Merge remote-tracking branch 'spi/for-5.9' into spi-linus
[linux-2.6-microblaze.git] / drivers / android / binder_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34         BINDER_DEBUG_USER_ERROR             = 1U << 0,
35         BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36         BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37         BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42                    uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45         do { \
46                 if (binder_alloc_debug_mask & mask) \
47                         pr_info_ratelimited(x); \
48         } while (0)
49
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52         return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57         return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61                                        struct binder_buffer *buffer)
62 {
63         if (list_is_last(&buffer->entry, &alloc->buffers))
64                 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65         return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69                                       struct binder_buffer *new_buffer)
70 {
71         struct rb_node **p = &alloc->free_buffers.rb_node;
72         struct rb_node *parent = NULL;
73         struct binder_buffer *buffer;
74         size_t buffer_size;
75         size_t new_buffer_size;
76
77         BUG_ON(!new_buffer->free);
78
79         new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82                      "%d: add free buffer, size %zd, at %pK\n",
83                       alloc->pid, new_buffer_size, new_buffer);
84
85         while (*p) {
86                 parent = *p;
87                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88                 BUG_ON(!buffer->free);
89
90                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92                 if (new_buffer_size < buffer_size)
93                         p = &parent->rb_left;
94                 else
95                         p = &parent->rb_right;
96         }
97         rb_link_node(&new_buffer->rb_node, parent, p);
98         rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
101 static void binder_insert_allocated_buffer_locked(
102                 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104         struct rb_node **p = &alloc->allocated_buffers.rb_node;
105         struct rb_node *parent = NULL;
106         struct binder_buffer *buffer;
107
108         BUG_ON(new_buffer->free);
109
110         while (*p) {
111                 parent = *p;
112                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113                 BUG_ON(buffer->free);
114
115                 if (new_buffer->user_data < buffer->user_data)
116                         p = &parent->rb_left;
117                 else if (new_buffer->user_data > buffer->user_data)
118                         p = &parent->rb_right;
119                 else
120                         BUG();
121         }
122         rb_link_node(&new_buffer->rb_node, parent, p);
123         rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127                 struct binder_alloc *alloc,
128                 uintptr_t user_ptr)
129 {
130         struct rb_node *n = alloc->allocated_buffers.rb_node;
131         struct binder_buffer *buffer;
132         void __user *uptr;
133
134         uptr = (void __user *)user_ptr;
135
136         while (n) {
137                 buffer = rb_entry(n, struct binder_buffer, rb_node);
138                 BUG_ON(buffer->free);
139
140                 if (uptr < buffer->user_data)
141                         n = n->rb_left;
142                 else if (uptr > buffer->user_data)
143                         n = n->rb_right;
144                 else {
145                         /*
146                          * Guard against user threads attempting to
147                          * free the buffer when in use by kernel or
148                          * after it's already been freed.
149                          */
150                         if (!buffer->allow_user_free)
151                                 return ERR_PTR(-EPERM);
152                         buffer->allow_user_free = 0;
153                         return buffer;
154                 }
155         }
156         return NULL;
157 }
158
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:      binder_alloc for this proc
162  * @user_ptr:   User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:      Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171                                                    uintptr_t user_ptr)
172 {
173         struct binder_buffer *buffer;
174
175         mutex_lock(&alloc->mutex);
176         buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177         mutex_unlock(&alloc->mutex);
178         return buffer;
179 }
180
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182                                     void __user *start, void __user *end)
183 {
184         void __user *page_addr;
185         unsigned long user_page_addr;
186         struct binder_lru_page *page;
187         struct vm_area_struct *vma = NULL;
188         struct mm_struct *mm = NULL;
189         bool need_mm = false;
190
191         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192                      "%d: %s pages %pK-%pK\n", alloc->pid,
193                      allocate ? "allocate" : "free", start, end);
194
195         if (end <= start)
196                 return 0;
197
198         trace_binder_update_page_range(alloc, allocate, start, end);
199
200         if (allocate == 0)
201                 goto free_range;
202
