Merge branch 'entropy'
[linux-2.6-microblaze.git] / drivers / base / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Basic Node interface support
4  */
5
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/memory.h>
10 #include <linux/vmstat.h>
11 #include <linux/notifier.h>
12 #include <linux/node.h>
13 #include <linux/hugetlb.h>
14 #include <linux/compaction.h>
15 #include <linux/cpumask.h>
16 #include <linux/topology.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23
24 static struct bus_type node_subsys = {
25         .name = "node",
26         .dev_name = "node",
27 };
28
29
30 static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
31 {
32         ssize_t n;
33         cpumask_var_t mask;
34         struct node *node_dev = to_node(dev);
35
36         /* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
37         BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
38
39         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
40                 return 0;
41
42         cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask);
43         n = cpumap_print_to_pagebuf(list, buf, mask);
44         free_cpumask_var(mask);
45
46         return n;
47 }
48
49 static inline ssize_t node_read_cpumask(struct device *dev,
50                                 struct device_attribute *attr, char *buf)
51 {
52         return node_read_cpumap(dev, false, buf);
53 }
54 static inline ssize_t node_read_cpulist(struct device *dev,
55                                 struct device_attribute *attr, char *buf)
56 {
57         return node_read_cpumap(dev, true, buf);
58 }
59
60 static DEVICE_ATTR(cpumap,  S_IRUGO, node_read_cpumask, NULL);
61 static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
62
63 /**
64  * struct node_access_nodes - Access class device to hold user visible
65  *                            relationships to other nodes.
66  * @dev:        Device for this memory access class
67  * @list_node:  List element in the node's access list
68  * @access:     The access class rank
69  * @hmem_attrs: Heterogeneous memory performance attributes
70  */
71 struct node_access_nodes {
72         struct device           dev;
73         struct list_head        list_node;
74         unsigned                access;
75 #ifdef CONFIG_HMEM_REPORTING
76         struct node_hmem_attrs  hmem_attrs;
77 #endif
78 };
79 #define to_access_nodes(dev) container_of(dev, struct node_access_nodes, dev)
80
81 static struct attribute *node_init_access_node_attrs[] = {
82         NULL,
83 };
84
85 static struct attribute *node_targ_access_node_attrs[] = {
86         NULL,
87 };
88
89 static const struct attribute_group initiators = {
90         .name   = "initiators",
91         .attrs  = node_init_access_node_attrs,
92 };
93
94 static const struct attribute_group targets = {
95         .name   = "targets",
96         .attrs  = node_targ_access_node_attrs,
97 };
98
99 static const struct attribute_group *node_access_node_groups[] = {
100         &initiators,
101         &targets,
102         NULL,
103 };
104
105 static void node_remove_accesses(struct node *node)
106 {
107         struct node_access_nodes *c, *cnext;
108
109         list_for_each_entry_safe(c, cnext, &node->access_list, list_node) {
110                 list_del(&c->list_node);
111                 device_unregister(&c->dev);
112         }
113 }
114
115 static void node_access_release(struct device *dev)
116 {
117         kfree(to_access_nodes(dev));
118 }
119
120 static struct node_access_nodes *node_init_node_access(struct node *node,
121                                                        unsigned access)
122 {
123         struct node_access_nodes *access_node;
124         struct device *dev;
125
126         list_for_each_entry(access_node, &node->access_list, list_node)
127                 if (access_node->access == access)
128                         return access_node;
129
130         access_node = kzalloc(sizeof(*access_node), GFP_KERNEL);
131         if (!access_node)
132                 return NULL;
133
134         access_node->access = access;
135         dev = &access_node->dev;
136         dev->parent = &node->dev;
137         dev->release = node_access_release;
138         dev->groups = node_access_node_groups;
139         if (dev_set_name(dev, "access%u", access))
140                 goto free;
141
142         if (device_register(dev))
143                 goto free_name;
144
145         pm_runtime_no_callbacks(dev);
146         list_add_tail(&access_node->list_node, &node->access_list);
147         return access_node;
148 free_name:
149         kfree_const(dev->kobj.name);
150 free:
151         kfree(access_node);
152         return NULL;
153 }
154
155 #ifdef CONFIG_HMEM_REPORTING
