                             pm_message_t state, const char *info)
479 {
480         ktime_t calltime;
481         int error;
482
483         if (!cb)
484                 return 0;
485
486         calltime = initcall_debug_start(dev, cb);
487
488         pm_dev_dbg(dev, state, info);
489         trace_device_pm_callback_start(dev, info, state.event);
490         error = cb(dev);
491         trace_device_pm_callback_end(dev, error);
492         suspend_report_result(cb, error);
493
494         initcall_debug_report(dev, calltime, cb, error);
495
496         return error;
497 }
498
499 #ifdef CONFIG_DPM_WATCHDOG
500 struct dpm_watchdog {
501         struct device           *dev;
502         struct task_struct      *tsk;
503         struct timer_list       timer;
504 };
505
506 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
507         struct dpm_watchdog wd
508
509 /**
510  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
511  * @t: The timer that PM watchdog depends on.
512  *
513  * Called when a driver has timed out suspending or resuming.
514  * There's not much we can do here to recover so panic() to
515  * capture a crash-dump in pstore.
516  */
517 static void dpm_watchdog_handler(struct timer_list *t)
518 {
519         struct dpm_watchdog *wd = from_timer(wd, t, timer);
520
521         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
522         show_stack(wd->tsk, NULL);
523         panic("%s %s: unrecoverable failure\n",
524                 dev_driver_string(wd->dev), dev_name(wd->dev));
525 }
526
527 /**
528  * dpm_watchdog_set - Enable pm watchdog for given device.
529  * @wd: Watchdog. Must be allocated on the stack.
530  * @dev: Device to handle.
531  */
532 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
533 {
534         struct timer_list *timer = &wd->timer;
535
536         wd->dev = dev;
537         wd->tsk = current;
538
539         timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
540         /* use same timeout value for both suspend and resume */
541         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
542         add_timer(timer);
543 }
544
545 /**
546  * dpm_watchdog_clear - Disable suspend/resume watchdog.
547  * @wd: Watchdog to disable.
548  */
549 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
550 {
551         struct timer_list *timer = &wd->timer;
552
553         del_timer_sync(timer);
554         destroy_timer_on_stack(timer);
555 }
556 #else
557 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
558 #define dpm_watchdog_set(x, y)
559 #define dpm_watchdog_clear(x)
560 #endif
561
562 /*------------------------- Resume routines -------------------------*/
563
564 /**
565  * dev_pm_may_skip_resume - System-wide device resume optimization check.
566  * @dev: Target device.
567  *
568  * Return:
569  * - %false if the transition under way is RESTORE.
570  * - The return value of dev_pm_smart_suspend_and_suspended() if the transition
571  *   under way is THAW.
572  * - The logical negation of %power.must_resume otherwise (that is, when the
573  *   transition under way is RESUME).
574  */
575 bool dev_pm_may_skip_resume(struct device *dev)
576 {
577         if (pm_transition.event == PM_EVENT_RESTORE)
578                 return false;
579
580         if (pm_transition.event == PM_EVENT_THAW)
581                 return dev_pm_smart_suspend_and_suspended(dev);
582
583         return !dev->power.must_resume;
584 }
585
586 /**
587  * device_resume_noirq - Execute a "noirq resume" callback for given device.
588  * @dev: Device to handle.
589  * @state: PM transition of the system being carried out.
590  * @async: If true, the device is being resumed asynchronously.
591  *
592  * The driver of @dev will not receive interrupts while this function is being
593  * executed.
594  */
595 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
596 {
597         pm_callback_t callback = NULL;
598         const char *info = NULL;
599         bool skip_resume;
600         int error = 0;
601
602         TRACE_DEVICE(dev);
603         TRACE_RESUME(0);
604
605         if (dev->power.syscore || dev->power.direct_complete)
606                 goto Out;
607
608         if (!dev->power.is_noirq_suspended)
609                 goto Out;
610
611         if (!dpm_wait_for_superior(dev, async))
612                 goto Out;
613
614         skip_resume = dev_pm_may_skip_resume(dev);
615         /*
616          * If the driver callback is skipped below or by the middle layer
617          * callback and device_resume_early() also skips the driver callback for
618          * this device later, it needs to appear as "suspended" to PM-runtime,
619          * so change its status accordingly.
620          *
621          * Otherwise, the device is going to be resumed, so set its PM-runtime
622          * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
623          * to avoid confusing drivers that don't use it.
624          */
625         if (skip_resume)
626                 pm_runtime_set_suspended(dev);
627         else if (dev_pm_smart_suspend_and_suspended(dev))
628                 pm_runtime_set_active(dev);
629
630         if (dev->pm_domain) {
631                 info = "noirq power domain ";
632                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
633         } else if (dev->type && dev->type->pm) {
634                 info = "noirq type ";
635                 callback = pm_noirq_op(dev->type->pm, state);
636         } else if (dev->class && dev->class->pm) {
637                 info = "noirq class ";
638                 callback = pm_noirq_op(dev->class->pm, state);
639         } else if (dev->bus && dev->bus->pm) {
640                 info = "noirq bus ";
641                 callback = pm_noirq_op(dev->bus->pm, state);
642         }
643         if (callback)
644                 goto Run;
645
646         if (skip_resume)
647                 goto Skip;
648
649         if (dev->driver && dev->driver->pm) {
650                 info = "noirq driver ";
651                 callback = pm_noirq_op(dev->driver->pm, state);
652         }
653
654 Run:
655         error = dpm_run_callback(callback, dev, state, info);
656
657 Skip:
658         dev->power.is_noirq_suspended = false;
659
660 Out:
661         complete_all(&dev->power.completion);
662         TRACE_RESUME(error);
663         return error;
664 }
665
666 static bool is_async(struct device *dev)
667 {
668         return dev->power.async_suspend && pm_async_enabled
669                 && !pm_trace_is_enabled();
670 }
671
672 static bool dpm_async_fn(struct device *dev, async_func_t func)
673 {
674         reinit_completion(&dev->power.completion);
675
676         if (is_async(dev)) {
677                 get_device(dev);
678                 async_schedule(func, dev);
679                 return true;
680         }
681
682         return false;
683 }
684
685 static void async_resume_noirq(void *data, async_cookie_t cookie)
686 {
687         struct device *dev = (struct device *)data;
688         int error;
689
690         error = device_resume_noirq(dev, pm_transition, true);
691         if (error)
692                 pm_dev_err(dev, pm_transition, " async", error);
693
694         put_device(dev);
695 }
696
697 static void dpm_noirq_resume_devices(pm_message_t state)
698 {
699         struct device *dev;
700         ktime_t starttime = ktime_get();
701
702         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
703         mutex_lock(&dpm_list_mtx);
704         pm_transition = state;
705
706         /*
707          * Advanced the async threads upfront,
708          * in case the starting of async threads is
709          * delayed by non-async resuming devices.