203         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204                 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205                 if (!page->page_ptr) {
206                         need_mm = true;
207                         break;
208                 }
209         }
210
211         if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212                 mm = alloc->vma_vm_mm;
213
214         if (mm) {
215                 mmap_read_lock(mm);
216                 vma = alloc->vma;
217         }
218
219         if (!vma && need_mm) {
220                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221                                    "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222                                    alloc->pid);
223                 goto err_no_vma;
224         }
225
226         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227                 int ret;
228                 bool on_lru;
229                 size_t index;
230
231                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232                 page = &alloc->pages[index];
233
234                 if (page->page_ptr) {
235                         trace_binder_alloc_lru_start(alloc, index);
236
237                         on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238                         WARN_ON(!on_lru);
239
240                         trace_binder_alloc_lru_end(alloc, index);
241                         continue;
242                 }
243
244                 if (WARN_ON(!vma))
245                         goto err_page_ptr_cleared;
246
247                 trace_binder_alloc_page_start(alloc, index);
248                 page->page_ptr = alloc_page(GFP_KERNEL |
249                                             __GFP_HIGHMEM |
250                                             __GFP_ZERO);
251                 if (!page->page_ptr) {
252                         pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253                                 alloc->pid, page_addr);
254                         goto err_alloc_page_failed;
255                 }
256                 page->alloc = alloc;
257                 INIT_LIST_HEAD(&page->lru);
258
259                 user_page_addr = (uintptr_t)page_addr;
260                 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261                 if (ret) {
262                         pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263                                alloc->pid, user_page_addr);
264                         goto err_vm_insert_page_failed;
265                 }
266
267                 if (index + 1 > alloc->pages_high)
268                         alloc->pages_high = index + 1;
269
270                 trace_binder_alloc_page_end(alloc, index);
271         }
272         if (mm) {
273                 mmap_read_unlock(mm);
274                 mmput(mm);
275         }
276         return 0;
277
278 free_range:
279         for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280                 bool ret;
281                 size_t index;
282
283                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284                 page = &alloc->pages[index];
285
286                 trace_binder_free_lru_start(alloc, index);
287
288                 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289                 WARN_ON(!ret);
290
291                 trace_binder_free_lru_end(alloc, index);
292                 if (page_addr == start)
293                         break;
294                 continue;
295
296 err_vm_insert_page_failed:
297                 __free_page(page->page_ptr);
298                 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301                 if (page_addr == start)
302                         break;
303         }
304 err_no_vma:
305         if (mm) {
306                 mmap_read_unlock(mm);
307                 mmput(mm);
308         }
309         return vma ? -ENOMEM : -ESRCH;
310 }
311
312
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314                 struct vm_area_struct *vma)
315 {
316         if (vma)
317                 alloc->vma_vm_mm = vma->vm_mm;
318         /*
319          * If we see alloc->vma is not NULL, buffer data structures set up
320          * completely. Look at smp_rmb side binder_alloc_get_vma.
321          * We also want to guarantee new alloc->vma_vm_mm is always visible
322          * if alloc->vma is set.
323          */
324         smp_wmb();
325         alloc->vma = vma;
326 }
327
328 static inline struct vm_area_struct *binder_alloc_get_vma(
329                 struct binder_alloc *alloc)
330 {
331         struct vm_area_struct *vma = NULL;
332
333         if (alloc->vma) {
334                 /* Look at description in binder_alloc_set_vma */
335                 smp_rmb();
336                 vma = alloc->vma;
337         }
338         return vma;
339 }
340
341 static struct binder_buffer *binder_alloc_new_buf_locked(
342                                 struct binder_alloc *alloc,
343                                 size_t data_size,
344                                 size_t offsets_size,
345                                 size_t extra_buffers_size,
346                                 int is_async)
347 {
348         struct rb_node *n = alloc->free_buffers.rb_node;
349         struct binder_buffer *buffer;
350         size_t buffer_size;
351         struct rb_node *best_fit = NULL;
352         void __user *has_page_addr;
353         void __user *end_page_addr;
354         size_t size, data_offsets_size;
355         int ret;
356
357         if (!binder_alloc_get_vma(alloc)) {
358                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
359                                    "%d: binder_alloc_buf, no vma\n",
360                                    alloc->pid);