156 #define ACCESS_ATTR(name)                                                  \
157 static ssize_t name##_show(struct device *dev,                             \
158                            struct device_attribute *attr,                  \
159                            char *buf)                                      \
160 {                                                                          \
161         return sprintf(buf, "%u\n", to_access_nodes(dev)->hmem_attrs.name); \
162 }                                                                          \
163 static DEVICE_ATTR_RO(name);
164
165 ACCESS_ATTR(read_bandwidth)
166 ACCESS_ATTR(read_latency)
167 ACCESS_ATTR(write_bandwidth)
168 ACCESS_ATTR(write_latency)
169
170 static struct attribute *access_attrs[] = {
171         &dev_attr_read_bandwidth.attr,
172         &dev_attr_read_latency.attr,
173         &dev_attr_write_bandwidth.attr,
174         &dev_attr_write_latency.attr,
175         NULL,
176 };
177
178 /**
179  * node_set_perf_attrs - Set the performance values for given access class
180  * @nid: Node identifier to be set
181  * @hmem_attrs: Heterogeneous memory performance attributes
182  * @access: The access class the for the given attributes
183  */
184 void node_set_perf_attrs(unsigned int nid, struct node_hmem_attrs *hmem_attrs,
185                          unsigned access)
186 {
187         struct node_access_nodes *c;
188         struct node *node;
189         int i;
190
191         if (WARN_ON_ONCE(!node_online(nid)))
192                 return;
193
194         node = node_devices[nid];
195         c = node_init_node_access(node, access);
196         if (!c)
197                 return;
198
199         c->hmem_attrs = *hmem_attrs;
200         for (i = 0; access_attrs[i] != NULL; i++) {
201                 if (sysfs_add_file_to_group(&c->dev.kobj, access_attrs[i],
202                                             "initiators")) {
203                         pr_info("failed to add performance attribute to node %d\n",
204                                 nid);
205                         break;
206                 }
207         }
208 }
209
210 /**
211  * struct node_cache_info - Internal tracking for memory node caches
212  * @dev:        Device represeting the cache level
213  * @node:       List element for tracking in the node
214  * @cache_attrs:Attributes for this cache level
215  */
216 struct node_cache_info {
217         struct device dev;
218         struct list_head node;
219         struct node_cache_attrs cache_attrs;
220 };
221 #define to_cache_info(device) container_of(device, struct node_cache_info, dev)
222
223 #define CACHE_ATTR(name, fmt)                                           \
224 static ssize_t name##_show(struct device *dev,                          \
225                            struct device_attribute *attr,               \
226                            char *buf)                                   \
227 {                                                                       \
228         return sprintf(buf, fmt "\n", to_cache_info(dev)->cache_attrs.name);\
229 }                                                                       \
230 DEVICE_ATTR_RO(name);
231
232 CACHE_ATTR(size, "%llu")
233 CACHE_ATTR(line_size, "%u")
234 CACHE_ATTR(indexing, "%u")
235 CACHE_ATTR(write_policy, "%u")
236
237 static struct attribute *cache_attrs[] = {
238         &dev_attr_indexing.attr,
239         &dev_attr_size.attr,
240         &dev_attr_line_size.attr,
241         &dev_attr_write_policy.attr,
242         NULL,
243 };
244 ATTRIBUTE_GROUPS(cache);
245
246 static void node_cache_release(struct device *dev)
247 {
248         kfree(dev);
249 }
250
251 static void node_cacheinfo_release(struct device *dev)
252 {
253         struct node_cache_info *info = to_cache_info(dev);
254         kfree(info);
255 }
256
257 static void node_init_cache_dev(struct node *node)
258 {
259         struct device *dev;
260
261         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
262         if (!dev)
263                 return;
264
265         dev->parent = &node->dev;
266         dev->release = node_cache_release;
267         if (dev_set_name(dev, "memory_side_cache"))
268                 goto free_dev;
269
270         if (device_register(dev))
271                 goto free_name;
272
273         pm_runtime_no_callbacks(dev);
274         node->cache_dev = dev;
275         return;
276 free_name:
277         kfree_const(dev->kobj.name);
278 free_dev:
279         kfree(dev);
280 }
281
282 /**
283  * node_add_cache() - add cache attribute to a memory node
284  * @nid: Node identifier that has new cache attributes
285  * @cache_attrs: Attributes for the cache being added
286  */
287 void node_add_cache(unsigned int nid, struct node_cache_attrs *cache_attrs)
288 {