710          */
711         list_for_each_entry(dev, &dpm_noirq_list, power.entry)
712                 dpm_async_fn(dev, async_resume_noirq);
713
714         while (!list_empty(&dpm_noirq_list)) {
715                 dev = to_device(dpm_noirq_list.next);
716                 get_device(dev);
717                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
718                 mutex_unlock(&dpm_list_mtx);
719
720                 if (!is_async(dev)) {
721                         int error;
722
723                         error = device_resume_noirq(dev, state, false);
724                         if (error) {
725                                 suspend_stats.failed_resume_noirq++;
726                                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
727                                 dpm_save_failed_dev(dev_name(dev));
728                                 pm_dev_err(dev, state, " noirq", error);
729                         }
730                 }
731
732                 mutex_lock(&dpm_list_mtx);
733                 put_device(dev);
734         }
735         mutex_unlock(&dpm_list_mtx);
736         async_synchronize_full();
737         dpm_show_time(starttime, state, 0, "noirq");
738         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
739 }
740
741 /**
742  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
743  * @state: PM transition of the system being carried out.
744  *
745  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
746  * allow device drivers' interrupt handlers to be called.
747  */
748 void dpm_resume_noirq(pm_message_t state)
749 {
750         dpm_noirq_resume_devices(state);
751
752         resume_device_irqs();
753         device_wakeup_disarm_wake_irqs();
754
755         cpuidle_resume();
756 }
757
758 /**
759  * device_resume_early - Execute an "early resume" callback for given device.
760  * @dev: Device to handle.
761  * @state: PM transition of the system being carried out.
762  * @async: If true, the device is being resumed asynchronously.
763  *
764  * Runtime PM is disabled for @dev while this function is being executed.
765  */
766 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
767 {
768         pm_callback_t callback = NULL;
769         const char *info = NULL;
770         int error = 0;
771
772         TRACE_DEVICE(dev);
773         TRACE_RESUME(0);
774
775         if (dev->power.syscore || dev->power.direct_complete)
776                 goto Out;
777
778         if (!dev->power.is_late_suspended)
779                 goto Out;
780
781         if (!dpm_wait_for_superior(dev, async))
782                 goto Out;
783
784         if (dev->pm_domain) {
785                 info = "early power domain ";
786                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
787         } else if (dev->type && dev->type->pm) {
788                 info = "early type ";
789                 callback = pm_late_early_op(dev->type->pm, state);
790         } else if (dev->class && dev->class->pm) {
791                 info = "early class ";
792                 callback = pm_late_early_op(dev->class->pm, state);
793         } else if (dev->bus && dev->bus->pm) {
794                 info = "early bus ";
795                 callback = pm_late_early_op(dev->bus->pm, state);
796         }
797         if (callback)
798                 goto Run;
799
800         if (dev_pm_may_skip_resume(dev))
801                 goto Skip;
802
803         if (dev->driver && dev->driver->pm) {
804                 info = "early driver ";
805                 callback = pm_late_early_op(dev->driver->pm, state);
806         }
807
808 Run:
809         error = dpm_run_callback(callback, dev, state, info);
810
811 Skip:
812         dev->power.is_late_suspended = false;
813
814 Out:
815         TRACE_RESUME(error);
816
817         pm_runtime_enable(dev);
818         complete_all(&dev->power.completion);
819         return error;
820 }
821
822 static void async_resume_early(void *data, async_cookie_t cookie)
823 {
824         struct device *dev = (struct device *)data;
825         int error;
826
827         error = device_resume_early(dev, pm_transition, true);
828         if (error)
829                 pm_dev_err(dev, pm_transition, " async", error);
830
831         put_device(dev);
832 }
833
834 /**
835  * dpm_resume_early - Execute "early resume" callbacks for all devices.
836  * @state: PM transition of the system being carried out.
837  */
838 void dpm_resume_early(pm_message_t state)
839 {
840         struct device *dev;
841         ktime_t starttime = ktime_get();
842
843         trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
844         mutex_lock(&dpm_list_mtx);
845         pm_transition = state;
846
847         /*
848          * Advanced the async threads upfront,
849          * in case the starting of async threads is
850          * delayed by non-async resuming devices.
851          */
852         list_for_each_entry(dev, &dpm_late_early_list, power.entry)
853                 dpm_async_fn(dev, async_resume_early);
854
855         while (!list_empty(&dpm_late_early_list)) {
856                 dev = to_device(dpm_late_early_list.next);
857                 get_device(dev);
858                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
859                 mutex_unlock(&dpm_list_mtx);
860
861                 if (!is_async(dev)) {
862                         int error;
863
864                         error = device_resume_early(dev, state, false);
865                         if (error) {
866                                 suspend_stats.failed_resume_early++;
867                                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
868                                 dpm_save_failed_dev(dev_name(dev));
869                                 pm_dev_err(dev, state, " early", error);
870                         }
871                 }
872                 mutex_lock(&dpm_list_mtx);
873                 put_device(dev);
874         }
875         mutex_unlock(&dpm_list_mtx);
876         async_synchronize_full();
877         dpm_show_time(starttime, state, 0, "early");
878         trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
879 }
880
881 /**
882  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
883  * @state: PM transition of the system being carried out.
