Merge tag 'x86-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cacheinfo.h>
11 #include <linux/cpu.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/rcupdate.h>
21 #include <linux/sched.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/thermal_pressure.h>
25
26 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
27 static struct cpumask scale_freq_counters_mask;
28 static bool scale_freq_invariant;
29 static DEFINE_PER_CPU(u32, freq_factor) = 1;
30
31 static bool supports_scale_freq_counters(const struct cpumask *cpus)
32 {
33         return cpumask_subset(cpus, &scale_freq_counters_mask);
34 }
35
36 bool topology_scale_freq_invariant(void)
37 {
38         return cpufreq_supports_freq_invariance() ||
39                supports_scale_freq_counters(cpu_online_mask);
40 }
41
42 static void update_scale_freq_invariant(bool status)
43 {
44         if (scale_freq_invariant == status)
45                 return;
46
47         /*
48          * Task scheduler behavior depends on frequency invariance support,
49          * either cpufreq or counter driven. If the support status changes as
50          * a result of counter initialisation and use, retrigger the build of
51          * scheduling domains to ensure the information is propagated properly.
52          */
53         if (topology_scale_freq_invariant() == status) {
54                 scale_freq_invariant = status;
55                 rebuild_sched_domains_energy();
56         }
57 }
58
59 void topology_set_scale_freq_source(struct scale_freq_data *data,
60                                     const struct cpumask *cpus)
61 {
62         struct scale_freq_data *sfd;
63         int cpu;
64
65         /*
66          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
67          * supported by cpufreq.
68          */
69         if (cpumask_empty(&scale_freq_counters_mask))
70                 scale_freq_invariant = topology_scale_freq_invariant();
71
72         rcu_read_lock();
73
74         for_each_cpu(cpu, cpus) {
75                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
76
77                 /* Use ARCH provided counters whenever possible */
78                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
79                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
80                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
81                 }
82         }
83
84         rcu_read_unlock();
85
86         update_scale_freq_invariant(true);
87 }
88 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
89
90 void topology_clear_scale_freq_source(enum scale_freq_source source,
91                                       const struct cpumask *cpus)
92 {
93         struct scale_freq_data *sfd;
94         int cpu;
95
96         rcu_read_lock();
97
98         for_each_cpu(cpu, cpus) {
99                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
100
101                 if (sfd && sfd->source == source) {
102                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
103                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
104                 }
105         }
106
107         rcu_read_unlock();
108
109         /*
110          * Make sure all references to previous sft_data are dropped to avoid
111          * use-after-free races.
112          */
113         synchronize_rcu();
114
115         update_scale_freq_invariant(false);
116 }
117 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
118
119 void topology_scale_freq_tick(void)
120 {
121         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
122
123         if (sfd)
124                 sfd->set_freq_scale();
125 }
126
127 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
128 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
129
130 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
131                              unsigned long max_freq)
132 {
133         unsigned long scale;
134         int i;
135
136         if (WARN_ON_ONCE(!cur_freq || !max_freq))
137                 return;
138
139         /*
140          * If the use of counters for FIE is enabled, just return as we don't
141          * want to update the scale factor with information from CPUFREQ.
142          * Instead the scale factor will be updated from arch_scale_freq_tick.
143          */
144         if (supports_scale_freq_counters(cpus))
145                 return;
146
147         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
148
149         for_each_cpu(i, cpus)
150                 per_cpu(arch_freq_scale, i) = scale;
151 }
152
153 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
154 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
155
156 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
157 {
158         per_cpu(cpu_scale, cpu) = capacity;
159 }
160
161 DEFINE_PER_CPU(unsigned long, thermal_pressure);
162
163 /**
164  * topology_update_thermal_pressure() - Update thermal pressure for CPUs
165  * @cpus        : The related CPUs for which capacity has been reduced
166  * @capped_freq : The maximum allowed frequency that CPUs can run at
167  *
168  * Update the value of thermal pressure for all @cpus in the mask. The
169  * cpumask should include all (online+offline) affected CPUs, to avoid
170  * operating on stale data when hot-plug is used for some CPUs. The
171  * @capped_freq reflects the currently allowed max CPUs frequency due to
172  * thermal capping. It might be also a boost frequency value, which is bigger
173  * than the internal 'freq_factor' max frequency. In such case the pressure
174  * value should simply be removed, since this is an indication that there is
175  * no thermal throttling. The @capped_freq must be provided in kHz.