361                 return ERR_PTR(-ESRCH);
362         }
363
364         data_offsets_size = ALIGN(data_size, sizeof(void *)) +
365                 ALIGN(offsets_size, sizeof(void *));
366
367         if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
368                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
369                                 "%d: got transaction with invalid size %zd-%zd\n",
370                                 alloc->pid, data_size, offsets_size);
371                 return ERR_PTR(-EINVAL);
372         }
373         size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
374         if (size < data_offsets_size || size < extra_buffers_size) {
375                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
376                                 "%d: got transaction with invalid extra_buffers_size %zd\n",
377                                 alloc->pid, extra_buffers_size);
378                 return ERR_PTR(-EINVAL);
379         }
380         if (is_async &&
381             alloc->free_async_space < size + sizeof(struct binder_buffer)) {
382                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
383                              "%d: binder_alloc_buf size %zd failed, no async space left\n",
384                               alloc->pid, size);
385                 return ERR_PTR(-ENOSPC);
386         }
387
388         /* Pad 0-size buffers so they get assigned unique addresses */
389         size = max(size, sizeof(void *));
390
391         while (n) {
392                 buffer = rb_entry(n, struct binder_buffer, rb_node);
393                 BUG_ON(!buffer->free);
394                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
395
396                 if (size < buffer_size) {
397                         best_fit = n;
398                         n = n->rb_left;
399                 } else if (size > buffer_size)
400                         n = n->rb_right;
401                 else {
402                         best_fit = n;
403                         break;
404                 }
405         }
406         if (best_fit == NULL) {
407                 size_t allocated_buffers = 0;
408                 size_t largest_alloc_size = 0;
409                 size_t total_alloc_size = 0;
410                 size_t free_buffers = 0;
411                 size_t largest_free_size = 0;
412                 size_t total_free_size = 0;
413
414                 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
415                      n = rb_next(n)) {
416                         buffer = rb_entry(n, struct binder_buffer, rb_node);
417                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
418                         allocated_buffers++;
419                         total_alloc_size += buffer_size;
420                         if (buffer_size > largest_alloc_size)
421                                 largest_alloc_size = buffer_size;
422                 }
423                 for (n = rb_first(&alloc->free_buffers); n != NULL;
424                      n = rb_next(n)) {
425                         buffer = rb_entry(n, struct binder_buffer, rb_node);
426                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
427                         free_buffers++;
428                         total_free_size += buffer_size;
429                         if (buffer_size > largest_free_size)
430                                 largest_free_size = buffer_size;
431                 }
432                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
433                                    "%d: binder_alloc_buf size %zd failed, no address space\n",
434                                    alloc->pid, size);
435                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
436                                    "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
437                                    total_alloc_size, allocated_buffers,
438                                    largest_alloc_size, total_free_size,
439                                    free_buffers, largest_free_size);
440                 return ERR_PTR(-ENOSPC);
441         }
442         if (n == NULL) {
443                 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
444                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
445         }
446
447         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
448                      "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
449                       alloc->pid, size, buffer, buffer_size);
450
451         has_page_addr = (void __user *)
452                 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
453         WARN_ON(n && buffer_size != size);
454         end_page_addr =
455                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
456         if (end_page_addr > has_page_addr)
457                 end_page_addr = has_page_addr;
458         ret = binder_update_page_range(alloc, 1, (void __user *)
459                 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
460         if (ret)
461                 return ERR_PTR(ret);
462
463         if (buffer_size != size) {
464                 struct binder_buffer *new_buffer;
465
466                 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
467                 if (!new_buffer) {
468                         pr_err("%s: %d failed to alloc new buffer struct\n",
469                                __func__, alloc->pid);
470                         goto err_alloc_buf_struct_failed;
471                 }
472                 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
473                 list_add(&new_buffer->entry, &buffer->entry);
474                 new_buffer->free = 1;
