Merge tag 'powerpc-5.12-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #include <asm/cpu.h>
33 #endif
34
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37
38 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53         .name =         "acpi_idle",
54         .owner =        THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63         return boot_option_idle_override == IDLE_POLL ||
64                 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76                 return 0;
77
78         pr_notice("%s detected - limiting to C%ld max_cstate."
79                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
80                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82         max_cstate = (long)id->driver_data;
83
84         return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88         { set_max_cstate, "Clevo 5600D", {
89           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91          (void *)2},
92         { set_max_cstate, "Pavilion zv5000", {
93           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95          (void *)1},
96         { set_max_cstate, "Asus L8400B", {
97           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99          (void *)1},
100         {},
101 };
102
103
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110         if (!tif_need_resched()) {
111                 safe_halt();
112                 local_irq_disable();
113         }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125                                    struct acpi_processor_cx *cx)
126 {
127         struct acpi_processor_power *pwr = &pr->power;
128         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131                 return;
132
133         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134                 type = ACPI_STATE_C1;
135
136         /*
137          * Check, if one of the previous states already marked the lapic
138          * unstable
139          */
140         if (pwr->timer_broadcast_on_state < state)
141                 return;
142
143         if (cx->type >= type)
144                 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149         struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151         if (pr->power.timer_broadcast_on_state < INT_MAX)
152                 tick_broadcast_enable();
153         else
154                 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160                                  (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
165                                         struct acpi_processor_cx *cx)
166 {
167         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
168 }
169
170 #else
171
172 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
173                                    struct acpi_processor_cx *cstate) { }
174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
175
176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
177                                         struct acpi_processor_cx *cx)
178 {
179         return false;
180 }
181
182 #endif
183
184 #if defined(CONFIG_X86)
185 static void tsc_check_state(int state)
186 {
187         switch (boot_cpu_data.x86_vendor) {
188         case X86_VENDOR_HYGON:
189         case X86_VENDOR_AMD:
190         case X86_VENDOR_INTEL:
191         case X86_VENDOR_CENTAUR:
192         case X86_VENDOR_ZHAOXIN:
193                 /*
194                  * AMD Fam10h TSC will tick in all
195                  * C/P/S0/S1 states when this bit is set.
196                  */
197                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
198                         return;
199                 fallthrough;
200         default:
201                 /* TSC could halt in idle, so notify users */
202                 if (state > ACPI_STATE_C1)
203                         mark_tsc_unstable("TSC halts in idle");
204         }
205 }
206 #else
207 static void tsc_check_state(int state) { return; }
208 #endif
209
210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
211 {
212
213         if (!pr->pblk)
214                 return -ENODEV;
215
216         /* if info is obtained from pblk/fadt, type equals state */
217         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
218         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
219
220 #ifndef CONFIG_HOTPLUG_CPU
221         /*
222          * Check for P_LVL2_UP flag before entering C2 and above on
223          * an SMP system.
224          */
225         if ((num_online_cpus() > 1) &&
226             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
227                 return -ENODEV;
228 #endif
229
230         /* determine C2 and C3 address from pblk */
231         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
232         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
233
234         /* determine latencies from FADT */
235         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
236         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
237
238         /*
239          * FADT specified C2 latency must be less than or equal to
240          * 100 microseconds.
241          */
242         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
243                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
244                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
245                 /* invalidate C2 */
246                 pr->power.states[ACPI_STATE_C2].address = 0;
247         }
248
249         /*
250          * FADT supplied C3 latency must be less than or equal to
251          * 1000 microseconds.
