Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <acpi/processor.h>
25
26 /*
27  * Include the apic definitions for x86 to have the APIC timer related defines
28  * available also for UP (on SMP it gets magically included via linux/smp.h).
29  * asm/acpi.h is not an option, as it would require more include magic. Also
30  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
31  */
32 #ifdef CONFIG_X86
33 #include <asm/apic.h>
34 #include <asm/cpu.h>
35 #endif
36
37 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
38
39 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
40 module_param(max_cstate, uint, 0000);
41 static unsigned int nocst __read_mostly;
42 module_param(nocst, uint, 0000);
43 static int bm_check_disable __read_mostly;
44 module_param(bm_check_disable, uint, 0000);
45
46 static unsigned int latency_factor __read_mostly = 2;
47 module_param(latency_factor, uint, 0644);
48
49 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
50
51 struct cpuidle_driver acpi_idle_driver = {
52         .name =         "acpi_idle",
53         .owner =        THIS_MODULE,
54 };
55
56 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
57 static
58 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
59
60 static int disabled_by_idle_boot_param(void)
61 {
62         return boot_option_idle_override == IDLE_POLL ||
63                 boot_option_idle_override == IDLE_HALT;
64 }
65
66 /*
67  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
68  * For now disable this. Probably a bug somewhere else.
69  *
70  * To skip this limit, boot/load with a large max_cstate limit.
71  */
72 static int set_max_cstate(const struct dmi_system_id *id)
73 {
74         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
75                 return 0;
76
77         pr_notice("%s detected - limiting to C%ld max_cstate."
78                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
79                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
80
81         max_cstate = (long)id->driver_data;
82
83         return 0;
84 }
85
86 static const struct dmi_system_id processor_power_dmi_table[] = {
87         { set_max_cstate, "Clevo 5600D", {
88           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
89           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
90          (void *)2},
91         { set_max_cstate, "Pavilion zv5000", {
92           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
93           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
94          (void *)1},
95         { set_max_cstate, "Asus L8400B", {
96           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
97           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
98          (void *)1},
99         {},
100 };
101
102
103 /*
104  * Callers should disable interrupts before the call and enable
105  * interrupts after return.
106  */
107 static void __cpuidle acpi_safe_halt(void)
108 {
109         if (!tif_need_resched()) {
110                 safe_halt();
111                 local_irq_disable();
112         }
113 }
114
115 #ifdef ARCH_APICTIMER_STOPS_ON_C3
116
117 /*
118  * Some BIOS implementations switch to C3 in the published C2 state.
119  * This seems to be a common problem on AMD boxen, but other vendors
120  * are affected too. We pick the most conservative approach: we assume
121  * that the local APIC stops in both C2 and C3.
122  */
123 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
124                                    struct acpi_processor_cx *cx)
125 {
126         struct acpi_processor_power *pwr = &pr->power;
127         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
128
129         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
130                 return;
131
132         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
133                 type = ACPI_STATE_C1;
134
135         /*
136          * Check, if one of the previous states already marked the lapic
137          * unstable
138          */
139         if (pwr->timer_broadcast_on_state < state)
140                 return;
141
142         if (cx->type >= type)
143                 pr->power.timer_broadcast_on_state = state;
144 }
145
146 static void __lapic_timer_propagate_broadcast(void *arg)
147 {
148         struct acpi_processor *pr = (struct acpi_processor *) arg;
149
150         if (pr->power.timer_broadcast_on_state < INT_MAX)
151                 tick_broadcast_enable();
152         else
153                 tick_broadcast_disable();
154 }
155
156 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
157 {
158         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
159                                  (void *)pr, 1);
160 }
161
162 /* Power(C) State timer broadcast control */
163 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
164                                         struct acpi_processor_cx *cx)
165 {
166         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
167 }
168
169 #else
170
171 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
172                                    struct acpi_processor_cx *cstate) { }
173 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
174
175 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
176                                         struct acpi_processor_cx *cx)
177 {
178         return false;
179 }
180
181 #endif
182
183 #if defined(CONFIG_X86)
184 static void tsc_check_state(int state)
185 {
186         switch (boot_cpu_data.x86_vendor) {
187         case X86_VENDOR_HYGON:
188         case X86_VENDOR_AMD:
189         case X86_VENDOR_INTEL:
190         case X86_VENDOR_CENTAUR:
191         case X86_VENDOR_ZHAOXIN:
192                 /*
193                  * AMD Fam10h TSC will tick in all
194                  * C/P/S0/S1 states when this bit is set.