475                 binder_insert_free_buffer(alloc, new_buffer);
476         }
477
478         rb_erase(best_fit, &alloc->free_buffers);
479         buffer->free = 0;
480         buffer->allow_user_free = 0;
481         binder_insert_allocated_buffer_locked(alloc, buffer);
482         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
483                      "%d: binder_alloc_buf size %zd got %pK\n",
484                       alloc->pid, size, buffer);
485         buffer->data_size = data_size;
486         buffer->offsets_size = offsets_size;
487         buffer->async_transaction = is_async;
488         buffer->extra_buffers_size = extra_buffers_size;
489         if (is_async) {
490                 alloc->free_async_space -= size + sizeof(struct binder_buffer);
491                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
492                              "%d: binder_alloc_buf size %zd async free %zd\n",
493                               alloc->pid, size, alloc->free_async_space);
494         }
495         return buffer;
496
497 err_alloc_buf_struct_failed:
498         binder_update_page_range(alloc, 0, (void __user *)
499                                  PAGE_ALIGN((uintptr_t)buffer->user_data),
500                                  end_page_addr);
501         return ERR_PTR(-ENOMEM);
502 }
503
504 /**
505  * binder_alloc_new_buf() - Allocate a new binder buffer
506  * @alloc:              binder_alloc for this proc
507  * @data_size:          size of user data buffer
508  * @offsets_size:       user specified buffer offset
509  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
510  * @is_async:           buffer for async transaction
511  *
512  * Allocate a new buffer given the requested sizes. Returns
513  * the kernel version of the buffer pointer. The size allocated
514  * is the sum of the three given sizes (each rounded up to
515  * pointer-sized boundary)
516  *
517  * Return:      The allocated buffer or %NULL if error
518  */
519 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
520                                            size_t data_size,
521                                            size_t offsets_size,
522                                            size_t extra_buffers_size,
523                                            int is_async)
524 {
525         struct binder_buffer *buffer;
526
527         mutex_lock(&alloc->mutex);
528         buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
529                                              extra_buffers_size, is_async);
530         mutex_unlock(&alloc->mutex);
531         return buffer;
532 }
533
534 static void __user *buffer_start_page(struct binder_buffer *buffer)
535 {
536         return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
537 }
538
539 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
540 {
541         return (void __user *)
542                 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
543 }
544
545 static void binder_delete_free_buffer(struct binder_alloc *alloc,
546                                       struct binder_buffer *buffer)
547 {
548         struct binder_buffer *prev, *next = NULL;
549         bool to_free = true;
550
551         BUG_ON(alloc->buffers.next == &buffer->entry);
552         prev = binder_buffer_prev(buffer);
553         BUG_ON(!prev->free);
554         if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
555                 to_free = false;
556                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
557                                    "%d: merge free, buffer %pK share page with %pK\n",
558                                    alloc->pid, buffer->user_data,
559                                    prev->user_data);
560         }
561
562         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
563                 next = binder_buffer_next(buffer);
564                 if (buffer_start_page(next) == buffer_start_page(buffer)) {
565                         to_free = false;
566                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
567                                            "%d: merge free, buffer %pK share page with %pK\n",
568                                            alloc->pid,
569                                            buffer->user_data,
570                                            next->user_data);
571                 }
572         }
573
574         if (PAGE_ALIGNED(buffer->user_data)) {
575                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
576                                    "%d: merge free, buffer start %pK is page aligned\n",
577                                    alloc->pid, buffer->user_data);
578                 to_free = false;
579         }
580
581         if (to_free) {
582                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
583                                    "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
584                                    alloc->pid, buffer->user_data,
585                                    prev->user_data,
586                                    next ? next->user_data : NULL);
587                 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
588                                          buffer_start_page(buffer) + PAGE_SIZE);
589         }
590         list_del(&buffer->entry);
591         kfree(buffer);
592 }
593
594 static void binder_free_buf_locked(struct binder_alloc *alloc,
595                                    struct binder_buffer *buffer)
596 {
597         size_t size, buffer_size;
598
599         buffer_size = binder_alloc_buffer_size(alloc, buffer);
600
601         size = ALIGN(buffer->data_size, sizeof(void *)) +
602                 ALIGN(buffer->offsets_size, sizeof(void *)) +
