Merge tag 'for-5.20/io_uring-buffered-writes-2022-07-29' of git://git.kernel.dk/linux...
[linux-2.6-microblaze.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23
24 #include "internal.h"
25
26 extern struct acpi_device *acpi_root;
27
28 #define ACPI_BUS_CLASS                  "system_bus"
29 #define ACPI_BUS_HID                    "LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME            "System Bus"
31
32 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
33
34 #define INVALID_ACPI_HANDLE     ((acpi_handle)empty_zero_page)
35
36 static const char *dummy_hid = "device";
37
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46
47 /*
48  * The UART device described by the SPCR table is the only object which needs
49  * special-casing. Everything else is covered by ACPI namespace paths in STAO
50  * table.
51  */
52 static u64 spcr_uart_addr;
53
54 void acpi_scan_lock_acquire(void)
55 {
56         mutex_lock(&acpi_scan_lock);
57 }
58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
59
60 void acpi_scan_lock_release(void)
61 {
62         mutex_unlock(&acpi_scan_lock);
63 }
64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
65
66 void acpi_lock_hp_context(void)
67 {
68         mutex_lock(&acpi_hp_context_lock);
69 }
70
71 void acpi_unlock_hp_context(void)
72 {
73         mutex_unlock(&acpi_hp_context_lock);
74 }
75
76 void acpi_initialize_hp_context(struct acpi_device *adev,
77                                 struct acpi_hotplug_context *hp,
78                                 int (*notify)(struct acpi_device *, u32),
79                                 void (*uevent)(struct acpi_device *, u32))
80 {
81         acpi_lock_hp_context();
82         hp->notify = notify;
83         hp->uevent = uevent;
84         acpi_set_hp_context(adev, hp);
85         acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88
89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91         if (!handler)
92                 return -EINVAL;
93
94         list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95         return 0;
96 }
97
98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99                                        const char *hotplug_profile_name)
100 {
101         int error;
102
103         error = acpi_scan_add_handler(handler);
104         if (error)
105                 return error;
106
107         acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108         return 0;
109 }
110
111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113         struct acpi_device_physical_node *pn;
114         bool offline = true;
115         char *envp[] = { "EVENT=offline", NULL };
116
117         /*
118          * acpi_container_offline() calls this for all of the container's
119          * children under the container's physical_node_lock lock.
120          */
121         mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122
123         list_for_each_entry(pn, &adev->physical_node_list, node)
124                 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125                         if (uevent)
126                                 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127
128                         offline = false;
129                         break;
130                 }
131
132         mutex_unlock(&adev->physical_node_lock);
133         return offline;
134 }
135
136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137                                     void **ret_p)
138 {
139         struct acpi_device *device = acpi_fetch_acpi_dev(handle);
140         struct acpi_device_physical_node *pn;
141         bool second_pass = (bool)data;
142         acpi_status status = AE_OK;
143
144         if (!device)
145                 return AE_OK;
146
147         if (device->handler && !device->handler->hotplug.enabled) {
148                 *ret_p = &device->dev;
149                 return AE_SUPPORT;
150         }
151
152         mutex_lock(&device->physical_node_lock);
153
154         list_for_each_entry(pn, &device->physical_node_list, node) {
155                 int ret;
156
157                 if (second_pass) {
158                         /* Skip devices offlined by the first pass. */
159                         if (pn->put_online)
160                                 continue;
161                 } else {
162                         pn->put_online = false;
163                 }
164                 ret = device_offline(pn->dev);
165                 if (ret >= 0) {
166                         pn->put_online = !ret;
167                 } else {
168                         *ret_p = pn->dev;
169                         if (second_pass) {
170                                 status = AE_ERROR;
171                                 break;
172                         }
173                 }
174         }
175
176         mutex_unlock(&device->physical_node_lock);
177
178         return status;
179 }
180
181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182                                    void **ret_p)
183 {
184         struct acpi_device *device = acpi_fetch_acpi_dev(handle);
185         struct acpi_device_physical_node *pn;
186
187         if (!device)
188                 return AE_OK;
189
190         mutex_lock(&device->physical_node_lock);
191
192         list_for_each_entry(pn, &device->physical_node_list, node)
193                 if (pn->put_online) {
194                         device_online(pn->dev);
195                         pn->put_online = false;
196                 }
197
198         mutex_unlock(&device->physical_node_lock);
199
200         return AE_OK;
201 }
202
203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205         acpi_handle handle = device->handle;
206         struct device *errdev = NULL;
207         acpi_status status;
208
209         /*
210          * Carry out two passes here and ignore errors in the first pass,
211          * because if the devices in question are memory blocks and
212          * CONFIG_MEMCG is set, one of the blocks may hold data structures
213          * that the other blocks depend on, but it is not known in advance which
214          * block holds them.
215          *
216          * If the first pass is successful, the second one isn't needed, though.
217          */
218         status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219                                      NULL, acpi_bus_offline, (void *)false,
220                                      (void **)&errdev);
221         if (status == AE_SUPPORT) {
222                 dev_warn(errdev, "Offline disabled.\n");
223                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224                                     acpi_bus_online, NULL, NULL, NULL);
225                 return -EPERM;
226         }
227         acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228         if (errdev) {
229                 errdev = NULL;
230                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231                                     NULL, acpi_bus_offline, (void *)true,
232                                     (void **)&errdev);
233                 if (!errdev)
234                         acpi_bus_offline(handle, 0, (void *)true,
235                                          (void **)&errdev);
236
237                 if (errdev) {
238                         dev_warn(errdev, "Offline failed.\n");
239                         acpi_bus_online(handle, 0, NULL, NULL);
240                         acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241                                             ACPI_UINT32_MAX, acpi_bus_online,
242                                             NULL, NULL, NULL);
243                         return -EBUSY;
244                 }
245         }
246         return 0;
247 }
248
249 static int acpi_scan_hot_remove(struct acpi_device *device)
250 {
251         acpi_handle handle = device->handle;
252         unsigned long long sta;
253         acpi_status status;
254
255         if (device->handler && device->handler->hotplug.demand_offline) {
256                 if (!acpi_scan_is_offline(device, true))
257                         return -EBUSY;
258         } else {
259                 int error = acpi_scan_try_to_offline(device);
260                 if (error)
261                         return error;
262         }
263
264         acpi_handle_debug(handle, "Ejecting\n");
265
266         acpi_bus_trim(device);
267
268         acpi_evaluate_lck(handle, 0);
269         /*
270          * TBD: _EJD support.
271          */
272         status = acpi_evaluate_ej0(handle);
273         if (status == AE_NOT_FOUND)
274                 return -ENODEV;
275         else if (ACPI_FAILURE(status))
276                 return -EIO;
277
278         /*
279          * Verify if eject was indeed successful.  If not, log an error
280          * message.  No need to call _OST since _EJ0 call was made OK.
281          */
282         status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
283         if (ACPI_FAILURE(status)) {
284                 acpi_handle_warn(handle,
285                         "Status check after eject failed (0x%x)\n", status);
286         } else if (sta & ACPI_STA_DEVICE_ENABLED) {
287                 acpi_handle_warn(handle,
288                         "Eject incomplete - status 0x%llx\n", sta);
289         }
290
291         return 0;
292 }
293
294 static int acpi_scan_device_not_present(struct acpi_device *adev)
295 {
296         if (!acpi_device_enumerated(adev)) {
297                 dev_warn(&adev->dev, "Still not present\n");
298                 return -EALREADY;
299         }
300         acpi_bus_trim(adev);
301         return 0;
302 }
303
304 static int acpi_scan_device_check(struct acpi_device *adev)
305 {
306         int error;
307
308         acpi_bus_get_status(adev);
309         if (adev->status.present || adev->status.functional) {
310                 /*
311                  * This function is only called for device objects for which
312                  * matching scan handlers exist.  The only situation in which
313                  * the scan handler is not attached to this device object yet
314                  * is when the device has just appeared (either it wasn't
315                  * present at all before or it was removed and then added
316                  * again).
317                  */
318                 if (adev->handler) {
319                         dev_warn(&adev->dev, "Already enumerated\n");
320                         return -EALREADY;
321                 }
322                 error = acpi_bus_scan(adev->handle);
323                 if (error) {
324                         dev_warn(&adev->dev, "Namespace scan failure\n");
325                         return error;
326                 }
327                 if (!adev->handler) {
328                         dev_warn(&adev->dev, "Enumeration failure\n");
329                         error = -ENODEV;
330                 }
331         } else {
332                 error = acpi_scan_device_not_present(adev);
333         }
334         return error;
335 }
336
337 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
338 {
339         struct acpi_scan_handler *handler = adev->handler;
340         int error;
341
342         acpi_bus_get_status(adev);
343         if (!(adev->status.present || adev->status.functional)) {
344                 acpi_scan_device_not_present(adev);
345                 return 0;
346         }
347         if (handler && handler->hotplug.scan_dependent)
348                 return handler->hotplug.scan_dependent(adev);
349
350         error = acpi_bus_scan(adev->handle);
351         if (error) {
352                 dev_warn(&adev->dev, "Namespace scan failure\n");
353                 return error;
354         }
355         return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
356 }
357
358 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
359 {
360         switch (type) {
361         case ACPI_NOTIFY_BUS_CHECK:
362                 return acpi_scan_bus_check(adev, NULL);
363         case ACPI_NOTIFY_DEVICE_CHECK:
364                 return acpi_scan_device_check(adev);
365         case ACPI_NOTIFY_EJECT_REQUEST:
366         case ACPI_OST_EC_OSPM_EJECT:
367                 if (adev->handler && !adev->handler->hotplug.enabled) {
368                         dev_info(&adev->dev, "Eject disabled\n");
369                         return -EPERM;
370                 }
371                 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
372                                   ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
373                 return acpi_scan_hot_remove(adev);
374         }
375         return -EINVAL;
376 }
377
378 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
379 {
380         u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
381         int error = -ENODEV;
382
383         lock_device_hotplug();
384         mutex_lock(&acpi_scan_lock);
385
386         /*
387          * The device object's ACPI handle cannot become invalid as long as we
388          * are holding acpi_scan_lock, but it might have become invalid before
389          * that lock was acquired.