195                  */
196                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
197                         return;
198                 fallthrough;
199         default:
200                 /* TSC could halt in idle, so notify users */
201                 if (state > ACPI_STATE_C1)
202                         mark_tsc_unstable("TSC halts in idle");
203         }
204 }
205 #else
206 static void tsc_check_state(int state) { return; }
207 #endif
208
209 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
210 {
211
212         if (!pr->pblk)
213                 return -ENODEV;
214
215         /* if info is obtained from pblk/fadt, type equals state */
216         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
217         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
218
219 #ifndef CONFIG_HOTPLUG_CPU
220         /*
221          * Check for P_LVL2_UP flag before entering C2 and above on
222          * an SMP system.
223          */
224         if ((num_online_cpus() > 1) &&
225             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
226                 return -ENODEV;
227 #endif
228
229         /* determine C2 and C3 address from pblk */
230         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
231         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
232
233         /* determine latencies from FADT */
234         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
235         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
236
237         /*
238          * FADT specified C2 latency must be less than or equal to
239          * 100 microseconds.
240          */
241         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
242                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
243                                   acpi_gbl_FADT.c2_latency);
244                 /* invalidate C2 */
245                 pr->power.states[ACPI_STATE_C2].address = 0;
246         }
247
248         /*
249          * FADT supplied C3 latency must be less than or equal to
250          * 1000 microseconds.
251          */
252         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
253                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
254                                   acpi_gbl_FADT.c3_latency);
255                 /* invalidate C3 */
256                 pr->power.states[ACPI_STATE_C3].address = 0;
257         }
258
259         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
260                           pr->power.states[ACPI_STATE_C2].address,
261                           pr->power.states[ACPI_STATE_C3].address);
262
263         snprintf(pr->power.states[ACPI_STATE_C2].desc,
264                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
265                          pr->power.states[ACPI_STATE_C2].address);
266         snprintf(pr->power.states[ACPI_STATE_C3].desc,
267                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
268                          pr->power.states[ACPI_STATE_C3].address);
269
270         return 0;
271 }
272
273 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
274 {
275         if (!pr->power.states[ACPI_STATE_C1].valid) {
276                 /* set the first C-State to C1 */
277                 /* all processors need to support C1 */
278                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
279                 pr->power.states[ACPI_STATE_C1].valid = 1;
280                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
281
282                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
283                          ACPI_CX_DESC_LEN, "ACPI HLT");
284         }
285         /* the C0 state only exists as a filler in our array */
286         pr->power.states[ACPI_STATE_C0].valid = 1;
287         return 0;
288 }
289
290 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
291 {
292         int ret;
293
294         if (nocst)
295                 return -ENODEV;
296
297         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
298         if (ret)
299                 return ret;
300
301         if (!pr->power.count)
302                 return -EFAULT;
303
304         pr->flags.has_cst = 1;
305         return 0;
306 }
307
308 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
309                                            struct acpi_processor_cx *cx)
310 {
311         static int bm_check_flag = -1;
312         static int bm_control_flag = -1;
313
314
315         if (!cx->address)
316                 return;
317
318         /*
319          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
320          * DMA transfers are used by any ISA device to avoid livelock.
321          * Note that we could disable Type-F DMA (as recommended by
322          * the erratum), but this is known to disrupt certain ISA
323          * devices thus we take the conservative approach.