176  */
177 void topology_update_thermal_pressure(const struct cpumask *cpus,
178                                       unsigned long capped_freq)
179 {
180         unsigned long max_capacity, capacity, th_pressure;
181         u32 max_freq;
182         int cpu;
183
184         cpu = cpumask_first(cpus);
185         max_capacity = arch_scale_cpu_capacity(cpu);
186         max_freq = per_cpu(freq_factor, cpu);
187
188         /* Convert to MHz scale which is used in 'freq_factor' */
189         capped_freq /= 1000;
190
191         /*
192          * Handle properly the boost frequencies, which should simply clean
193          * the thermal pressure value.
194          */
195         if (max_freq <= capped_freq)
196                 capacity = max_capacity;
197         else
198                 capacity = mult_frac(max_capacity, capped_freq, max_freq);
199
200         th_pressure = max_capacity - capacity;
201
202         trace_thermal_pressure_update(cpu, th_pressure);
203
204         for_each_cpu(cpu, cpus)
205                 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
206 }
207 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
208
209 static ssize_t cpu_capacity_show(struct device *dev,
210                                  struct device_attribute *attr,
211                                  char *buf)
212 {
213         struct cpu *cpu = container_of(dev, struct cpu, dev);
214
215         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
216 }
217
218 static void update_topology_flags_workfn(struct work_struct *work);
219 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
220
221 static DEVICE_ATTR_RO(cpu_capacity);
222
223 static int register_cpu_capacity_sysctl(void)
224 {
225         int i;
226         struct device *cpu;
227
228         for_each_possible_cpu(i) {
229                 cpu = get_cpu_device(i);
230                 if (!cpu) {
231                         pr_err("%s: too early to get CPU%d device!\n",
232                                __func__, i);
233                         continue;
234                 }
235                 device_create_file(cpu, &dev_attr_cpu_capacity);
236         }
237
238         return 0;
239 }
240 subsys_initcall(register_cpu_capacity_sysctl);
241
242 static int update_topology;
243
244 int topology_update_cpu_topology(void)
245 {
246         return update_topology;
247 }
248
249 /*
250  * Updating the sched_domains can't be done directly from cpufreq callbacks
251  * due to locking, so queue the work for later.
252  */
253 static void update_topology_flags_workfn(struct work_struct *work)
254 {
255         update_topology = 1;
256         rebuild_sched_domains();
257         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
258         update_topology = 0;
259 }
260
261 static u32 *raw_capacity;
262
263 static int free_raw_capacity(void)
264 {
265         kfree(raw_capacity);
266         raw_capacity = NULL;
267
268         return 0;
269 }
270
271 void topology_normalize_cpu_scale(void)
272 {
273         u64 capacity;
274         u64 capacity_scale;
275         int cpu;
276
277         if (!raw_capacity)
278                 return;
279
280         capacity_scale = 1;
281         for_each_possible_cpu(cpu) {
282                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
283                 capacity_scale = max(capacity, capacity_scale);
284         }
285
286         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
287         for_each_possible_cpu(cpu) {
288                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
289                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
290                         capacity_scale);
291                 topology_set_cpu_scale(cpu, capacity);
292                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
293                         cpu, topology_get_cpu_scale(cpu));
294         }
295 }
296
297 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
298 {
299         struct clk *cpu_clk;
300         static bool cap_parsing_failed;
301         int ret;
302         u32 cpu_capacity;
303
304         if (cap_parsing_failed)
305                 return false;
306
307         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
308                                    &cpu_capacity);
309         if (!ret) {
310                 if (!raw_capacity) {
311                         raw_capacity = kcalloc(num_possible_cpus(),
312                                                sizeof(*raw_capacity),
313                                                GFP_KERNEL);
314                         if (!raw_capacity) {
315                                 cap_parsing_failed = true;
316                                 return false;
317                         }
318                 }
319                 raw_capacity[cpu] = cpu_capacity;
320                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
321                         cpu_node, raw_capacity[cpu]);
322
323                 /*
324                  * Update freq_factor for calculating early boot cpu capacities.
325                  * For non-clk CPU DVFS mechanism, there's no way to get the
326                  * frequency value now, assuming they are running at the same
327                  * frequency (by keeping the initial freq_factor value).