390          */
391         if (adev->handle == INVALID_ACPI_HANDLE)
392                 goto err_out;
393
394         if (adev->flags.is_dock_station) {
395                 error = dock_notify(adev, src);
396         } else if (adev->flags.hotplug_notify) {
397                 error = acpi_generic_hotplug_event(adev, src);
398         } else {
399                 int (*notify)(struct acpi_device *, u32);
400
401                 acpi_lock_hp_context();
402                 notify = adev->hp ? adev->hp->notify : NULL;
403                 acpi_unlock_hp_context();
404                 /*
405                  * There may be additional notify handlers for device objects
406                  * without the .event() callback, so ignore them here.
407                  */
408                 if (notify)
409                         error = notify(adev, src);
410                 else
411                         goto out;
412         }
413         switch (error) {
414         case 0:
415                 ost_code = ACPI_OST_SC_SUCCESS;
416                 break;
417         case -EPERM:
418                 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
419                 break;
420         case -EBUSY:
421                 ost_code = ACPI_OST_SC_DEVICE_BUSY;
422                 break;
423         default:
424                 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
425                 break;
426         }
427
428  err_out:
429         acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
430
431  out:
432         acpi_bus_put_acpi_device(adev);
433         mutex_unlock(&acpi_scan_lock);
434         unlock_device_hotplug();
435 }
436
437 static void acpi_free_power_resources_lists(struct acpi_device *device)
438 {
439         int i;
440
441         if (device->wakeup.flags.valid)
442                 acpi_power_resources_list_free(&device->wakeup.resources);
443
444         if (!device->power.flags.power_resources)
445                 return;
446
447         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
448                 struct acpi_device_power_state *ps = &device->power.states[i];
449                 acpi_power_resources_list_free(&ps->resources);
450         }
451 }
452
453 static void acpi_device_release(struct device *dev)
454 {
455         struct acpi_device *acpi_dev = to_acpi_device(dev);
456
457         acpi_free_properties(acpi_dev);
458         acpi_free_pnp_ids(&acpi_dev->pnp);
459         acpi_free_power_resources_lists(acpi_dev);
460         kfree(acpi_dev);
461 }
462
463 static void acpi_device_del(struct acpi_device *device)
464 {
465         struct acpi_device_bus_id *acpi_device_bus_id;
466
467         mutex_lock(&acpi_device_lock);
468
469         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
470                 if (!strcmp(acpi_device_bus_id->bus_id,
471                             acpi_device_hid(device))) {
472                         ida_free(&acpi_device_bus_id->instance_ida,
473                                  device->pnp.instance_no);
474                         if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
475                                 list_del(&acpi_device_bus_id->node);
476                                 kfree_const(acpi_device_bus_id->bus_id);
477                                 kfree(acpi_device_bus_id);
478                         }
479                         break;
480                 }
481
482         list_del(&device->wakeup_list);
483
484         mutex_unlock(&acpi_device_lock);
485
486         acpi_power_add_remove_device(device, false);
487         acpi_device_remove_files(device);
488         if (device->remove)
489                 device->remove(device);
490
491         device_del(&device->dev);
492 }
493
494 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
495
496 static LIST_HEAD(acpi_device_del_list);
497 static DEFINE_MUTEX(acpi_device_del_lock);
498
499 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
500 {
501         for (;;) {
502                 struct acpi_device *adev;
503
504                 mutex_lock(&acpi_device_del_lock);
505
506                 if (list_empty(&acpi_device_del_list)) {
507                         mutex_unlock(&acpi_device_del_lock);
508                         break;
509                 }
510                 adev = list_first_entry(&acpi_device_del_list,
511                                         struct acpi_device, del_list);
512                 list_del(&adev->del_list);
513
514                 mutex_unlock(&acpi_device_del_lock);
515
516                 blocking_notifier_call_chain(&acpi_reconfig_chain,
517                                              ACPI_RECONFIG_DEVICE_REMOVE, adev);
518
519                 acpi_device_del(adev);
520                 /*
521                  * Drop references to all power resources that might have been
522                  * used by the device.
523                  */
524                 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
525                 acpi_dev_put(adev);
526         }
527 }
528
529 /**
530  * acpi_scan_drop_device - Drop an ACPI device object.
531  * @handle: Handle of an ACPI namespace node, not used.
532  * @context: Address of the ACPI device object to drop.
533  *
534  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
535  * namespace node the device object pointed to by @context is attached to.
536  *
537  * The unregistration is carried out asynchronously to avoid running
538  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
539  * ensure the correct ordering (the device objects must be unregistered in the
540  * same order in which the corresponding namespace nodes are deleted).
541  */
542 static void acpi_scan_drop_device(acpi_handle handle, void *context)
543 {
544         static DECLARE_WORK(work, acpi_device_del_work_fn);
545         struct acpi_device *adev = context;
546
547         mutex_lock(&acpi_device_del_lock);
548
549         /*
550          * Use the ACPI hotplug workqueue which is ordered, so this work item
551          * won't run after any hotplug work items submitted subsequently.  That
552          * prevents attempts to register device objects identical to those being
553          * deleted from happening concurrently (such attempts result from
554          * hotplug events handled via the ACPI hotplug workqueue).  It also will
555          * run after all of the work items submitted previously, which helps
556          * those work items to ensure that they are not accessing stale device
557          * objects.
558          */
559         if (list_empty(&acpi_device_del_list))
560                 acpi_queue_hotplug_work(&work);
561
562         list_add_tail(&adev->del_list, &acpi_device_del_list);
563         /* Make acpi_ns_validate_handle() return NULL for this handle. */
564         adev->handle = INVALID_ACPI_HANDLE;
565
566         mutex_unlock(&acpi_device_del_lock);
567 }
568
569 static struct acpi_device *handle_to_device(acpi_handle handle,
570                                             void (*callback)(void *))
571 {
572         struct acpi_device *adev = NULL;
573         acpi_status status;
574
575         status = acpi_get_data_full(handle, acpi_scan_drop_device,
576                                     (void **)&adev, callback);
577         if (ACPI_FAILURE(status) || !adev) {
578                 acpi_handle_debug(handle, "No context!\n");
579                 return NULL;
580         }
581         return adev;
582 }
583
584 /**
585  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
586  * @handle: ACPI handle associated with the requested ACPI device object.
587  *
588  * Return a pointer to the ACPI device object associated with @handle, if
589  * present, or NULL otherwise.
590  */
591 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
592 {
593         return handle_to_device(handle, NULL);
594 }
595 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
596
597 static void get_acpi_device(void *dev)
598 {
599         acpi_dev_get(dev);
600 }
601
602 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
603 {
604         return handle_to_device(handle, get_acpi_device);
605 }
606 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
607
608 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
609 {
610         struct acpi_device_bus_id *acpi_device_bus_id;
611
612         /* Find suitable bus_id and instance number in acpi_bus_id_list. */
613         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
614                 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
615                         return acpi_device_bus_id;
616         }
617         return NULL;
618 }
619
620 static int acpi_device_set_name(struct acpi_device *device,
621                                 struct acpi_device_bus_id *acpi_device_bus_id)
622 {
623         struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
624         int result;
625
626         result = ida_alloc(instance_ida, GFP_KERNEL);
627         if (result < 0)
628                 return result;
629
630         device->pnp.instance_no = result;
631         dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
632         return 0;
633 }
634
635 static int acpi_tie_acpi_dev(struct acpi_device *adev)
636 {
637         acpi_handle handle = adev->handle;
638         acpi_status status;
639
640         if (!handle)
641                 return 0;
642
643         status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
644         if (ACPI_FAILURE(status)) {
645                 acpi_handle_err(handle, "Unable to attach device data\n");
646                 return -ENODEV;
647         }
648
649         return 0;
650 }
651
652 static void acpi_store_pld_crc(struct acpi_device *adev)
653 {
654         struct acpi_pld_info *pld;
655         acpi_status status;
656
657         status = acpi_get_physical_device_location(adev->handle, &pld);
658         if (ACPI_FAILURE(status))
659                 return;
660
661         adev->pld_crc = crc32(~0, pld, sizeof(*pld));
662         ACPI_FREE(pld);
663 }
664
665 static int __acpi_device_add(struct acpi_device *device,
666                              void (*release)(struct device *))
667 {
668         struct acpi_device_bus_id *acpi_device_bus_id;
669         int result;
670
671         /*
672          * Linkage
673          * -------
674          * Link this device to its parent and siblings.
