2c80765670bc7fc35508ad91347f8343f5f1f1d6
[linux-2.6-microblaze.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22
23 #include "internal.h"
24
25 extern struct acpi_device *acpi_root;
26
27 #define ACPI_BUS_CLASS                  "system_bus"
28 #define ACPI_BUS_HID                    "LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME            "System Bus"
30
31 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
32
33 #define INVALID_ACPI_HANDLE     ((acpi_handle)empty_zero_page)
34
35 static const char *dummy_hid = "device";
36
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45
46 /*
47  * The UART device described by the SPCR table is the only object which needs
48  * special-casing. Everything else is covered by ACPI namespace paths in STAO
49  * table.
50  */
51 static u64 spcr_uart_addr;
52
53 void acpi_scan_lock_acquire(void)
54 {
55         mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
59 void acpi_scan_lock_release(void)
60 {
61         mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
65 void acpi_lock_hp_context(void)
66 {
67         mutex_lock(&acpi_hp_context_lock);
68 }
69
70 void acpi_unlock_hp_context(void)
71 {
72         mutex_unlock(&acpi_hp_context_lock);
73 }
74
75 void acpi_initialize_hp_context(struct acpi_device *adev,
76                                 struct acpi_hotplug_context *hp,
77                                 int (*notify)(struct acpi_device *, u32),
78                                 void (*uevent)(struct acpi_device *, u32))
79 {
80         acpi_lock_hp_context();
81         hp->notify = notify;
82         hp->uevent = uevent;
83         acpi_set_hp_context(adev, hp);
84         acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90         if (!handler)
91                 return -EINVAL;
92
93         list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94         return 0;
95 }
96
97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98                                        const char *hotplug_profile_name)
99 {
100         int error;
101
102         error = acpi_scan_add_handler(handler);
103         if (error)
104                 return error;
105
106         acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107         return 0;
108 }
109
110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112         struct acpi_device_physical_node *pn;
113         bool offline = true;
114         char *envp[] = { "EVENT=offline", NULL };
115
116         /*
117          * acpi_container_offline() calls this for all of the container's
118          * children under the container's physical_node_lock lock.
119          */
120         mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122         list_for_each_entry(pn, &adev->physical_node_list, node)
123                 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124                         if (uevent)
125                                 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127                         offline = false;
128                         break;
129                 }
130
131         mutex_unlock(&adev->physical_node_lock);
132         return offline;
133 }
134
135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136                                     void **ret_p)
137 {
138         struct acpi_device *device = NULL;
139         struct acpi_device_physical_node *pn;
140         bool second_pass = (bool)data;
141         acpi_status status = AE_OK;
142
143         if (acpi_bus_get_device(handle, &device))
144                 return AE_OK;
145
146         if (device->handler && !device->handler->hotplug.enabled) {
147                 *ret_p = &device->dev;
148                 return AE_SUPPORT;
149         }
150
151         mutex_lock(&device->physical_node_lock);
152
153         list_for_each_entry(pn, &device->physical_node_list, node) {
154                 int ret;
155
156                 if (second_pass) {
157                         /* Skip devices offlined by the first pass. */
158                         if (pn->put_online)
159                                 continue;
160                 } else {
161                         pn->put_online = false;
162                 }
163                 ret = device_offline(pn->dev);
164                 if (ret >= 0) {
165                         pn->put_online = !ret;
166                 } else {
167                         *ret_p = pn->dev;
168                         if (second_pass) {
169                                 status = AE_ERROR;
170                                 break;
171                         }
172                 }
173         }
174
175         mutex_unlock(&device->physical_node_lock);
176
177         return status;
178 }
179
180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181                                    void **ret_p)
182 {
183         struct acpi_device *device = NULL;
184         struct acpi_device_physical_node *pn;
185
186         if (acpi_bus_get_device(handle, &device))
187                 return AE_OK;
188
189         mutex_lock(&device->physical_node_lock);
190
191         list_for_each_entry(pn, &device->physical_node_list, node)
192                 if (pn->put_online) {
193                         device_online(pn->dev);
194                         pn->put_online = false;
195                 }
196
197         mutex_unlock(&device->physical_node_lock);
198
199         return AE_OK;
200 }
201
202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204         acpi_handle handle = device->handle;
205         struct device *errdev = NULL;
206         acpi_status status;
207
208         /*
209          * Carry out two passes here and ignore errors in the first pass,
210          * because if the devices in question are memory blocks and
211          * CONFIG_MEMCG is set, one of the blocks may hold data structures
212          * that the other blocks depend on, but it is not known in advance which
213          * block holds them.
214          *
215          * If the first pass is successful, the second one isn't needed, though.
216          */
217         status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218                                      NULL, acpi_bus_offline, (void *)false,
219                                      (void **)&errdev);
220         if (status == AE_SUPPORT) {
221                 dev_warn(errdev, "Offline disabled.\n");
222                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223                                     acpi_bus_online, NULL, NULL, NULL);
224                 return -EPERM;
225         }
226         acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227         if (errdev) {
228                 errdev = NULL;
229                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230                                     NULL, acpi_bus_offline, (void *)true,
231                                     (void **)&errdev);
232                 if (!errdev)
233                         acpi_bus_offline(handle, 0, (void *)true,
234                                          (void **)&errdev);
235
236                 if (errdev) {
237                         dev_warn(errdev, "Offline failed.\n");
238                         acpi_bus_online(handle, 0, NULL, NULL);
239                         acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240                                             ACPI_UINT32_MAX, acpi_bus_online,
241                                             NULL, NULL, NULL);
242                         return -EBUSY;
243                 }
244         }
245         return 0;
246 }
247
248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250         acpi_handle handle = device->handle;
251         unsigned long long sta;
252         acpi_status status;
253
254         if (device->handler && device->handler->hotplug.demand_offline) {
255                 if (!acpi_scan_is_offline(device, true))
256                         return -EBUSY;
257         } else {
258                 int error = acpi_scan_try_to_offline(device);
259                 if (error)
260                         return error;
261         }
262
263         acpi_handle_debug(handle, "Ejecting\n");
264
265         acpi_bus_trim(device);
266
267         acpi_evaluate_lck(handle, 0);
268         /*
269          * TBD: _EJD support.
270          */
271         status = acpi_evaluate_ej0(handle);
272         if (status == AE_NOT_FOUND)
273                 return -ENODEV;
274         else if (ACPI_FAILURE(status))
275                 return -EIO;
276
277         /*
278          * Verify if eject was indeed successful.  If not, log an error
279          * message.  No need to call _OST since _EJ0 call was made OK.
280          */
281         status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282         if (ACPI_FAILURE(status)) {
283                 acpi_handle_warn(handle,
284                         "Status check after eject failed (0x%x)\n", status);
285         } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286                 acpi_handle_warn(handle,
287                         "Eject incomplete - status 0x%llx\n", sta);
288         }
289
290         return 0;
291 }
292
293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295         if (!acpi_device_enumerated(adev)) {
296                 dev_warn(&adev->dev, "Still not present\n");
297                 return -EALREADY;
298         }
299         acpi_bus_trim(adev);
300         return 0;
301 }
302
303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305         int error;
306
307         acpi_bus_get_status(adev);
308         if (adev->status.present || adev->status.functional) {
309                 /*
310                  * This function is only called for device objects for which
311                  * matching scan handlers exist.  The only situation in which
312                  * the scan handler is not attached to this device object yet
313                  * is when the device has just appeared (either it wasn't
314                  * present at all before or it was removed and then added
315                  * again).
316                  */
317                 if (adev->handler) {
318                         dev_warn(&adev->dev, "Already enumerated\n");
319                         return -EALREADY;
320                 }
321                 error = acpi_bus_scan(adev->handle);
322                 if (error) {
323                         dev_warn(&adev->dev, "Namespace scan failure\n");
324                         return error;
325                 }
326                 if (!adev->handler) {
327                         dev_warn(&adev->dev, "Enumeration failure\n");
328                         error = -ENODEV;
329                 }
330         } else {
331                 error = acpi_scan_device_not_present(adev);
332         }
333         return error;
334 }
335
336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338         struct acpi_scan_handler *handler = adev->handler;
339         struct acpi_device *child;
340         int error;
341
342         acpi_bus_get_status(adev);
343         if (!(adev->status.present || adev->status.functional)) {
344                 acpi_scan_device_not_present(adev);
345                 return 0;
346         }
347         if (handler && handler->hotplug.scan_dependent)
348                 return handler->hotplug.scan_dependent(adev);
349
350         error = acpi_bus_scan(adev->handle);
351         if (error) {
352                 dev_warn(&adev->dev, "Namespace scan failure\n");
353                 return error;
354         }
355         list_for_each_entry(child, &adev->children, node) {
356                 error = acpi_scan_bus_check(child);
357                 if (error)
358                         return error;
359         }
360         return 0;
361 }
362
363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365         switch (type) {
366         case ACPI_NOTIFY_BUS_CHECK:
367                 return acpi_scan_bus_check(adev);
368         case ACPI_NOTIFY_DEVICE_CHECK:
369                 return acpi_scan_device_check(adev);
370         case ACPI_NOTIFY_EJECT_REQUEST:
371         case ACPI_OST_EC_OSPM_EJECT:
372                 if (adev->handler && !adev->handler->hotplug.enabled) {
373                         dev_info(&adev->dev, "Eject disabled\n");
374                         return -EPERM;
375                 }
376                 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377                                   ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378                 return acpi_scan_hot_remove(adev);
379         }
380         return -EINVAL;
381 }
382
383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385         u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386         int error = -ENODEV;
387
388         lock_device_hotplug();
389         mutex_lock(&acpi_scan_lock);
390
391         /*
392          * The device object's ACPI handle cannot become invalid as long as we
393          * are holding acpi_scan_lock, but it might have become invalid before
394          * that lock was acquired.