884  */
885 void dpm_resume_start(pm_message_t state)
886 {
887         dpm_resume_noirq(state);
888         dpm_resume_early(state);
889 }
890 EXPORT_SYMBOL_GPL(dpm_resume_start);
891
892 /**
893  * device_resume - Execute "resume" callbacks for given device.
894  * @dev: Device to handle.
895  * @state: PM transition of the system being carried out.
896  * @async: If true, the device is being resumed asynchronously.
897  */
898 static int device_resume(struct device *dev, pm_message_t state, bool async)
899 {
900         pm_callback_t callback = NULL;
901         const char *info = NULL;
902         int error = 0;
903         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
904
905         TRACE_DEVICE(dev);
906         TRACE_RESUME(0);
907
908         if (dev->power.syscore)
909                 goto Complete;
910
911         if (dev->power.direct_complete) {
912                 /* Match the pm_runtime_disable() in __device_suspend(). */
913                 pm_runtime_enable(dev);
914                 goto Complete;
915         }
916
917         if (!dpm_wait_for_superior(dev, async))
918                 goto Complete;
919
920         dpm_watchdog_set(&wd, dev);
921         device_lock(dev);
922
923         /*
924          * This is a fib.  But we'll allow new children to be added below
925          * a resumed device, even if the device hasn't been completed yet.
926          */
927         dev->power.is_prepared = false;
928
929         if (!dev->power.is_suspended)
930                 goto Unlock;
931
932         if (dev->pm_domain) {
933                 info = "power domain ";
934                 callback = pm_op(&dev->pm_domain->ops, state);
935                 goto Driver;
936         }
937
938         if (dev->type && dev->type->pm) {
939                 info = "type ";
940                 callback = pm_op(dev->type->pm, state);
941                 goto Driver;
942         }
943
944         if (dev->class && dev->class->pm) {
945                 info = "class ";
946                 callback = pm_op(dev->class->pm, state);
947                 goto Driver;
948         }
949
950         if (dev->bus) {
951                 if (dev->bus->pm) {
952                         info = "bus ";
953                         callback = pm_op(dev->bus->pm, state);
954                 } else if (dev->bus->resume) {
955                         info = "legacy bus ";
956                         callback = dev->bus->resume;
957                         goto End;
958                 }
959         }
960
961  Driver:
962         if (!callback && dev->driver && dev->driver->pm) {
963                 info = "driver ";
964                 callback = pm_op(dev->driver->pm, state);
965         }
966
967  End:
968         error = dpm_run_callback(callback, dev, state, info);
969         dev->power.is_suspended = false;
970
971  Unlock:
972         device_unlock(dev);
973         dpm_watchdog_clear(&wd);
974
975  Complete:
976         complete_all(&dev->power.completion);
977
978         TRACE_RESUME(error);
979
980         return error;
981 }
982
983 static void async_resume(void *data, async_cookie_t cookie)
984 {
985         struct device *dev = (struct device *)data;
986         int error;
987
988         error = device_resume(dev, pm_transition, true);
989         if (error)
990                 pm_dev_err(dev, pm_transition, " async", error);
991         put_device(dev);
992 }
993
994 /**
995  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
996  * @state: PM transition of the system being carried out.
997  *
998  * Execute the appropriate "resume" callback for all devices whose status
999  * indicates that they are suspended.
1000  */
1001 void dpm_resume(pm_message_t state)
1002 {
1003         struct device *dev;
1004         ktime_t starttime = ktime_get();
1005
1006         trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1007         might_sleep();
1008
1009         mutex_lock(&dpm_list_mtx);
1010         pm_transition = state;
1011         async_error = 0;
1012
1013         list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1014                 dpm_async_fn(dev, async_resume);
1015
1016         while (!list_empty(&dpm_suspended_list)) {
1017                 dev = to_device(dpm_suspended_list.next);
1018                 get_device(dev);
1019                 if (!is_async(dev)) {
1020                         int error;
1021
1022                         mutex_unlock(&dpm_list_mtx);
1023
1024                         error = device_resume(dev, state, false);
1025                         if (error) {
1026                                 suspend_stats.failed_resume++;
1027                                 dpm_save_failed_step(SUSPEND_RESUME);
1028                                 dpm_save_failed_dev(dev_name(dev));
1029                                 pm_dev_err(dev, state, "", error);
1030                         }
1031
1032                         mutex_lock(&dpm_list_mtx);
1033                 }
1034                 if (!list_empty(&dev->power.entry))
1035                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1036                 put_device(dev);
1037         }
1038         mutex_unlock(&dpm_list_mtx);
1039         async_synchronize_full();
1040         dpm_show_time(starttime, state, 0, NULL);
1041
1042         cpufreq_resume();
1043         devfreq_resume();
1044         trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1045 }
1046
1047 /**
1048  * device_complete - Complete a PM transition for given device.
1049  * @dev: Device to handle.
1050  * @state: PM transition of the system being carried out.
1051  */
1052 static void device_complete(struct device *dev, pm_message_t state)
1053 {
1054         void (*callback)(struct device *) = NULL;
1055         const char *info = NULL;
1056
1057         if (dev->power.syscore)
1058                 return;
1059
1060         device_lock(dev);
1061
1062         if (dev->pm_domain) {
1063                 info = "completing power domain ";
1064                 callback = dev->pm_domain->ops.complete;
1065         } else if (dev->type && dev->type->pm) {
1066                 info = "completing type ";
1067                 callback = dev->type->pm->complete;
1068         } else if (dev->class && dev->class->pm) {
1069                 info = "completing class ";
1070                 callback = dev->class->pm->complete;
1071         } else if (dev->bus && dev->bus->pm) {
1072                 info = "completing bus ";
1073                 callback = dev->bus->pm->complete;
1074         }
1075
1076         if (!callback && dev->driver && dev->driver->pm) {
1077                 info = "completing driver ";
1078                 callback = dev->driver->pm->complete;
1079         }
1080
1081         if (callback) {
1082                 pm_dev_dbg(dev, state, info);
1083                 callback(dev);
1084         }
1085
1086         device_unlock(dev);
1087
1088         pm_runtime_put(dev);
1089 }
1090
1091 /**
1092  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1093  * @state: PM transition of the system being carried out.