675          */
676         INIT_LIST_HEAD(&device->wakeup_list);
677         INIT_LIST_HEAD(&device->physical_node_list);
678         INIT_LIST_HEAD(&device->del_list);
679         mutex_init(&device->physical_node_lock);
680
681         mutex_lock(&acpi_device_lock);
682
683         acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
684         if (acpi_device_bus_id) {
685                 result = acpi_device_set_name(device, acpi_device_bus_id);
686                 if (result)
687                         goto err_unlock;
688         } else {
689                 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
690                                              GFP_KERNEL);
691                 if (!acpi_device_bus_id) {
692                         result = -ENOMEM;
693                         goto err_unlock;
694                 }
695                 acpi_device_bus_id->bus_id =
696                         kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
697                 if (!acpi_device_bus_id->bus_id) {
698                         kfree(acpi_device_bus_id);
699                         result = -ENOMEM;
700                         goto err_unlock;
701                 }
702
703                 ida_init(&acpi_device_bus_id->instance_ida);
704
705                 result = acpi_device_set_name(device, acpi_device_bus_id);
706                 if (result) {
707                         kfree_const(acpi_device_bus_id->bus_id);
708                         kfree(acpi_device_bus_id);
709                         goto err_unlock;
710                 }
711
712                 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
713         }
714
715         if (device->wakeup.flags.valid)
716                 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
717
718         acpi_store_pld_crc(device);
719
720         mutex_unlock(&acpi_device_lock);
721
722         if (device->parent)
723                 device->dev.parent = &device->parent->dev;
724
725         device->dev.bus = &acpi_bus_type;
726         device->dev.release = release;
727         result = device_add(&device->dev);
728         if (result) {
729                 dev_err(&device->dev, "Error registering device\n");
730                 goto err;
731         }
732
733         result = acpi_device_setup_files(device);
734         if (result)
735                 pr_err("Error creating sysfs interface for device %s\n",
736                        dev_name(&device->dev));
737
738         return 0;
739
740 err:
741         mutex_lock(&acpi_device_lock);
742
743         list_del(&device->wakeup_list);
744
745 err_unlock:
746         mutex_unlock(&acpi_device_lock);
747
748         acpi_detach_data(device->handle, acpi_scan_drop_device);
749
750         return result;
751 }
752
753 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
754 {
755         int ret;
756
757         ret = acpi_tie_acpi_dev(adev);
758         if (ret)
759                 return ret;
760
761         return __acpi_device_add(adev, release);
762 }
763
764 /* --------------------------------------------------------------------------
765                                  Device Enumeration
766    -------------------------------------------------------------------------- */
767 static bool acpi_info_matches_ids(struct acpi_device_info *info,
768                                   const char * const ids[])
769 {
770         struct acpi_pnp_device_id_list *cid_list = NULL;
771         int i, index;
772
773         if (!(info->valid & ACPI_VALID_HID))
774                 return false;
775
776         index = match_string(ids, -1, info->hardware_id.string);
777         if (index >= 0)
778                 return true;
779
780         if (info->valid & ACPI_VALID_CID)
781                 cid_list = &info->compatible_id_list;
782
783         if (!cid_list)
784                 return false;
785
786         for (i = 0; i < cid_list->count; i++) {
787                 index = match_string(ids, -1, cid_list->ids[i].string);
788                 if (index >= 0)
789                         return true;
790         }
791
792         return false;
793 }
794
795 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
796 static const char * const acpi_ignore_dep_ids[] = {
797         "PNP0D80", /* Windows-compatible System Power Management Controller */
798         "INT33BD", /* Intel Baytrail Mailbox Device */
799         NULL
800 };
801
802 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
803 static const char * const acpi_honor_dep_ids[] = {
804         "INT3472", /* Camera sensor PMIC / clk and regulator info */
805         NULL
806 };
807
808 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
809 {
810         struct acpi_device *device;
811         acpi_status status;
812
813         /*
814          * Fixed hardware devices do not appear in the namespace and do not
815          * have handles, but we fabricate acpi_devices for them, so we have
816          * to deal with them specially.
817          */
818         if (!handle)
819                 return acpi_root;
820
821         do {
822                 status = acpi_get_parent(handle, &handle);
823                 if (ACPI_FAILURE(status))
824                         return status == AE_NULL_ENTRY ? NULL : acpi_root;
825
826                 device = acpi_fetch_acpi_dev(handle);
827         } while (!device);
828         return device;
829 }
830
831 acpi_status
832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833 {
834         acpi_status status;
835         acpi_handle tmp;
836         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837         union acpi_object *obj;
838
839         status = acpi_get_handle(handle, "_EJD", &tmp);
840         if (ACPI_FAILURE(status))
841                 return status;
842
843         status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844         if (ACPI_SUCCESS(status)) {
845                 obj = buffer.pointer;
846                 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847                                          ejd);
848                 kfree(buffer.pointer);
849         }
850         return status;
851 }
852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853
854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855 {
856         acpi_handle handle = dev->handle;
857         struct acpi_device_wakeup *wakeup = &dev->wakeup;
858         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859         union acpi_object *package = NULL;
860         union acpi_object *element = NULL;
861         acpi_status status;
862         int err = -ENODATA;
863
864         INIT_LIST_HEAD(&wakeup->resources);
865
866         /* _PRW */
867         status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868         if (ACPI_FAILURE(status)) {
869                 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870                                  acpi_format_exception(status));
871                 return err;
872         }
873
874         package = (union acpi_object *)buffer.pointer;
875
876         if (!package || package->package.count < 2)
877                 goto out;
878
879         element = &(package->package.elements[0]);
880         if (!element)
881                 goto out;
882
883         if (element->type == ACPI_TYPE_PACKAGE) {
884                 if ((element->package.count < 2) ||
885                     (element->package.elements[0].type !=
886                      ACPI_TYPE_LOCAL_REFERENCE)
887                     || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888                         goto out;
889
890                 wakeup->gpe_device =
891                     element->package.elements[0].reference.handle;
892                 wakeup->gpe_number =
893                     (u32) element->package.elements[1].integer.value;
894         } else if (element->type == ACPI_TYPE_INTEGER) {
895                 wakeup->gpe_device = NULL;
896                 wakeup->gpe_number = element->integer.value;
897         } else {
898                 goto out;
899         }
900
901         element = &(package->package.elements[1]);
902         if (element->type != ACPI_TYPE_INTEGER)
903                 goto out;
904
905         wakeup->sleep_state = element->integer.value;
906
907         err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908         if (err)
909                 goto out;
910
911         if (!list_empty(&wakeup->resources)) {
912                 int sleep_state;
913
914                 err = acpi_power_wakeup_list_init(&wakeup->resources,
915                                                   &sleep_state);
916                 if (err) {
917                         acpi_handle_warn(handle, "Retrieving current states "
918                                          "of wakeup power resources failed\n");
919                         acpi_power_resources_list_free(&wakeup->resources);
920                         goto out;
921                 }
922                 if (sleep_state < wakeup->sleep_state) {
923                         acpi_handle_warn(handle, "Overriding _PRW sleep state "
924                                          "(S%d) by S%d from power resources\n",
925                                          (int)wakeup->sleep_state, sleep_state);
926                         wakeup->sleep_state = sleep_state;
927                 }
928         }
929
930  out:
931         kfree(buffer.pointer);
932         return err;
933 }
934
935 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
936 {
937         static const struct acpi_device_id button_device_ids[] = {
938                 {"PNP0C0C", 0},         /* Power button */
939                 {"PNP0C0D", 0},         /* Lid */
940                 {"PNP0C0E", 0},         /* Sleep button */
941                 {"", 0},
942         };
943         struct acpi_device_wakeup *wakeup = &device->wakeup;
944         acpi_status status;
945
946         wakeup->flags.notifier_present = 0;
947
948         /* Power button, Lid switch always enable wakeup */
949         if (!acpi_match_device_ids(device, button_device_ids)) {
950                 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
951                         /* Do not use Lid/sleep button for S5 wakeup */
952                         if (wakeup->sleep_state == ACPI_STATE_S5)
953                                 wakeup->sleep_state = ACPI_STATE_S4;
954                 }
955                 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
956                 device_set_wakeup_capable(&device->dev, true);
957                 return true;
958         }
959
960         status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
961                                          wakeup->gpe_number);
962         return ACPI_SUCCESS(status);
963 }
964
965 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
966 {
967         int err;
968
969         /* Presence of _PRW indicates wake capable */
970         if (!acpi_has_method(device->handle, "_PRW"))
971                 return;
972
973         err = acpi_bus_extract_wakeup_device_power_package(device);
974         if (err) {
975                 dev_err(&device->dev, "Unable to extract wakeup power resources");
976                 return;
977         }
978
979         device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
980         device->wakeup.prepare_count = 0;
981         /*
982          * Call _PSW/_DSW object to disable its ability to wake the sleeping
983          * system for the ACPI device with the _PRW object.
984          * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
985          * So it is necessary to call _DSW object first. Only when it is not
986          * present will the _PSW object used.
987          */
988         err = acpi_device_sleep_wake(device, 0, 0, 0);
989         if (err)
990                 pr_debug("error in _DSW or _PSW evaluation\n");
991 }
992
993 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
994 {
995         struct acpi_device_power_state *ps = &device->power.states[state];
996         char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
997         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
998         acpi_status status;
999
1000         INIT_LIST_HEAD(&ps->resources);
1001
1002         /* Evaluate "_PRx" to get referenced power resources */
1003         status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1004         if (ACPI_SUCCESS(status)) {
1005                 union acpi_object *package = buffer.pointer;
1006
1007                 if (buffer.length && package
1008                     && package->type == ACPI_TYPE_PACKAGE
1009                     && package->package.count)
1010                         acpi_extract_power_resources(package, 0, &ps->resources);
1011
1012                 ACPI_FREE(buffer.pointer);
1013         }
1014
1015         /* Evaluate "_PSx" to see if we can do explicit sets */
1016         pathname[2] = 'S';
1017         if (acpi_has_method(device->handle, pathname))
1018                 ps->flags.explicit_set = 1;
1019
1020         /* State is valid if there are means to put the device into it. */
1021         if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1022                 ps->flags.valid = 1;
1023
1024         ps->power = -1;         /* Unknown - driver assigned */
1025         ps->latency = -1;       /* Unknown - driver assigned */
1026 }
1027
1028 static void acpi_bus_get_power_flags(struct acpi_device *device)
1029 {
1030         unsigned long long dsc = ACPI_STATE_D0;
1031         u32 i;
1032
1033         /* Presence of _PS0|_PR0 indicates 'power manageable' */
1034         if (!acpi_has_method(device->handle, "_PS0") &&
1035             !acpi_has_method(device->handle, "_PR0"))
1036                 return;
1037
1038         device->flags.power_manageable = 1;
1039
1040         /*
1041          * Power Management Flags
1042          */
1043         if (acpi_has_method(device->handle, "_PSC"))
1044                 device->power.flags.explicit_get = 1;
1045
1046         if (acpi_has_method(device->handle, "_IRC"))
1047                 device->power.flags.inrush_current = 1;
1048
1049         if (acpi_has_method(device->handle, "_DSW"))
1050                 device->power.flags.dsw_present = 1;
1051
1052         acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1053         device->power.state_for_enumeration = dsc;
1054
1055         /*
1056          * Enumerate supported power management states
1057          */
1058         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1059                 acpi_bus_init_power_state(device, i);
1060
1061         INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1062
1063         /* Set the defaults for D0 and D3hot (always supported). */
1064         device->power.states[ACPI_STATE_D0].flags.valid = 1;
1065         device->power.states[ACPI_STATE_D0].power = 100;
1066         device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1067
1068         /*
1069          * Use power resources only if the D0 list of them is populated, because
1070          * some platforms may provide _PR3 only to indicate D3cold support and
1071          * in those cases the power resources list returned by it may be bogus.