603                 ALIGN(buffer->extra_buffers_size, sizeof(void *));
604
605         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
606                      "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
607                       alloc->pid, buffer, size, buffer_size);
608
609         BUG_ON(buffer->free);
610         BUG_ON(size > buffer_size);
611         BUG_ON(buffer->transaction != NULL);
612         BUG_ON(buffer->user_data < alloc->buffer);
613         BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
614
615         if (buffer->async_transaction) {
616                 alloc->free_async_space += size + sizeof(struct binder_buffer);
617
618                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
619                              "%d: binder_free_buf size %zd async free %zd\n",
620                               alloc->pid, size, alloc->free_async_space);
621         }
622
623         binder_update_page_range(alloc, 0,
624                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
625                 (void __user *)(((uintptr_t)
626                           buffer->user_data + buffer_size) & PAGE_MASK));
627
628         rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
629         buffer->free = 1;
630         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
631                 struct binder_buffer *next = binder_buffer_next(buffer);
632
633                 if (next->free) {
634                         rb_erase(&next->rb_node, &alloc->free_buffers);
635                         binder_delete_free_buffer(alloc, next);
636                 }
637         }
638         if (alloc->buffers.next != &buffer->entry) {
639                 struct binder_buffer *prev = binder_buffer_prev(buffer);
640
641                 if (prev->free) {
642                         binder_delete_free_buffer(alloc, buffer);
643                         rb_erase(&prev->rb_node, &alloc->free_buffers);
644                         buffer = prev;
645                 }
646         }
647         binder_insert_free_buffer(alloc, buffer);
648 }
649
650 /**
651  * binder_alloc_free_buf() - free a binder buffer
652  * @alloc:      binder_alloc for this proc
653  * @buffer:     kernel pointer to buffer
654  *
655  * Free the buffer allocated via binder_alloc_new_buffer()
656  */
657 void binder_alloc_free_buf(struct binder_alloc *alloc,
658                             struct binder_buffer *buffer)
659 {
660         mutex_lock(&alloc->mutex);
661         binder_free_buf_locked(alloc, buffer);
662         mutex_unlock(&alloc->mutex);
663 }
664
665 /**
666  * binder_alloc_mmap_handler() - map virtual address space for proc
667  * @alloc:      alloc structure for this proc
668  * @vma:        vma passed to mmap()
669  *
670  * Called by binder_mmap() to initialize the space specified in
671  * vma for allocating binder buffers
672  *
673  * Return:
674  *      0 = success
675  *      -EBUSY = address space already mapped
676  *      -ENOMEM = failed to map memory to given address space
677  */
678 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
679                               struct vm_area_struct *vma)
680 {
681         int ret;
682         const char *failure_string;
683         struct binder_buffer *buffer;
684
685         mutex_lock(&binder_alloc_mmap_lock);
686         if (alloc->buffer_size) {
687                 ret = -EBUSY;
688                 failure_string = "already mapped";
689                 goto err_already_mapped;
690         }
691         alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
692                                    SZ_4M);
693         mutex_unlock(&binder_alloc_mmap_lock);
694
695         alloc->buffer = (void __user *)vma->vm_start;
696
697         alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
698                                sizeof(alloc->pages[0]),
699                                GFP_KERNEL);
700         if (alloc->pages == NULL) {
701                 ret = -ENOMEM;
702                 failure_string = "alloc page array";
703                 goto err_alloc_pages_failed;
704         }
705
706         buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
707         if (!buffer) {
708                 ret = -ENOMEM;
709                 failure_string = "alloc buffer struct";
710                 goto err_alloc_buf_struct_failed;
711         }
712
713         buffer->user_data = alloc->buffer;
714         list_add(&buffer->entry, &alloc->buffers);
715         buffer->free = 1;
716         binder_insert_free_buffer(alloc, buffer);
717         alloc->free_async_space = alloc->buffer_size / 2;
718         binder_alloc_set_vma(alloc, vma);
719         mmgrab(alloc->vma_vm_mm);
720
721         return 0;
722
723 err_alloc_buf_struct_failed:
724         kfree(alloc->pages);
725         alloc->pages = NULL;
726 err_alloc_pages_failed:
727         alloc->buffer = NULL;
728         mutex_lock(&binder_alloc_mmap_lock);
729         alloc->buffer_size = 0;
730 err_already_mapped:
731         mutex_unlock(&binder_alloc_mmap_lock);
732         binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
733                            "%s: %d %lx-%lx %s failed %d\n", __func__,
734                            alloc->pid, vma->vm_start, vma->vm_end,
735                            failure_string, ret);
736         return ret;
737 }
738
739
740 void binder_alloc_deferred_release(struct binder_alloc *alloc)
741 {
742         struct rb_node *n;
743         int buffers, page_count;
744         struct binder_buffer *buffer;
745
746         buffers = 0;
747         mutex_lock(&alloc->mutex);
748         BUG_ON(alloc->vma);
749
750         while ((n = rb_first(&alloc->allocated_buffers))) {
751                 buffer = rb_entry(n, struct binder_buffer, rb_node);
752