1094  *
1095  * Execute the ->complete() callbacks for all devices whose PM status is not
1096  * DPM_ON (this allows new devices to be registered).
1097  */
1098 void dpm_complete(pm_message_t state)
1099 {
1100         struct list_head list;
1101
1102         trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1103         might_sleep();
1104
1105         INIT_LIST_HEAD(&list);
1106         mutex_lock(&dpm_list_mtx);
1107         while (!list_empty(&dpm_prepared_list)) {
1108                 struct device *dev = to_device(dpm_prepared_list.prev);
1109
1110                 get_device(dev);
1111                 dev->power.is_prepared = false;
1112                 list_move(&dev->power.entry, &list);
1113                 mutex_unlock(&dpm_list_mtx);
1114
1115                 trace_device_pm_callback_start(dev, "", state.event);
1116                 device_complete(dev, state);
1117                 trace_device_pm_callback_end(dev, 0);
1118
1119                 mutex_lock(&dpm_list_mtx);
1120                 put_device(dev);
1121         }
1122         list_splice(&list, &dpm_list);
1123         mutex_unlock(&dpm_list_mtx);
1124
1125         /* Allow device probing and trigger re-probing of deferred devices */
1126         device_unblock_probing();
1127         trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1128 }
1129
1130 /**
1131  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1132  * @state: PM transition of the system being carried out.
1133  *
1134  * Execute "resume" callbacks for all devices and complete the PM transition of
1135  * the system.
1136  */
1137 void dpm_resume_end(pm_message_t state)
1138 {
1139         dpm_resume(state);
1140         dpm_complete(state);
1141 }
1142 EXPORT_SYMBOL_GPL(dpm_resume_end);
1143
1144
1145 /*------------------------- Suspend routines -------------------------*/
1146
1147 /**
1148  * resume_event - Return a "resume" message for given "suspend" sleep state.
1149  * @sleep_state: PM message representing a sleep state.
1150  *
1151  * Return a PM message representing the resume event corresponding to given
1152  * sleep state.
1153  */
1154 static pm_message_t resume_event(pm_message_t sleep_state)
1155 {
1156         switch (sleep_state.event) {
1157         case PM_EVENT_SUSPEND:
1158                 return PMSG_RESUME;
1159         case PM_EVENT_FREEZE:
1160         case PM_EVENT_QUIESCE:
1161                 return PMSG_RECOVER;
1162         case PM_EVENT_HIBERNATE:
1163                 return PMSG_RESTORE;
1164         }
1165         return PMSG_ON;
1166 }
1167
1168 static void dpm_superior_set_must_resume(struct device *dev)
1169 {
1170         struct device_link *link;
1171         int idx;
1172
1173         if (dev->parent)
1174                 dev->parent->power.must_resume = true;
1175
1176         idx = device_links_read_lock();
1177
1178         list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1179                 link->supplier->power.must_resume = true;
1180
1181         device_links_read_unlock(idx);
1182 }
1183
1184 /**
1185  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1186  * @dev: Device to handle.
1187  * @state: PM transition of the system being carried out.
1188  * @async: If true, the device is being suspended asynchronously.
1189  *
1190  * The driver of @dev will not receive interrupts while this function is being
1191  * executed.
1192  */
1193 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1194 {
1195         pm_callback_t callback = NULL;
1196         const char *info = NULL;
1197         int error = 0;
1198
1199         TRACE_DEVICE(dev);
1200         TRACE_SUSPEND(0);
1201
1202         dpm_wait_for_subordinate(dev, async);
1203
1204         if (async_error)
1205                 goto Complete;
1206
1207         if (dev->power.syscore || dev->power.direct_complete)
1208                 goto Complete;
1209
1210         if (dev->pm_domain) {
1211                 info = "noirq power domain ";
1212                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1213         } else if (dev->type && dev->type->pm) {
1214                 info = "noirq type ";
1215                 callback = pm_noirq_op(dev->type->pm, state);
1216         } else if (dev->class && dev->class->pm) {
1217                 info = "noirq class ";
1218                 callback = pm_noirq_op(dev->class->pm, state);
1219         } else if (dev->bus && dev->bus->pm) {
1220                 info = "noirq bus ";
1221                 callback = pm_noirq_op(dev->bus->pm, state);
1222         }
1223         if (callback)
1224                 goto Run;
1225
1226         if (dev_pm_smart_suspend_and_suspended(dev))
1227                 goto Skip;
1228
1229         if (dev->driver && dev->driver->pm) {
1230                 info = "noirq driver ";
1231                 callback = pm_noirq_op(dev->driver->pm, state);
1232         }
1233
1234 Run:
1235         error = dpm_run_callback(callback, dev, state, info);
1236         if (error) {
1237                 async_error = error;
1238                 goto Complete;
1239         }
1240
1241 Skip:
1242         dev->power.is_noirq_suspended = true;
1243
1244         /*
1245          * Skipping the resume of devices that were in use right before the
1246          * system suspend (as indicated by their PM-runtime usage counters)
1247          * would be suboptimal.  Also resume them if doing that is not allowed
1248          * to be skipped.