1072          */
1073         if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1074                 device->power.flags.power_resources = 1;
1075                 /*
1076                  * D3cold is supported if the D3hot list of power resources is
1077                  * not empty.
1078                  */
1079                 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1080                         device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1081         }
1082
1083         if (acpi_bus_init_power(device))
1084                 device->flags.power_manageable = 0;
1085 }
1086
1087 static void acpi_bus_get_flags(struct acpi_device *device)
1088 {
1089         /* Presence of _STA indicates 'dynamic_status' */
1090         if (acpi_has_method(device->handle, "_STA"))
1091                 device->flags.dynamic_status = 1;
1092
1093         /* Presence of _RMV indicates 'removable' */
1094         if (acpi_has_method(device->handle, "_RMV"))
1095                 device->flags.removable = 1;
1096
1097         /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1098         if (acpi_has_method(device->handle, "_EJD") ||
1099             acpi_has_method(device->handle, "_EJ0"))
1100                 device->flags.ejectable = 1;
1101 }
1102
1103 static void acpi_device_get_busid(struct acpi_device *device)
1104 {
1105         char bus_id[5] = { '?', 0 };
1106         struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1107         int i = 0;
1108
1109         /*
1110          * Bus ID
1111          * ------
1112          * The device's Bus ID is simply the object name.
1113          * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1114          */
1115         if (ACPI_IS_ROOT_DEVICE(device)) {
1116                 strcpy(device->pnp.bus_id, "ACPI");
1117                 return;
1118         }
1119
1120         switch (device->device_type) {
1121         case ACPI_BUS_TYPE_POWER_BUTTON:
1122                 strcpy(device->pnp.bus_id, "PWRF");
1123                 break;
1124         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1125                 strcpy(device->pnp.bus_id, "SLPF");
1126                 break;
1127         case ACPI_BUS_TYPE_ECDT_EC:
1128                 strcpy(device->pnp.bus_id, "ECDT");
1129                 break;
1130         default:
1131                 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1132                 /* Clean up trailing underscores (if any) */
1133                 for (i = 3; i > 1; i--) {
1134                         if (bus_id[i] == '_')
1135                                 bus_id[i] = '\0';
1136                         else
1137                                 break;
1138                 }
1139                 strcpy(device->pnp.bus_id, bus_id);
1140                 break;
1141         }
1142 }
1143
1144 /*
1145  * acpi_ata_match - see if an acpi object is an ATA device
1146  *
1147  * If an acpi object has one of the ACPI ATA methods defined,
1148  * then we can safely call it an ATA device.
1149  */
1150 bool acpi_ata_match(acpi_handle handle)
1151 {
1152         return acpi_has_method(handle, "_GTF") ||
1153                acpi_has_method(handle, "_GTM") ||
1154                acpi_has_method(handle, "_STM") ||
1155                acpi_has_method(handle, "_SDD");
1156 }
1157
1158 /*
1159  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1160  *
1161  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1162  * then we can safely call it an ejectable drive bay
1163  */
1164 bool acpi_bay_match(acpi_handle handle)
1165 {
1166         acpi_handle phandle;
1167
1168         if (!acpi_has_method(handle, "_EJ0"))
1169                 return false;
1170         if (acpi_ata_match(handle))
1171                 return true;
1172         if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1173                 return false;
1174
1175         return acpi_ata_match(phandle);
1176 }
1177
1178 bool acpi_device_is_battery(struct acpi_device *adev)
1179 {
1180         struct acpi_hardware_id *hwid;
1181
1182         list_for_each_entry(hwid, &adev->pnp.ids, list)
1183                 if (!strcmp("PNP0C0A", hwid->id))
1184                         return true;
1185
1186         return false;
1187 }
1188
1189 static bool is_ejectable_bay(struct acpi_device *adev)
1190 {
1191         acpi_handle handle = adev->handle;
1192
1193         if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1194                 return true;
1195
1196         return acpi_bay_match(handle);
1197 }
1198
1199 /*
1200  * acpi_dock_match - see if an acpi object has a _DCK method
1201  */
1202 bool acpi_dock_match(acpi_handle handle)
1203 {
1204         return acpi_has_method(handle, "_DCK");
1205 }
1206
1207 static acpi_status
1208 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1209                           void **return_value)
1210 {
1211         long *cap = context;
1212
1213         if (acpi_has_method(handle, "_BCM") &&
1214             acpi_has_method(handle, "_BCL")) {
1215                 acpi_handle_debug(handle, "Found generic backlight support\n");
1216                 *cap |= ACPI_VIDEO_BACKLIGHT;
1217                 /* We have backlight support, no need to scan further */
1218                 return AE_CTRL_TERMINATE;
1219         }
1220         return 0;
1221 }
1222
1223 /* Returns true if the ACPI object is a video device which can be
1224  * handled by video.ko.
1225  * The device will get a Linux specific CID added in scan.c to
1226  * identify the device as an ACPI graphics device
1227  * Be aware that the graphics device may not be physically present
1228  * Use acpi_video_get_capabilities() to detect general ACPI video
1229  * capabilities of present cards
1230  */
1231 long acpi_is_video_device(acpi_handle handle)
1232 {
1233         long video_caps = 0;
1234
1235         /* Is this device able to support video switching ? */
1236         if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1237                 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1238
1239         /* Is this device able to retrieve a video ROM ? */
1240         if (acpi_has_method(handle, "_ROM"))
1241                 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1242
1243         /* Is this device able to configure which video head to be POSTed ? */
1244         if (acpi_has_method(handle, "_VPO") &&
1245             acpi_has_method(handle, "_GPD") &&
1246             acpi_has_method(handle, "_SPD"))
1247                 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1248
1249         /* Only check for backlight functionality if one of the above hit. */
1250         if (video_caps)
1251                 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1252                                     ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1253                                     &video_caps, NULL);
1254
1255         return video_caps;
1256 }
1257 EXPORT_SYMBOL(acpi_is_video_device);
1258
1259 const char *acpi_device_hid(struct acpi_device *device)
1260 {
1261         struct acpi_hardware_id *hid;
1262
1263         if (list_empty(&device->pnp.ids))
1264                 return dummy_hid;
1265
1266         hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1267         return hid->id;
1268 }
1269 EXPORT_SYMBOL(acpi_device_hid);
1270
1271 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1272 {
1273         struct acpi_hardware_id *id;
1274
1275         id = kmalloc(sizeof(*id), GFP_KERNEL);
1276         if (!id)
1277                 return;
1278
1279         id->id = kstrdup_const(dev_id, GFP_KERNEL);
1280         if (!id->id) {
1281                 kfree(id);
1282                 return;
1283         }
1284
1285         list_add_tail(&id->list, &pnp->ids);
1286         pnp->type.hardware_id = 1;
1287 }
1288
1289 /*
1290  * Old IBM workstations have a DSDT bug wherein the SMBus object
1291  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1292  * prefix.  Work around this.
1293  */
1294 static bool acpi_ibm_smbus_match(acpi_handle handle)
1295 {
1296         char node_name[ACPI_PATH_SEGMENT_LENGTH];
1297         struct acpi_buffer path = { sizeof(node_name), node_name };
1298
1299         if (!dmi_name_in_vendors("IBM"))
1300                 return false;
1301
1302         /* Look for SMBS object */
1303         if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1304             strcmp("SMBS", path.pointer))
1305                 return false;
1306
1307         /* Does it have the necessary (but misnamed) methods? */
1308         if (acpi_has_method(handle, "SBI") &&
1309             acpi_has_method(handle, "SBR") &&
1310             acpi_has_method(handle, "SBW"))
1311                 return true;
1312
1313         return false;
1314 }
1315
1316 static bool acpi_object_is_system_bus(acpi_handle handle)
1317 {
1318         acpi_handle tmp;
1319
1320         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1321             tmp == handle)
1322                 return true;
1323         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1324             tmp == handle)
1325                 return true;
1326
1327         return false;
1328 }
1329
1330 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1331                              int device_type)
1332 {
1333         struct acpi_device_info *info = NULL;
1334         struct acpi_pnp_device_id_list *cid_list;
1335         int i;
1336
1337         switch (device_type) {
1338         case ACPI_BUS_TYPE_DEVICE:
1339                 if (handle == ACPI_ROOT_OBJECT) {
1340                         acpi_add_id(pnp, ACPI_SYSTEM_HID);
1341                         break;
1342                 }
1343
1344                 acpi_get_object_info(handle, &info);
1345                 if (!info) {
1346                         pr_err("%s: Error reading device info\n", __func__);
1347                         return;
1348                 }
1349
1350                 if (info->valid & ACPI_VALID_HID) {
1351                         acpi_add_id(pnp, info->hardware_id.string);
1352                         pnp->type.platform_id = 1;
1353                 }
1354                 if (info->valid & ACPI_VALID_CID) {
1355                         cid_list = &info->compatible_id_list;
1356                         for (i = 0; i < cid_list->count; i++)
1357                                 acpi_add_id(pnp, cid_list->ids[i].string);
1358                 }
1359                 if (info->valid & ACPI_VALID_ADR) {
1360                         pnp->bus_address = info->address;
1361                         pnp->type.bus_address = 1;
1362                 }
1363                 if (info->valid & ACPI_VALID_UID)
1364                         pnp->unique_id = kstrdup(info->unique_id.string,
1365                                                         GFP_KERNEL);
1366                 if (info->valid & ACPI_VALID_CLS)
1367                         acpi_add_id(pnp, info->class_code.string);
1368
1369                 kfree(info);
1370
1371                 /*
1372                  * Some devices don't reliably have _HIDs & _CIDs, so add
1373                  * synthetic HIDs to make sure drivers can find them.