289         struct node_cache_info *info;
290         struct device *dev;
291         struct node *node;
292
293         if (!node_online(nid) || !node_devices[nid])
294                 return;
295
296         node = node_devices[nid];
297         list_for_each_entry(info, &node->cache_attrs, node) {
298                 if (info->cache_attrs.level == cache_attrs->level) {
299                         dev_warn(&node->dev,
300                                 "attempt to add duplicate cache level:%d\n",
301                                 cache_attrs->level);
302                         return;
303                 }
304         }
305
306         if (!node->cache_dev)
307                 node_init_cache_dev(node);
308         if (!node->cache_dev)
309                 return;
310
311         info = kzalloc(sizeof(*info), GFP_KERNEL);
312         if (!info)
313                 return;
314
315         dev = &info->dev;
316         dev->parent = node->cache_dev;
317         dev->release = node_cacheinfo_release;
318         dev->groups = cache_groups;
319         if (dev_set_name(dev, "index%d", cache_attrs->level))
320                 goto free_cache;
321
322         info->cache_attrs = *cache_attrs;
323         if (device_register(dev)) {
324                 dev_warn(&node->dev, "failed to add cache level:%d\n",
325                          cache_attrs->level);
326                 goto free_name;
327         }
328         pm_runtime_no_callbacks(dev);
329         list_add_tail(&info->node, &node->cache_attrs);
330         return;
331 free_name:
332         kfree_const(dev->kobj.name);
333 free_cache:
334         kfree(info);
335 }
336
337 static void node_remove_caches(struct node *node)
338 {
339         struct node_cache_info *info, *next;
340
341         if (!node->cache_dev)
342                 return;
343
344         list_for_each_entry_safe(info, next, &node->cache_attrs, node) {
345                 list_del(&info->node);
346                 device_unregister(&info->dev);
347         }
348         device_unregister(node->cache_dev);
349 }
350
351 static void node_init_caches(unsigned int nid)
352 {
353         INIT_LIST_HEAD(&node_devices[nid]->cache_attrs);
354 }
355 #else
356 static void node_init_caches(unsigned int nid) { }
357 static void node_remove_caches(struct node *node) { }
358 #endif
359
360 #define K(x) ((x) << (PAGE_SHIFT - 10))
361 static ssize_t node_read_meminfo(struct device *dev,
362                         struct device_attribute *attr, char *buf)
363 {
364         int n;
365         int nid = dev->id;
366         struct pglist_data *pgdat = NODE_DATA(nid);
367         struct sysinfo i;
368         unsigned long sreclaimable, sunreclaimable;
369
370         si_meminfo_node(&i, nid);
371         sreclaimable = node_page_state(pgdat, NR_SLAB_RECLAIMABLE);
372         sunreclaimable = node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE);
373         n = sprintf(buf,
374                        "Node %d MemTotal:       %8lu kB\n"
375                        "Node %d MemFree:        %8lu kB\n"
376                        "Node %d MemUsed:        %8lu kB\n"
377                        "Node %d Active:         %8lu kB\n"
378                        "Node %d Inactive:       %8lu kB\n"
379                        "Node %d Active(anon):   %8lu kB\n"
380                        "Node %d Inactive(anon): %8lu kB\n"
381                        "Node %d Active(file):   %8lu kB\n"
382                        "Node %d Inactive(file): %8lu kB\n"
383                        "Node %d Unevictable:    %8lu kB\n"
384                        "Node %d Mlocked:        %8lu kB\n",
385                        nid, K(i.totalram),
386                        nid, K(i.freeram),
387                        nid, K(i.totalram - i.freeram),
388                        nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
389                                 node_page_state(pgdat, NR_ACTIVE_FILE)),
390                        nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
391                                 node_page_state(pgdat, NR_INACTIVE_FILE)),
392                        nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
393                        nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
394                        nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
395                        nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
396                        nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
397                        nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
398
399 #ifdef CONFIG_HIGHMEM
400         n += sprintf(buf + n,
401                        "Node %d HighTotal:      %8lu kB\n"
402                        "Node %d HighFree:       %8lu kB\n"