1249          */
1250         if (atomic_read(&dev->power.usage_count) > 1 ||
1251             !(dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED) &&
1252               dev->power.may_skip_resume))
1253                 dev->power.must_resume = true;
1254
1255         if (dev->power.must_resume)
1256                 dpm_superior_set_must_resume(dev);
1257
1258 Complete:
1259         complete_all(&dev->power.completion);
1260         TRACE_SUSPEND(error);
1261         return error;
1262 }
1263
1264 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1265 {
1266         struct device *dev = (struct device *)data;
1267         int error;
1268
1269         error = __device_suspend_noirq(dev, pm_transition, true);
1270         if (error) {
1271                 dpm_save_failed_dev(dev_name(dev));
1272                 pm_dev_err(dev, pm_transition, " async", error);
1273         }
1274
1275         put_device(dev);
1276 }
1277
1278 static int device_suspend_noirq(struct device *dev)
1279 {
1280         if (dpm_async_fn(dev, async_suspend_noirq))
1281                 return 0;
1282
1283         return __device_suspend_noirq(dev, pm_transition, false);
1284 }
1285
1286 static int dpm_noirq_suspend_devices(pm_message_t state)
1287 {
1288         ktime_t starttime = ktime_get();
1289         int error = 0;
1290
1291         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1292         mutex_lock(&dpm_list_mtx);
1293         pm_transition = state;
1294         async_error = 0;
1295
1296         while (!list_empty(&dpm_late_early_list)) {
1297                 struct device *dev = to_device(dpm_late_early_list.prev);
1298
1299                 get_device(dev);
1300                 mutex_unlock(&dpm_list_mtx);
1301
1302                 error = device_suspend_noirq(dev);
1303
1304                 mutex_lock(&dpm_list_mtx);
1305                 if (error) {
1306                         pm_dev_err(dev, state, " noirq", error);
1307                         dpm_save_failed_dev(dev_name(dev));
1308                         put_device(dev);
1309                         break;
1310                 }
1311                 if (!list_empty(&dev->power.entry))
1312                         list_move(&dev->power.entry, &dpm_noirq_list);
1313                 put_device(dev);
1314
1315                 if (async_error)
1316                         break;
1317         }
1318         mutex_unlock(&dpm_list_mtx);
1319         async_synchronize_full();
1320         if (!error)
1321                 error = async_error;
1322
1323         if (error) {
1324                 suspend_stats.failed_suspend_noirq++;
1325                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1326         }
1327         dpm_show_time(starttime, state, error, "noirq");
1328         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1329         return error;
1330 }
1331
1332 /**
1333  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1334  * @state: PM transition of the system being carried out.
1335  *
1336  * Prevent device drivers' interrupt handlers from being called and invoke
1337  * "noirq" suspend callbacks for all non-sysdev devices.
1338  */
1339 int dpm_suspend_noirq(pm_message_t state)
1340 {
1341         int ret;
1342
1343         cpuidle_pause();
1344
1345         device_wakeup_arm_wake_irqs();
1346         suspend_device_irqs();
1347
1348         ret = dpm_noirq_suspend_devices(state);
1349         if (ret)
1350                 dpm_resume_noirq(resume_event(state));
1351
1352         return ret;
1353 }
1354
1355 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1356 {
1357         struct device *parent = dev->parent;
1358
1359         if (!parent)
1360                 return;
1361
1362         spin_lock_irq(&parent->power.lock);
1363
1364         if (dev->power.wakeup_path && !parent->power.ignore_children)
1365                 parent->power.wakeup_path = true;
1366
1367         spin_unlock_irq(&parent->power.lock);
1368 }
1369
1370 /**
1371  * __device_suspend_late - Execute a "late suspend" callback for given device.
1372  * @dev: Device to handle.
1373  * @state: PM transition of the system being carried out.
1374  * @async: If true, the device is being suspended asynchronously.
1375  *
1376  * Runtime PM is disabled for @dev while this function is being executed.
1377  */
1378 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1379 {
1380         pm_callback_t callback = NULL;
1381         const char *info = NULL;
1382         int error = 0;
1383
1384         TRACE_DEVICE(dev);
1385         TRACE_SUSPEND(0);
1386
1387         __pm_runtime_disable(dev, false);
1388
1389         dpm_wait_for_subordinate(dev, async);
1390
1391         if (async_error)
1392                 goto Complete;
1393
1394         if (pm_wakeup_pending()) {
1395                 async_error = -EBUSY;
1396                 goto Complete;
1397         }
1398
1399         if (dev->power.syscore || dev->power.direct_complete)
1400                 goto Complete;
1401
1402         if (dev->pm_domain) {
1403                 info = "late power domain ";
1404                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1405         } else if (dev->type && dev->type->pm) {
1406                 info = "late type ";
1407                 callback = pm_late_early_op(dev->type->pm, state);
1408         } else if (dev->class && dev->class->pm) {
1409                 info = "late class ";
1410                 callback = pm_late_early_op(dev->class->pm, state);
1411         } else if (dev->bus && dev->bus->pm) {
1412                 info = "late bus ";
1413                 callback = pm_late_early_op(dev->bus->pm, state);
1414         }
1415         if (callback)
1416                 goto Run;
1417
1418         if (dev_pm_smart_suspend_and_suspended(dev)) {
1419                 /*
1420                  * In principle, the resume of the device may be skippend if it
1421                  * remains in runtime suspend at this point.