328                  */
329                 cpu_clk = of_clk_get(cpu_node, 0);
330                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
331                         per_cpu(freq_factor, cpu) =
332                                 clk_get_rate(cpu_clk) / 1000;
333                         clk_put(cpu_clk);
334                 }
335         } else {
336                 if (raw_capacity) {
337                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
338                                 cpu_node);
339                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
340                 }
341                 cap_parsing_failed = true;
342                 free_raw_capacity();
343         }
344
345         return !ret;
346 }
347
348 #ifdef CONFIG_ACPI_CPPC_LIB
349 #include <acpi/cppc_acpi.h>
350
351 void topology_init_cpu_capacity_cppc(void)
352 {
353         struct cppc_perf_caps perf_caps;
354         int cpu;
355
356         if (likely(acpi_disabled || !acpi_cpc_valid()))
357                 return;
358
359         raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
360                                GFP_KERNEL);
361         if (!raw_capacity)
362                 return;
363
364         for_each_possible_cpu(cpu) {
365                 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
366                     (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
367                     (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
368                         raw_capacity[cpu] = perf_caps.highest_perf;
369                         pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
370                                  cpu, raw_capacity[cpu]);
371                         continue;
372                 }
373
374                 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
375                 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
376                 goto exit;
377         }
378
379         topology_normalize_cpu_scale();
380         schedule_work(&update_topology_flags_work);
381         pr_debug("cpu_capacity: cpu_capacity initialization done\n");
382
383 exit:
384         free_raw_capacity();
385 }
386 #endif
387
388 #ifdef CONFIG_CPU_FREQ
389 static cpumask_var_t cpus_to_visit;
390 static void parsing_done_workfn(struct work_struct *work);
391 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
392
393 static int
394 init_cpu_capacity_callback(struct notifier_block *nb,
395                            unsigned long val,
396                            void *data)
397 {
398         struct cpufreq_policy *policy = data;
399         int cpu;
400
401         if (!raw_capacity)
402                 return 0;
403
404         if (val != CPUFREQ_CREATE_POLICY)
405                 return 0;
406
407         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
408                  cpumask_pr_args(policy->related_cpus),
409                  cpumask_pr_args(cpus_to_visit));
410
411         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
412
413         for_each_cpu(cpu, policy->related_cpus)
414                 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
415
416         if (cpumask_empty(cpus_to_visit)) {
417                 topology_normalize_cpu_scale();
418                 schedule_work(&update_topology_flags_work);
419                 free_raw_capacity();
420                 pr_debug("cpu_capacity: parsing done\n");
421                 schedule_work(&parsing_done_work);
422         }
423
424         return 0;
425 }
426
427 static struct notifier_block init_cpu_capacity_notifier = {
428         .notifier_call = init_cpu_capacity_callback,
429 };
430
431 static int __init register_cpufreq_notifier(void)
432 {
433         int ret;
434
435         /*
436          * On ACPI-based systems skip registering cpufreq notifier as cpufreq
437          * information is not needed for cpu capacity initialization.
438          */
439         if (!acpi_disabled || !raw_capacity)
440                 return -EINVAL;
441
442         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
443                 return -ENOMEM;
444
445         cpumask_copy(cpus_to_visit, cpu_possible_mask);
446
447         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
448                                         CPUFREQ_POLICY_NOTIFIER);
449
450         if (ret)
451                 free_cpumask_var(cpus_to_visit);
452
453         return ret;
454 }
455 core_initcall(register_cpufreq_notifier);
456
457 static void parsing_done_workfn(struct work_struct *work)
458 {
459         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
460                                          CPUFREQ_POLICY_NOTIFIER);
461         free_cpumask_var(cpus_to_visit);
462 }
463
464 #else
465 core_initcall(free_raw_capacity);
466 #endif
467
468 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
469 /*
470  * This function returns the logic cpu number of the node.
471  * There are basically three kinds of return values:
472  * (1) logic cpu number which is > 0.
473  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
474  * there is no possible logical CPU in the kernel to match. This happens
475  * when CONFIG_NR_CPUS is configure to be smaller than the number of
476  * CPU nodes in DT. We need to just ignore this case.