403                        "Node %d LowTotal:       %8lu kB\n"
404                        "Node %d LowFree:        %8lu kB\n",
405                        nid, K(i.totalhigh),
406                        nid, K(i.freehigh),
407                        nid, K(i.totalram - i.totalhigh),
408                        nid, K(i.freeram - i.freehigh));
409 #endif
410         n += sprintf(buf + n,
411                        "Node %d Dirty:          %8lu kB\n"
412                        "Node %d Writeback:      %8lu kB\n"
413                        "Node %d FilePages:      %8lu kB\n"
414                        "Node %d Mapped:         %8lu kB\n"
415                        "Node %d AnonPages:      %8lu kB\n"
416                        "Node %d Shmem:          %8lu kB\n"
417                        "Node %d KernelStack:    %8lu kB\n"
418                        "Node %d PageTables:     %8lu kB\n"
419                        "Node %d NFS_Unstable:   %8lu kB\n"
420                        "Node %d Bounce:         %8lu kB\n"
421                        "Node %d WritebackTmp:   %8lu kB\n"
422                        "Node %d KReclaimable:   %8lu kB\n"
423                        "Node %d Slab:           %8lu kB\n"
424                        "Node %d SReclaimable:   %8lu kB\n"
425                        "Node %d SUnreclaim:     %8lu kB\n"
426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
427                        "Node %d AnonHugePages:  %8lu kB\n"
428                        "Node %d ShmemHugePages: %8lu kB\n"
429                        "Node %d ShmemPmdMapped: %8lu kB\n"
430                        "Node %d FileHugePages: %8lu kB\n"
431                        "Node %d FilePmdMapped: %8lu kB\n"
432 #endif
433                         ,
434                        nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
435                        nid, K(node_page_state(pgdat, NR_WRITEBACK)),
436                        nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
437                        nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
438                        nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
439                        nid, K(i.sharedram),
440                        nid, sum_zone_node_page_state(nid, NR_KERNEL_STACK_KB),
441                        nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
442                        nid, K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
443                        nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
444                        nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
445                        nid, K(sreclaimable +
446                               node_page_state(pgdat, NR_KERNEL_MISC_RECLAIMABLE)),
447                        nid, K(sreclaimable + sunreclaimable),
448                        nid, K(sreclaimable),
449                        nid, K(sunreclaimable)
450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
451                        ,
452                        nid, K(node_page_state(pgdat, NR_ANON_THPS) *
453                                        HPAGE_PMD_NR),
454                        nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
455                                        HPAGE_PMD_NR),
456                        nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
457                                        HPAGE_PMD_NR),
458                        nid, K(node_page_state(pgdat, NR_FILE_THPS) *
459                                        HPAGE_PMD_NR),
460                        nid, K(node_page_state(pgdat, NR_FILE_PMDMAPPED) *
461                                        HPAGE_PMD_NR)
462 #endif
463                        );
464         n += hugetlb_report_node_meminfo(nid, buf + n);
465         return n;
466 }
467
468 #undef K
469 static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
470
471 static ssize_t node_read_numastat(struct device *dev,
472                                 struct device_attribute *attr, char *buf)
473 {
474         return sprintf(buf,
475                        "numa_hit %lu\n"
476                        "numa_miss %lu\n"
477                        "numa_foreign %lu\n"
478                        "interleave_hit %lu\n"
479                        "local_node %lu\n"
480                        "other_node %lu\n",
481                        sum_zone_numa_state(dev->id, NUMA_HIT),
482                        sum_zone_numa_state(dev->id, NUMA_MISS),
483                        sum_zone_numa_state(dev->id, NUMA_FOREIGN),
484                        sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
485                        sum_zone_numa_state(dev->id, NUMA_LOCAL),
486                        sum_zone_numa_state(dev->id, NUMA_OTHER));
487 }