753                 /* Transaction should already have been freed */
754                 BUG_ON(buffer->transaction);
755
756                 binder_free_buf_locked(alloc, buffer);
757                 buffers++;
758         }
759
760         while (!list_empty(&alloc->buffers)) {
761                 buffer = list_first_entry(&alloc->buffers,
762                                           struct binder_buffer, entry);
763                 WARN_ON(!buffer->free);
764
765                 list_del(&buffer->entry);
766                 WARN_ON_ONCE(!list_empty(&alloc->buffers));
767                 kfree(buffer);
768         }
769
770         page_count = 0;
771         if (alloc->pages) {
772                 int i;
773
774                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
775                         void __user *page_addr;
776                         bool on_lru;
777
778                         if (!alloc->pages[i].page_ptr)
779                                 continue;
780
781                         on_lru = list_lru_del(&binder_alloc_lru,
782                                               &alloc->pages[i].lru);
783                         page_addr = alloc->buffer + i * PAGE_SIZE;
784                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
785                                      "%s: %d: page %d at %pK %s\n",
786                                      __func__, alloc->pid, i, page_addr,
787                                      on_lru ? "on lru" : "active");
788                         __free_page(alloc->pages[i].page_ptr);
789                         page_count++;
790                 }
791                 kfree(alloc->pages);
792         }
793         mutex_unlock(&alloc->mutex);
794         if (alloc->vma_vm_mm)
795                 mmdrop(alloc->vma_vm_mm);
796
797         binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
798                      "%s: %d buffers %d, pages %d\n",
799                      __func__, alloc->pid, buffers, page_count);
800 }
801
802 static void print_binder_buffer(struct seq_file *m, const char *prefix,
803                                 struct binder_buffer *buffer)
804 {
805         seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
806                    prefix, buffer->debug_id, buffer->user_data,
807                    buffer->data_size, buffer->offsets_size,
808                    buffer->extra_buffers_size,
809                    buffer->transaction ? "active" : "delivered");
810 }
811
812 /**
813  * binder_alloc_print_allocated() - print buffer info
814  * @m:     seq_file for output via seq_printf()
815  * @alloc: binder_alloc for this proc
816  *
817  * Prints information about every buffer associated with
818  * the binder_alloc state to the given seq_file
819  */
820 void binder_alloc_print_allocated(struct seq_file *m,
821                                   struct binder_alloc *alloc)
822 {
823         struct rb_node *n;
824
825         mutex_lock(&alloc->mutex);
826         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
827                 print_binder_buffer(m, "  buffer",
828                                     rb_entry(n, struct binder_buffer, rb_node));
829         mutex_unlock(&alloc->mutex);
830 }
831
832 /**
833  * binder_alloc_print_pages() - print page usage
834  * @m:     seq_file for output via seq_printf()
835  * @alloc: binder_alloc for this proc
836  */
837 void binder_alloc_print_pages(struct seq_file *m,
838                               struct binder_alloc *alloc)
839 {
840         struct binder_lru_page *page;
841         int i;
842         int active = 0;
843         int lru = 0;
844         int free = 0;
845
846         mutex_lock(&alloc->mutex);
847         /*
848          * Make sure the binder_alloc is fully initialized, otherwise we might
849          * read inconsistent state.
850          */
851         if (binder_alloc_get_vma(alloc) != NULL) {
852                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
853                         page = &alloc->pages[i];
854                         if (!page->page_ptr)
855                                 free++;
856                         else if (list_empty(&page->lru))
857                                 active++;
858                         else
859                                 lru++;
860                 }
861         }
862         mutex_unlock(&alloc->mutex);
863         seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
864         seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
865 }
866
867 /**
868  * binder_alloc_get_allocated_count() - return count of buffers
869  * @alloc: binder_alloc for this proc
870  *
871  * Return: count of allocated buffers
872  */
873 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
874 {
875         struct rb_node *n;
876         int count = 0;
877
878         mutex_lock(&alloc->mutex);
879         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
880                 count++;
881         mutex_unlock(&alloc->mutex);
882         return count;
883 }
884
885
886 /**
887  * binder_alloc_vma_close() - invalidate address space
888  * @alloc: binder_alloc for this proc
889  *
890  * Called from binder_vma_close() when releasing address space.
891  * Clears alloc->vma to prevent new incoming transactions from
892  * allocating more buffers.
893  */
894 void binder_alloc_vma_close(struct binder_alloc *alloc)
895 {
896         binder_alloc_set_vma(alloc, NULL);
897 }
898
899 /**
900  * binder_alloc_free_page() - shrinker callback to free pages
901  * @item:   item to free
902  * @lock:   lock protecting the item
903  * @cb_arg: callback argument
904  *
905  * Called from list_lru_walk() in binder_shrink_scan() to free
906  * up pages when the system is under memory pressure.