252          */
253         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
254                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
255                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
256                 /* invalidate C3 */
257                 pr->power.states[ACPI_STATE_C3].address = 0;
258         }
259
260         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
261                           "lvl2[0x%08x] lvl3[0x%08x]\n",
262                           pr->power.states[ACPI_STATE_C2].address,
263                           pr->power.states[ACPI_STATE_C3].address));
264
265         snprintf(pr->power.states[ACPI_STATE_C2].desc,
266                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267                          pr->power.states[ACPI_STATE_C2].address);
268         snprintf(pr->power.states[ACPI_STATE_C3].desc,
269                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270                          pr->power.states[ACPI_STATE_C3].address);
271
272         return 0;
273 }
274
275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 {
277         if (!pr->power.states[ACPI_STATE_C1].valid) {
278                 /* set the first C-State to C1 */
279                 /* all processors need to support C1 */
280                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281                 pr->power.states[ACPI_STATE_C1].valid = 1;
282                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
285                          ACPI_CX_DESC_LEN, "ACPI HLT");
286         }
287         /* the C0 state only exists as a filler in our array */
288         pr->power.states[ACPI_STATE_C0].valid = 1;
289         return 0;
290 }
291
292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 {
294         int ret;
295
296         if (nocst)
297                 return -ENODEV;
298
299         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300         if (ret)
301                 return ret;
302
303         if (!pr->power.count)
304                 return -EFAULT;
305
306         pr->flags.has_cst = 1;
307         return 0;
308 }
309
310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311                                            struct acpi_processor_cx *cx)
312 {
313         static int bm_check_flag = -1;
314         static int bm_control_flag = -1;
315
316
317         if (!cx->address)
318                 return;
319
320         /*
321          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322          * DMA transfers are used by any ISA device to avoid livelock.
323          * Note that we could disable Type-F DMA (as recommended by
324          * the erratum), but this is known to disrupt certain ISA
325          * devices thus we take the conservative approach.
326          */
327         else if (errata.piix4.fdma) {
328                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
329                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
330                 return;
331         }
332
333         /* All the logic here assumes flags.bm_check is same across all CPUs */
334         if (bm_check_flag == -1) {
335                 /* Determine whether bm_check is needed based on CPU  */
336                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337                 bm_check_flag = pr->flags.bm_check;
338                 bm_control_flag = pr->flags.bm_control;
339         } else {
340                 pr->flags.bm_check = bm_check_flag;
341                 pr->flags.bm_control = bm_control_flag;
342         }
343
344         if (pr->flags.bm_check) {
345                 if (!pr->flags.bm_control) {
346                         if (pr->flags.has_cst != 1) {
347                                 /* bus mastering control is necessary */
348                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
349                                         "C3 support requires BM control\n"));
350                                 return;
351                         } else {
352                                 /* Here we enter C3 without bus mastering */
353                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
354                                         "C3 support without BM control\n"));
355                         }
356                 }
357         } else {
358                 /*
359                  * WBINVD should be set in fadt, for C3 state to be
360                  * supported on when bm_check is not required.
361                  */
362                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
364                                           "Cache invalidation should work properly"
365                                           " for C3 to be enabled on SMP systems\n"));
366                         return;
367                 }
368         }
369
370         /*
371          * Otherwise we've met all of our C3 requirements.
372          * Normalize the C3 latency to expidite policy.  Enable
373          * checking of bus mastering status (bm_check) so we can
374          * use this in our C3 policy
375          */
376         cx->valid = 1;
377
378         /*
379          * On older chipsets, BM_RLD needs to be set
380          * in order for Bus Master activity to wake the
381          * system from C3.  Newer chipsets handle DMA
382          * during C3 automatically and BM_RLD is a NOP.
383          * In either case, the proper way to
384          * handle BM_RLD is to set it and leave it set.
385          */
386         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387
388         return;
389 }
390
391 static int acpi_processor_power_verify(struct acpi_processor *pr)
392 {
393         unsigned int i;
394         unsigned int working = 0;
395
396         pr->power.timer_broadcast_on_state = INT_MAX;
397
398         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
399                 struct acpi_processor_cx *cx = &pr->power.states[i];
400
401                 switch (cx->type) {
402                 case ACPI_STATE_C1:
403                         cx->valid = 1;
404                         break;
405
406                 case ACPI_STATE_C2:
407                         if (!cx->address)
408                                 break;
409                         cx->valid = 1;
410                         break;
411
412                 case ACPI_STATE_C3:
413                         acpi_processor_power_verify_c3(pr, cx);
414                         break;
415                 }
416                 if (!cx->valid)
417                         continue;
418
419                 lapic_timer_check_state(i, pr, cx);
420                 tsc_check_state(cx->type);
421                 working++;
422         }
423
424         lapic_timer_propagate_broadcast(pr);
425
426         return (working);
427 }
428
429 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
430 {
431         unsigned int i;
432         int result;
433
434
435         /* NOTE: the idle thread may not be running while calling
436          * this function */
437
438         /* Zero initialize all the C-states info. */
439         memset(pr->power.states, 0, sizeof(pr->power.states));
440
441         result = acpi_processor_get_power_info_cst(pr);
442         if (result == -ENODEV)
443                 result = acpi_processor_get_power_info_fadt(pr);
444
445         if (result)
446                 return result;
447
448         acpi_processor_get_power_info_default(pr);
449
450         pr->power.count = acpi_processor_power_verify(pr);
451
452         /*
453          * if one state of type C2 or C3 is available, mark this
454          * CPU as being "idle manageable"
455          */
456         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
457                 if (pr->power.states[i].valid) {
458                         pr->power.count = i;
459                         pr->flags.power = 1;
460                 }
461         }
462
463         return 0;
464 }
465
466 /**
467  * acpi_idle_bm_check - checks if bus master activity was detected
468  */
469 static int acpi_idle_bm_check(void)
470 {
471         u32 bm_status = 0;
472
473         if (bm_check_disable)
474                 return 0;
475
476         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
477         if (bm_status)
478                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
479         /*
480          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
481          * the true state of bus mastering activity; forcing us to
482          * manually check the BMIDEA bit of each IDE channel.