1374                  */
1375                 if (acpi_is_video_device(handle))
1376                         acpi_add_id(pnp, ACPI_VIDEO_HID);
1377                 else if (acpi_bay_match(handle))
1378                         acpi_add_id(pnp, ACPI_BAY_HID);
1379                 else if (acpi_dock_match(handle))
1380                         acpi_add_id(pnp, ACPI_DOCK_HID);
1381                 else if (acpi_ibm_smbus_match(handle))
1382                         acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1383                 else if (list_empty(&pnp->ids) &&
1384                          acpi_object_is_system_bus(handle)) {
1385                         /* \_SB, \_TZ, LNXSYBUS */
1386                         acpi_add_id(pnp, ACPI_BUS_HID);
1387                         strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1388                         strcpy(pnp->device_class, ACPI_BUS_CLASS);
1389                 }
1390
1391                 break;
1392         case ACPI_BUS_TYPE_POWER:
1393                 acpi_add_id(pnp, ACPI_POWER_HID);
1394                 break;
1395         case ACPI_BUS_TYPE_PROCESSOR:
1396                 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1397                 break;
1398         case ACPI_BUS_TYPE_THERMAL:
1399                 acpi_add_id(pnp, ACPI_THERMAL_HID);
1400                 break;
1401         case ACPI_BUS_TYPE_POWER_BUTTON:
1402                 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1403                 break;
1404         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1405                 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1406                 break;
1407         case ACPI_BUS_TYPE_ECDT_EC:
1408                 acpi_add_id(pnp, ACPI_ECDT_HID);
1409                 break;
1410         }
1411 }
1412
1413 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1414 {
1415         struct acpi_hardware_id *id, *tmp;
1416
1417         list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1418                 kfree_const(id->id);
1419                 kfree(id);
1420         }
1421         kfree(pnp->unique_id);
1422 }
1423
1424 /**
1425  * acpi_dma_supported - Check DMA support for the specified device.
1426  * @adev: The pointer to acpi device
1427  *
1428  * Return false if DMA is not supported. Otherwise, return true
1429  */
1430 bool acpi_dma_supported(const struct acpi_device *adev)
1431 {
1432         if (!adev)
1433                 return false;
1434
1435         if (adev->flags.cca_seen)
1436                 return true;
1437
1438         /*
1439         * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1440         * DMA on "Intel platforms".  Presumably that includes all x86 and
1441         * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1442         */
1443         if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1444                 return true;
1445
1446         return false;
1447 }
1448
1449 /**
1450  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1451  * @adev: The pointer to acpi device
1452  *
1453  * Return enum dev_dma_attr.
1454  */
1455 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1456 {
1457         if (!acpi_dma_supported(adev))
1458                 return DEV_DMA_NOT_SUPPORTED;
1459
1460         if (adev->flags.coherent_dma)
1461                 return DEV_DMA_COHERENT;
1462         else
1463                 return DEV_DMA_NON_COHERENT;
1464 }
1465
1466 /**
1467  * acpi_dma_get_range() - Get device DMA parameters.
1468  *
1469  * @dev: device to configure
1470  * @dma_addr: pointer device DMA address result
1471  * @offset: pointer to the DMA offset result
1472  * @size: pointer to DMA range size result
1473  *
1474  * Evaluate DMA regions and return respectively DMA region start, offset
1475  * and size in dma_addr, offset and size on parsing success; it does not
1476  * update the passed in values on failure.
1477  *
1478  * Return 0 on success, < 0 on failure.
1479  */
1480 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1481                        u64 *size)
1482 {
1483         struct acpi_device *adev;
1484         LIST_HEAD(list);
1485         struct resource_entry *rentry;
1486         int ret;
1487         struct device *dma_dev = dev;
1488         u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1489
1490         /*
1491          * Walk the device tree chasing an ACPI companion with a _DMA
1492          * object while we go. Stop if we find a device with an ACPI
1493          * companion containing a _DMA method.
1494          */
1495         do {
1496                 adev = ACPI_COMPANION(dma_dev);
1497                 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1498                         break;
1499
1500                 dma_dev = dma_dev->parent;
1501         } while (dma_dev);
1502
1503         if (!dma_dev)
1504                 return -ENODEV;
1505
1506         if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1507                 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1508                 return -EINVAL;
1509         }
1510
1511         ret = acpi_dev_get_dma_resources(adev, &list);
1512         if (ret > 0) {
1513                 list_for_each_entry(rentry, &list, node) {
1514                         if (dma_offset && rentry->offset != dma_offset) {
1515                                 ret = -EINVAL;
1516                                 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1517                                 goto out;
1518                         }
1519                         dma_offset = rentry->offset;
1520
1521                         /* Take lower and upper limits */
1522                         if (rentry->res->start < dma_start)
1523                                 dma_start = rentry->res->start;
1524                         if (rentry->res->end > dma_end)
1525                                 dma_end = rentry->res->end;
1526                 }
1527
1528                 if (dma_start >= dma_end) {
1529                         ret = -EINVAL;
1530                         dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1531                         goto out;
1532                 }
1533
1534                 *dma_addr = dma_start - dma_offset;
1535                 len = dma_end - dma_start;
1536                 *size = max(len, len + 1);
1537                 *offset = dma_offset;
1538         }
1539  out:
1540         acpi_dev_free_resource_list(&list);
1541
1542         return ret >= 0 ? 0 : ret;
1543 }
1544
1545 #ifdef CONFIG_IOMMU_API
1546 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1547                            struct fwnode_handle *fwnode,
1548                            const struct iommu_ops *ops)
1549 {
1550         int ret = iommu_fwspec_init(dev, fwnode, ops);
1551
1552         if (!ret)
1553                 ret = iommu_fwspec_add_ids(dev, &id, 1);
1554
1555         return ret;
1556 }
1557
1558 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1559 {
1560         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1561
1562         return fwspec ? fwspec->ops : NULL;
1563 }
1564
1565 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1566                                                        const u32 *id_in)
1567 {
1568         int err;
1569         const struct iommu_ops *ops;
1570
1571         /*
1572          * If we already translated the fwspec there is nothing left to do,
1573          * return the iommu_ops.
1574          */
1575         ops = acpi_iommu_fwspec_ops(dev);
1576         if (ops)
1577                 return ops;
1578
1579         err = iort_iommu_configure_id(dev, id_in);
1580         if (err && err != -EPROBE_DEFER)
1581                 err = viot_iommu_configure(dev);
1582
1583         /*
1584          * If we have reason to believe the IOMMU driver missed the initial
1585          * iommu_probe_device() call for dev, replay it to get things in order.
1586          */
1587         if (!err && dev->bus && !device_iommu_mapped(dev))
1588                 err = iommu_probe_device(dev);
1589
1590         /* Ignore all other errors apart from EPROBE_DEFER */
1591         if (err == -EPROBE_DEFER) {
1592                 return ERR_PTR(err);
1593         } else if (err) {
1594                 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1595                 return NULL;
1596         }
1597         return acpi_iommu_fwspec_ops(dev);
1598 }
1599
1600 #else /* !CONFIG_IOMMU_API */
1601
1602 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1603                            struct fwnode_handle *fwnode,
1604                            const struct iommu_ops *ops)
1605 {
1606         return -ENODEV;
1607 }
1608
1609 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1610                                                        const u32 *id_in)
1611 {
1612         return NULL;
1613 }
1614
1615 #endif /* !CONFIG_IOMMU_API */
1616
1617 /**
1618  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1619  * @dev: The pointer to the device
1620  * @attr: device dma attributes
1621  * @input_id: input device id const value pointer
1622  */
1623 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1624                           const u32 *input_id)
1625 {
1626         const struct iommu_ops *iommu;
1627         u64 dma_addr = 0, size = 0;
1628
1629         if (attr == DEV_DMA_NOT_SUPPORTED) {
1630                 set_dma_ops(dev, &dma_dummy_ops);
1631                 return 0;
1632         }
1633
1634         acpi_arch_dma_setup(dev, &dma_addr, &size);
1635
1636         iommu = acpi_iommu_configure_id(dev, input_id);
1637         if (PTR_ERR(iommu) == -EPROBE_DEFER)
1638                 return -EPROBE_DEFER;
1639
1640         arch_setup_dma_ops(dev, dma_addr, size,
1641                                 iommu, attr == DEV_DMA_COHERENT);
1642
1643         return 0;
1644 }
1645 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1646
1647 static void acpi_init_coherency(struct acpi_device *adev)
1648 {
1649         unsigned long long cca = 0;
1650         acpi_status status;
1651         struct acpi_device *parent = adev->parent;
1652
1653         if (parent && parent->flags.cca_seen) {
1654                 /*
1655                  * From ACPI spec, OSPM will ignore _CCA if an ancestor
1656                  * already saw one.
1657                  */
1658                 adev->flags.cca_seen = 1;
1659                 cca = parent->flags.coherent_dma;
1660         } else {
1661                 status = acpi_evaluate_integer(adev->handle, "_CCA",
1662                                                NULL, &cca);
1663                 if (ACPI_SUCCESS(status))
1664                         adev->flags.cca_seen = 1;
1665                 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1666                         /*
1667                          * If architecture does not specify that _CCA is
1668                          * required for DMA-able devices (e.g. x86),
1669                          * we default to _CCA=1.