395          */
396         if (adev->handle == INVALID_ACPI_HANDLE)
397                 goto err_out;
398
399         if (adev->flags.is_dock_station) {
400                 error = dock_notify(adev, src);
401         } else if (adev->flags.hotplug_notify) {
402                 error = acpi_generic_hotplug_event(adev, src);
403         } else {
404                 int (*notify)(struct acpi_device *, u32);
405
406                 acpi_lock_hp_context();
407                 notify = adev->hp ? adev->hp->notify : NULL;
408                 acpi_unlock_hp_context();
409                 /*
410                  * There may be additional notify handlers for device objects
411                  * without the .event() callback, so ignore them here.
412                  */
413                 if (notify)
414                         error = notify(adev, src);
415                 else
416                         goto out;
417         }
418         switch (error) {
419         case 0:
420                 ost_code = ACPI_OST_SC_SUCCESS;
421                 break;
422         case -EPERM:
423                 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424                 break;
425         case -EBUSY:
426                 ost_code = ACPI_OST_SC_DEVICE_BUSY;
427                 break;
428         default:
429                 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430                 break;
431         }
432
433  err_out:
434         acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435
436  out:
437         acpi_bus_put_acpi_device(adev);
438         mutex_unlock(&acpi_scan_lock);
439         unlock_device_hotplug();
440 }
441
442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444         int i;
445
446         if (device->wakeup.flags.valid)
447                 acpi_power_resources_list_free(&device->wakeup.resources);
448
449         if (!device->power.flags.power_resources)
450                 return;
451
452         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453                 struct acpi_device_power_state *ps = &device->power.states[i];
454                 acpi_power_resources_list_free(&ps->resources);
455         }
456 }
457
458 static void acpi_device_release(struct device *dev)
459 {
460         struct acpi_device *acpi_dev = to_acpi_device(dev);
461
462         acpi_free_properties(acpi_dev);
463         acpi_free_pnp_ids(&acpi_dev->pnp);
464         acpi_free_power_resources_lists(acpi_dev);
465         kfree(acpi_dev);
466 }
467
468 static void acpi_device_del(struct acpi_device *device)
469 {
470         struct acpi_device_bus_id *acpi_device_bus_id;
471
472         mutex_lock(&acpi_device_lock);
473         if (device->parent)
474                 list_del(&device->node);
475
476         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477                 if (!strcmp(acpi_device_bus_id->bus_id,
478                             acpi_device_hid(device))) {
479                         ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480                         if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481                                 list_del(&acpi_device_bus_id->node);
482                                 kfree_const(acpi_device_bus_id->bus_id);
483                                 kfree(acpi_device_bus_id);
484                         }
485                         break;
486                 }
487
488         list_del(&device->wakeup_list);
489         mutex_unlock(&acpi_device_lock);
490
491         acpi_power_add_remove_device(device, false);
492         acpi_device_remove_files(device);
493         if (device->remove)
494                 device->remove(device);
495
496         device_del(&device->dev);
497 }
498
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503
504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506         for (;;) {
507                 struct acpi_device *adev;
508
509                 mutex_lock(&acpi_device_del_lock);
510
511                 if (list_empty(&acpi_device_del_list)) {
512                         mutex_unlock(&acpi_device_del_lock);
513                         break;
514                 }
515                 adev = list_first_entry(&acpi_device_del_list,
516                                         struct acpi_device, del_list);
517                 list_del(&adev->del_list);
518
519                 mutex_unlock(&acpi_device_del_lock);
520
521                 blocking_notifier_call_chain(&acpi_reconfig_chain,
522                                              ACPI_RECONFIG_DEVICE_REMOVE, adev);
523
524                 acpi_device_del(adev);
525                 /*
526                  * Drop references to all power resources that might have been
527                  * used by the device.
528                  */
529                 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530                 acpi_dev_put(adev);
531         }
532 }
533
534 /**
535  * acpi_scan_drop_device - Drop an ACPI device object.
536  * @handle: Handle of an ACPI namespace node, not used.
537  * @context: Address of the ACPI device object to drop.
538  *
539  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540  * namespace node the device object pointed to by @context is attached to.
541  *
542  * The unregistration is carried out asynchronously to avoid running
543  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544  * ensure the correct ordering (the device objects must be unregistered in the
545  * same order in which the corresponding namespace nodes are deleted).
546  */
547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549         static DECLARE_WORK(work, acpi_device_del_work_fn);
550         struct acpi_device *adev = context;
551
552         mutex_lock(&acpi_device_del_lock);
553
554         /*
555          * Use the ACPI hotplug workqueue which is ordered, so this work item
556          * won't run after any hotplug work items submitted subsequently.  That
557          * prevents attempts to register device objects identical to those being
558          * deleted from happening concurrently (such attempts result from
559          * hotplug events handled via the ACPI hotplug workqueue).  It also will
560          * run after all of the work items submitted previously, which helps
561          * those work items to ensure that they are not accessing stale device
562          * objects.
563          */
564         if (list_empty(&acpi_device_del_list))
565                 acpi_queue_hotplug_work(&work);
566
567         list_add_tail(&adev->del_list, &acpi_device_del_list);
568         /* Make acpi_ns_validate_handle() return NULL for this handle. */
569         adev->handle = INVALID_ACPI_HANDLE;
570
571         mutex_unlock(&acpi_device_del_lock);
572 }
573
574 static struct acpi_device *handle_to_device(acpi_handle handle,
575                                             void (*callback)(void *))
576 {
577         struct acpi_device *adev = NULL;
578         acpi_status status;
579
580         status = acpi_get_data_full(handle, acpi_scan_drop_device,
581                                     (void **)&adev, callback);
582         if (ACPI_FAILURE(status) || !adev) {
583                 acpi_handle_debug(handle, "No context!\n");
584                 return NULL;
585         }
586         return adev;
587 }
588
589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591         if (!device)
592                 return -EINVAL;
593
594         *device = handle_to_device(handle, NULL);
595         if (!*device)
596                 return -ENODEV;
597
598         return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601
602 static void get_acpi_device(void *dev)
603 {
604         acpi_dev_get(dev);
605 }
606
607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609         return handle_to_device(handle, get_acpi_device);
610 }
611 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
612
613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
614 {
615         struct acpi_device_bus_id *acpi_device_bus_id;
616
617         /* Find suitable bus_id and instance number in acpi_bus_id_list. */
618         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
619                 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
620                         return acpi_device_bus_id;
621         }
622         return NULL;
623 }
624
625 static int acpi_device_set_name(struct acpi_device *device,
626                                 struct acpi_device_bus_id *acpi_device_bus_id)
627 {
628         struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
629         int result;
630
631         result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
632         if (result < 0)
633                 return result;
634
635         device->pnp.instance_no = result;
636         dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
637         return 0;
638 }
639
640 static int acpi_tie_acpi_dev(struct acpi_device *adev)
641 {
642         acpi_handle handle = adev->handle;
643         acpi_status status;
644
645         if (!handle)
646                 return 0;
647
648         status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
649         if (ACPI_FAILURE(status)) {
650                 acpi_handle_err(handle, "Unable to attach device data\n");
651                 return -ENODEV;
652         }
653
654         return 0;
655 }
656
657 static int __acpi_device_add(struct acpi_device *device,
658                              void (*release)(struct device *))
659 {
660         struct acpi_device_bus_id *acpi_device_bus_id;
661         int result;
662
663         /*
664          * Linkage
665          * -------
666          * Link this device to its parent and siblings.