477  * (3) -1 if the node does not exist in the device tree
478  */
479 static int __init get_cpu_for_node(struct device_node *node)
480 {
481         struct device_node *cpu_node;
482         int cpu;
483
484         cpu_node = of_parse_phandle(node, "cpu", 0);
485         if (!cpu_node)
486                 return -1;
487
488         cpu = of_cpu_node_to_id(cpu_node);
489         if (cpu >= 0)
490                 topology_parse_cpu_capacity(cpu_node, cpu);
491         else
492                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
493                         cpu_node, cpumask_pr_args(cpu_possible_mask));
494
495         of_node_put(cpu_node);
496         return cpu;
497 }
498
499 static int __init parse_core(struct device_node *core, int package_id,
500                              int cluster_id, int core_id)
501 {
502         char name[20];
503         bool leaf = true;
504         int i = 0;
505         int cpu;
506         struct device_node *t;
507
508         do {
509                 snprintf(name, sizeof(name), "thread%d", i);
510                 t = of_get_child_by_name(core, name);
511                 if (t) {
512                         leaf = false;
513                         cpu = get_cpu_for_node(t);
514                         if (cpu >= 0) {
515                                 cpu_topology[cpu].package_id = package_id;
516                                 cpu_topology[cpu].cluster_id = cluster_id;
517                                 cpu_topology[cpu].core_id = core_id;
518                                 cpu_topology[cpu].thread_id = i;
519                         } else if (cpu != -ENODEV) {
520                                 pr_err("%pOF: Can't get CPU for thread\n", t);
521                                 of_node_put(t);
522                                 return -EINVAL;
523                         }
524                         of_node_put(t);
525                 }
526                 i++;
527         } while (t);
528
529         cpu = get_cpu_for_node(core);
530         if (cpu >= 0) {
531                 if (!leaf) {
532                         pr_err("%pOF: Core has both threads and CPU\n",
533                                core);
534                         return -EINVAL;
535                 }
536
537                 cpu_topology[cpu].package_id = package_id;
538                 cpu_topology[cpu].cluster_id = cluster_id;
539                 cpu_topology[cpu].core_id = core_id;
540         } else if (leaf && cpu != -ENODEV) {
541                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
542                 return -EINVAL;
543         }
544
545         return 0;
546 }
547
548 static int __init parse_cluster(struct device_node *cluster, int package_id,
549                                 int cluster_id, int depth)
550 {
551         char name[20];
552         bool leaf = true;
553         bool has_cores = false;
554         struct device_node *c;
555         int core_id = 0;
556         int i, ret;
557
558         /*
559          * First check for child clusters; we currently ignore any
560          * information about the nesting of clusters and present the
561          * scheduler with a flat list of them.
562          */
563         i = 0;
564         do {
565                 snprintf(name, sizeof(name), "cluster%d", i);
566                 c = of_get_child_by_name(cluster, name);
567                 if (c) {
568                         leaf = false;
569                         ret = parse_cluster(c, package_id, i, depth + 1);
570                         if (depth > 0)
571                                 pr_warn("Topology for clusters of clusters not yet supported\n");
572                         of_node_put(c);
573                         if (ret != 0)
574                                 return ret;
575                 }
576                 i++;
577         } while (c);
578
579         /* Now check for cores */
580         i = 0;
581         do {
582                 snprintf(name, sizeof(name), "core%d", i);
583                 c = of_get_child_by_name(cluster, name);
584                 if (c) {
585                         has_cores = true;
586
587                         if (depth == 0) {
588                                 pr_err("%pOF: cpu-map children should be clusters\n",
589                                        c);
590                                 of_node_put(c);
591                                 return -EINVAL;
592                         }
593
594                         if (leaf) {
595                                 ret = parse_core(c, package_id, cluster_id,
596                                                  core_id++);
597                         } else {
598                                 pr_err("%pOF: Non-leaf cluster with core %s\n",
599                                        cluster, name);
600                                 ret = -EINVAL;
601                         }
602
603                         of_node_put(c);
604                         if (ret != 0)
605                                 return ret;
606                 }
607                 i++;
608         } while (c);
609
610         if (leaf && !has_cores)
611                 pr_warn("%pOF: empty cluster\n", cluster);
612
613         return 0;
614 }
615
616 static int __init parse_socket(struct device_node *socket)
617 {
618         char name[20];
619         struct device_node *c;
620         bool has_socket = false;
621         int package_id = 0, ret;
622
623         do {
624                 snprintf(name, sizeof(name), "socket%d", package_id);
625                 c = of_get_child_by_name(socket, name);
626                 if (c) {
627                         has_socket = true;
628                         ret = parse_cluster(c, package_id, -1, 0);
629                         of_node_put(c);
630                         if (ret != 0)
631                                 return ret;
632                 }
633                 package_id++;
634         } while (c);
635
636         if (!has_socket)
637                 ret = parse_cluster(socket, 0, -1, 0);
638
639         return ret;
640 }
641
642 static int __init parse_dt_topology(void)
643 {
644         struct device_node *cn, *map;
645         int ret = 0;
646         int cpu;
647
648         cn = of_find_node_by_path("/cpus");
649         if (!cn) {
650                 pr_err("No CPU information found in DT\n");
651                 return 0;
652         }
653
654         /*
655          * When topology is provided cpu-map is essentially a root
656          * cluster with restricted subnodes.
657          */
658         map = of_get_child_by_name(cn, "cpu-map");
659         if (!map)
660                 goto out;
661
662         ret = parse_socket(map);
663         if (ret != 0)
664                 goto out_map;
665
666         topology_normalize_cpu_scale();
667
668         /*
669          * Check that all cores are in the topology; the SMP code will
670          * only mark cores described in the DT as possible.