1670                          */
1671                         cca = 1;
1672                 else
1673                         acpi_handle_debug(adev->handle,
1674                                           "ACPI device is missing _CCA.\n");
1675         }
1676
1677         adev->flags.coherent_dma = cca;
1678 }
1679
1680 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1681 {
1682         bool *is_serial_bus_slave_p = data;
1683
1684         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1685                 return 1;
1686
1687         *is_serial_bus_slave_p = true;
1688
1689          /* no need to do more checking */
1690         return -1;
1691 }
1692
1693 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1694 {
1695         struct acpi_device *parent = device->parent;
1696         static const struct acpi_device_id indirect_io_hosts[] = {
1697                 {"HISI0191", 0},
1698                 {}
1699         };
1700
1701         return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1702 }
1703
1704 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1705 {
1706         struct list_head resource_list;
1707         bool is_serial_bus_slave = false;
1708         static const struct acpi_device_id ignore_serial_bus_ids[] = {
1709         /*
1710          * These devices have multiple SerialBus resources and a client
1711          * device must be instantiated for each of them, each with
1712          * its own device id.
1713          * Normally we only instantiate one client device for the first
1714          * resource, using the ACPI HID as id. These special cases are handled
1715          * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1716          * knows which client device id to use for each resource.
1717          */
1718                 {"BSG1160", },
1719                 {"BSG2150", },
1720                 {"CSC3551", },
1721                 {"INT33FE", },
1722                 {"INT3515", },
1723                 /* Non-conforming _HID for Cirrus Logic already released */
1724                 {"CLSA0100", },
1725         /*
1726          * Some ACPI devs contain SerialBus resources even though they are not
1727          * attached to a serial bus at all.
1728          */
1729                 {"MSHW0028", },
1730         /*
1731          * HIDs of device with an UartSerialBusV2 resource for which userspace
1732          * expects a regular tty cdev to be created (instead of the in kernel
1733          * serdev) and which have a kernel driver which expects a platform_dev
1734          * such as the rfkill-gpio driver.
1735          */
1736                 {"BCM4752", },
1737                 {"LNV4752", },
1738                 {}
1739         };
1740
1741         if (acpi_is_indirect_io_slave(device))
1742                 return true;
1743
1744         /* Macs use device properties in lieu of _CRS resources */
1745         if (x86_apple_machine &&
1746             (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1747              fwnode_property_present(&device->fwnode, "i2cAddress") ||
1748              fwnode_property_present(&device->fwnode, "baud")))
1749                 return true;
1750
1751         if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1752                 return false;
1753
1754         INIT_LIST_HEAD(&resource_list);
1755         acpi_dev_get_resources(device, &resource_list,
1756                                acpi_check_serial_bus_slave,
1757                                &is_serial_bus_slave);
1758         acpi_dev_free_resource_list(&resource_list);
1759
1760         return is_serial_bus_slave;
1761 }
1762
1763 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1764                              int type)
1765 {
1766         INIT_LIST_HEAD(&device->pnp.ids);
1767         device->device_type = type;
1768         device->handle = handle;
1769         device->parent = acpi_bus_get_parent(handle);
1770         fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1771         acpi_set_device_status(device, ACPI_STA_DEFAULT);
1772         acpi_device_get_busid(device);
1773         acpi_set_pnp_ids(handle, &device->pnp, type);
1774         acpi_init_properties(device);
1775         acpi_bus_get_flags(device);
1776         device->flags.match_driver = false;
1777         device->flags.initialized = true;
1778         device->flags.enumeration_by_parent =
1779                 acpi_device_enumeration_by_parent(device);
1780         acpi_device_clear_enumerated(device);
1781         device_initialize(&device->dev);
1782         dev_set_uevent_suppress(&device->dev, true);
1783         acpi_init_coherency(device);
1784 }
1785
1786 static void acpi_scan_dep_init(struct acpi_device *adev)
1787 {
1788         struct acpi_dep_data *dep;
1789
1790         list_for_each_entry(dep, &acpi_dep_list, node) {
1791                 if (dep->consumer == adev->handle) {
1792                         if (dep->honor_dep)
1793                                 adev->flags.honor_deps = 1;
1794
1795                         adev->dep_unmet++;
1796                 }
1797         }
1798 }
1799
1800 void acpi_device_add_finalize(struct acpi_device *device)
1801 {
1802         dev_set_uevent_suppress(&device->dev, false);
1803         kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1804 }
1805
1806 static void acpi_scan_init_status(struct acpi_device *adev)
1807 {
1808         if (acpi_bus_get_status(adev))
1809                 acpi_set_device_status(adev, 0);
1810 }
1811
1812 static int acpi_add_single_object(struct acpi_device **child,
1813                                   acpi_handle handle, int type, bool dep_init)
1814 {
1815         struct acpi_device *device;
1816         bool release_dep_lock = false;
1817         int result;
1818
1819         device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1820         if (!device)
1821                 return -ENOMEM;
1822
1823         acpi_init_device_object(device, handle, type);
1824         /*
1825          * Getting the status is delayed till here so that we can call
1826          * acpi_bus_get_status() and use its quirk handling.  Note that
1827          * this must be done before the get power-/wakeup_dev-flags calls.
1828          */
1829         if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1830                 if (dep_init) {
1831                         mutex_lock(&acpi_dep_list_lock);
1832                         /*
1833                          * Hold the lock until the acpi_tie_acpi_dev() call
1834                          * below to prevent concurrent acpi_scan_clear_dep()
1835                          * from deleting a dependency list entry without
1836                          * updating dep_unmet for the device.
1837                          */
1838                         release_dep_lock = true;
1839                         acpi_scan_dep_init(device);
1840                 }
1841                 acpi_scan_init_status(device);
1842         }
1843
1844         acpi_bus_get_power_flags(device);
1845         acpi_bus_get_wakeup_device_flags(device);
1846
1847         result = acpi_tie_acpi_dev(device);
1848
1849         if (release_dep_lock)
1850                 mutex_unlock(&acpi_dep_list_lock);
1851
1852         if (!result)
1853                 result = __acpi_device_add(device, acpi_device_release);
1854
1855         if (result) {
1856                 acpi_device_release(&device->dev);
1857                 return result;
1858         }
1859
1860         acpi_power_add_remove_device(device, true);
1861         acpi_device_add_finalize(device);
1862
1863         acpi_handle_debug(handle, "Added as %s, parent %s\n",
1864                           dev_name(&device->dev), device->parent ?
1865                                 dev_name(&device->parent->dev) : "(null)");
1866
1867         *child = device;
1868         return 0;
1869 }
1870
1871 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1872                                             void *context)
1873 {
1874         struct resource *res = context;
1875
1876         if (acpi_dev_resource_memory(ares, res))
1877                 return AE_CTRL_TERMINATE;
1878
1879         return AE_OK;
1880 }
1881
1882 static bool acpi_device_should_be_hidden(acpi_handle handle)
1883 {
1884         acpi_status status;
1885         struct resource res;
1886
1887         /* Check if it should ignore the UART device */
1888         if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1889                 return false;
1890
1891         /*
1892          * The UART device described in SPCR table is assumed to have only one
1893          * memory resource present. So we only look for the first one here.
1894          */
1895         status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1896                                      acpi_get_resource_memory, &res);
1897         if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1898                 return false;
1899
1900         acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1901                          &res.start);
1902
1903         return true;
1904 }
1905
1906 bool acpi_device_is_present(const struct acpi_device *adev)
1907 {
1908         return adev->status.present || adev->status.functional;
1909 }
1910
1911 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1912                                        const char *idstr,
1913                                        const struct acpi_device_id **matchid)
1914 {
1915         const struct acpi_device_id *devid;
1916
1917         if (handler->match)
1918                 return handler->match(idstr, matchid);
1919
1920         for (devid = handler->ids; devid->id[0]; devid++)
1921                 if (!strcmp((char *)devid->id, idstr)) {
1922                         if (matchid)
1923                                 *matchid = devid;
1924
1925                         return true;
1926                 }
1927
1928         return false;
1929 }
1930
1931 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1932                                         const struct acpi_device_id **matchid)
1933 {
1934         struct acpi_scan_handler *handler;
1935
1936         list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1937                 if (acpi_scan_handler_matching(handler, idstr, matchid))
1938                         return handler;
1939
1940         return NULL;
1941 }
1942
1943 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1944 {
1945         if (!!hotplug->enabled == !!val)
1946                 return;
1947
1948         mutex_lock(&acpi_scan_lock);
1949
1950         hotplug->enabled = val;
1951
1952         mutex_unlock(&acpi_scan_lock);
1953 }
1954
1955 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1956 {
1957         struct acpi_hardware_id *hwid;
1958
1959         if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1960                 acpi_dock_add(adev);
1961                 return;
1962         }
1963         list_for_each_entry(hwid, &adev->pnp.ids, list) {
1964                 struct acpi_scan_handler *handler;
1965
1966                 handler = acpi_scan_match_handler(hwid->id, NULL);
1967                 if (handler) {
1968                         adev->flags.hotplug_notify = true;
1969                         break;
1970                 }
1971         }
1972 }
1973
1974 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1975 {
1976         struct acpi_handle_list dep_devices;
1977         acpi_status status;
1978         u32 count;
1979         int i;
1980
1981         /*
1982          * Check for _HID here to avoid deferring the enumeration of:
1983          * 1. PCI devices.
1984          * 2. ACPI nodes describing USB ports.
1985          * Still, checking for _HID catches more then just these cases ...