324          */
325         else if (errata.piix4.fdma) {
326                 acpi_handle_debug(pr->handle,
327                                   "C3 not supported on PIIX4 with Type-F DMA\n");
328                 return;
329         }
330
331         /* All the logic here assumes flags.bm_check is same across all CPUs */
332         if (bm_check_flag == -1) {
333                 /* Determine whether bm_check is needed based on CPU  */
334                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
335                 bm_check_flag = pr->flags.bm_check;
336                 bm_control_flag = pr->flags.bm_control;
337         } else {
338                 pr->flags.bm_check = bm_check_flag;
339                 pr->flags.bm_control = bm_control_flag;
340         }
341
342         if (pr->flags.bm_check) {
343                 if (!pr->flags.bm_control) {
344                         if (pr->flags.has_cst != 1) {
345                                 /* bus mastering control is necessary */
346                                 acpi_handle_debug(pr->handle,
347                                                   "C3 support requires BM control\n");
348                                 return;
349                         } else {
350                                 /* Here we enter C3 without bus mastering */
351                                 acpi_handle_debug(pr->handle,
352                                                   "C3 support without BM control\n");
353                         }
354                 }
355         } else {
356                 /*
357                  * WBINVD should be set in fadt, for C3 state to be
358                  * supported on when bm_check is not required.
359                  */
360                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
361                         acpi_handle_debug(pr->handle,
362                                           "Cache invalidation should work properly"
363                                           " for C3 to be enabled on SMP systems\n");
364                         return;
365                 }
366         }
367
368         /*
369          * Otherwise we've met all of our C3 requirements.
370          * Normalize the C3 latency to expidite policy.  Enable
371          * checking of bus mastering status (bm_check) so we can
372          * use this in our C3 policy
373          */
374         cx->valid = 1;
375
376         /*
377          * On older chipsets, BM_RLD needs to be set
378          * in order for Bus Master activity to wake the
379          * system from C3.  Newer chipsets handle DMA
380          * during C3 automatically and BM_RLD is a NOP.
381          * In either case, the proper way to
382          * handle BM_RLD is to set it and leave it set.
383          */
384         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
385
386         return;
387 }
388
389 static int acpi_cst_latency_cmp(const void *a, const void *b)
390 {
391         const struct acpi_processor_cx *x = a, *y = b;
392
393         if (!(x->valid && y->valid))
394                 return 0;
395         if (x->latency > y->latency)
396                 return 1;
397         if (x->latency < y->latency)
398                 return -1;
399         return 0;
400 }
401 static void acpi_cst_latency_swap(void *a, void *b, int n)
402 {
403         struct acpi_processor_cx *x = a, *y = b;
404
405         if (!(x->valid && y->valid))
406                 return;
407         swap(x->latency, y->latency);
408 }
409
410 static int acpi_processor_power_verify(struct acpi_processor *pr)
411 {
412         unsigned int i;
413         unsigned int working = 0;
414         unsigned int last_latency = 0;
415         unsigned int last_type = 0;
416         bool buggy_latency = false;
417
418         pr->power.timer_broadcast_on_state = INT_MAX;
419
420         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
421                 struct acpi_processor_cx *cx = &pr->power.states[i];
422
423                 switch (cx->type) {
424                 case ACPI_STATE_C1:
425                         cx->valid = 1;
426                         break;
427
428                 case ACPI_STATE_C2:
429                         if (!cx->address)
430                                 break;
431                         cx->valid = 1;
432                         break;
433
434                 case ACPI_STATE_C3:
435                         acpi_processor_power_verify_c3(pr, cx);
436                         break;
437                 }
438                 if (!cx->valid)
439                         continue;
440                 if (cx->type >= last_type && cx->latency < last_latency)
441                         buggy_latency = true;
442                 last_latency = cx->latency;
443                 last_type = cx->type;
444
445                 lapic_timer_check_state(i, pr, cx);
446                 tsc_check_state(cx->type);
447                 working++;
448         }
449
450         if (buggy_latency) {
451                 pr_notice("FW issue: working around C-state latencies out of order\n");
452                 sort(&pr->power.states[1], max_cstate,
453                      sizeof(struct acpi_processor_cx),
454                      acpi_cst_latency_cmp,
455                      acpi_cst_latency_swap);
456         }
457
458         lapic_timer_propagate_broadcast(pr);
459
460         return (working);
461 }
462
463 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
464 {
465         unsigned int i;
466         int result;
467
468
469         /* NOTE: the idle thread may not be running while calling
470          * this function */
471
472         /* Zero initialize all the C-states info. */
473         memset(pr->power.states, 0, sizeof(pr->power.states));
474
475         result = acpi_processor_get_power_info_cst(pr);
476         if (result == -ENODEV)
477                 result = acpi_processor_get_power_info_fadt(pr);
478
479         if (result)
480                 return result;
481
482         acpi_processor_get_power_info_default(pr);
483
484         pr->power.count = acpi_processor_power_verify(pr);
485
486         /*
487          * if one state of type C2 or C3 is available, mark this
488          * CPU as being "idle manageable"
489          */
490         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
491                 if (pr->power.states[i].valid) {
492                         pr->power.count = i;
493                         pr->flags.power = 1;
494                 }
495         }
496
497         return 0;
498 }
499
500 /**
501  * acpi_idle_bm_check - checks if bus master activity was detected
502  */
503 static int acpi_idle_bm_check(void)
504 {
505         u32 bm_status = 0;
506
507         if (bm_check_disable)
508                 return 0;
509
510         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
511         if (bm_status)
512                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
513         /*
514          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
515          * the true state of bus mastering activity; forcing us to
516          * manually check the BMIDEA bit of each IDE channel.