483          */
484         else if (errata.piix4.bmisx) {
485                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
486                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
487                         bm_status = 1;
488         }
489         return bm_status;
490 }
491
492 static void wait_for_freeze(void)
493 {
494 #ifdef  CONFIG_X86
495         /* No delay is needed if we are in guest */
496         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
497                 return;
498 #endif
499         /* Dummy wait op - must do something useless after P_LVL2 read
500            because chipsets cannot guarantee that STPCLK# signal
501            gets asserted in time to freeze execution properly. */
502         inl(acpi_gbl_FADT.xpm_timer_block.address);
503 }
504
505 /**
506  * acpi_idle_do_entry - enter idle state using the appropriate method
507  * @cx: cstate data
508  *
509  * Caller disables interrupt before call and enables interrupt after return.
510  */
511 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
512 {
513         if (cx->entry_method == ACPI_CSTATE_FFH) {
514                 /* Call into architectural FFH based C-state */
515                 acpi_processor_ffh_cstate_enter(cx);
516         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
517                 acpi_safe_halt();
518         } else {
519                 /* IO port based C-state */
520                 inb(cx->address);
521                 wait_for_freeze();
522         }
523 }
524
525 /**
526  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
527  * @dev: the target CPU
528  * @index: the index of suggested state
529  */
530 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
531 {
532         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
533
534         ACPI_FLUSH_CPU_CACHE();
535
536         while (1) {
537
538                 if (cx->entry_method == ACPI_CSTATE_HALT)
539                         safe_halt();
540                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
541                         inb(cx->address);
542                         wait_for_freeze();
543                 } else
544                         return -ENODEV;
545
546 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
547                 cond_wakeup_cpu0();
548 #endif
549         }
550
551         /* Never reached */
552         return 0;
553 }
554
555 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
556 {
557         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
558                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
559 }
560
561 static int c3_cpu_count;
562 static DEFINE_RAW_SPINLOCK(c3_lock);
563
564 /**
565  * acpi_idle_enter_bm - enters C3 with proper BM handling
566  * @drv: cpuidle driver
567  * @pr: Target processor
568  * @cx: Target state context
569  * @index: index of target state
570  */
571 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
572                                struct acpi_processor *pr,
573                                struct acpi_processor_cx *cx,
574                                int index)
575 {
576         static struct acpi_processor_cx safe_cx = {
577                 .entry_method = ACPI_CSTATE_HALT,
578         };
579
580         /*
581          * disable bus master
582          * bm_check implies we need ARB_DIS
583          * bm_control implies whether we can do ARB_DIS
584          *
585          * That leaves a case where bm_check is set and bm_control is not set.
586          * In that case we cannot do much, we enter C3 without doing anything.