1986          */
1987         if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1988             !acpi_has_method(handle, "_HID"))
1989                 return 0;
1990
1991         status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1992         if (ACPI_FAILURE(status)) {
1993                 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1994                 return 0;
1995         }
1996
1997         for (count = 0, i = 0; i < dep_devices.count; i++) {
1998                 struct acpi_device_info *info;
1999                 struct acpi_dep_data *dep;
2000                 bool skip, honor_dep;
2001
2002                 status = acpi_get_object_info(dep_devices.handles[i], &info);
2003                 if (ACPI_FAILURE(status)) {
2004                         acpi_handle_debug(handle, "Error reading _DEP device info\n");
2005                         continue;
2006                 }
2007
2008                 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2009                 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2010                 kfree(info);
2011
2012                 if (skip)
2013                         continue;
2014
2015                 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2016                 if (!dep)
2017                         continue;
2018
2019                 count++;
2020
2021                 dep->supplier = dep_devices.handles[i];
2022                 dep->consumer = handle;
2023                 dep->honor_dep = honor_dep;
2024
2025                 mutex_lock(&acpi_dep_list_lock);
2026                 list_add_tail(&dep->node , &acpi_dep_list);
2027                 mutex_unlock(&acpi_dep_list_lock);
2028         }
2029
2030         return count;
2031 }
2032
2033 static bool acpi_bus_scan_second_pass;
2034
2035 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2036                                       struct acpi_device **adev_p)
2037 {
2038         struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2039         acpi_object_type acpi_type;
2040         int type;
2041
2042         if (device)
2043                 goto out;
2044
2045         if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2046                 return AE_OK;
2047
2048         switch (acpi_type) {
2049         case ACPI_TYPE_DEVICE:
2050                 if (acpi_device_should_be_hidden(handle))
2051                         return AE_OK;
2052
2053                 /* Bail out if there are dependencies. */
2054                 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2055                         acpi_bus_scan_second_pass = true;
2056                         return AE_CTRL_DEPTH;
2057                 }
2058
2059                 fallthrough;
2060         case ACPI_TYPE_ANY:     /* for ACPI_ROOT_OBJECT */
2061                 type = ACPI_BUS_TYPE_DEVICE;
2062                 break;
2063
2064         case ACPI_TYPE_PROCESSOR:
2065                 type = ACPI_BUS_TYPE_PROCESSOR;
2066                 break;
2067
2068         case ACPI_TYPE_THERMAL:
2069                 type = ACPI_BUS_TYPE_THERMAL;
2070                 break;
2071
2072         case ACPI_TYPE_POWER:
2073                 acpi_add_power_resource(handle);
2074                 fallthrough;
2075         default:
2076                 return AE_OK;
2077         }
2078
2079         /*
2080          * If check_dep is true at this point, the device has no dependencies,
2081          * or the creation of the device object would have been postponed above.
2082          */
2083         acpi_add_single_object(&device, handle, type, !check_dep);
2084         if (!device)
2085                 return AE_CTRL_DEPTH;
2086
2087         acpi_scan_init_hotplug(device);
2088
2089 out:
2090         if (!*adev_p)
2091                 *adev_p = device;
2092
2093         return AE_OK;
2094 }
2095
2096 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2097                                         void *not_used, void **ret_p)
2098 {
2099         return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2100 }
2101
2102 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2103                                         void *not_used, void **ret_p)
2104 {
2105         return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2106 }
2107
2108 static void acpi_default_enumeration(struct acpi_device *device)
2109 {
2110         /*
2111          * Do not enumerate devices with enumeration_by_parent flag set as
2112          * they will be enumerated by their respective parents.
2113          */
2114         if (!device->flags.enumeration_by_parent) {
2115                 acpi_create_platform_device(device, NULL);
2116                 acpi_device_set_enumerated(device);
2117         } else {
2118                 blocking_notifier_call_chain(&acpi_reconfig_chain,
2119                                              ACPI_RECONFIG_DEVICE_ADD, device);
2120         }
2121 }
2122
2123 static const struct acpi_device_id generic_device_ids[] = {
2124         {ACPI_DT_NAMESPACE_HID, },
2125         {"", },
2126 };
2127
2128 static int acpi_generic_device_attach(struct acpi_device *adev,
2129                                       const struct acpi_device_id *not_used)
2130 {
2131         /*
2132          * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2133          * below can be unconditional.
2134          */
2135         if (adev->data.of_compatible)
2136                 acpi_default_enumeration(adev);
2137
2138         return 1;
2139 }
2140
2141 static struct acpi_scan_handler generic_device_handler = {
2142         .ids = generic_device_ids,
2143         .attach = acpi_generic_device_attach,
2144 };
2145
2146 static int acpi_scan_attach_handler(struct acpi_device *device)
2147 {
2148         struct acpi_hardware_id *hwid;
2149         int ret = 0;
2150
2151         list_for_each_entry(hwid, &device->pnp.ids, list) {
2152                 const struct acpi_device_id *devid;
2153                 struct acpi_scan_handler *handler;
2154
2155                 handler = acpi_scan_match_handler(hwid->id, &devid);
2156                 if (handler) {
2157                         if (!handler->attach) {
2158                                 device->pnp.type.platform_id = 0;
2159                                 continue;
2160                         }
2161                         device->handler = handler;
2162                         ret = handler->attach(device, devid);
2163                         if (ret > 0)
2164                                 break;
2165
2166                         device->handler = NULL;
2167                         if (ret < 0)
2168                                 break;
2169                 }
2170         }
2171
2172         return ret;
2173 }
2174
2175 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2176 {
2177         bool skip = !first_pass && device->flags.visited;
2178         acpi_handle ejd;
2179         int ret;
2180
2181         if (skip)
2182                 goto ok;
2183
2184         if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2185                 register_dock_dependent_device(device, ejd);
2186
2187         acpi_bus_get_status(device);
2188         /* Skip devices that are not ready for enumeration (e.g. not present) */
2189         if (!acpi_dev_ready_for_enumeration(device)) {
2190                 device->flags.initialized = false;
2191                 acpi_device_clear_enumerated(device);
2192                 device->flags.power_manageable = 0;
2193                 return 0;
2194         }
2195         if (device->handler)
2196                 goto ok;
2197
2198         if (!device->flags.initialized) {
2199                 device->flags.power_manageable =
2200                         device->power.states[ACPI_STATE_D0].flags.valid;
2201                 if (acpi_bus_init_power(device))
2202                         device->flags.power_manageable = 0;
2203
2204                 device->flags.initialized = true;
2205         } else if (device->flags.visited) {
2206                 goto ok;
2207         }
2208
2209         ret = acpi_scan_attach_handler(device);
2210         if (ret < 0)
2211                 return 0;
2212
2213         device->flags.match_driver = true;
2214         if (ret > 0 && !device->flags.enumeration_by_parent) {
2215                 acpi_device_set_enumerated(device);
2216                 goto ok;
2217         }
2218
2219         ret = device_attach(&device->dev);
2220         if (ret < 0)
2221                 return 0;
2222
2223         if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2224                 acpi_default_enumeration(device);
2225         else
2226                 acpi_device_set_enumerated(device);
2227
2228 ok:
2229         acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2230
2231         if (!skip && device->handler && device->handler->hotplug.notify_online)
2232                 device->handler->hotplug.notify_online(device);
2233
2234         return 0;
2235 }
2236
2237 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2238 {
2239         struct acpi_device *adev;
2240
2241         adev = acpi_bus_get_acpi_device(dep->consumer);
2242         if (adev) {
2243                 *(struct acpi_device **)data = adev;
2244                 return 1;
2245         }
2246         /* Continue parsing if the device object is not present. */
2247         return 0;
2248 }
2249
2250 struct acpi_scan_clear_dep_work {
2251         struct work_struct work;
2252         struct acpi_device *adev;
2253 };
2254
2255 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2256 {
2257         struct acpi_scan_clear_dep_work *cdw;
2258
2259         cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2260
2261         acpi_scan_lock_acquire();
2262         acpi_bus_attach(cdw->adev, (void *)true);
2263         acpi_scan_lock_release();
2264
2265         acpi_dev_put(cdw->adev);
2266         kfree(cdw);
2267 }
2268
2269 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2270 {
2271         struct acpi_scan_clear_dep_work *cdw;
2272
2273         if (adev->dep_unmet)
2274                 return false;
2275
2276         cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2277         if (!cdw)
2278                 return false;
2279
2280         cdw->adev = adev;
2281         INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2282         /*
2283          * Since the work function may block on the lock until the entire
2284          * initial enumeration of devices is complete, put it into the unbound
2285          * workqueue.
2286          */
2287         queue_work(system_unbound_wq, &cdw->work);
2288
2289         return true;
2290 }
2291
2292 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2293 {
2294         struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2295
2296         if (adev) {
2297                 adev->dep_unmet--;
2298                 if (!acpi_scan_clear_dep_queue(adev))
2299                         acpi_dev_put(adev);
2300         }
2301
2302         list_del(&dep->node);
2303         kfree(dep);
2304
2305         return 0;
2306 }
2307
2308 /**
2309  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2310  * @handle:     The ACPI handle of the supplier device
2311  * @callback:   Pointer to the callback function to apply
2312  * @data:       Pointer to some data to pass to the callback
2313  *
2314  * The return value of the callback determines this function's behaviour. If 0
2315  * is returned we continue to iterate over acpi_dep_list. If a positive value
2316  * is returned then the loop is broken but this function returns 0. If a
2317  * negative value is returned by the callback then the loop is broken and that
2318  * value is returned as the final error.
2319  */
2320 static int acpi_walk_dep_device_list(acpi_handle handle,
2321                                 int (*callback)(struct acpi_dep_data *, void *),
2322                                 void *data)
2323 {
2324         struct acpi_dep_data *dep, *tmp;
2325         int ret = 0;
2326
2327         mutex_lock(&acpi_dep_list_lock);
2328         list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2329                 if (dep->supplier == handle) {
2330                         ret = callback(dep, data);
2331                         if (ret)
2332                                 break;
2333                 }
2334         }
2335         mutex_unlock(&acpi_dep_list_lock);
2336
2337         return ret > 0 ? 0 : ret;
2338 }
2339
2340 /**
2341  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2342  * @supplier: Pointer to the supplier &struct acpi_device
2343  *
2344  * Clear dependencies on the given device.