488 static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
489
490 static ssize_t node_read_vmstat(struct device *dev,
491                                 struct device_attribute *attr, char *buf)
492 {
493         int nid = dev->id;
494         struct pglist_data *pgdat = NODE_DATA(nid);
495         int i;
496         int n = 0;
497
498         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
499                 n += sprintf(buf+n, "%s %lu\n", vmstat_text[i],
500                              sum_zone_node_page_state(nid, i));
501
502 #ifdef CONFIG_NUMA
503         for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
504                 n += sprintf(buf+n, "%s %lu\n",
505                              vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
506                              sum_zone_numa_state(nid, i));
507 #endif
508
509         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
510                 n += sprintf(buf+n, "%s %lu\n",
511                              vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
512                              NR_VM_NUMA_STAT_ITEMS],
513                              node_page_state(pgdat, i));
514
515         return n;
516 }
517 static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
518
519 static ssize_t node_read_distance(struct device *dev,
520                         struct device_attribute *attr, char *buf)
521 {
522         int nid = dev->id;
523         int len = 0;
524         int i;
525
526         /*
527          * buf is currently PAGE_SIZE in length and each node needs 4 chars
528          * at the most (distance + space or newline).
529          */
530         BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
531
532         for_each_online_node(i)
533                 len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
534
535         len += sprintf(buf + len, "\n");
536         return len;
537 }
538 static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
539
540 static struct attribute *node_dev_attrs[] = {
541         &dev_attr_cpumap.attr,
542         &dev_attr_cpulist.attr,
543         &dev_attr_meminfo.attr,
544         &dev_attr_numastat.attr,
545         &dev_attr_distance.attr,
546         &dev_attr_vmstat.attr,
547         NULL
548 };
549 ATTRIBUTE_GROUPS(node_dev);
550
551 #ifdef CONFIG_HUGETLBFS
552 /*
553  * hugetlbfs per node attributes registration interface:
554  * When/if hugetlb[fs] subsystem initializes [sometime after this module],
555  * it will register its per node attributes for all online nodes with
556  * memory.  It will also call register_hugetlbfs_with_node(), below, to
557  * register its attribute registration functions with this node driver.
558  * Once these hooks have been initialized, the node driver will call into
559  * the hugetlb module to [un]register attributes for hot-plugged nodes.
560  */
561 static node_registration_func_t __hugetlb_register_node;
562 static node_registration_func_t __hugetlb_unregister_node;
563
564 static inline bool hugetlb_register_node(struct node *node)
565 {
566         if (__hugetlb_register_node &&
567                         node_state(node->dev.id, N_MEMORY)) {
568                 __hugetlb_register_node(node);
569                 return true;
570         }
571         return false;
572 }
573
574 static inline void hugetlb_unregister_node(struct node *node)
575 {
576         if (__hugetlb_unregister_node)
577                 __hugetlb_unregister_node(node);
578 }
579
580 void register_hugetlbfs_with_node(node_registration_func_t doregister,
581                                   node_registration_func_t unregister)
582 {
583         __hugetlb_register_node   = doregister;
584         __hugetlb_unregister_node = unregister;
585 }
586 #else
587 static inline void hugetlb_register_node(struct node *node) {}
588
589 static inline void hugetlb_unregister_node(struct node *node) {}
590 #endif
591
592 static void node_device_release(struct device *dev)
593 {
594         struct node *node = to_node(dev);
595
596 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
597         /*
598          * We schedule the work only when a memory section is
599          * onlined/offlined on this node. When we come here,
600          * all the memory on this node has been offlined,
601          * so we won't enqueue new work to this work.
602          *
603          * The work is using node->node_work, so we should
604          * flush work before freeing the memory.
605          */
606         flush_work(&node->node_work);
607 #endif
608         kfree(node);
609 }
610
611 /*
612  * register_node - Setup a sysfs device for a node.
613  * @num - Node number to use when creating the device.
614  *
615  * Initialize and register the node device.