587          */
588         bool dis_bm = pr->flags.bm_control;
589
590         /* If we can skip BM, demote to a safe state. */
591         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
592                 dis_bm = false;
593                 index = drv->safe_state_index;
594                 if (index >= 0) {
595                         cx = this_cpu_read(acpi_cstate[index]);
596                 } else {
597                         cx = &safe_cx;
598                         index = -EBUSY;
599                 }
600         }
601
602         if (dis_bm) {
603                 raw_spin_lock(&c3_lock);
604                 c3_cpu_count++;
605                 /* Disable bus master arbitration when all CPUs are in C3 */
606                 if (c3_cpu_count == num_online_cpus())
607                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
608                 raw_spin_unlock(&c3_lock);
609         }
610
611         rcu_idle_enter();
612
613         acpi_idle_do_entry(cx);
614
615         rcu_idle_exit();
616
617         /* Re-enable bus master arbitration */
618         if (dis_bm) {
619                 raw_spin_lock(&c3_lock);
620                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
621                 c3_cpu_count--;
622                 raw_spin_unlock(&c3_lock);
623         }
624
625         return index;
626 }
627
628 static int acpi_idle_enter(struct cpuidle_device *dev,
629                            struct cpuidle_driver *drv, int index)
630 {
631         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
632         struct acpi_processor *pr;
633
634         pr = __this_cpu_read(processors);
635         if (unlikely(!pr))
636                 return -EINVAL;
637
638         if (cx->type != ACPI_STATE_C1) {
639                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
640                         return acpi_idle_enter_bm(drv, pr, cx, index);
641
642                 /* C2 to C1 demotion. */
643                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
644                         index = ACPI_IDLE_STATE_START;
645                         cx = per_cpu(acpi_cstate[index], dev->cpu);
646                 }
647         }
648
649         if (cx->type == ACPI_STATE_C3)
650                 ACPI_FLUSH_CPU_CACHE();
651
652         acpi_idle_do_entry(cx);
653
654         return index;
655 }
656
657 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
658                                   struct cpuidle_driver *drv, int index)
659 {
660         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
661
662         if (cx->type == ACPI_STATE_C3) {
663                 struct acpi_processor *pr = __this_cpu_read(processors);
664
665                 if (unlikely(!pr))
666                         return 0;
667
668                 if (pr->flags.bm_check) {
669                         u8 bm_sts_skip = cx->bm_sts_skip;
670
671                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
672                         cx->bm_sts_skip = 1;
673                         acpi_idle_enter_bm(drv, pr, cx, index);
674                         cx->bm_sts_skip = bm_sts_skip;
675
676                         return 0;
677                 } else {
678                         ACPI_FLUSH_CPU_CACHE();
679                 }
680         }
681         acpi_idle_do_entry(cx);
682
683         return 0;
684 }
685
686 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
687                                            struct cpuidle_device *dev)
688 {
689         int i, count = ACPI_IDLE_STATE_START;
690         struct acpi_processor_cx *cx;
691         struct cpuidle_state *state;
692
693         if (max_cstate == 0)
694                 max_cstate = 1;
695
696         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
697                 state = &acpi_idle_driver.states[count];
698                 cx = &pr->power.states[i];
699
700                 if (!cx->valid)
701                         continue;
702
703                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
704
705                 if (lapic_timer_needs_broadcast(pr, cx))
706                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
707
708                 if (cx->type == ACPI_STATE_C3) {
709                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
710                         if (pr->flags.bm_check)
711                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
712                 }
713
714                 count++;
715                 if (count == CPUIDLE_STATE_MAX)
716                         break;
717         }
718
719         if (!count)
720                 return -EINVAL;
721
722         return 0;
723 }
724
725 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
726 {
727         int i, count;
728         struct acpi_processor_cx *cx;
729         struct cpuidle_state *state;
730         struct cpuidle_driver *drv = &acpi_idle_driver;
731
732         if (max_cstate == 0)
733                 max_cstate = 1;
734
735         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
736                 cpuidle_poll_state_init(drv);
737                 count = 1;
738         } else {
739                 count = 0;
740         }
741
742         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
743                 cx = &pr->power.states[i];
744
745                 if (!cx->valid)
746                         continue;
747
748                 state = &drv->states[count];
749                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
750                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
751                 state->exit_latency = cx->latency;
752                 state->target_residency = cx->latency * latency_factor;
753                 state->enter = acpi_idle_enter;
754
755                 state->flags = 0;
756                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
757                         state->enter_dead = acpi_idle_play_dead;
758                         drv->safe_state_index = count;
759                 }
760                 /*
761                  * Halt-induced C1 is not good for ->enter_s2idle, because it
762                  * re-enables interrupts on exit.  Moreover, C1 is generally not
763                  * particularly interesting from the suspend-to-idle angle, so
764                  * avoid C1 and the situations in which we may need to fall back
765                  * to it altogether.