1422                  */
1423                 dev->power.may_skip_resume = true;
1424                 goto Skip;
1425         }
1426
1427         if (dev->driver && dev->driver->pm) {
1428                 info = "late driver ";
1429                 callback = pm_late_early_op(dev->driver->pm, state);
1430         }
1431
1432 Run:
1433         error = dpm_run_callback(callback, dev, state, info);
1434         if (error) {
1435                 async_error = error;
1436                 goto Complete;
1437         }
1438         dpm_propagate_wakeup_to_parent(dev);
1439
1440 Skip:
1441         dev->power.is_late_suspended = true;
1442
1443 Complete:
1444         TRACE_SUSPEND(error);
1445         complete_all(&dev->power.completion);
1446         return error;
1447 }
1448
1449 static void async_suspend_late(void *data, async_cookie_t cookie)
1450 {
1451         struct device *dev = (struct device *)data;
1452         int error;
1453
1454         error = __device_suspend_late(dev, pm_transition, true);
1455         if (error) {
1456                 dpm_save_failed_dev(dev_name(dev));
1457                 pm_dev_err(dev, pm_transition, " async", error);
1458         }
1459         put_device(dev);
1460 }
1461
1462 static int device_suspend_late(struct device *dev)
1463 {
1464         if (dpm_async_fn(dev, async_suspend_late))
1465                 return 0;
1466
1467         return __device_suspend_late(dev, pm_transition, false);
1468 }
1469
1470 /**
1471  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1472  * @state: PM transition of the system being carried out.
1473  */
1474 int dpm_suspend_late(pm_message_t state)
1475 {
1476         ktime_t starttime = ktime_get();
1477         int error = 0;
1478
1479         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1480         mutex_lock(&dpm_list_mtx);
1481         pm_transition = state;
1482         async_error = 0;
1483
1484         while (!list_empty(&dpm_suspended_list)) {
1485                 struct device *dev = to_device(dpm_suspended_list.prev);
1486
1487                 get_device(dev);
1488                 mutex_unlock(&dpm_list_mtx);
1489
1490                 error = device_suspend_late(dev);
1491
1492                 mutex_lock(&dpm_list_mtx);
1493                 if (!list_empty(&dev->power.entry))
1494                         list_move(&dev->power.entry, &dpm_late_early_list);
1495
1496                 if (error) {
1497                         pm_dev_err(dev, state, " late", error);
1498                         dpm_save_failed_dev(dev_name(dev));
1499                         put_device(dev);
1500                         break;
1501                 }
1502                 put_device(dev);
1503
1504                 if (async_error)
1505                         break;
1506         }
1507         mutex_unlock(&dpm_list_mtx);
1508         async_synchronize_full();
1509         if (!error)
1510                 error = async_error;
1511         if (error) {
1512                 suspend_stats.failed_suspend_late++;
1513                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1514                 dpm_resume_early(resume_event(state));
1515         }
1516         dpm_show_time(starttime, state, error, "late");
1517         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1518         return error;
1519 }
1520
1521 /**
1522  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1523  * @state: PM transition of the system being carried out.
1524  */
1525 int dpm_suspend_end(pm_message_t state)
1526 {
1527         ktime_t starttime = ktime_get();
1528         int error;
1529
1530         error = dpm_suspend_late(state);
1531         if (error)
1532                 goto out;
1533
1534         error = dpm_suspend_noirq(state);
1535         if (error)
1536                 dpm_resume_early(resume_event(state));
1537
1538 out:
1539         dpm_show_time(starttime, state, error, "end");
1540         return error;
1541 }
1542 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1543
1544 /**
1545  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1546  * @dev: Device to suspend.
1547  * @state: PM transition of the system being carried out.
1548  * @cb: Suspend callback to execute.
1549  * @info: string description of caller.
1550  */
1551 static int legacy_suspend(struct device *dev, pm_message_t state,
1552                           int (*cb)(struct device *dev, pm_message_t state),
1553                           const char *info)
1554 {
1555         int error;
1556         ktime_t calltime;
1557
1558         calltime = initcall_debug_start(dev, cb);
1559
1560         trace_device_pm_callback_start(dev, info, state.event);
1561         error = cb(dev, state);
1562         trace_device_pm_callback_end(dev, error);
1563         suspend_report_result(cb, error);
1564
1565         initcall_debug_report(dev, calltime, cb, error);
1566
1567         return error;
1568 }
1569
1570 static void dpm_clear_superiors_direct_complete(struct device *dev)
1571 {
1572         struct device_link *link;
1573         int idx;
1574
1575         if (dev->parent) {
1576                 spin_lock_irq(&dev->parent->power.lock);
1577                 dev->parent->power.direct_complete = false;
1578                 spin_unlock_irq(&dev->parent->power.lock);
1579         }
1580
1581         idx = device_links_read_lock();
1582
1583         list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1584                 spin_lock_irq(&link->supplier->power.lock);
1585                 link->supplier->power.direct_complete = false;
1586                 spin_unlock_irq(&link->supplier->power.lock);
1587         }
1588
1589         device_links_read_unlock(idx);
1590 }
1591
1592 /**
1593  * __device_suspend - Execute "suspend" callbacks for given device.
1594  * @dev: Device to handle.
1595  * @state: PM transition of the system being carried out.
1596  * @async: If true, the device is being suspended asynchronously.
1597  */
1598 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1599 {
1600         pm_callback_t callback = NULL;
1601         const char *info = NULL;
1602         int error = 0;
1603         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1604
1605         TRACE_DEVICE(dev);
1606         TRACE_SUSPEND(0);
1607
1608         dpm_wait_for_subordinate(dev, async);
1609
1610         if (async_error) {
1611                 dev->power.direct_complete = false;
1612                 goto Complete;
1613         }
1614
1615         /*
1616          * If a device configured to wake up the system from sleep states
1617          * has been suspended at run time and there's a resume request pending
1618          * for it, this is equivalent to the device signaling wakeup, so the
1619          * system suspend operation should be aborted.