667          */
668         INIT_LIST_HEAD(&device->children);
669         INIT_LIST_HEAD(&device->node);
670         INIT_LIST_HEAD(&device->wakeup_list);
671         INIT_LIST_HEAD(&device->physical_node_list);
672         INIT_LIST_HEAD(&device->del_list);
673         mutex_init(&device->physical_node_lock);
674
675         mutex_lock(&acpi_device_lock);
676
677         acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
678         if (acpi_device_bus_id) {
679                 result = acpi_device_set_name(device, acpi_device_bus_id);
680                 if (result)
681                         goto err_unlock;
682         } else {
683                 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
684                                              GFP_KERNEL);
685                 if (!acpi_device_bus_id) {
686                         result = -ENOMEM;
687                         goto err_unlock;
688                 }
689                 acpi_device_bus_id->bus_id =
690                         kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
691                 if (!acpi_device_bus_id->bus_id) {
692                         kfree(acpi_device_bus_id);
693                         result = -ENOMEM;
694                         goto err_unlock;
695                 }
696
697                 ida_init(&acpi_device_bus_id->instance_ida);
698
699                 result = acpi_device_set_name(device, acpi_device_bus_id);
700                 if (result) {
701                         kfree_const(acpi_device_bus_id->bus_id);
702                         kfree(acpi_device_bus_id);
703                         goto err_unlock;
704                 }
705
706                 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
707         }
708
709         if (device->parent)
710                 list_add_tail(&device->node, &device->parent->children);
711
712         if (device->wakeup.flags.valid)
713                 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
714
715         mutex_unlock(&acpi_device_lock);
716
717         if (device->parent)
718                 device->dev.parent = &device->parent->dev;
719
720         device->dev.bus = &acpi_bus_type;
721         device->dev.release = release;
722         result = device_add(&device->dev);
723         if (result) {
724                 dev_err(&device->dev, "Error registering device\n");
725                 goto err;
726         }
727
728         result = acpi_device_setup_files(device);
729         if (result)
730                 pr_err("Error creating sysfs interface for device %s\n",
731                        dev_name(&device->dev));
732
733         return 0;
734
735 err:
736         mutex_lock(&acpi_device_lock);
737
738         if (device->parent)
739                 list_del(&device->node);
740
741         list_del(&device->wakeup_list);
742
743 err_unlock:
744         mutex_unlock(&acpi_device_lock);
745
746         acpi_detach_data(device->handle, acpi_scan_drop_device);
747
748         return result;
749 }
750
751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
752 {
753         int ret;
754
755         ret = acpi_tie_acpi_dev(adev);
756         if (ret)
757                 return ret;
758
759         return __acpi_device_add(adev, release);
760 }
761
762 /* --------------------------------------------------------------------------
763                                  Device Enumeration
764    -------------------------------------------------------------------------- */
765 static bool acpi_info_matches_ids(struct acpi_device_info *info,
766                                   const char * const ids[])
767 {
768         struct acpi_pnp_device_id_list *cid_list = NULL;
769         int i, index;
770
771         if (!(info->valid & ACPI_VALID_HID))
772                 return false;
773
774         index = match_string(ids, -1, info->hardware_id.string);
775         if (index >= 0)
776                 return true;
777
778         if (info->valid & ACPI_VALID_CID)
779                 cid_list = &info->compatible_id_list;
780
781         if (!cid_list)
782                 return false;
783
784         for (i = 0; i < cid_list->count; i++) {
785                 index = match_string(ids, -1, cid_list->ids[i].string);
786                 if (index >= 0)
787                         return true;
788         }
789
790         return false;
791 }
792
793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
794 static const char * const acpi_ignore_dep_ids[] = {
795         "PNP0D80", /* Windows-compatible System Power Management Controller */
796         "INT33BD", /* Intel Baytrail Mailbox Device */
797         NULL
798 };
799
800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801 {
802         struct acpi_device *device = NULL;
803         acpi_status status;
804
805         /*
806          * Fixed hardware devices do not appear in the namespace and do not
807          * have handles, but we fabricate acpi_devices for them, so we have
808          * to deal with them specially.
809          */
810         if (!handle)
811                 return acpi_root;
812
813         do {
814                 status = acpi_get_parent(handle, &handle);
815                 if (ACPI_FAILURE(status))
816                         return status == AE_NULL_ENTRY ? NULL : acpi_root;
817         } while (acpi_bus_get_device(handle, &device));
818         return device;
819 }
820
821 acpi_status
822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823 {
824         acpi_status status;
825         acpi_handle tmp;
826         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827         union acpi_object *obj;
828
829         status = acpi_get_handle(handle, "_EJD", &tmp);
830         if (ACPI_FAILURE(status))
831                 return status;
832
833         status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834         if (ACPI_SUCCESS(status)) {
835                 obj = buffer.pointer;
836                 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837                                          ejd);
838                 kfree(buffer.pointer);
839         }
840         return status;
841 }
842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843
844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845 {
846         acpi_handle handle = dev->handle;
847         struct acpi_device_wakeup *wakeup = &dev->wakeup;
848         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849         union acpi_object *package = NULL;
850         union acpi_object *element = NULL;
851         acpi_status status;
852         int err = -ENODATA;
853
854         INIT_LIST_HEAD(&wakeup->resources);
855
856         /* _PRW */
857         status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858         if (ACPI_FAILURE(status)) {
859                 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860                                  acpi_format_exception(status));
861                 return err;
862         }
863
864         package = (union acpi_object *)buffer.pointer;
865
866         if (!package || package->package.count < 2)
867                 goto out;
868
869         element = &(package->package.elements[0]);
870         if (!element)
871                 goto out;
872
873         if (element->type == ACPI_TYPE_PACKAGE) {
874                 if ((element->package.count < 2) ||
875                     (element->package.elements[0].type !=
876                      ACPI_TYPE_LOCAL_REFERENCE)
877                     || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878                         goto out;
879
880                 wakeup->gpe_device =
881                     element->package.elements[0].reference.handle;
882                 wakeup->gpe_number =
883                     (u32) element->package.elements[1].integer.value;
884         } else if (element->type == ACPI_TYPE_INTEGER) {
885                 wakeup->gpe_device = NULL;
886                 wakeup->gpe_number = element->integer.value;
887         } else {
888                 goto out;
889         }
890
891         element = &(package->package.elements[1]);
892         if (element->type != ACPI_TYPE_INTEGER)
893                 goto out;
894
895         wakeup->sleep_state = element->integer.value;
896
897         err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898         if (err)
899                 goto out;
900
901         if (!list_empty(&wakeup->resources)) {
902                 int sleep_state;
903
904                 err = acpi_power_wakeup_list_init(&wakeup->resources,
905                                                   &sleep_state);
906                 if (err) {
907                         acpi_handle_warn(handle, "Retrieving current states "
908                                          "of wakeup power resources failed\n");
909                         acpi_power_resources_list_free(&wakeup->resources);
910                         goto out;
911                 }
912                 if (sleep_state < wakeup->sleep_state) {
913                         acpi_handle_warn(handle, "Overriding _PRW sleep state "
914                                          "(S%d) by S%d from power resources\n",
915                                          (int)wakeup->sleep_state, sleep_state);
916                         wakeup->sleep_state = sleep_state;
917                 }
918         }
919
920  out:
921         kfree(buffer.pointer);
922         return err;
923 }
924
925 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926 {
927         static const struct acpi_device_id button_device_ids[] = {
928                 {"PNP0C0C", 0},         /* Power button */
929                 {"PNP0C0D", 0},         /* Lid */
930                 {"PNP0C0E", 0},         /* Sleep button */
931                 {"", 0},
932         };
933         struct acpi_device_wakeup *wakeup = &device->wakeup;
934         acpi_status status;
935
936         wakeup->flags.notifier_present = 0;
937
938         /* Power button, Lid switch always enable wakeup */
939         if (!acpi_match_device_ids(device, button_device_ids)) {
940                 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941                         /* Do not use Lid/sleep button for S5 wakeup */
942                         if (wakeup->sleep_state == ACPI_STATE_S5)
943                                 wakeup->sleep_state = ACPI_STATE_S4;
944                 }
945                 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946                 device_set_wakeup_capable(&device->dev, true);
947                 return true;
948         }
949
950         status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951                                          wakeup->gpe_number);
952         return ACPI_SUCCESS(status);
953 }
954
955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956 {
957         int err;
958
959         /* Presence of _PRW indicates wake capable */
960         if (!acpi_has_method(device->handle, "_PRW"))
961                 return;
962
963         err = acpi_bus_extract_wakeup_device_power_package(device);
964         if (err) {
965                 dev_err(&device->dev, "Unable to extract wakeup power resources");
966                 return;
967         }
968
969         device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970         device->wakeup.prepare_count = 0;
971         /*
972          * Call _PSW/_DSW object to disable its ability to wake the sleeping
973          * system for the ACPI device with the _PRW object.
974          * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975          * So it is necessary to call _DSW object first. Only when it is not
976          * present will the _PSW object used.
977          */
978         err = acpi_device_sleep_wake(device, 0, 0, 0);
979         if (err)
980                 pr_debug("error in _DSW or _PSW evaluation\n");
981 }
982
983 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984 {
985         struct acpi_device_power_state *ps = &device->power.states[state];
986         char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988         acpi_status status;
989
990         INIT_LIST_HEAD(&ps->resources);
991
992         /* Evaluate "_PRx" to get referenced power resources */
993         status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994         if (ACPI_SUCCESS(status)) {
995                 union acpi_object *package = buffer.pointer;
996
997                 if (buffer.length && package
998                     && package->type == ACPI_TYPE_PACKAGE
999                     && package->package.count)
1000                         acpi_extract_power_resources(package, 0, &ps->resources);
1001
1002                 ACPI_FREE(buffer.pointer);
1003         }
1004
1005         /* Evaluate "_PSx" to see if we can do explicit sets */
1006         pathname[2] = 'S';
1007         if (acpi_has_method(device->handle, pathname))
1008                 ps->flags.explicit_set = 1;
1009
1010         /* State is valid if there are means to put the device into it. */
1011         if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012                 ps->flags.valid = 1;
1013
1014         ps->power = -1;         /* Unknown - driver assigned */
1015         ps->latency = -1;       /* Unknown - driver assigned */
1016 }
1017
1018 static void acpi_bus_get_power_flags(struct acpi_device *device)
1019 {
1020         unsigned long long dsc = ACPI_STATE_D0;
1021         u32 i;
1022
1023         /* Presence of _PS0|_PR0 indicates 'power manageable' */
1024         if (!acpi_has_method(device->handle, "_PS0") &&
1025             !acpi_has_method(device->handle, "_PR0"))
1026                 return;
1027
1028         device->flags.power_manageable = 1;
1029
1030         /*
1031          * Power Management Flags
1032          */
1033         if (acpi_has_method(device->handle, "_PSC"))
1034                 device->power.flags.explicit_get = 1;
1035
1036         if (acpi_has_method(device->handle, "_IRC"))
1037                 device->power.flags.inrush_current = 1;
1038
1039         if (acpi_has_method(device->handle, "_DSW"))
1040                 device->power.flags.dsw_present = 1;
1041
1042         acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1043         device->power.state_for_enumeration = dsc;
1044
1045         /*
1046          * Enumerate supported power management states
1047          */
1048         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1049                 acpi_bus_init_power_state(device, i);
1050
1051         INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1052
1053         /* Set the defaults for D0 and D3hot (always supported). */
1054         device->power.states[ACPI_STATE_D0].flags.valid = 1;
1055         device->power.states[ACPI_STATE_D0].power = 100;
1056         device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1057
1058         /*
1059          * Use power resources only if the D0 list of them is populated, because
1060          * some platforms may provide _PR3 only to indicate D3cold support and
1061          * in those cases the power resources list returned by it may be bogus.