766                  */
767                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
768                         state->enter_s2idle = acpi_idle_enter_s2idle;
769
770                 count++;
771                 if (count == CPUIDLE_STATE_MAX)
772                         break;
773         }
774
775         drv->state_count = count;
776
777         if (!count)
778                 return -EINVAL;
779
780         return 0;
781 }
782
783 static inline void acpi_processor_cstate_first_run_checks(void)
784 {
785         static int first_run;
786
787         if (first_run)
788                 return;
789         dmi_check_system(processor_power_dmi_table);
790         max_cstate = acpi_processor_cstate_check(max_cstate);
791         if (max_cstate < ACPI_C_STATES_MAX)
792                 pr_notice("ACPI: processor limited to max C-state %d\n",
793                           max_cstate);
794         first_run++;
795
796         if (nocst)
797                 return;
798
799         acpi_processor_claim_cst_control();
800 }
801 #else
802
803 static inline int disabled_by_idle_boot_param(void) { return 0; }
804 static inline void acpi_processor_cstate_first_run_checks(void) { }
805 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
806 {
807         return -ENODEV;
808 }
809
810 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
811                                            struct cpuidle_device *dev)
812 {
813         return -EINVAL;
814 }
815
816 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
817 {
818         return -EINVAL;
819 }
820
821 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
822
823 struct acpi_lpi_states_array {
824         unsigned int size;
825         unsigned int composite_states_size;
826         struct acpi_lpi_state *entries;
827         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
828 };
829
830 static int obj_get_integer(union acpi_object *obj, u32 *value)
831 {
832         if (obj->type != ACPI_TYPE_INTEGER)
833                 return -EINVAL;
834
835         *value = obj->integer.value;
836         return 0;
837 }
838
839 static int acpi_processor_evaluate_lpi(acpi_handle handle,
840                                        struct acpi_lpi_states_array *info)
841 {
842         acpi_status status;
843         int ret = 0;
844         int pkg_count, state_idx = 1, loop;
845         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
846         union acpi_object *lpi_data;
847         struct acpi_lpi_state *lpi_state;
848
849         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
850         if (ACPI_FAILURE(status)) {
851                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
852                 return -ENODEV;
853         }
854
855         lpi_data = buffer.pointer;
856
857         /* There must be at least 4 elements = 3 elements + 1 package */
858         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
859             lpi_data->package.count < 4) {
860                 pr_debug("not enough elements in _LPI\n");
861                 ret = -ENODATA;
862                 goto end;
863         }
864
865         pkg_count = lpi_data->package.elements[2].integer.value;
866
867         /* Validate number of power states. */
868         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
869                 pr_debug("count given by _LPI is not valid\n");
870                 ret = -ENODATA;
871                 goto end;
872         }
873
874         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
875         if (!lpi_state) {
876                 ret = -ENOMEM;
877                 goto end;
878         }
879
880         info->size = pkg_count;
881         info->entries = lpi_state;
882
883         /* LPI States start at index 3 */
884         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
885                 union acpi_object *element, *pkg_elem, *obj;
886
887                 element = &lpi_data->package.elements[loop];
888                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
889                         continue;
890
891                 pkg_elem = element->package.elements;
892
893                 obj = pkg_elem + 6;
894                 if (obj->type == ACPI_TYPE_BUFFER) {
895                         struct acpi_power_register *reg;
896
897                         reg = (struct acpi_power_register *)obj->buffer.pointer;
898                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
899                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
900                                 continue;
901
902                         lpi_state->address = reg->address;
903                         lpi_state->entry_method =
904                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
905                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
906                 } else if (obj->type == ACPI_TYPE_INTEGER) {
907                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
908                         lpi_state->address = obj->integer.value;
909                 } else {
910                         continue;
911                 }
912
913                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
914
915                 obj = pkg_elem + 9;
916                 if (obj->type == ACPI_TYPE_STRING)
917                         strlcpy(lpi_state->desc, obj->string.pointer,
918                                 ACPI_CX_DESC_LEN);
919
920                 lpi_state->index = state_idx;
921                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
922                         pr_debug("No min. residency found, assuming 10 us\n");
923                         lpi_state->min_residency = 10;
924                 }
925
926                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
927                         pr_debug("No wakeup residency found, assuming 10 us\n");