907  */
908 enum lru_status binder_alloc_free_page(struct list_head *item,
909                                        struct list_lru_one *lru,
910                                        spinlock_t *lock,
911                                        void *cb_arg)
912         __must_hold(lock)
913 {
914         struct mm_struct *mm = NULL;
915         struct binder_lru_page *page = container_of(item,
916                                                     struct binder_lru_page,
917                                                     lru);
918         struct binder_alloc *alloc;
919         uintptr_t page_addr;
920         size_t index;
921         struct vm_area_struct *vma;
922
923         alloc = page->alloc;
924         if (!mutex_trylock(&alloc->mutex))
925                 goto err_get_alloc_mutex_failed;
926
927         if (!page->page_ptr)
928                 goto err_page_already_freed;
929
930         index = page - alloc->pages;
931         page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
932
933         mm = alloc->vma_vm_mm;
934         if (!mmget_not_zero(mm))
935                 goto err_mmget;
936         if (!mmap_read_trylock(mm))
937                 goto err_mmap_read_lock_failed;
938         vma = binder_alloc_get_vma(alloc);
939
940         list_lru_isolate(lru, item);
941         spin_unlock(lock);
942
943         if (vma) {
944                 trace_binder_unmap_user_start(alloc, index);
945
946                 zap_page_range(vma, page_addr, PAGE_SIZE);
947
948                 trace_binder_unmap_user_end(alloc, index);
949         }
950         mmap_read_unlock(mm);
951         mmput_async(mm);
952
953         trace_binder_unmap_kernel_start(alloc, index);
954
955         __free_page(page->page_ptr);
956         page->page_ptr = NULL;
957
958         trace_binder_unmap_kernel_end(alloc, index);
959
960         spin_lock(lock);
961         mutex_unlock(&alloc->mutex);
962         return LRU_REMOVED_RETRY;
963
964 err_mmap_read_lock_failed:
965         mmput_async(mm);
966 err_mmget:
967 err_page_already_freed:
968         mutex_unlock(&alloc->mutex);
969 err_get_alloc_mutex_failed:
970         return LRU_SKIP;
971 }
972
973 static unsigned long
974 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
975 {
976         unsigned long ret = list_lru_count(&binder_alloc_lru);
977         return ret;
978 }
979
980 static unsigned long
981 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
982 {
983         unsigned long ret;
984
985         ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
986                             NULL, sc->nr_to_scan);
987         return ret;
988 }
989
990 static struct shrinker binder_shrinker = {
991         .count_objects = binder_shrink_count,
992         .scan_objects = binder_shrink_scan,
993         .seeks = DEFAULT_SEEKS,
994 };
995
996 /**
997  * binder_alloc_init() - called by binder_open() for per-proc initialization
998  * @alloc: binder_alloc for this proc
999  *
1000  * Called from binder_open() to initialize binder_alloc fields for
1001  * new binder proc
1002  */
1003 void binder_alloc_init(struct binder_alloc *alloc)
1004 {
1005         alloc->pid = current->group_leader->pid;
1006         mutex_init(&alloc->mutex);
1007         INIT_LIST_HEAD(&alloc->buffers);
1008 }
1009
1010 int binder_alloc_shrinker_init(void)
1011 {
1012         int ret = list_lru_init(&binder_alloc_lru);
1013
1014         if (ret == 0) {
1015                 ret = register_shrinker(&binder_shrinker);
1016                 if (ret)
1017                         list_lru_destroy(&binder_alloc_lru);
1018         }
1019         return ret;
1020 }
1021
1022 /**
1023  * check_buffer() - verify that buffer/offset is safe to access
1024  * @alloc: binder_alloc for this proc
1025  * @buffer: binder buffer to be accessed
1026  * @offset: offset into @buffer data
1027  * @bytes: bytes to access from offset
1028  *
1029  * Check that the @offset/@bytes are within the size of the given
1030  * @buffer and that the buffer is currently active and not freeable.
1031  * Offsets must also be multiples of sizeof(u32). The kernel is
1032  * allowed to touch the buffer in two cases:
1033  *
1034  * 1) when the buffer is being created:
1035  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1036  * 2) when the buffer is being torn down:
1037  *     (buffer->free == 0 && buffer->transaction == NULL).
1038  *
1039  * Return: true if the buffer is safe to access
1040  */
1041 static inline bool check_buffer(struct binder_alloc *alloc,
1042                                 struct binder_buffer *buffer,
1043                                 binder_size_t offset, size_t bytes)
1044 {
1045         size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1046
1047         return buffer_size >= bytes &&
1048                 offset <= buffer_size - bytes &&
1049                 IS_ALIGNED(offset, sizeof(u32)) &&
1050                 !buffer->free &&
1051                 (!buffer->allow_user_free || !buffer->transaction);
1052 }
1053
1054 /**
1055  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1056  * @alloc: binder_alloc for this proc
1057  * @buffer: binder buffer to be accessed
1058  * @buffer_offset: offset into @buffer data
1059  * @pgoffp: address to copy final page offset to
1060  *
1061  * Lookup the struct page corresponding to the address
1062  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1063  * NULL, the byte-offset into the page is written there.