1620          */
1621         if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1622                 pm_wakeup_event(dev, 0);
1623
1624         if (pm_wakeup_pending()) {
1625                 dev->power.direct_complete = false;
1626                 async_error = -EBUSY;
1627                 goto Complete;
1628         }
1629
1630         if (dev->power.syscore)
1631                 goto Complete;
1632
1633         /* Avoid direct_complete to let wakeup_path propagate. */
1634         if (device_may_wakeup(dev) || dev->power.wakeup_path)
1635                 dev->power.direct_complete = false;
1636
1637         if (dev->power.direct_complete) {
1638                 if (pm_runtime_status_suspended(dev)) {
1639                         pm_runtime_disable(dev);
1640                         if (pm_runtime_status_suspended(dev)) {
1641                                 pm_dev_dbg(dev, state, "direct-complete ");
1642                                 goto Complete;
1643                         }
1644
1645                         pm_runtime_enable(dev);
1646                 }
1647                 dev->power.direct_complete = false;
1648         }
1649
1650         dev->power.may_skip_resume = false;
1651         dev->power.must_resume = false;
1652
1653         dpm_watchdog_set(&wd, dev);
1654         device_lock(dev);
1655
1656         if (dev->pm_domain) {
1657                 info = "power domain ";
1658                 callback = pm_op(&dev->pm_domain->ops, state);
1659                 goto Run;
1660         }
1661
1662         if (dev->type && dev->type->pm) {
1663                 info = "type ";
1664                 callback = pm_op(dev->type->pm, state);
1665                 goto Run;
1666         }
1667
1668         if (dev->class && dev->class->pm) {
1669                 info = "class ";
1670                 callback = pm_op(dev->class->pm, state);
1671                 goto Run;
1672         }
1673
1674         if (dev->bus) {
1675                 if (dev->bus->pm) {
1676                         info = "bus ";
1677                         callback = pm_op(dev->bus->pm, state);
1678                 } else if (dev->bus->suspend) {
1679                         pm_dev_dbg(dev, state, "legacy bus ");
1680                         error = legacy_suspend(dev, state, dev->bus->suspend,
1681                                                 "legacy bus ");
1682                         goto End;
1683                 }
1684         }
1685
1686  Run:
1687         if (!callback && dev->driver && dev->driver->pm) {
1688                 info = "driver ";
1689                 callback = pm_op(dev->driver->pm, state);
1690         }
1691
1692         error = dpm_run_callback(callback, dev, state, info);
1693
1694  End:
1695         if (!error) {
1696                 dev->power.is_suspended = true;
1697                 if (device_may_wakeup(dev))
1698                         dev->power.wakeup_path = true;
1699
1700                 dpm_propagate_wakeup_to_parent(dev);
1701                 dpm_clear_superiors_direct_complete(dev);
1702         }
1703
1704         device_unlock(dev);
1705         dpm_watchdog_clear(&wd);
1706
1707  Complete:
1708         if (error)
1709                 async_error = error;
1710
1711         complete_all(&dev->power.completion);
1712         TRACE_SUSPEND(error);
1713         return error;
1714 }
1715
1716 static void async_suspend(void *data, async_cookie_t cookie)
1717 {
1718         struct device *dev = (struct device *)data;
1719         int error;
1720
1721         error = __device_suspend(dev, pm_transition, true);
1722         if (error) {
1723                 dpm_save_failed_dev(dev_name(dev));
1724                 pm_dev_err(dev, pm_transition, " async", error);
1725         }
1726
1727         put_device(dev);
1728 }
1729
1730 static int device_suspend(struct device *dev)
1731 {
1732         if (dpm_async_fn(dev, async_suspend))
1733                 return 0;
1734
1735         return __device_suspend(dev, pm_transition, false);
1736 }
1737
1738 /**
1739  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1740  * @state: PM transition of the system being carried out.
1741  */
1742 int dpm_suspend(pm_message_t state)
1743 {
1744         ktime_t starttime = ktime_get();
1745         int error = 0;
1746
1747         trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1748         might_sleep();
1749
1750         devfreq_suspend();
1751         cpufreq_suspend();
1752
1753         mutex_lock(&dpm_list_mtx);
1754         pm_transition = state;
1755         async_error = 0;
1756         while (!list_empty(&dpm_prepared_list)) {
1757                 struct device *dev = to_device(dpm_prepared_list.prev);
1758
1759                 get_device(dev);
1760                 mutex_unlock(&dpm_list_mtx);
1761
1762                 error = device_suspend(dev);
1763
1764                 mutex_lock(&dpm_list_mtx);
1765                 if (error) {
1766                         pm_dev_err(dev, state, "", error);
1767                         dpm_save_failed_dev(dev_name(dev));
1768                         put_device(dev);
1769                         break;
1770                 }
1771                 if (!list_empty(&dev->power.entry))
1772                         list_move(&dev->power.entry, &dpm_suspended_list);
1773                 put_device(dev);
1774                 if (async_error)
1775                         break;
1776         }
1777         mutex_unlock(&dpm_list_mtx);
1778         async_synchronize_full();
1779         if (!error)
1780                 error = async_error;
1781         if (error) {
1782                 suspend_stats.failed_suspend++;
1783                 dpm_save_failed_step(SUSPEND_SUSPEND);
1784         }
1785         dpm_show_time(starttime, state, error, NULL);
1786         trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1787         return error;
1788 }
1789
1790 /**
1791  * device_prepare - Prepare a device for system power transition.
1792  * @dev: Device to handle.
1793  * @state: PM transition of the system being carried out.
1794  *
1795  * Execute the ->prepare() callback(s) for given device.  No new children of the
1796  * device may be registered after this function has returned.
1797  */
1798 static int device_prepare(struct device *dev, pm_message_t state)
1799 {
1800         int (*callback)(struct device *) = NULL;
1801         int ret = 0;
1802
1803         if (dev->power.syscore)
1804                 return 0;
1805
1806         /*
1807          * If a device's parent goes into runtime suspend at the wrong time,
1808          * it won't be possible to resume the device.  To prevent this we
1809          * block runtime suspend here, during the prepare phase, and allow
1810          * it again during the complete phase.