928                         lpi_state->wake_latency = 10;
929                 }
930
931                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
932                         lpi_state->flags = 0;
933
934                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
935                         lpi_state->arch_flags = 0;
936
937                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
938                         lpi_state->res_cnt_freq = 1;
939
940                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
941                         lpi_state->enable_parent_state = 0;
942         }
943
944         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
945 end:
946         kfree(buffer.pointer);
947         return ret;
948 }
949
950 /*
951  * flat_state_cnt - the number of composite LPI states after the process of flattening
952  */
953 static int flat_state_cnt;
954
955 /**
956  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
957  *
958  * @local: local LPI state
959  * @parent: parent LPI state
960  * @result: composite LPI state
961  */
962 static bool combine_lpi_states(struct acpi_lpi_state *local,
963                                struct acpi_lpi_state *parent,
964                                struct acpi_lpi_state *result)
965 {
966         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
967                 if (!parent->address) /* 0 means autopromotable */
968                         return false;
969                 result->address = local->address + parent->address;
970         } else {
971                 result->address = parent->address;
972         }
973
974         result->min_residency = max(local->min_residency, parent->min_residency);
975         result->wake_latency = local->wake_latency + parent->wake_latency;
976         result->enable_parent_state = parent->enable_parent_state;
977         result->entry_method = local->entry_method;
978
979         result->flags = parent->flags;
980         result->arch_flags = parent->arch_flags;
981         result->index = parent->index;
982
983         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
984         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
985         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
986         return true;
987 }
988
989 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
990
991 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
992                                   struct acpi_lpi_state *t)
993 {
994         curr_level->composite_states[curr_level->composite_states_size++] = t;
995 }
996
997 static int flatten_lpi_states(struct acpi_processor *pr,
998                               struct acpi_lpi_states_array *curr_level,
999                               struct acpi_lpi_states_array *prev_level)
1000 {
1001         int i, j, state_count = curr_level->size;
1002         struct acpi_lpi_state *p, *t = curr_level->entries;
1003
1004         curr_level->composite_states_size = 0;
1005         for (j = 0; j < state_count; j++, t++) {
1006                 struct acpi_lpi_state *flpi;
1007
1008                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1009                         continue;
1010
1011                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1012                         pr_warn("Limiting number of LPI states to max (%d)\n",
1013                                 ACPI_PROCESSOR_MAX_POWER);
1014                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1015                         break;
1016                 }
1017
1018                 flpi = &pr->power.lpi_states[flat_state_cnt];
1019
1020                 if (!prev_level) { /* leaf/processor node */
1021                         memcpy(flpi, t, sizeof(*t));
1022                         stash_composite_state(curr_level, flpi);
1023                         flat_state_cnt++;
1024                         continue;
1025                 }
1026
1027                 for (i = 0; i < prev_level->composite_states_size; i++) {
1028                         p = prev_level->composite_states[i];
1029                         if (t->index <= p->enable_parent_state &&
1030                             combine_lpi_states(p, t, flpi)) {
1031                                 stash_composite_state(curr_level, flpi);
1032                                 flat_state_cnt++;
1033                                 flpi++;
1034                         }
1035                 }
1036         }
1037
1038         kfree(curr_level->entries);
1039         return 0;
1040 }
1041
1042 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1043 {
1044         int ret, i;
1045         acpi_status status;
1046         acpi_handle handle = pr->handle, pr_ahandle;
1047         struct acpi_device *d = NULL;
1048         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1049
1050         if (!osc_pc_lpi_support_confirmed)
1051                 return -EOPNOTSUPP;
1052
1053         if (!acpi_has_method(handle, "_LPI"))
1054                 return -EINVAL;
1055
1056         flat_state_cnt = 0;
1057         prev = &info[0];
1058         curr = &info[1];
1059         handle = pr->handle;
1060         ret = acpi_processor_evaluate_lpi(handle, prev);
1061         if (ret)
1062                 return ret;
1063         flatten_lpi_states(pr, prev, NULL);
1064
1065         status = acpi_get_parent(handle, &pr_ahandle);
1066         while (ACPI_SUCCESS(status)) {
1067                 acpi_bus_get_device(pr_ahandle, &d);
1068                 handle = pr_ahandle;
1069
1070                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1071                         break;
1072
1073                 /* can be optional ? */
1074                 if (!acpi_has_method(handle, "_LPI"))
1075                         break;
1076
1077                 ret = acpi_processor_evaluate_lpi(handle, curr);
1078                 if (ret)