616  */
617 static int register_node(struct node *node, int num)
618 {
619         int error;
620
621         node->dev.id = num;
622         node->dev.bus = &node_subsys;
623         node->dev.release = node_device_release;
624         node->dev.groups = node_dev_groups;
625         error = device_register(&node->dev);
626
627         if (error)
628                 put_device(&node->dev);
629         else {
630                 hugetlb_register_node(node);
631
632                 compaction_register_node(node);
633         }
634         return error;
635 }
636
637 /**
638  * unregister_node - unregister a node device
639  * @node: node going away
640  *
641  * Unregisters a node device @node.  All the devices on the node must be
642  * unregistered before calling this function.
643  */
644 void unregister_node(struct node *node)
645 {
646         hugetlb_unregister_node(node);          /* no-op, if memoryless node */
647         node_remove_accesses(node);
648         node_remove_caches(node);
649         device_unregister(&node->dev);
650 }
651
652 struct node *node_devices[MAX_NUMNODES];
653
654 /*
655  * register cpu under node
656  */
657 int register_cpu_under_node(unsigned int cpu, unsigned int nid)
658 {
659         int ret;
660         struct device *obj;
661
662         if (!node_online(nid))
663                 return 0;
664
665         obj = get_cpu_device(cpu);
666         if (!obj)
667                 return 0;
668
669         ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
670                                 &obj->kobj,
671                                 kobject_name(&obj->kobj));
672         if (ret)
673                 return ret;
674
675         return sysfs_create_link(&obj->kobj,
676                                  &node_devices[nid]->dev.kobj,
677                                  kobject_name(&node_devices[nid]->dev.kobj));
678 }
679
680 /**
681  * register_memory_node_under_compute_node - link memory node to its compute
682  *                                           node for a given access class.
683  * @mem_nid:    Memory node number
684  * @cpu_nid:    Cpu  node number
685  * @access:     Access class to register
686  *
687  * Description:
688  *      For use with platforms that may have separate memory and compute nodes.
689  *      This function will export node relationships linking which memory
690  *      initiator nodes can access memory targets at a given ranked access
691  *      class.
692  */
693 int register_memory_node_under_compute_node(unsigned int mem_nid,
694                                             unsigned int cpu_nid,
695                                             unsigned access)
696 {
697         struct node *init_node, *targ_node;
698         struct node_access_nodes *initiator, *target;
699         int ret;
700
701         if (!node_online(cpu_nid) || !node_online(mem_nid))
702                 return -ENODEV;
703
704         init_node = node_devices[cpu_nid];
705         targ_node = node_devices[mem_nid];
706         initiator = node_init_node_access(init_node, access);
707         target = node_init_node_access(targ_node, access);
708         if (!initiator || !target)
709                 return -ENOMEM;
710
711         ret = sysfs_add_link_to_group(&initiator->dev.kobj, "targets",
712                                       &targ_node->dev.kobj,
713                                       dev_name(&targ_node->dev));
714         if (ret)
715                 return ret;
716
717         ret = sysfs_add_link_to_group(&target->dev.kobj, "initiators",
718                                       &init_node->dev.kobj,
719                                       dev_name(&init_node->dev));
720         if (ret)
721                 goto err;
722
723         return 0;
724  err:
725         sysfs_remove_link_from_group(&initiator->dev.kobj, "targets",
726                                      dev_name(&targ_node->dev));
727         return ret;
728 }
729
730 int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
731 {
732         struct device *obj;
733
734         if (!node_online(nid))
735                 return 0;
736
737         obj = get_cpu_device(cpu);
738         if (!obj)
739                 return 0;
740
741         sysfs_remove_link(&node_devices[nid]->dev.kobj,
742                           kobject_name(&obj->kobj));
743         sysfs_remove_link(&obj->kobj,
744                           kobject_name(&node_devices[nid]->dev.kobj));
745
746         return 0;
747 }
748
749 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
750 static int __ref get_nid_for_pfn(unsigned long pfn)
751 {
752         if (!pfn_valid_within(pfn))
753                 return -1;
754 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
755         if (system_state < SYSTEM_RUNNING)
756                 return early_pfn_to_nid(pfn);
757 #endif
758         return pfn_to_nid(pfn);
759 }
760
761 /* register memory section under specified node if it spans that node */
762 static int register_mem_sect_under_node(struct memory_block *mem_blk,
763                                          void *arg)
764 {
765         unsigned long memory_block_pfns = memory_block_size_bytes() / PAGE_SIZE;
766         unsigned long start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
767         unsigned long end_pfn = start_pfn + memory_block_pfns - 1;
768         int ret, nid = *(int *)arg;
769         unsigned long pfn;
770
771         for (pfn = start_pfn; pfn <= end_pfn; pfn++) {
772                 int page_nid;
773
774                 /*
775                  * memory block could have several absent sections from start.