517          */
518         else if (errata.piix4.bmisx) {
519                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
520                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
521                         bm_status = 1;
522         }
523         return bm_status;
524 }
525
526 static void wait_for_freeze(void)
527 {
528 #ifdef  CONFIG_X86
529         /* No delay is needed if we are in guest */
530         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
531                 return;
532 #endif
533         /* Dummy wait op - must do something useless after P_LVL2 read
534            because chipsets cannot guarantee that STPCLK# signal
535            gets asserted in time to freeze execution properly. */
536         inl(acpi_gbl_FADT.xpm_timer_block.address);
537 }
538
539 /**
540  * acpi_idle_do_entry - enter idle state using the appropriate method
541  * @cx: cstate data
542  *
543  * Caller disables interrupt before call and enables interrupt after return.
544  */
545 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
546 {
547         if (cx->entry_method == ACPI_CSTATE_FFH) {
548                 /* Call into architectural FFH based C-state */
549                 acpi_processor_ffh_cstate_enter(cx);
550         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
551                 acpi_safe_halt();
552         } else {
553                 /* IO port based C-state */
554                 inb(cx->address);
555                 wait_for_freeze();
556         }
557 }
558
559 /**
560  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
561  * @dev: the target CPU
562  * @index: the index of suggested state
563  */
564 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
565 {
566         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
567
568         if (cx->type == ACPI_STATE_C3)
569                 ACPI_FLUSH_CPU_CACHE();
570
571         while (1) {
572
573                 if (cx->entry_method == ACPI_CSTATE_HALT)
574                         safe_halt();
575                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
576                         inb(cx->address);
577                         wait_for_freeze();
578                 } else
579                         return -ENODEV;
580
581 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
582                 cond_wakeup_cpu0();
583 #endif
584         }
585
586         /* Never reached */
587         return 0;
588 }
589
590 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
591 {
592         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
593                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
594 }
595
596 static int c3_cpu_count;
597 static DEFINE_RAW_SPINLOCK(c3_lock);
598
599 /**
600  * acpi_idle_enter_bm - enters C3 with proper BM handling
601  * @drv: cpuidle driver
602  * @pr: Target processor
603  * @cx: Target state context
604  * @index: index of target state
605  */
606 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
607                                struct acpi_processor *pr,
608                                struct acpi_processor_cx *cx,
609                                int index)
610 {
611         static struct acpi_processor_cx safe_cx = {
612                 .entry_method = ACPI_CSTATE_HALT,
613         };
614
615         /*
616          * disable bus master
617          * bm_check implies we need ARB_DIS
618          * bm_control implies whether we can do ARB_DIS
619          *
620          * That leaves a case where bm_check is set and bm_control is not set.
621          * In that case we cannot do much, we enter C3 without doing anything.