1079                         break;
1080
1081                 /* flatten all the LPI states in this level of hierarchy */
1082                 flatten_lpi_states(pr, curr, prev);
1083
1084                 tmp = prev, prev = curr, curr = tmp;
1085
1086                 status = acpi_get_parent(handle, &pr_ahandle);
1087         }
1088
1089         pr->power.count = flat_state_cnt;
1090         /* reset the index after flattening */
1091         for (i = 0; i < pr->power.count; i++)
1092                 pr->power.lpi_states[i].index = i;
1093
1094         /* Tell driver that _LPI is supported. */
1095         pr->flags.has_lpi = 1;
1096         pr->flags.power = 1;
1097
1098         return 0;
1099 }
1100
1101 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1102 {
1103         return -ENODEV;
1104 }
1105
1106 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1107 {
1108         return -ENODEV;
1109 }
1110
1111 /**
1112  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1113  * @dev: the target CPU
1114  * @drv: cpuidle driver containing cpuidle state info
1115  * @index: index of target state
1116  *
1117  * Return: 0 for success or negative value for error
1118  */
1119 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1120                                struct cpuidle_driver *drv, int index)
1121 {
1122         struct acpi_processor *pr;
1123         struct acpi_lpi_state *lpi;
1124
1125         pr = __this_cpu_read(processors);
1126
1127         if (unlikely(!pr))
1128                 return -EINVAL;
1129
1130         lpi = &pr->power.lpi_states[index];
1131         if (lpi->entry_method == ACPI_CSTATE_FFH)
1132                 return acpi_processor_ffh_lpi_enter(lpi);
1133
1134         return -EINVAL;
1135 }
1136
1137 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1138 {
1139         int i;
1140         struct acpi_lpi_state *lpi;
1141         struct cpuidle_state *state;
1142         struct cpuidle_driver *drv = &acpi_idle_driver;
1143
1144         if (!pr->flags.has_lpi)
1145                 return -EOPNOTSUPP;
1146
1147         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1148                 lpi = &pr->power.lpi_states[i];
1149
1150                 state = &drv->states[i];
1151                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1152                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1153                 state->exit_latency = lpi->wake_latency;
1154                 state->target_residency = lpi->min_residency;
1155                 if (lpi->arch_flags)
1156                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1157                 state->enter = acpi_idle_lpi_enter;
1158                 drv->safe_state_index = i;
1159         }
1160
1161         drv->state_count = i;
1162
1163         return 0;
1164 }
1165
1166 /**
1167  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1168  * global state data i.e. idle routines
1169  *
1170  * @pr: the ACPI processor
1171  */
1172 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1173 {
1174         int i;
1175         struct cpuidle_driver *drv = &acpi_idle_driver;
1176
1177         if (!pr->flags.power_setup_done || !pr->flags.power)
1178                 return -EINVAL;
1179
1180         drv->safe_state_index = -1;
1181         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1182                 drv->states[i].name[0] = '\0';
1183                 drv->states[i].desc[0] = '\0';
1184         }
1185
1186         if (pr->flags.has_lpi)
1187                 return acpi_processor_setup_lpi_states(pr);
1188
1189         return acpi_processor_setup_cstates(pr);
1190 }
1191
1192 /**
1193  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1194  * device i.e. per-cpu data
1195  *
1196  * @pr: the ACPI processor
1197  * @dev : the cpuidle device
1198  */
1199 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1200                                             struct cpuidle_device *dev)
1201 {
1202         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1203                 return -EINVAL;
1204
1205         dev->cpu = pr->id;
1206         if (pr->flags.has_lpi)
1207                 return acpi_processor_ffh_lpi_probe(pr->id);
1208
1209         return acpi_processor_setup_cpuidle_cx(pr, dev);
1210 }
1211
1212 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1213 {
1214         int ret;
1215
1216         ret = acpi_processor_get_lpi_info(pr);
1217         if (ret)
1218                 ret = acpi_processor_get_cstate_info(pr);
1219
1220         return ret;
1221 }
1222
1223 int acpi_processor_hotplug(struct acpi_processor *pr)
1224 {
1225         int ret = 0;
1226         struct cpuidle_device *dev;
1227
1228         if (disabled_by_idle_boot_param())
1229                 return 0;
1230
1231         if (!pr->flags.power_setup_done)
1232                 return -ENODEV;
1233
1234         dev = per_cpu(acpi_cpuidle_device, pr->id);
1235         cpuidle_pause_and_lock();
1236         cpuidle_disable_device(dev);
1237         ret = acpi_processor_get_power_info(pr);
1238         if (!ret && pr->flags.power) {
1239                 acpi_processor_setup_cpuidle_dev(pr, dev);
1240                 ret = cpuidle_enable_device(dev);
1241         }
1242         cpuidle_resume_and_unlock();
1243
1244         return ret;
1245 }
1246
1247 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1248 {
1249         int cpu;
1250         struct acpi_processor *_pr;
1251         struct cpuidle_device *dev;
1252
1253         if (disabled_by_idle_boot_param())
1254                 return 0;
1255
1256         if (!pr->flags.power_setup_done)
1257                 return -ENODEV;
1258
1259         /*
1260          * FIXME:  Design the ACPI notification to make it once per
1261          * system instead of once per-cpu.  This condition is a hack
1262          * to make the code that updates C-States be called once.