1062          */
1063         if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1064                 device->power.flags.power_resources = 1;
1065                 /*
1066                  * D3cold is supported if the D3hot list of power resources is
1067                  * not empty.
1068                  */
1069                 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1070                         device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1071         }
1072
1073         if (acpi_bus_init_power(device))
1074                 device->flags.power_manageable = 0;
1075 }
1076
1077 static void acpi_bus_get_flags(struct acpi_device *device)
1078 {
1079         /* Presence of _STA indicates 'dynamic_status' */
1080         if (acpi_has_method(device->handle, "_STA"))
1081                 device->flags.dynamic_status = 1;
1082
1083         /* Presence of _RMV indicates 'removable' */
1084         if (acpi_has_method(device->handle, "_RMV"))
1085                 device->flags.removable = 1;
1086
1087         /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1088         if (acpi_has_method(device->handle, "_EJD") ||
1089             acpi_has_method(device->handle, "_EJ0"))
1090                 device->flags.ejectable = 1;
1091 }
1092
1093 static void acpi_device_get_busid(struct acpi_device *device)
1094 {
1095         char bus_id[5] = { '?', 0 };
1096         struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1097         int i = 0;
1098
1099         /*
1100          * Bus ID
1101          * ------
1102          * The device's Bus ID is simply the object name.
1103          * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1104          */
1105         if (ACPI_IS_ROOT_DEVICE(device)) {
1106                 strcpy(device->pnp.bus_id, "ACPI");
1107                 return;
1108         }
1109
1110         switch (device->device_type) {
1111         case ACPI_BUS_TYPE_POWER_BUTTON:
1112                 strcpy(device->pnp.bus_id, "PWRF");
1113                 break;
1114         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1115                 strcpy(device->pnp.bus_id, "SLPF");
1116                 break;
1117         case ACPI_BUS_TYPE_ECDT_EC:
1118                 strcpy(device->pnp.bus_id, "ECDT");
1119                 break;
1120         default:
1121                 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1122                 /* Clean up trailing underscores (if any) */
1123                 for (i = 3; i > 1; i--) {
1124                         if (bus_id[i] == '_')
1125                                 bus_id[i] = '\0';
1126                         else
1127                                 break;
1128                 }
1129                 strcpy(device->pnp.bus_id, bus_id);
1130                 break;
1131         }
1132 }
1133
1134 /*
1135  * acpi_ata_match - see if an acpi object is an ATA device
1136  *
1137  * If an acpi object has one of the ACPI ATA methods defined,
1138  * then we can safely call it an ATA device.
1139  */
1140 bool acpi_ata_match(acpi_handle handle)
1141 {
1142         return acpi_has_method(handle, "_GTF") ||
1143                acpi_has_method(handle, "_GTM") ||
1144                acpi_has_method(handle, "_STM") ||
1145                acpi_has_method(handle, "_SDD");
1146 }
1147
1148 /*
1149  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1150  *
1151  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1152  * then we can safely call it an ejectable drive bay
1153  */
1154 bool acpi_bay_match(acpi_handle handle)
1155 {
1156         acpi_handle phandle;
1157
1158         if (!acpi_has_method(handle, "_EJ0"))
1159                 return false;
1160         if (acpi_ata_match(handle))
1161                 return true;
1162         if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1163                 return false;
1164
1165         return acpi_ata_match(phandle);
1166 }
1167
1168 bool acpi_device_is_battery(struct acpi_device *adev)
1169 {
1170         struct acpi_hardware_id *hwid;
1171
1172         list_for_each_entry(hwid, &adev->pnp.ids, list)
1173                 if (!strcmp("PNP0C0A", hwid->id))
1174                         return true;
1175
1176         return false;
1177 }
1178
1179 static bool is_ejectable_bay(struct acpi_device *adev)
1180 {
1181         acpi_handle handle = adev->handle;
1182
1183         if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1184                 return true;
1185
1186         return acpi_bay_match(handle);
1187 }
1188
1189 /*
1190  * acpi_dock_match - see if an acpi object has a _DCK method
1191  */
1192 bool acpi_dock_match(acpi_handle handle)
1193 {
1194         return acpi_has_method(handle, "_DCK");
1195 }
1196
1197 static acpi_status
1198 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1199                           void **return_value)
1200 {
1201         long *cap = context;
1202
1203         if (acpi_has_method(handle, "_BCM") &&
1204             acpi_has_method(handle, "_BCL")) {
1205                 acpi_handle_debug(handle, "Found generic backlight support\n");
1206                 *cap |= ACPI_VIDEO_BACKLIGHT;
1207                 /* We have backlight support, no need to scan further */
1208                 return AE_CTRL_TERMINATE;
1209         }
1210         return 0;
1211 }
1212
1213 /* Returns true if the ACPI object is a video device which can be
1214  * handled by video.ko.
1215  * The device will get a Linux specific CID added in scan.c to
1216  * identify the device as an ACPI graphics device
1217  * Be aware that the graphics device may not be physically present
1218  * Use acpi_video_get_capabilities() to detect general ACPI video
1219  * capabilities of present cards
1220  */
1221 long acpi_is_video_device(acpi_handle handle)
1222 {
1223         long video_caps = 0;
1224
1225         /* Is this device able to support video switching ? */
1226         if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1227                 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1228
1229         /* Is this device able to retrieve a video ROM ? */
1230         if (acpi_has_method(handle, "_ROM"))
1231                 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1232
1233         /* Is this device able to configure which video head to be POSTed ? */
1234         if (acpi_has_method(handle, "_VPO") &&
1235             acpi_has_method(handle, "_GPD") &&
1236             acpi_has_method(handle, "_SPD"))
1237                 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1238
1239         /* Only check for backlight functionality if one of the above hit. */
1240         if (video_caps)
1241                 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1242                                     ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1243                                     &video_caps, NULL);
1244
1245         return video_caps;
1246 }
1247 EXPORT_SYMBOL(acpi_is_video_device);
1248
1249 const char *acpi_device_hid(struct acpi_device *device)
1250 {
1251         struct acpi_hardware_id *hid;
1252
1253         if (list_empty(&device->pnp.ids))
1254                 return dummy_hid;
1255
1256         hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1257         return hid->id;
1258 }
1259 EXPORT_SYMBOL(acpi_device_hid);
1260
1261 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1262 {
1263         struct acpi_hardware_id *id;
1264
1265         id = kmalloc(sizeof(*id), GFP_KERNEL);
1266         if (!id)
1267                 return;
1268
1269         id->id = kstrdup_const(dev_id, GFP_KERNEL);
1270         if (!id->id) {
1271                 kfree(id);
1272                 return;
1273         }
1274
1275         list_add_tail(&id->list, &pnp->ids);
1276         pnp->type.hardware_id = 1;
1277 }
1278
1279 /*
1280  * Old IBM workstations have a DSDT bug wherein the SMBus object
1281  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1282  * prefix.  Work around this.
1283  */
1284 static bool acpi_ibm_smbus_match(acpi_handle handle)
1285 {
1286         char node_name[ACPI_PATH_SEGMENT_LENGTH];
1287         struct acpi_buffer path = { sizeof(node_name), node_name };
1288
1289         if (!dmi_name_in_vendors("IBM"))
1290                 return false;
1291
1292         /* Look for SMBS object */
1293         if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1294             strcmp("SMBS", path.pointer))
1295                 return false;
1296
1297         /* Does it have the necessary (but misnamed) methods? */
1298         if (acpi_has_method(handle, "SBI") &&
1299             acpi_has_method(handle, "SBR") &&
1300             acpi_has_method(handle, "SBW"))
1301                 return true;
1302
1303         return false;
1304 }
1305
1306 static bool acpi_object_is_system_bus(acpi_handle handle)
1307 {
1308         acpi_handle tmp;
1309
1310         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1311             tmp == handle)
1312                 return true;
1313         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1314             tmp == handle)
1315                 return true;
1316
1317         return false;
1318 }
1319
1320 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1321                              int device_type)
1322 {
1323         struct acpi_device_info *info = NULL;
1324         struct acpi_pnp_device_id_list *cid_list;
1325         int i;
1326
1327         switch (device_type) {
1328         case ACPI_BUS_TYPE_DEVICE:
1329                 if (handle == ACPI_ROOT_OBJECT) {
1330                         acpi_add_id(pnp, ACPI_SYSTEM_HID);
1331                         break;
1332                 }
1333
1334                 acpi_get_object_info(handle, &info);
1335                 if (!info) {
1336                         pr_err("%s: Error reading device info\n", __func__);
1337                         return;
1338                 }
1339
1340                 if (info->valid & ACPI_VALID_HID) {
1341                         acpi_add_id(pnp, info->hardware_id.string);
1342                         pnp->type.platform_id = 1;
1343                 }
1344                 if (info->valid & ACPI_VALID_CID) {
1345                         cid_list = &info->compatible_id_list;
1346                         for (i = 0; i < cid_list->count; i++)
1347                                 acpi_add_id(pnp, cid_list->ids[i].string);
1348                 }
1349                 if (info->valid & ACPI_VALID_ADR) {
1350                         pnp->bus_address = info->address;
1351                         pnp->type.bus_address = 1;
1352                 }
1353                 if (info->valid & ACPI_VALID_UID)
1354                         pnp->unique_id = kstrdup(info->unique_id.string,
1355                                                         GFP_KERNEL);
1356                 if (info->valid & ACPI_VALID_CLS)
1357                         acpi_add_id(pnp, info->class_code.string);
1358
1359                 kfree(info);
1360
1361                 /*
1362                  * Some devices don't reliably have _HIDs & _CIDs, so add
1363                  * synthetic HIDs to make sure drivers can find them.