622          */
623         bool dis_bm = pr->flags.bm_control;
624
625         /* If we can skip BM, demote to a safe state. */
626         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
627                 dis_bm = false;
628                 index = drv->safe_state_index;
629                 if (index >= 0) {
630                         cx = this_cpu_read(acpi_cstate[index]);
631                 } else {
632                         cx = &safe_cx;
633                         index = -EBUSY;
634                 }
635         }
636
637         if (dis_bm) {
638                 raw_spin_lock(&c3_lock);
639                 c3_cpu_count++;
640                 /* Disable bus master arbitration when all CPUs are in C3 */
641                 if (c3_cpu_count == num_online_cpus())
642                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
643                 raw_spin_unlock(&c3_lock);
644         }
645
646         rcu_idle_enter();
647
648         acpi_idle_do_entry(cx);
649
650         rcu_idle_exit();
651
652         /* Re-enable bus master arbitration */
653         if (dis_bm) {
654                 raw_spin_lock(&c3_lock);
655                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
656                 c3_cpu_count--;
657                 raw_spin_unlock(&c3_lock);
658         }
659
660         return index;
661 }
662
663 static int acpi_idle_enter(struct cpuidle_device *dev,
664                            struct cpuidle_driver *drv, int index)
665 {
666         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
667         struct acpi_processor *pr;
668
669         pr = __this_cpu_read(processors);
670         if (unlikely(!pr))
671                 return -EINVAL;
672
673         if (cx->type != ACPI_STATE_C1) {
674                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
675                         return acpi_idle_enter_bm(drv, pr, cx, index);
676
677                 /* C2 to C1 demotion. */
678                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
679                         index = ACPI_IDLE_STATE_START;
680                         cx = per_cpu(acpi_cstate[index], dev->cpu);
681                 }
682         }
683
684         if (cx->type == ACPI_STATE_C3)
685                 ACPI_FLUSH_CPU_CACHE();
686
687         acpi_idle_do_entry(cx);
688
689         return index;
690 }
691
692 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
693                                   struct cpuidle_driver *drv, int index)
694 {
695         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
696
697         if (cx->type == ACPI_STATE_C3) {
698                 struct acpi_processor *pr = __this_cpu_read(processors);
699
700                 if (unlikely(!pr))
701                         return 0;
702
703                 if (pr->flags.bm_check) {
704                         u8 bm_sts_skip = cx->bm_sts_skip;
705
706                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
707                         cx->bm_sts_skip = 1;
708                         acpi_idle_enter_bm(drv, pr, cx, index);
709                         cx->bm_sts_skip = bm_sts_skip;
710
711                         return 0;
712                 } else {
713                         ACPI_FLUSH_CPU_CACHE();
714                 }
715         }
716         acpi_idle_do_entry(cx);
717
718         return 0;
719 }
720
721 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
722                                            struct cpuidle_device *dev)
723 {
724         int i, count = ACPI_IDLE_STATE_START;
725         struct acpi_processor_cx *cx;
726         struct cpuidle_state *state;
727
728         if (max_cstate == 0)
729                 max_cstate = 1;
730
731         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
732                 state = &acpi_idle_driver.states[count];
733                 cx = &pr->power.states[i];
734
735                 if (!cx->valid)
736                         continue;
737
738                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
739
740                 if (lapic_timer_needs_broadcast(pr, cx))
741                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
742
743                 if (cx->type == ACPI_STATE_C3) {
744                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
745                         if (pr->flags.bm_check)
746                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
747                 }
748
749                 count++;
750                 if (count == CPUIDLE_STATE_MAX)
751                         break;
752         }
753
754         if (!count)
755                 return -EINVAL;
756
757         return 0;
758 }
759
760 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
761 {
762         int i, count;
763         struct acpi_processor_cx *cx;
764         struct cpuidle_state *state;
765         struct cpuidle_driver *drv = &acpi_idle_driver;
766
767         if (max_cstate == 0)
768                 max_cstate = 1;
769
770         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
771                 cpuidle_poll_state_init(drv);
772                 count = 1;
773         } else {
774                 count = 0;
775         }
776
777         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
778                 cx = &pr->power.states[i];
779
780                 if (!cx->valid)
781                         continue;
782
783                 state = &drv->states[count];
784                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
785                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
786                 state->exit_latency = cx->latency;
787                 state->target_residency = cx->latency * latency_factor;
788                 state->enter = acpi_idle_enter;
789
790                 state->flags = 0;
791                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
792                     cx->type == ACPI_STATE_C3) {
793                         state->enter_dead = acpi_idle_play_dead;
794                         drv->safe_state_index = count;
795                 }
796                 /*
797                  * Halt-induced C1 is not good for ->enter_s2idle, because it
798                  * re-enables interrupts on exit.  Moreover, C1 is generally not
799                  * particularly interesting from the suspend-to-idle angle, so
800                  * avoid C1 and the situations in which we may need to fall back
801                  * to it altogether.