1263          */
1264
1265         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1266
1267                 /* Protect against cpu-hotplug */
1268                 get_online_cpus();
1269                 cpuidle_pause_and_lock();
1270
1271                 /* Disable all cpuidle devices */
1272                 for_each_online_cpu(cpu) {
1273                         _pr = per_cpu(processors, cpu);
1274                         if (!_pr || !_pr->flags.power_setup_done)
1275                                 continue;
1276                         dev = per_cpu(acpi_cpuidle_device, cpu);
1277                         cpuidle_disable_device(dev);
1278                 }
1279
1280                 /* Populate Updated C-state information */
1281                 acpi_processor_get_power_info(pr);
1282                 acpi_processor_setup_cpuidle_states(pr);
1283
1284                 /* Enable all cpuidle devices */
1285                 for_each_online_cpu(cpu) {
1286                         _pr = per_cpu(processors, cpu);
1287                         if (!_pr || !_pr->flags.power_setup_done)
1288                                 continue;
1289                         acpi_processor_get_power_info(_pr);
1290                         if (_pr->flags.power) {
1291                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1292                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1293                                 cpuidle_enable_device(dev);
1294                         }
1295                 }
1296                 cpuidle_resume_and_unlock();
1297                 put_online_cpus();
1298         }
1299
1300         return 0;
1301 }
1302
1303 static int acpi_processor_registered;
1304
1305 int acpi_processor_power_init(struct acpi_processor *pr)
1306 {
1307         int retval;
1308         struct cpuidle_device *dev;
1309
1310         if (disabled_by_idle_boot_param())
1311                 return 0;
1312
1313         acpi_processor_cstate_first_run_checks();
1314
1315         if (!acpi_processor_get_power_info(pr))
1316                 pr->flags.power_setup_done = 1;
1317
1318         /*
1319          * Install the idle handler if processor power management is supported.
1320          * Note that we use previously set idle handler will be used on
1321          * platforms that only support C1.
1322          */
1323         if (pr->flags.power) {
1324                 /* Register acpi_idle_driver if not already registered */
1325                 if (!acpi_processor_registered) {
1326                         acpi_processor_setup_cpuidle_states(pr);
1327                         retval = cpuidle_register_driver(&acpi_idle_driver);
1328                         if (retval)
1329                                 return retval;
1330                         pr_debug("%s registered with cpuidle\n",
1331                                  acpi_idle_driver.name);
1332                 }
1333
1334                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1335                 if (!dev)
1336                         return -ENOMEM;
1337                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1338
1339                 acpi_processor_setup_cpuidle_dev(pr, dev);
1340
1341                 /* Register per-cpu cpuidle_device. Cpuidle driver
1342                  * must already be registered before registering device
1343                  */
1344                 retval = cpuidle_register_device(dev);
1345                 if (retval) {
1346                         if (acpi_processor_registered == 0)
1347                                 cpuidle_unregister_driver(&acpi_idle_driver);
1348                         return retval;
1349                 }
1350                 acpi_processor_registered++;
1351         }
1352         return 0;
1353 }
1354
1355 int acpi_processor_power_exit(struct acpi_processor *pr)
1356 {
1357         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1358
1359         if (disabled_by_idle_boot_param())
1360                 return 0;
1361
1362         if (pr->flags.power) {
1363                 cpuidle_unregister_device(dev);
1364                 acpi_processor_registered--;
1365                 if (acpi_processor_registered == 0)
1366                         cpuidle_unregister_driver(&acpi_idle_driver);
1367         }
1368
1369         pr->flags.power_setup_done = 0;
1370         return 0;
1371 }