671          */
672         for_each_possible_cpu(cpu)
673                 if (cpu_topology[cpu].package_id < 0) {
674                         ret = -EINVAL;
675                         break;
676                 }
677
678 out_map:
679         of_node_put(map);
680 out:
681         of_node_put(cn);
682         return ret;
683 }
684 #endif
685
686 /*
687  * cpu topology table
688  */
689 struct cpu_topology cpu_topology[NR_CPUS];
690 EXPORT_SYMBOL_GPL(cpu_topology);
691
692 const struct cpumask *cpu_coregroup_mask(int cpu)
693 {
694         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
695
696         /* Find the smaller of NUMA, core or LLC siblings */
697         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
698                 /* not numa in package, lets use the package siblings */
699                 core_mask = &cpu_topology[cpu].core_sibling;
700         }
701
702         if (last_level_cache_is_valid(cpu)) {
703                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
704                         core_mask = &cpu_topology[cpu].llc_sibling;
705         }
706
707         /*
708          * For systems with no shared cpu-side LLC but with clusters defined,
709          * extend core_mask to cluster_siblings. The sched domain builder will
710          * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
711          */
712         if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
713             cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
714                 core_mask = &cpu_topology[cpu].cluster_sibling;
715
716         return core_mask;
717 }
718
719 const struct cpumask *cpu_clustergroup_mask(int cpu)
720 {
721         /*
722          * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
723          * cpu_coregroup_mask().
724          */
725         if (cpumask_subset(cpu_coregroup_mask(cpu),
726                            &cpu_topology[cpu].cluster_sibling))
727                 return get_cpu_mask(cpu);
728
729         return &cpu_topology[cpu].cluster_sibling;
730 }
731
732 void update_siblings_masks(unsigned int cpuid)
733 {
734         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
735         int cpu, ret;
736
737         ret = detect_cache_attributes(cpuid);
738         if (ret)
739                 pr_info("Early cacheinfo failed, ret = %d\n", ret);
740
741         /* update core and thread sibling masks */
742         for_each_online_cpu(cpu) {
743                 cpu_topo = &cpu_topology[cpu];
744
745                 if (last_level_cache_is_shared(cpu, cpuid)) {
746                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
747                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
748                 }
749
750                 if (cpuid_topo->package_id != cpu_topo->package_id)
751                         continue;
752
753                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
754                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
755
756                 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
757                         continue;
758
759                 if (cpuid_topo->cluster_id >= 0) {
760                         cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
761                         cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
762                 }
763
764                 if (cpuid_topo->core_id != cpu_topo->core_id)
765                         continue;
766
767                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
768                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
769         }
770 }
771
772 static void clear_cpu_topology(int cpu)
773 {
774         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
775
776         cpumask_clear(&cpu_topo->llc_sibling);
777         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
778
779         cpumask_clear(&cpu_topo->cluster_sibling);
780         cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
781
782         cpumask_clear(&cpu_topo->core_sibling);
783         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
784         cpumask_clear(&cpu_topo->thread_sibling);
785         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
786 }
787
788 void __init reset_cpu_topology(void)
789 {
790         unsigned int cpu;
791
792         for_each_possible_cpu(cpu) {
793                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
794
795                 cpu_topo->thread_id = -1;
796                 cpu_topo->core_id = -1;
797                 cpu_topo->cluster_id = -1;
798                 cpu_topo->package_id = -1;
799
800                 clear_cpu_topology(cpu);
801         }
802 }
803
804 void remove_cpu_topology(unsigned int cpu)
805 {
806         int sibling;
807
808         for_each_cpu(sibling, topology_core_cpumask(cpu))
809                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
810         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
811                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
812         for_each_cpu(sibling, topology_cluster_cpumask(cpu))
813                 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
814         for_each_cpu(sibling, topology_llc_cpumask(cpu))
815                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
816
817         clear_cpu_topology(cpu);
818 }
819
820 __weak int __init parse_acpi_topology(void)
821 {
822         return 0;
823 }
824
825 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
826 void __init init_cpu_topology(void)
827 {
828         int ret;
829
830         reset_cpu_topology();
831         ret = parse_acpi_topology();
832         if (!ret)
833                 ret = of_have_populated_dt() && parse_dt_topology();
834
835         if (ret) {
836                 /*
837                  * Discard anything that was parsed if we hit an error so we
838                  * don't use partial information.
839                  */
840                 reset_cpu_topology();
841                 return;
842         }
843 }
844 #endif