1811          */
1812         pm_runtime_get_noresume(dev);
1813
1814         device_lock(dev);
1815
1816         dev->power.wakeup_path = false;
1817
1818         if (dev->power.no_pm_callbacks)
1819                 goto unlock;
1820
1821         if (dev->pm_domain)
1822                 callback = dev->pm_domain->ops.prepare;
1823         else if (dev->type && dev->type->pm)
1824                 callback = dev->type->pm->prepare;
1825         else if (dev->class && dev->class->pm)
1826                 callback = dev->class->pm->prepare;
1827         else if (dev->bus && dev->bus->pm)
1828                 callback = dev->bus->pm->prepare;
1829
1830         if (!callback && dev->driver && dev->driver->pm)
1831                 callback = dev->driver->pm->prepare;
1832
1833         if (callback)
1834                 ret = callback(dev);
1835
1836 unlock:
1837         device_unlock(dev);
1838
1839         if (ret < 0) {
1840                 suspend_report_result(callback, ret);
1841                 pm_runtime_put(dev);
1842                 return ret;
1843         }
1844         /*
1845          * A positive return value from ->prepare() means "this device appears
1846          * to be runtime-suspended and its state is fine, so if it really is
1847          * runtime-suspended, you can leave it in that state provided that you
1848          * will do the same thing with all of its descendants".  This only
1849          * applies to suspend transitions, however.
1850          */
1851         spin_lock_irq(&dev->power.lock);
1852         dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1853                 (ret > 0 || dev->power.no_pm_callbacks) &&
1854                 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1855         spin_unlock_irq(&dev->power.lock);
1856         return 0;
1857 }
1858
1859 /**
1860  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1861  * @state: PM transition of the system being carried out.
1862  *
1863  * Execute the ->prepare() callback(s) for all devices.
1864  */
1865 int dpm_prepare(pm_message_t state)
1866 {
1867         int error = 0;
1868
1869         trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1870         might_sleep();
1871
1872         /*
1873          * Give a chance for the known devices to complete their probes, before
1874          * disable probing of devices. This sync point is important at least
1875          * at boot time + hibernation restore.
1876          */
1877         wait_for_device_probe();
1878         /*
1879          * It is unsafe if probing of devices will happen during suspend or
1880          * hibernation and system behavior will be unpredictable in this case.
1881          * So, let's prohibit device's probing here and defer their probes
1882          * instead. The normal behavior will be restored in dpm_complete().
1883          */
1884         device_block_probing();
1885
1886         mutex_lock(&dpm_list_mtx);
1887         while (!list_empty(&dpm_list)) {
1888                 struct device *dev = to_device(dpm_list.next);
1889
1890                 get_device(dev);
1891                 mutex_unlock(&dpm_list_mtx);
1892
1893                 trace_device_pm_callback_start(dev, "", state.event);
1894                 error = device_prepare(dev, state);
1895                 trace_device_pm_callback_end(dev, error);
1896
1897                 mutex_lock(&dpm_list_mtx);
1898                 if (error) {
1899                         if (error == -EAGAIN) {
1900                                 put_device(dev);
1901                                 error = 0;
1902                                 continue;
1903                         }
1904                         pr_info("Device %s not prepared for power transition: code %d\n",
1905                                 dev_name(dev), error);
1906                         put_device(dev);
1907                         break;
1908                 }
1909                 dev->power.is_prepared = true;
1910                 if (!list_empty(&dev->power.entry))
1911                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1912                 put_device(dev);
1913         }
1914         mutex_unlock(&dpm_list_mtx);
1915         trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1916         return error;
1917 }
1918
1919 /**
1920  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1921  * @state: PM transition of the system being carried out.
1922  *
1923  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1924  * callbacks for them.
1925  */
1926 int dpm_suspend_start(pm_message_t state)
1927 {
1928         ktime_t starttime = ktime_get();
1929         int error;
1930
1931         error = dpm_prepare(state);
1932         if (error) {
1933                 suspend_stats.failed_prepare++;
1934                 dpm_save_failed_step(SUSPEND_PREPARE);
1935         } else
1936                 error = dpm_suspend(state);
1937         dpm_show_time(starttime, state, error, "start");
1938         return error;
1939 }
1940 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1941
1942 void __suspend_report_result(const char *function, void *fn, int ret)
1943 {
1944         if (ret)
1945                 pr_err("%s(): %pS returns %d\n", function, fn, ret);
1946 }
1947 EXPORT_SYMBOL_GPL(__suspend_report_result);
1948
1949 /**
1950  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1951  * @subordinate: Device that needs to wait for @dev.
1952  * @dev: Device to wait for.
1953  */
1954 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1955 {
1956         dpm_wait(dev, subordinate->power.async_suspend);
1957         return async_error;
1958 }
1959 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1960
1961 /**
1962  * dpm_for_each_dev - device iterator.
1963  * @data: data for the callback.
1964  * @fn: function to be called for each device.
1965  *
1966  * Iterate over devices in dpm_list, and call @fn for each device,
1967  * passing it @data.
1968  */
1969 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1970 {
1971         struct device *dev;
1972
1973         if (!fn)
1974                 return;
1975
1976         device_pm_lock();
1977         list_for_each_entry(dev, &dpm_list, power.entry)
1978                 fn(dev, data);
1979         device_pm_unlock();
1980 }
1981 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1982
1983 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1984 {
1985         if (!ops)
1986                 return true;
1987
1988         return !ops->prepare &&
1989                !ops->suspend &&
1990                !ops->suspend_late &&
1991                !ops->suspend_noirq &&
1992                !ops->resume_noirq &&
1993                !ops->resume_early &&
1994                !ops->resume &&
1995                !ops->complete;
1996 }
1997
1998 void device_pm_check_callbacks(struct device *dev)
1999 {
2000         spin_lock_irq(&dev->power.lock);
2001         dev->power.no_pm_callbacks =
2002                 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2003                  !dev->bus->suspend && !dev->bus->resume)) &&
2004                 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2005                 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2006                 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2007                 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2008                  !dev->driver->suspend && !dev->driver->resume));
2009         spin_unlock_irq(&dev->power.lock);
2010 }
2011
2012 bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2013 {
2014         return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2015                 pm_runtime_status_suspended(dev);
2016 }