802                  */
803                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
804                         state->enter_s2idle = acpi_idle_enter_s2idle;
805
806                 count++;
807                 if (count == CPUIDLE_STATE_MAX)
808                         break;
809         }
810
811         drv->state_count = count;
812
813         if (!count)
814                 return -EINVAL;
815
816         return 0;
817 }
818
819 static inline void acpi_processor_cstate_first_run_checks(void)
820 {
821         static int first_run;
822
823         if (first_run)
824                 return;
825         dmi_check_system(processor_power_dmi_table);
826         max_cstate = acpi_processor_cstate_check(max_cstate);
827         if (max_cstate < ACPI_C_STATES_MAX)
828                 pr_notice("processor limited to max C-state %d\n", max_cstate);
829
830         first_run++;
831
832         if (nocst)
833                 return;
834
835         acpi_processor_claim_cst_control();
836 }
837 #else
838
839 static inline int disabled_by_idle_boot_param(void) { return 0; }
840 static inline void acpi_processor_cstate_first_run_checks(void) { }
841 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
842 {
843         return -ENODEV;
844 }
845
846 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
847                                            struct cpuidle_device *dev)
848 {
849         return -EINVAL;
850 }
851
852 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
853 {
854         return -EINVAL;
855 }
856
857 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
858
859 struct acpi_lpi_states_array {
860         unsigned int size;
861         unsigned int composite_states_size;
862         struct acpi_lpi_state *entries;
863         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
864 };
865
866 static int obj_get_integer(union acpi_object *obj, u32 *value)
867 {
868         if (obj->type != ACPI_TYPE_INTEGER)
869                 return -EINVAL;
870
871         *value = obj->integer.value;
872         return 0;
873 }
874
875 static int acpi_processor_evaluate_lpi(acpi_handle handle,
876                                        struct acpi_lpi_states_array *info)
877 {
878         acpi_status status;
879         int ret = 0;
880         int pkg_count, state_idx = 1, loop;
881         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
882         union acpi_object *lpi_data;
883         struct acpi_lpi_state *lpi_state;
884
885         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
886         if (ACPI_FAILURE(status)) {
887                 acpi_handle_debug(handle, "No _LPI, giving up\n");
888                 return -ENODEV;
889         }
890
891         lpi_data = buffer.pointer;
892
893         /* There must be at least 4 elements = 3 elements + 1 package */
894         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
895             lpi_data->package.count < 4) {
896                 pr_debug("not enough elements in _LPI\n");
897                 ret = -ENODATA;
898                 goto end;
899         }
900
901         pkg_count = lpi_data->package.elements[2].integer.value;
902
903         /* Validate number of power states. */
904         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
905                 pr_debug("count given by _LPI is not valid\n");
906                 ret = -ENODATA;
907                 goto end;
908         }
909
910         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
911         if (!lpi_state) {
912                 ret = -ENOMEM;
913                 goto end;
914         }
915
916         info->size = pkg_count;
917         info->entries = lpi_state;
918
919         /* LPI States start at index 3 */
920         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
921                 union acpi_object *element, *pkg_elem, *obj;
922
923                 element = &lpi_data->package.elements[loop];
924                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
925                         continue;
926
927                 pkg_elem = element->package.elements;
928
929                 obj = pkg_elem + 6;
930                 if (obj->type == ACPI_TYPE_BUFFER) {
931                         struct acpi_power_register *reg;
932
933                         reg = (struct acpi_power_register *)obj->buffer.pointer;
934                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
935                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
936                                 continue;
937
938                         lpi_state->address = reg->address;
939                         lpi_state->entry_method =
940                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
941                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
942                 } else if (obj->type == ACPI_TYPE_INTEGER) {
943                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
944                         lpi_state->address = obj->integer.value;
945                 } else {
946                         continue;
947                 }
948
949                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
950
951                 obj = pkg_elem + 9;
952                 if (obj->type == ACPI_TYPE_STRING)
953                         strlcpy(lpi_state->desc, obj->string.pointer,
954                                 ACPI_CX_DESC_LEN);
955
956                 lpi_state->index = state_idx;
957                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