776                  * skip pfn range from absent section
777                  */
778                 if (!pfn_present(pfn)) {
779                         pfn = round_down(pfn + PAGES_PER_SECTION,
780                                          PAGES_PER_SECTION) - 1;
781                         continue;
782                 }
783
784                 /*
785                  * We need to check if page belongs to nid only for the boot
786                  * case, during hotplug we know that all pages in the memory
787                  * block belong to the same node.
788                  */
789                 if (system_state == SYSTEM_BOOTING) {
790                         page_nid = get_nid_for_pfn(pfn);
791                         if (page_nid < 0)
792                                 continue;
793                         if (page_nid != nid)
794                                 continue;
795                 }
796
797                 /*
798                  * If this memory block spans multiple nodes, we only indicate
799                  * the last processed node.
800                  */
801                 mem_blk->nid = nid;
802
803                 ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
804                                         &mem_blk->dev.kobj,
805                                         kobject_name(&mem_blk->dev.kobj));
806                 if (ret)
807                         return ret;
808
809                 return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
810                                 &node_devices[nid]->dev.kobj,
811                                 kobject_name(&node_devices[nid]->dev.kobj));
812         }
813         /* mem section does not span the specified node */
814         return 0;
815 }
816
817 /*
818  * Unregister a memory block device under the node it spans. Memory blocks
819  * with multiple nodes cannot be offlined and therefore also never be removed.
820  */
821 void unregister_memory_block_under_nodes(struct memory_block *mem_blk)
822 {
823         if (mem_blk->nid == NUMA_NO_NODE)
824                 return;
825
826         sysfs_remove_link(&node_devices[mem_blk->nid]->dev.kobj,
827                           kobject_name(&mem_blk->dev.kobj));
828         sysfs_remove_link(&mem_blk->dev.kobj,
829                           kobject_name(&node_devices[mem_blk->nid]->dev.kobj));
830 }
831
832 int link_mem_sections(int nid, unsigned long start_pfn, unsigned long end_pfn)
833 {
834         return walk_memory_blocks(PFN_PHYS(start_pfn),
835                                   PFN_PHYS(end_pfn - start_pfn), (void *)&nid,
836                                   register_mem_sect_under_node);
837 }
838
839 #ifdef CONFIG_HUGETLBFS
840 /*
841  * Handle per node hstate attribute [un]registration on transistions
842  * to/from memoryless state.
843  */
844 static void node_hugetlb_work(struct work_struct *work)
845 {
846         struct node *node = container_of(work, struct node, node_work);
847
848         /*
849          * We only get here when a node transitions to/from memoryless state.
850          * We can detect which transition occurred by examining whether the
851          * node has memory now.  hugetlb_register_node() already check this
852          * so we try to register the attributes.  If that fails, then the
853          * node has transitioned to memoryless, try to unregister the
854          * attributes.
855          */
856         if (!hugetlb_register_node(node))
857                 hugetlb_unregister_node(node);
858 }
859
860 static void init_node_hugetlb_work(int nid)
861 {
862         INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
863 }
864
865 static int node_memory_callback(struct notifier_block *self,
866                                 unsigned long action, void *arg)
867 {
868         struct memory_notify *mnb = arg;
869         int nid = mnb->status_change_nid;
870
871         switch (action) {
872         case MEM_ONLINE:
873         case MEM_OFFLINE:
874                 /*
875                  * offload per node hstate [un]registration to a work thread
876                  * when transitioning to/from memoryless state.