1364                  */
1365                 if (acpi_is_video_device(handle))
1366                         acpi_add_id(pnp, ACPI_VIDEO_HID);
1367                 else if (acpi_bay_match(handle))
1368                         acpi_add_id(pnp, ACPI_BAY_HID);
1369                 else if (acpi_dock_match(handle))
1370                         acpi_add_id(pnp, ACPI_DOCK_HID);
1371                 else if (acpi_ibm_smbus_match(handle))
1372                         acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1373                 else if (list_empty(&pnp->ids) &&
1374                          acpi_object_is_system_bus(handle)) {
1375                         /* \_SB, \_TZ, LNXSYBUS */
1376                         acpi_add_id(pnp, ACPI_BUS_HID);
1377                         strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1378                         strcpy(pnp->device_class, ACPI_BUS_CLASS);
1379                 }
1380
1381                 break;
1382         case ACPI_BUS_TYPE_POWER:
1383                 acpi_add_id(pnp, ACPI_POWER_HID);
1384                 break;
1385         case ACPI_BUS_TYPE_PROCESSOR:
1386                 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1387                 break;
1388         case ACPI_BUS_TYPE_THERMAL:
1389                 acpi_add_id(pnp, ACPI_THERMAL_HID);
1390                 break;
1391         case ACPI_BUS_TYPE_POWER_BUTTON:
1392                 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1393                 break;
1394         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1395                 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1396                 break;
1397         case ACPI_BUS_TYPE_ECDT_EC:
1398                 acpi_add_id(pnp, ACPI_ECDT_HID);
1399                 break;
1400         }
1401 }
1402
1403 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1404 {
1405         struct acpi_hardware_id *id, *tmp;
1406
1407         list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1408                 kfree_const(id->id);
1409                 kfree(id);
1410         }
1411         kfree(pnp->unique_id);
1412 }
1413
1414 /**
1415  * acpi_dma_supported - Check DMA support for the specified device.
1416  * @adev: The pointer to acpi device
1417  *
1418  * Return false if DMA is not supported. Otherwise, return true
1419  */
1420 bool acpi_dma_supported(const struct acpi_device *adev)
1421 {
1422         if (!adev)
1423                 return false;
1424
1425         if (adev->flags.cca_seen)
1426                 return true;
1427
1428         /*
1429         * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1430         * DMA on "Intel platforms".  Presumably that includes all x86 and
1431         * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1432         */
1433         if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1434                 return true;
1435
1436         return false;
1437 }
1438
1439 /**
1440  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1441  * @adev: The pointer to acpi device
1442  *
1443  * Return enum dev_dma_attr.
1444  */
1445 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1446 {
1447         if (!acpi_dma_supported(adev))
1448                 return DEV_DMA_NOT_SUPPORTED;
1449
1450         if (adev->flags.coherent_dma)
1451                 return DEV_DMA_COHERENT;
1452         else
1453                 return DEV_DMA_NON_COHERENT;
1454 }
1455
1456 /**
1457  * acpi_dma_get_range() - Get device DMA parameters.
1458  *
1459  * @dev: device to configure
1460  * @dma_addr: pointer device DMA address result
1461  * @offset: pointer to the DMA offset result
1462  * @size: pointer to DMA range size result
1463  *
1464  * Evaluate DMA regions and return respectively DMA region start, offset
1465  * and size in dma_addr, offset and size on parsing success; it does not
1466  * update the passed in values on failure.
1467  *
1468  * Return 0 on success, < 0 on failure.
1469  */
1470 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1471                        u64 *size)
1472 {
1473         struct acpi_device *adev;
1474         LIST_HEAD(list);
1475         struct resource_entry *rentry;
1476         int ret;
1477         struct device *dma_dev = dev;
1478         u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1479
1480         /*
1481          * Walk the device tree chasing an ACPI companion with a _DMA
1482          * object while we go. Stop if we find a device with an ACPI
1483          * companion containing a _DMA method.
1484          */
1485         do {
1486                 adev = ACPI_COMPANION(dma_dev);
1487                 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1488                         break;
1489
1490                 dma_dev = dma_dev->parent;
1491         } while (dma_dev);
1492
1493         if (!dma_dev)
1494                 return -ENODEV;
1495
1496         if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1497                 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1498                 return -EINVAL;
1499         }
1500
1501         ret = acpi_dev_get_dma_resources(adev, &list);
1502         if (ret > 0) {
1503                 list_for_each_entry(rentry, &list, node) {
1504                         if (dma_offset && rentry->offset != dma_offset) {
1505                                 ret = -EINVAL;
1506                                 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1507                                 goto out;
1508                         }
1509                         dma_offset = rentry->offset;
1510
1511                         /* Take lower and upper limits */
1512                         if (rentry->res->start < dma_start)
1513                                 dma_start = rentry->res->start;
1514                         if (rentry->res->end > dma_end)
1515                                 dma_end = rentry->res->end;
1516                 }
1517
1518                 if (dma_start >= dma_end) {
1519                         ret = -EINVAL;
1520                         dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1521                         goto out;
1522                 }
1523
1524                 *dma_addr = dma_start - dma_offset;
1525                 len = dma_end - dma_start;
1526                 *size = max(len, len + 1);
1527                 *offset = dma_offset;
1528         }
1529  out:
1530         acpi_dev_free_resource_list(&list);
1531
1532         return ret >= 0 ? 0 : ret;
1533 }
1534
1535 #ifdef CONFIG_IOMMU_API
1536 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1537                            struct fwnode_handle *fwnode,
1538                            const struct iommu_ops *ops)
1539 {
1540         int ret = iommu_fwspec_init(dev, fwnode, ops);
1541
1542         if (!ret)
1543                 ret = iommu_fwspec_add_ids(dev, &id, 1);
1544
1545         return ret;
1546 }
1547
1548 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1549 {
1550         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1551
1552         return fwspec ? fwspec->ops : NULL;
1553 }
1554
1555 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1556                                                        const u32 *id_in)
1557 {
1558         int err;
1559         const struct iommu_ops *ops;
1560
1561         /*
1562          * If we already translated the fwspec there is nothing left to do,
1563          * return the iommu_ops.
1564          */
1565         ops = acpi_iommu_fwspec_ops(dev);
1566         if (ops)
1567                 return ops;
1568
1569         err = iort_iommu_configure_id(dev, id_in);
1570         if (err && err != -EPROBE_DEFER)
1571                 err = viot_iommu_configure(dev);
1572
1573         /*
1574          * If we have reason to believe the IOMMU driver missed the initial
1575          * iommu_probe_device() call for dev, replay it to get things in order.
1576          */
1577         if (!err && dev->bus && !device_iommu_mapped(dev))
1578                 err = iommu_probe_device(dev);
1579
1580         /* Ignore all other errors apart from EPROBE_DEFER */
1581         if (err == -EPROBE_DEFER) {
1582                 return ERR_PTR(err);
1583         } else if (err) {
1584                 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1585                 return NULL;
1586         }
1587         return acpi_iommu_fwspec_ops(dev);
1588 }
1589
1590 #else /* !CONFIG_IOMMU_API */
1591
1592 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1593                            struct fwnode_handle *fwnode,
1594                            const struct iommu_ops *ops)
1595 {
1596         return -ENODEV;
1597 }
1598
1599 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1600                                                        const u32 *id_in)
1601 {
1602         return NULL;
1603 }
1604
1605 #endif /* !CONFIG_IOMMU_API */
1606
1607 /**
1608  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1609  * @dev: The pointer to the device
1610  * @attr: device dma attributes
1611  * @input_id: input device id const value pointer
1612  */
1613 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1614                           const u32 *input_id)
1615 {
1616         const struct iommu_ops *iommu;
1617         u64 dma_addr = 0, size = 0;
1618
1619         if (attr == DEV_DMA_NOT_SUPPORTED) {
1620                 set_dma_ops(dev, &dma_dummy_ops);
1621                 return 0;
1622         }
1623
1624         acpi_arch_dma_setup(dev, &dma_addr, &size);
1625
1626         iommu = acpi_iommu_configure_id(dev, input_id);
1627         if (PTR_ERR(iommu) == -EPROBE_DEFER)
1628                 return -EPROBE_DEFER;
1629
1630         arch_setup_dma_ops(dev, dma_addr, size,
1631                                 iommu, attr == DEV_DMA_COHERENT);
1632
1633         return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1636
1637 static void acpi_init_coherency(struct acpi_device *adev)
1638 {
1639         unsigned long long cca = 0;
1640         acpi_status status;
1641         struct acpi_device *parent = adev->parent;
1642
1643         if (parent && parent->flags.cca_seen) {
1644                 /*
1645                  * From ACPI spec, OSPM will ignore _CCA if an ancestor
1646                  * already saw one.
1647                  */
1648                 adev->flags.cca_seen = 1;
1649                 cca = parent->flags.coherent_dma;
1650         } else {
1651                 status = acpi_evaluate_integer(adev->handle, "_CCA",
1652                                                NULL, &cca);
1653                 if (ACPI_SUCCESS(status))
1654                         adev->flags.cca_seen = 1;
1655                 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1656                         /*
1657                          * If architecture does not specify that _CCA is
1658                          * required for DMA-able devices (e.g. x86),
1659                          * we default to _CCA=1.