2345  */
2346 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2347 {
2348         acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2349 }
2350 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2351
2352 /**
2353  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2354  * @device: Pointer to the &struct acpi_device to check
2355  *
2356  * Check if the device is present and has no unmet dependencies.
2357  *
2358  * Return true if the device is ready for enumeratino. Otherwise, return false.
2359  */
2360 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2361 {
2362         if (device->flags.honor_deps && device->dep_unmet)
2363                 return false;
2364
2365         return acpi_device_is_present(device);
2366 }
2367 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2368
2369 /**
2370  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2371  * @supplier: Pointer to the dependee device
2372  *
2373  * Returns the first &struct acpi_device which declares itself dependent on
2374  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2375  *
2376  * The caller is responsible for putting the reference to adev when it is no
2377  * longer needed.
2378  */
2379 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2380 {
2381         struct acpi_device *adev = NULL;
2382
2383         acpi_walk_dep_device_list(supplier->handle,
2384                                   acpi_dev_get_first_consumer_dev_cb, &adev);
2385
2386         return adev;
2387 }
2388 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2389
2390 /**
2391  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2392  * @handle: Root of the namespace scope to scan.
2393  *
2394  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2395  * found devices.
2396  *
2397  * If no devices were found, -ENODEV is returned, but it does not mean that
2398  * there has been a real error.  There just have been no suitable ACPI objects
2399  * in the table trunk from which the kernel could create a device and add an
2400  * appropriate driver.
2401  *
2402  * Must be called under acpi_scan_lock.
2403  */
2404 int acpi_bus_scan(acpi_handle handle)
2405 {
2406         struct acpi_device *device = NULL;
2407
2408         acpi_bus_scan_second_pass = false;
2409
2410         /* Pass 1: Avoid enumerating devices with missing dependencies. */
2411
2412         if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2413                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2414                                     acpi_bus_check_add_1, NULL, NULL,
2415                                     (void **)&device);
2416
2417         if (!device)
2418                 return -ENODEV;
2419
2420         acpi_bus_attach(device, (void *)true);
2421
2422         if (!acpi_bus_scan_second_pass)
2423                 return 0;
2424
2425         /* Pass 2: Enumerate all of the remaining devices. */
2426
2427         device = NULL;
2428
2429         if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2430                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2431                                     acpi_bus_check_add_2, NULL, NULL,
2432                                     (void **)&device);
2433
2434         acpi_bus_attach(device, NULL);
2435
2436         return 0;
2437 }
2438 EXPORT_SYMBOL(acpi_bus_scan);
2439
2440 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2441 {
2442         struct acpi_scan_handler *handler = adev->handler;
2443
2444         acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2445
2446         adev->flags.match_driver = false;
2447         if (handler) {
2448                 if (handler->detach)
2449                         handler->detach(adev);
2450
2451                 adev->handler = NULL;
2452         } else {
2453                 device_release_driver(&adev->dev);
2454         }
2455         /*
2456          * Most likely, the device is going away, so put it into D3cold before
2457          * that.
2458          */
2459         acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2460         adev->flags.initialized = false;
2461         acpi_device_clear_enumerated(adev);
2462
2463         return 0;
2464 }
2465
2466 /**
2467  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2468  * @adev: Root of the ACPI namespace scope to walk.
2469  *
2470  * Must be called under acpi_scan_lock.
2471  */
2472 void acpi_bus_trim(struct acpi_device *adev)
2473 {
2474         acpi_bus_trim_one(adev, NULL);
2475 }
2476 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2477
2478 int acpi_bus_register_early_device(int type)
2479 {
2480         struct acpi_device *device = NULL;
2481         int result;
2482
2483         result = acpi_add_single_object(&device, NULL, type, false);
2484         if (result)
2485                 return result;
2486
2487         device->flags.match_driver = true;
2488         return device_attach(&device->dev);
2489 }
2490 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2491
2492 static void acpi_bus_scan_fixed(void)
2493 {
2494         if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2495                 struct acpi_device *adev = NULL;
2496
2497                 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2498                                        false);
2499                 if (adev) {
2500                         adev->flags.match_driver = true;
2501                         if (device_attach(&adev->dev) >= 0)
2502                                 device_init_wakeup(&adev->dev, true);
2503                         else
2504                                 dev_dbg(&adev->dev, "No driver\n");
2505                 }
2506         }
2507
2508         if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2509                 struct acpi_device *adev = NULL;
2510
2511                 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2512                                        false);
2513                 if (adev) {
2514                         adev->flags.match_driver = true;
2515                         if (device_attach(&adev->dev) < 0)
2516                                 dev_dbg(&adev->dev, "No driver\n");
2517                 }
2518         }
2519 }
2520
2521 static void __init acpi_get_spcr_uart_addr(void)
2522 {
2523         acpi_status status;
2524         struct acpi_table_spcr *spcr_ptr;
2525
2526         status = acpi_get_table(ACPI_SIG_SPCR, 0,
2527                                 (struct acpi_table_header **)&spcr_ptr);
2528         if (ACPI_FAILURE(status)) {
2529                 pr_warn("STAO table present, but SPCR is missing\n");
2530                 return;
2531         }
2532
2533         spcr_uart_addr = spcr_ptr->serial_port.address;
2534         acpi_put_table((struct acpi_table_header *)spcr_ptr);
2535 }
2536
2537 static bool acpi_scan_initialized;
2538
2539 void __init acpi_scan_init(void)
2540 {
2541         acpi_status status;
2542         struct acpi_table_stao *stao_ptr;
2543
2544         acpi_pci_root_init();
2545         acpi_pci_link_init();
2546         acpi_processor_init();
2547         acpi_platform_init();
2548         acpi_lpss_init();
2549         acpi_apd_init();
2550         acpi_cmos_rtc_init();
2551         acpi_container_init();
2552         acpi_memory_hotplug_init();
2553         acpi_watchdog_init();
2554         acpi_pnp_init();
2555         acpi_int340x_thermal_init();
2556         acpi_amba_init();
2557         acpi_init_lpit();
2558
2559         acpi_scan_add_handler(&generic_device_handler);
2560
2561         /*
2562          * If there is STAO table, check whether it needs to ignore the UART
2563          * device in SPCR table.
2564          */
2565         status = acpi_get_table(ACPI_SIG_STAO, 0,
2566                                 (struct acpi_table_header **)&stao_ptr);
2567         if (ACPI_SUCCESS(status)) {
2568                 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2569                         pr_info("STAO Name List not yet supported.\n");
2570
2571                 if (stao_ptr->ignore_uart)
2572                         acpi_get_spcr_uart_addr();
2573
2574                 acpi_put_table((struct acpi_table_header *)stao_ptr);
2575         }
2576
2577         acpi_gpe_apply_masked_gpes();
2578         acpi_update_all_gpes();
2579
2580         /*
2581          * Although we call __add_memory() that is documented to require the
2582          * device_hotplug_lock, it is not necessary here because this is an
2583          * early code when userspace or any other code path cannot trigger
2584          * hotplug/hotunplug operations.
2585          */
2586         mutex_lock(&acpi_scan_lock);
2587         /*
2588          * Enumerate devices in the ACPI namespace.
2589          */
2590         if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2591                 goto unlock;
2592
2593         acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2594         if (!acpi_root)
2595                 goto unlock;
2596
2597         /* Fixed feature devices do not exist on HW-reduced platform */
2598         if (!acpi_gbl_reduced_hardware)
2599                 acpi_bus_scan_fixed();
2600
2601         acpi_turn_off_unused_power_resources();
2602
2603         acpi_scan_initialized = true;
2604
2605 unlock:
2606         mutex_unlock(&acpi_scan_lock);
2607 }
2608
2609 static struct acpi_probe_entry *ape;
2610 static int acpi_probe_count;
2611 static DEFINE_MUTEX(acpi_probe_mutex);
2612
2613 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2614                                   const unsigned long end)
2615 {
2616         if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2617                 if (!ape->probe_subtbl(header, end))
2618                         acpi_probe_count++;
2619
2620         return 0;
2621 }
2622
2623 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2624 {
2625         int count = 0;
2626
2627         if (acpi_disabled)
2628                 return 0;
2629
2630         mutex_lock(&acpi_probe_mutex);
2631         for (ape = ap_head; nr; ape++, nr--) {
2632                 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2633                         acpi_probe_count = 0;
2634                         acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2635                         count += acpi_probe_count;
2636                 } else {
2637                         int res;
2638                         res = acpi_table_parse(ape->id, ape->probe_table);
2639                         if (!res)
2640                                 count++;
2641                 }
2642         }
2643         mutex_unlock(&acpi_probe_mutex);
2644
2645         return count;
2646 }
2647
2648 static void acpi_table_events_fn(struct work_struct *work)
2649 {
2650         acpi_scan_lock_acquire();
2651         acpi_bus_scan(ACPI_ROOT_OBJECT);
2652         acpi_scan_lock_release();
2653
2654         kfree(work);
2655 }
2656
2657 void acpi_scan_table_notify(void)
2658 {
2659         struct work_struct *work;
2660
2661         if (!acpi_scan_initialized)
2662                 return;
2663
2664         work = kmalloc(sizeof(*work), GFP_KERNEL);
2665         if (!work)
2666                 return;
2667
2668         INIT_WORK(work, acpi_table_events_fn);
2669         schedule_work(work);
2670 }
2671
2672 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2673 {
2674         return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2675 }
2676 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2677
2678 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2679 {
2680         return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2681 }
2682 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);