1064  *
1065  * The caller is responsible to ensure that the offset points
1066  * to a valid address within the @buffer and that @buffer is
1067  * not freeable by the user. Since it can't be freed, we are
1068  * guaranteed that the corresponding elements of @alloc->pages[]
1069  * cannot change.
1070  *
1071  * Return: struct page
1072  */
1073 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1074                                           struct binder_buffer *buffer,
1075                                           binder_size_t buffer_offset,
1076                                           pgoff_t *pgoffp)
1077 {
1078         binder_size_t buffer_space_offset = buffer_offset +
1079                 (buffer->user_data - alloc->buffer);
1080         pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1081         size_t index = buffer_space_offset >> PAGE_SHIFT;
1082         struct binder_lru_page *lru_page;
1083
1084         lru_page = &alloc->pages[index];
1085         *pgoffp = pgoff;
1086         return lru_page->page_ptr;
1087 }
1088
1089 /**
1090  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1091  * @alloc: binder_alloc for this proc
1092  * @buffer: binder buffer to be accessed
1093  * @buffer_offset: offset into @buffer data
1094  * @from: userspace pointer to source buffer
1095  * @bytes: bytes to copy
1096  *
1097  * Copy bytes from source userspace to target buffer.
1098  *
1099  * Return: bytes remaining to be copied
1100  */
1101 unsigned long
1102 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1103                                  struct binder_buffer *buffer,
1104                                  binder_size_t buffer_offset,
1105                                  const void __user *from,
1106                                  size_t bytes)
1107 {
1108         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1109                 return bytes;
1110
1111         while (bytes) {
1112                 unsigned long size;
1113                 unsigned long ret;
1114                 struct page *page;
1115                 pgoff_t pgoff;
1116                 void *kptr;
1117
1118                 page = binder_alloc_get_page(alloc, buffer,
1119                                              buffer_offset, &pgoff);
1120                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1121                 kptr = kmap(page) + pgoff;
1122                 ret = copy_from_user(kptr, from, size);
1123                 kunmap(page);
1124                 if (ret)
1125                         return bytes - size + ret;
1126                 bytes -= size;
1127                 from += size;
1128                 buffer_offset += size;
1129         }
1130         return 0;
1131 }
1132
1133 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1134                                        bool to_buffer,
1135                                        struct binder_buffer *buffer,
1136                                        binder_size_t buffer_offset,
1137                                        void *ptr,
1138                                        size_t bytes)
1139 {
1140         /* All copies must be 32-bit aligned and 32-bit size */
1141         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1142                 return -EINVAL;
1143
1144         while (bytes) {
1145                 unsigned long size;
1146                 struct page *page;
1147                 pgoff_t pgoff;
1148                 void *tmpptr;
1149                 void *base_ptr;
1150
1151                 page = binder_alloc_get_page(alloc, buffer,
1152                                              buffer_offset, &pgoff);
1153                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1154                 base_ptr = kmap_atomic(page);
1155                 tmpptr = base_ptr + pgoff;
1156                 if (to_buffer)
1157                         memcpy(tmpptr, ptr, size);
1158                 else
1159                         memcpy(ptr, tmpptr, size);
1160                 /*
1161                  * kunmap_atomic() takes care of flushing the cache
1162                  * if this device has VIVT cache arch
1163                  */
1164                 kunmap_atomic(base_ptr);
1165                 bytes -= size;
1166                 pgoff = 0;
1167                 ptr = ptr + size;
1168                 buffer_offset += size;
1169         }
1170         return 0;
1171 }
1172
1173 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1174                                 struct binder_buffer *buffer,
1175                                 binder_size_t buffer_offset,
1176                                 void *src,
1177                                 size_t bytes)
1178 {
1179         return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1180                                            src, bytes);
1181 }
1182
1183 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1184                                   void *dest,
1185                                   struct binder_buffer *buffer,
1186                                   binder_size_t buffer_offset,
1187                                   size_t bytes)
1188 {
1189         return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1190                                            dest, bytes);
1191 }
1192