1660                          */
1661                         cca = 1;
1662                 else
1663                         acpi_handle_debug(adev->handle,
1664                                           "ACPI device is missing _CCA.\n");
1665         }
1666
1667         adev->flags.coherent_dma = cca;
1668 }
1669
1670 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1671 {
1672         bool *is_serial_bus_slave_p = data;
1673
1674         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1675                 return 1;
1676
1677         *is_serial_bus_slave_p = true;
1678
1679          /* no need to do more checking */
1680         return -1;
1681 }
1682
1683 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1684 {
1685         struct acpi_device *parent = device->parent;
1686         static const struct acpi_device_id indirect_io_hosts[] = {
1687                 {"HISI0191", 0},
1688                 {}
1689         };
1690
1691         return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1692 }
1693
1694 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1695 {
1696         struct list_head resource_list;
1697         bool is_serial_bus_slave = false;
1698         /*
1699          * These devices have multiple I2cSerialBus resources and an i2c-client
1700          * must be instantiated for each, each with its own i2c_device_id.
1701          * Normally we only instantiate an i2c-client for the first resource,
1702          * using the ACPI HID as id. These special cases are handled by the
1703          * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1704          * which i2c_device_id to use for each resource.
1705          */
1706         static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1707                 {"BSG1160", },
1708                 {"BSG2150", },
1709                 {"INT33FE", },
1710                 {"INT3515", },
1711                 {}
1712         };
1713
1714         if (acpi_is_indirect_io_slave(device))
1715                 return true;
1716
1717         /* Macs use device properties in lieu of _CRS resources */
1718         if (x86_apple_machine &&
1719             (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1720              fwnode_property_present(&device->fwnode, "i2cAddress") ||
1721              fwnode_property_present(&device->fwnode, "baud")))
1722                 return true;
1723
1724         /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1725         if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1726                 return false;
1727
1728         INIT_LIST_HEAD(&resource_list);
1729         acpi_dev_get_resources(device, &resource_list,
1730                                acpi_check_serial_bus_slave,
1731                                &is_serial_bus_slave);
1732         acpi_dev_free_resource_list(&resource_list);
1733
1734         return is_serial_bus_slave;
1735 }
1736
1737 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1738                              int type)
1739 {
1740         INIT_LIST_HEAD(&device->pnp.ids);
1741         device->device_type = type;
1742         device->handle = handle;
1743         device->parent = acpi_bus_get_parent(handle);
1744         fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1745         acpi_set_device_status(device, ACPI_STA_DEFAULT);
1746         acpi_device_get_busid(device);
1747         acpi_set_pnp_ids(handle, &device->pnp, type);
1748         acpi_init_properties(device);
1749         acpi_bus_get_flags(device);
1750         device->flags.match_driver = false;
1751         device->flags.initialized = true;
1752         device->flags.enumeration_by_parent =
1753                 acpi_device_enumeration_by_parent(device);
1754         acpi_device_clear_enumerated(device);
1755         device_initialize(&device->dev);
1756         dev_set_uevent_suppress(&device->dev, true);
1757         acpi_init_coherency(device);
1758 }
1759
1760 static void acpi_scan_dep_init(struct acpi_device *adev)
1761 {
1762         struct acpi_dep_data *dep;
1763
1764         list_for_each_entry(dep, &acpi_dep_list, node) {
1765                 if (dep->consumer == adev->handle)
1766                         adev->dep_unmet++;
1767         }
1768 }
1769
1770 void acpi_device_add_finalize(struct acpi_device *device)
1771 {
1772         dev_set_uevent_suppress(&device->dev, false);
1773         kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1774 }
1775
1776 static void acpi_scan_init_status(struct acpi_device *adev)
1777 {
1778         if (acpi_bus_get_status(adev))
1779                 acpi_set_device_status(adev, 0);
1780 }
1781
1782 static int acpi_add_single_object(struct acpi_device **child,
1783                                   acpi_handle handle, int type, bool dep_init)
1784 {
1785         struct acpi_device *device;
1786         bool release_dep_lock = false;
1787         int result;
1788
1789         device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1790         if (!device)
1791                 return -ENOMEM;
1792
1793         acpi_init_device_object(device, handle, type);
1794         /*
1795          * Getting the status is delayed till here so that we can call
1796          * acpi_bus_get_status() and use its quirk handling.  Note that
1797          * this must be done before the get power-/wakeup_dev-flags calls.
1798          */
1799         if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1800                 if (dep_init) {
1801                         mutex_lock(&acpi_dep_list_lock);
1802                         /*
1803                          * Hold the lock until the acpi_tie_acpi_dev() call
1804                          * below to prevent concurrent acpi_scan_clear_dep()
1805                          * from deleting a dependency list entry without
1806                          * updating dep_unmet for the device.
1807                          */
1808                         release_dep_lock = true;
1809                         acpi_scan_dep_init(device);
1810                 }
1811                 acpi_scan_init_status(device);
1812         }
1813
1814         acpi_bus_get_power_flags(device);
1815         acpi_bus_get_wakeup_device_flags(device);
1816
1817         result = acpi_tie_acpi_dev(device);
1818
1819         if (release_dep_lock)
1820                 mutex_unlock(&acpi_dep_list_lock);
1821
1822         if (!result)
1823                 result = __acpi_device_add(device, acpi_device_release);
1824
1825         if (result) {
1826                 acpi_device_release(&device->dev);
1827                 return result;
1828         }
1829
1830         acpi_power_add_remove_device(device, true);
1831         acpi_device_add_finalize(device);
1832
1833         acpi_handle_debug(handle, "Added as %s, parent %s\n",
1834                           dev_name(&device->dev), device->parent ?
1835                                 dev_name(&device->parent->dev) : "(null)");
1836
1837         *child = device;
1838         return 0;
1839 }
1840
1841 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1842                                             void *context)
1843 {
1844         struct resource *res = context;
1845
1846         if (acpi_dev_resource_memory(ares, res))
1847                 return AE_CTRL_TERMINATE;
1848
1849         return AE_OK;
1850 }
1851
1852 static bool acpi_device_should_be_hidden(acpi_handle handle)
1853 {
1854         acpi_status status;
1855         struct resource res;
1856
1857         /* Check if it should ignore the UART device */
1858         if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1859                 return false;
1860
1861         /*
1862          * The UART device described in SPCR table is assumed to have only one
1863          * memory resource present. So we only look for the first one here.
1864          */
1865         status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1866                                      acpi_get_resource_memory, &res);
1867         if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1868                 return false;
1869
1870         acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1871                          &res.start);
1872
1873         return true;
1874 }
1875
1876 bool acpi_device_is_present(const struct acpi_device *adev)
1877 {
1878         return adev->status.present || adev->status.functional;
1879 }
1880
1881 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1882                                        const char *idstr,
1883                                        const struct acpi_device_id **matchid)
1884 {
1885         const struct acpi_device_id *devid;
1886
1887         if (handler->match)
1888                 return handler->match(idstr, matchid);
1889
1890         for (devid = handler->ids; devid->id[0]; devid++)
1891                 if (!strcmp((char *)devid->id, idstr)) {
1892                         if (matchid)
1893                                 *matchid = devid;
1894
1895                         return true;
1896                 }
1897
1898         return false;
1899 }
1900
1901 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1902                                         const struct acpi_device_id **matchid)
1903 {
1904         struct acpi_scan_handler *handler;
1905
1906         list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1907                 if (acpi_scan_handler_matching(handler, idstr, matchid))
1908                         return handler;
1909
1910         return NULL;
1911 }
1912
1913 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1914 {
1915         if (!!hotplug->enabled == !!val)
1916                 return;
1917
1918         mutex_lock(&acpi_scan_lock);
1919
1920         hotplug->enabled = val;
1921
1922         mutex_unlock(&acpi_scan_lock);
1923 }
1924
1925 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1926 {
1927         struct acpi_hardware_id *hwid;
1928
1929         if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1930                 acpi_dock_add(adev);
1931                 return;
1932         }
1933         list_for_each_entry(hwid, &adev->pnp.ids, list) {
1934                 struct acpi_scan_handler *handler;
1935
1936                 handler = acpi_scan_match_handler(hwid->id, NULL);
1937                 if (handler) {
1938                         adev->flags.hotplug_notify = true;
1939                         break;
1940                 }
1941         }
1942 }
1943
1944 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1945 {
1946         struct acpi_handle_list dep_devices;
1947         acpi_status status;
1948         u32 count;
1949         int i;
1950
1951         /*
1952          * Check for _HID here to avoid deferring the enumeration of:
1953          * 1. PCI devices.
1954          * 2. ACPI nodes describing USB ports.
1955          * Still, checking for _HID catches more then just these cases ...