877                  */
878                 if (nid != NUMA_NO_NODE)
879                         schedule_work(&node_devices[nid]->node_work);
880                 break;
881
882         case MEM_GOING_ONLINE:
883         case MEM_GOING_OFFLINE:
884         case MEM_CANCEL_ONLINE:
885         case MEM_CANCEL_OFFLINE:
886         default:
887                 break;
888         }
889
890         return NOTIFY_OK;
891 }
892 #endif  /* CONFIG_HUGETLBFS */
893 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
894
895 #if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
896     !defined(CONFIG_HUGETLBFS)
897 static inline int node_memory_callback(struct notifier_block *self,
898                                 unsigned long action, void *arg)
899 {
900         return NOTIFY_OK;
901 }
902
903 static void init_node_hugetlb_work(int nid) { }
904
905 #endif
906
907 int __register_one_node(int nid)
908 {
909         int error;
910         int cpu;
911
912         node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
913         if (!node_devices[nid])
914                 return -ENOMEM;
915
916         error = register_node(node_devices[nid], nid);
917
918         /* link cpu under this node */
919         for_each_present_cpu(cpu) {
920                 if (cpu_to_node(cpu) == nid)
921                         register_cpu_under_node(cpu, nid);
922         }
923
924         INIT_LIST_HEAD(&node_devices[nid]->access_list);
925         /* initialize work queue for memory hot plug */
926         init_node_hugetlb_work(nid);
927         node_init_caches(nid);
928
929         return error;
930 }
931
932 void unregister_one_node(int nid)
933 {
934         if (!node_devices[nid])
935                 return;
936
937         unregister_node(node_devices[nid]);
938         node_devices[nid] = NULL;
939 }
940
941 /*
942  * node states attributes
943  */
944
945 static ssize_t print_nodes_state(enum node_states state, char *buf)
946 {
947         int n;
948
949         n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
950                       nodemask_pr_args(&node_states[state]));
951         buf[n++] = '\n';
952         buf[n] = '\0';
953         return n;
954 }
955
956 struct node_attr {
957         struct device_attribute attr;
958         enum node_states state;
959 };
960
961 static ssize_t show_node_state(struct device *dev,
962                                struct device_attribute *attr, char *buf)
963 {
964         struct node_attr *na = container_of(attr, struct node_attr, attr);
965         return print_nodes_state(na->state, buf);
966 }
967
968 #define _NODE_ATTR(name, state) \
969         { __ATTR(name, 0444, show_node_state, NULL), state }
970
971 static struct node_attr node_state_attr[] = {
972         [N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
973         [N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
974         [N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
975 #ifdef CONFIG_HIGHMEM
976         [N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
977 #endif
978         [N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
979         [N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
980 };
981
982 static struct attribute *node_state_attrs[] = {
983         &node_state_attr[N_POSSIBLE].attr.attr,
984         &node_state_attr[N_ONLINE].attr.attr,
985         &node_state_attr[N_NORMAL_MEMORY].attr.attr,
986 #ifdef CONFIG_HIGHMEM
987         &node_state_attr[N_HIGH_MEMORY].attr.attr,
988 #endif
989         &node_state_attr[N_MEMORY].attr.attr,
990         &node_state_attr[N_CPU].attr.attr,
991         NULL
992 };
993
994 static struct attribute_group memory_root_attr_group = {
995         .attrs = node_state_attrs,
996 };
997
998 static const struct attribute_group *cpu_root_attr_groups[] = {
999         &memory_root_attr_group,
1000         NULL,
1001 };
1002
1003 #define NODE_CALLBACK_PRI       2       /* lower than SLAB */
1004 static int __init register_node_type(void)
1005 {
1006         int ret;
1007
1008         BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
1009         BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
1010
1011         ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
1012         if (!ret) {
1013                 static struct notifier_block node_memory_callback_nb = {
1014                         .notifier_call = node_memory_callback,
1015                         .priority = NODE_CALLBACK_PRI,
1016                 };
1017                 register_hotmemory_notifier(&node_memory_callback_nb);
1018         }
1019
1020         /*
1021          * Note:  we're not going to unregister the node class if we fail
1022          * to register the node state class attribute files.
1023          */
1024         return ret;
1025 }
1026 postcore_initcall(register_node_type);