1956          */
1957         if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1958             !acpi_has_method(handle, "_HID"))
1959                 return 0;
1960
1961         status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1962         if (ACPI_FAILURE(status)) {
1963                 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1964                 return 0;
1965         }
1966
1967         for (count = 0, i = 0; i < dep_devices.count; i++) {
1968                 struct acpi_device_info *info;
1969                 struct acpi_dep_data *dep;
1970                 bool skip;
1971
1972                 status = acpi_get_object_info(dep_devices.handles[i], &info);
1973                 if (ACPI_FAILURE(status)) {
1974                         acpi_handle_debug(handle, "Error reading _DEP device info\n");
1975                         continue;
1976                 }
1977
1978                 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1979                 kfree(info);
1980
1981                 if (skip)
1982                         continue;
1983
1984                 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1985                 if (!dep)
1986                         continue;
1987
1988                 count++;
1989
1990                 dep->supplier = dep_devices.handles[i];
1991                 dep->consumer = handle;
1992
1993                 mutex_lock(&acpi_dep_list_lock);
1994                 list_add_tail(&dep->node , &acpi_dep_list);
1995                 mutex_unlock(&acpi_dep_list_lock);
1996         }
1997
1998         return count;
1999 }
2000
2001 static bool acpi_bus_scan_second_pass;
2002
2003 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2004                                       struct acpi_device **adev_p)
2005 {
2006         struct acpi_device *device = NULL;
2007         acpi_object_type acpi_type;
2008         int type;
2009
2010         acpi_bus_get_device(handle, &device);
2011         if (device)
2012                 goto out;
2013
2014         if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2015                 return AE_OK;
2016
2017         switch (acpi_type) {
2018         case ACPI_TYPE_DEVICE:
2019                 if (acpi_device_should_be_hidden(handle))
2020                         return AE_OK;
2021
2022                 /* Bail out if there are dependencies. */
2023                 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2024                         acpi_bus_scan_second_pass = true;
2025                         return AE_CTRL_DEPTH;
2026                 }
2027
2028                 fallthrough;
2029         case ACPI_TYPE_ANY:     /* for ACPI_ROOT_OBJECT */
2030                 type = ACPI_BUS_TYPE_DEVICE;
2031                 break;
2032
2033         case ACPI_TYPE_PROCESSOR:
2034                 type = ACPI_BUS_TYPE_PROCESSOR;
2035                 break;
2036
2037         case ACPI_TYPE_THERMAL:
2038                 type = ACPI_BUS_TYPE_THERMAL;
2039                 break;
2040
2041         case ACPI_TYPE_POWER:
2042                 acpi_add_power_resource(handle);
2043                 fallthrough;
2044         default:
2045                 return AE_OK;
2046         }
2047
2048         /*
2049          * If check_dep is true at this point, the device has no dependencies,
2050          * or the creation of the device object would have been postponed above.
2051          */
2052         acpi_add_single_object(&device, handle, type, !check_dep);
2053         if (!device)
2054                 return AE_CTRL_DEPTH;
2055
2056         acpi_scan_init_hotplug(device);
2057
2058 out:
2059         if (!*adev_p)
2060                 *adev_p = device;
2061
2062         return AE_OK;
2063 }
2064
2065 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2066                                         void *not_used, void **ret_p)
2067 {
2068         return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2069 }
2070
2071 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2072                                         void *not_used, void **ret_p)
2073 {
2074         return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2075 }
2076
2077 static void acpi_default_enumeration(struct acpi_device *device)
2078 {
2079         /*
2080          * Do not enumerate devices with enumeration_by_parent flag set as
2081          * they will be enumerated by their respective parents.
2082          */
2083         if (!device->flags.enumeration_by_parent) {
2084                 acpi_create_platform_device(device, NULL);
2085                 acpi_device_set_enumerated(device);
2086         } else {
2087                 blocking_notifier_call_chain(&acpi_reconfig_chain,
2088                                              ACPI_RECONFIG_DEVICE_ADD, device);
2089         }
2090 }
2091
2092 static const struct acpi_device_id generic_device_ids[] = {
2093         {ACPI_DT_NAMESPACE_HID, },
2094         {"", },
2095 };
2096
2097 static int acpi_generic_device_attach(struct acpi_device *adev,
2098                                       const struct acpi_device_id *not_used)
2099 {
2100         /*
2101          * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2102          * below can be unconditional.
2103          */
2104         if (adev->data.of_compatible)
2105                 acpi_default_enumeration(adev);
2106
2107         return 1;
2108 }
2109
2110 static struct acpi_scan_handler generic_device_handler = {
2111         .ids = generic_device_ids,
2112         .attach = acpi_generic_device_attach,
2113 };
2114
2115 static int acpi_scan_attach_handler(struct acpi_device *device)
2116 {
2117         struct acpi_hardware_id *hwid;
2118         int ret = 0;
2119
2120         list_for_each_entry(hwid, &device->pnp.ids, list) {
2121                 const struct acpi_device_id *devid;
2122                 struct acpi_scan_handler *handler;
2123
2124                 handler = acpi_scan_match_handler(hwid->id, &devid);
2125                 if (handler) {
2126                         if (!handler->attach) {
2127                                 device->pnp.type.platform_id = 0;
2128                                 continue;
2129                         }
2130                         device->handler = handler;
2131                         ret = handler->attach(device, devid);
2132                         if (ret > 0)
2133                                 break;
2134
2135                         device->handler = NULL;
2136                         if (ret < 0)
2137                                 break;
2138                 }
2139         }
2140
2141         return ret;
2142 }
2143
2144 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2145 {
2146         struct acpi_device *child;
2147         bool skip = !first_pass && device->flags.visited;
2148         acpi_handle ejd;
2149         int ret;
2150
2151         if (skip)
2152                 goto ok;
2153
2154         if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2155                 register_dock_dependent_device(device, ejd);
2156
2157         acpi_bus_get_status(device);
2158         /* Skip devices that are not present. */
2159         if (!acpi_device_is_present(device)) {
2160                 device->flags.initialized = false;
2161                 acpi_device_clear_enumerated(device);
2162                 device->flags.power_manageable = 0;
2163                 return;
2164         }
2165         if (device->handler)
2166                 goto ok;
2167
2168         if (!device->flags.initialized) {
2169                 device->flags.power_manageable =
2170                         device->power.states[ACPI_STATE_D0].flags.valid;
2171                 if (acpi_bus_init_power(device))
2172                         device->flags.power_manageable = 0;
2173
2174                 device->flags.initialized = true;
2175         } else if (device->flags.visited) {
2176                 goto ok;
2177         }
2178
2179         ret = acpi_scan_attach_handler(device);
2180         if (ret < 0)
2181                 return;
2182
2183         device->flags.match_driver = true;
2184         if (ret > 0 && !device->flags.enumeration_by_parent) {
2185                 acpi_device_set_enumerated(device);
2186                 goto ok;
2187         }
2188
2189         ret = device_attach(&device->dev);
2190         if (ret < 0)
2191                 return;
2192
2193         if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2194                 acpi_default_enumeration(device);
2195         else
2196                 acpi_device_set_enumerated(device);
2197
2198  ok:
2199         list_for_each_entry(child, &device->children, node)
2200                 acpi_bus_attach(child, first_pass);
2201
2202         if (!skip && device->handler && device->handler->hotplug.notify_online)
2203                 device->handler->hotplug.notify_online(device);
2204 }
2205
2206 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2207 {
2208         struct acpi_device *adev;
2209
2210         adev = acpi_bus_get_acpi_device(dep->consumer);
2211         if (adev) {
2212                 *(struct acpi_device **)data = adev;
2213                 return 1;
2214         }
2215         /* Continue parsing if the device object is not present. */
2216         return 0;
2217 }
2218
2219 struct acpi_scan_clear_dep_work {
2220         struct work_struct work;
2221         struct acpi_device *adev;
2222 };
2223
2224 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2225 {
2226         struct acpi_scan_clear_dep_work *cdw;
2227
2228         cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2229
2230         acpi_scan_lock_acquire();
2231         acpi_bus_attach(cdw->adev, true);
2232         acpi_scan_lock_release();
2233
2234         acpi_dev_put(cdw->adev);
2235         kfree(cdw);
2236 }
2237
2238 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2239 {
2240         struct acpi_scan_clear_dep_work *cdw;
2241
2242         if (adev->dep_unmet)
2243                 return false;
2244
2245         cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2246         if (!cdw)
2247                 return false;
2248
2249         cdw->adev = adev;
2250         INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2251         /*
2252          * Since the work function may block on the lock until the entire
2253          * initial enumeration of devices is complete, put it into the unbound
2254          * workqueue.
2255          */
2256         queue_work(system_unbound_wq, &cdw->work);
2257
2258         return true;
2259 }
2260
2261 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2262 {
2263         struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2264
2265         if (adev) {
2266                 adev->dep_unmet--;
2267                 if (!acpi_scan_clear_dep_queue(adev))
2268                         acpi_dev_put(adev);
2269         }
2270
2271         list_del(&dep->node);
2272         kfree(dep);
2273
2274         return 0;
2275 }
2276
2277 /**
2278  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2279  * @handle:     The ACPI handle of the supplier device
2280  * @callback:   Pointer to the callback function to apply
2281  * @data:       Pointer to some data to pass to the callback
2282  *
2283  * The return value of the callback determines this function's behaviour. If 0
2284  * is returned we continue to iterate over acpi_dep_list. If a positive value
2285  * is returned then the loop is broken but this function returns 0. If a
2286  * negative value is returned by the callback then the loop is broken and that
2287  * value is returned as the final error.
2288  */
2289 static int acpi_walk_dep_device_list(acpi_handle handle,
2290                                 int (*callback)(struct acpi_dep_data *, void *),
2291                                 void *data)
2292 {
2293         struct acpi_dep_data *dep, *tmp;
2294         int ret = 0;
2295
2296         mutex_lock(&acpi_dep_list_lock);
2297         list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2298                 if (dep->supplier == handle) {
2299                         ret = callback(dep, data);
2300                         if (ret)
2301                                 break;
2302                 }
2303         }
2304         mutex_unlock(&acpi_dep_list_lock);
2305
2306         return ret > 0 ? 0 : ret;
2307 }
2308
2309 /**
2310  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2311  * @supplier: Pointer to the supplier &struct acpi_device
2312  *
2313  * Clear dependencies on the given device.
2314  */
2315 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2316 {
2317         acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2318 }
2319 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2320
2321 /**
2322  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2323  * @supplier: Pointer to the dependee device
2324  *
2325  * Returns the first &struct acpi_device which declares itself dependent on
2326  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2327  *
2328  * The caller is responsible for putting the reference to adev when it is no
2329  * longer needed.
2330  */
2331 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2332 {
2333         struct acpi_device *adev = NULL;
2334
2335         acpi_walk_dep_device_list(supplier->handle,
2336                                   acpi_dev_get_first_consumer_dev_cb, &adev);
2337
2338         return adev;
2339 }
2340 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2341
2342 /**
2343  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2344  * @handle: Root of the namespace scope to scan.
2345  *
2346  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2347  * found devices.
2348  *
2349  * If no devices were found, -ENODEV is returned, but it does not mean that
2350  * there has been a real error.  There just have been no suitable ACPI objects
2351  * in the table trunk from which the kernel could create a device and add an
2352  * appropriate driver.
2353  *
2354  * Must be called under acpi_scan_lock.
2355  */
2356 int acpi_bus_scan(acpi_handle handle)
2357 {
2358         struct acpi_device *device = NULL;
2359
2360         acpi_bus_scan_second_pass = false;
2361
2362         /* Pass 1: Avoid enumerating devices with missing dependencies. */
2363
2364         if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2365                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2366                                     acpi_bus_check_add_1, NULL, NULL,
2367                                     (void **)&device);
2368
2369         if (!device)
2370                 return -ENODEV;
2371
2372         acpi_bus_attach(device, true);
2373
2374         if (!acpi_bus_scan_second_pass)
2375                 return 0;
2376
2377         /* Pass 2: Enumerate all of the remaining devices. */
2378
2379         device = NULL;
2380
2381         if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2382                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2383                                     acpi_bus_check_add_2, NULL, NULL,
2384                                     (void **)&device);
2385
2386         acpi_bus_attach(device, false);
2387
2388         return 0;
2389 }
2390 EXPORT_SYMBOL(acpi_bus_scan);
2391
2392 /**
2393  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2394  * @adev: Root of the ACPI namespace scope to walk.
2395  *
2396  * Must be called under acpi_scan_lock.
2397  */
2398 void acpi_bus_trim(struct acpi_device *adev)
2399 {
2400         struct acpi_scan_handler *handler = adev->handler;
2401         struct acpi_device *child;
2402
2403         list_for_each_entry_reverse(child, &adev->children, node)
2404                 acpi_bus_trim(child);
2405
2406         adev->flags.match_driver = false;
2407         if (handler) {
2408                 if (handler->detach)
2409                         handler->detach(adev);
2410
2411                 adev->handler = NULL;
2412         } else {
2413                 device_release_driver(&adev->dev);
2414         }
2415         /*
2416          * Most likely, the device is going away, so put it into D3cold before
2417          * that.
2418          */
2419         acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2420         adev->flags.initialized = false;
2421         acpi_device_clear_enumerated(adev);
2422 }
2423 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2424
2425 int acpi_bus_register_early_device(int type)
2426 {
2427         struct acpi_device *device = NULL;
2428         int result;
2429
2430         result = acpi_add_single_object(&device, NULL, type, false);
2431         if (result)
2432                 return result;
2433
2434         device->flags.match_driver = true;
2435         return device_attach(&device->dev);
2436 }
2437 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2438
2439 static int acpi_bus_scan_fixed(void)
2440 {
2441         int result = 0;
2442
2443         /*
2444          * Enumerate all fixed-feature devices.
2445          */
2446         if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2447                 struct acpi_device *device = NULL;
2448
2449                 result = acpi_add_single_object(&device, NULL,
2450                                                 ACPI_BUS_TYPE_POWER_BUTTON, false);
2451                 if (result)
2452                         return result;
2453
2454                 device->flags.match_driver = true;
2455                 result = device_attach(&device->dev);
2456                 if (result < 0)
2457                         return result;
2458
2459                 device_init_wakeup(&device->dev, true);
2460         }
2461
2462         if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2463                 struct acpi_device *device = NULL;
2464
2465                 result = acpi_add_single_object(&device, NULL,
2466                                                 ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2467                 if (result)
2468                         return result;
2469
2470                 device->flags.match_driver = true;
2471                 result = device_attach(&device->dev);
2472         }
2473
2474         return result < 0 ? result : 0;
2475 }
2476
2477 static void __init acpi_get_spcr_uart_addr(void)
2478 {
2479         acpi_status status;
2480         struct acpi_table_spcr *spcr_ptr;
2481
2482         status = acpi_get_table(ACPI_SIG_SPCR, 0,
2483                                 (struct acpi_table_header **)&spcr_ptr);
2484         if (ACPI_FAILURE(status)) {
2485                 pr_warn("STAO table present, but SPCR is missing\n");
2486                 return;
2487         }
2488
2489         spcr_uart_addr = spcr_ptr->serial_port.address;
2490         acpi_put_table((struct acpi_table_header *)spcr_ptr);
2491 }
2492
2493 static bool acpi_scan_initialized;
2494
2495 int __init acpi_scan_init(void)
2496 {
2497         int result;
2498         acpi_status status;
2499         struct acpi_table_stao *stao_ptr;
2500
2501         acpi_pci_root_init();
2502         acpi_pci_link_init();
2503         acpi_processor_init();
2504         acpi_platform_init();
2505         acpi_lpss_init();
2506         acpi_apd_init();
2507         acpi_cmos_rtc_init();
2508         acpi_container_init();
2509         acpi_memory_hotplug_init();
2510         acpi_watchdog_init();
2511         acpi_pnp_init();
2512         acpi_int340x_thermal_init();
2513         acpi_amba_init();
2514         acpi_init_lpit();
2515
2516         acpi_scan_add_handler(&generic_device_handler);
2517
2518         /*
2519          * If there is STAO table, check whether it needs to ignore the UART
2520          * device in SPCR table.
2521          */
2522         status = acpi_get_table(ACPI_SIG_STAO, 0,
2523                                 (struct acpi_table_header **)&stao_ptr);
2524         if (ACPI_SUCCESS(status)) {
2525                 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2526                         pr_info("STAO Name List not yet supported.\n");
2527
2528                 if (stao_ptr->ignore_uart)
2529                         acpi_get_spcr_uart_addr();
2530
2531                 acpi_put_table((struct acpi_table_header *)stao_ptr);
2532         }
2533
2534         acpi_gpe_apply_masked_gpes();
2535         acpi_update_all_gpes();
2536
2537         /*
2538          * Although we call __add_memory() that is documented to require the
2539          * device_hotplug_lock, it is not necessary here because this is an
2540          * early code when userspace or any other code path cannot trigger
2541          * hotplug/hotunplug operations.
2542          */
2543         mutex_lock(&acpi_scan_lock);
2544         /*
2545          * Enumerate devices in the ACPI namespace.
2546          */
2547         result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2548         if (result)
2549                 goto out;
2550
2551         result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2552         if (result)
2553                 goto out;
2554
2555         /* Fixed feature devices do not exist on HW-reduced platform */
2556         if (!acpi_gbl_reduced_hardware) {
2557                 result = acpi_bus_scan_fixed();
2558                 if (result) {
2559                         acpi_detach_data(acpi_root->handle,
2560                                          acpi_scan_drop_device);
2561                         acpi_device_del(acpi_root);
2562                         acpi_bus_put_acpi_device(acpi_root);
2563                         goto out;
2564                 }
2565         }
2566
2567         acpi_turn_off_unused_power_resources();
2568
2569         acpi_scan_initialized = true;
2570
2571  out:
2572         mutex_unlock(&acpi_scan_lock);
2573         return result;
2574 }
2575
2576 static struct acpi_probe_entry *ape;
2577 static int acpi_probe_count;
2578 static DEFINE_MUTEX(acpi_probe_mutex);
2579
2580 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2581                                   const unsigned long end)
2582 {
2583         if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2584                 if (!ape->probe_subtbl(header, end))
2585                         acpi_probe_count++;
2586
2587         return 0;
2588 }
2589
2590 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2591 {
2592         int count = 0;
2593
2594         if (acpi_disabled)
2595                 return 0;
2596
2597         mutex_lock(&acpi_probe_mutex);
2598         for (ape = ap_head; nr; ape++, nr--) {
2599                 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2600                         acpi_probe_count = 0;
2601                         acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2602                         count += acpi_probe_count;
2603                 } else {
2604                         int res;
2605                         res = acpi_table_parse(ape->id, ape->probe_table);
2606                         if (!res)
2607                                 count++;
2608                 }
2609         }
2610         mutex_unlock(&acpi_probe_mutex);
2611
2612         return count;
2613 }
2614
2615 static void acpi_table_events_fn(struct work_struct *work)
2616 {
2617         acpi_scan_lock_acquire();
2618         acpi_bus_scan(ACPI_ROOT_OBJECT);
2619         acpi_scan_lock_release();
2620
2621         kfree(work);
2622 }
2623
2624 void acpi_scan_table_notify(void)
2625 {
2626         struct work_struct *work;
2627
2628         if (!acpi_scan_initialized)
2629                 return;
2630
2631         work = kmalloc(sizeof(*work), GFP_KERNEL);
2632         if (!work)
2633                 return;
2634
2635         INIT_WORK(work, acpi_table_events_fn);
2636         schedule_work(work);
2637 }
2638
2639 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2640 {
2641         return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2642 }
2643 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2644
2645 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2646 {
2647         return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2648 }
2649 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);