958                         pr_debug("No min. residency found, assuming 10 us\n");
959                         lpi_state->min_residency = 10;
960                 }
961
962                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
963                         pr_debug("No wakeup residency found, assuming 10 us\n");
964                         lpi_state->wake_latency = 10;
965                 }
966
967                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
968                         lpi_state->flags = 0;
969
970                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
971                         lpi_state->arch_flags = 0;
972
973                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
974                         lpi_state->res_cnt_freq = 1;
975
976                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
977                         lpi_state->enable_parent_state = 0;
978         }
979
980         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
981 end:
982         kfree(buffer.pointer);
983         return ret;
984 }
985
986 /*
987  * flat_state_cnt - the number of composite LPI states after the process of flattening
988  */
989 static int flat_state_cnt;
990
991 /**
992  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
993  *
994  * @local: local LPI state
995  * @parent: parent LPI state
996  * @result: composite LPI state
997  */
998 static bool combine_lpi_states(struct acpi_lpi_state *local,
999                                struct acpi_lpi_state *parent,
1000                                struct acpi_lpi_state *result)
1001 {
1002         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1003                 if (!parent->address) /* 0 means autopromotable */
1004                         return false;
1005                 result->address = local->address + parent->address;
1006         } else {
1007                 result->address = parent->address;
1008         }
1009
1010         result->min_residency = max(local->min_residency, parent->min_residency);
1011         result->wake_latency = local->wake_latency + parent->wake_latency;
1012         result->enable_parent_state = parent->enable_parent_state;
1013         result->entry_method = local->entry_method;
1014
1015         result->flags = parent->flags;
1016         result->arch_flags = parent->arch_flags;
1017         result->index = parent->index;
1018
1019         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1020         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1021         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1022         return true;
1023 }
1024
1025 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1026
1027 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1028                                   struct acpi_lpi_state *t)
1029 {
1030         curr_level->composite_states[curr_level->composite_states_size++] = t;
1031 }
1032
1033 static int flatten_lpi_states(struct acpi_processor *pr,
1034                               struct acpi_lpi_states_array *curr_level,
1035                               struct acpi_lpi_states_array *prev_level)
1036 {
1037         int i, j, state_count = curr_level->size;
1038         struct acpi_lpi_state *p, *t = curr_level->entries;
1039
1040         curr_level->composite_states_size = 0;
1041         for (j = 0; j < state_count; j++, t++) {
1042                 struct acpi_lpi_state *flpi;
1043
1044                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1045                         continue;
1046
1047                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1048                         pr_warn("Limiting number of LPI states to max (%d)\n",
1049                                 ACPI_PROCESSOR_MAX_POWER);
1050                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1051                         break;
1052                 }
1053
1054                 flpi = &pr->power.lpi_states[flat_state_cnt];
1055
1056                 if (!prev_level) { /* leaf/processor node */
1057                         memcpy(flpi, t, sizeof(*t));
1058                         stash_composite_state(curr_level, flpi);
1059                         flat_state_cnt++;
1060                         continue;
1061                 }
1062
1063                 for (i = 0; i < prev_level->composite_states_size; i++) {
1064                         p = prev_level->composite_states[i];
1065                         if (t->index <= p->enable_parent_state &&
1066                             combine_lpi_states(p, t, flpi)) {
1067                                 stash_composite_state(curr_level, flpi);
1068                                 flat_state_cnt++;
1069                                 flpi++;
1070                         }
1071                 }
1072         }
1073
1074         kfree(curr_level->entries);
1075         return 0;
1076 }
1077
1078 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1079 {
1080         int ret, i;
1081         acpi_status status;
1082         acpi_handle handle = pr->handle, pr_ahandle;
1083         struct acpi_device *d = NULL;
1084         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1085
1086         if (!osc_pc_lpi_support_confirmed)
1087                 return -EOPNOTSUPP;
1088
1089         if (!acpi_has_method(handle, "_LPI"))
1090                 return -EINVAL;
1091
1092         flat_state_cnt = 0;
1093         prev = &info[0];
1094         curr = &info[1];
1095         handle = pr->handle;
1096         ret = acpi_processor_evaluate_lpi(handle, prev);
1097         if (ret)
1098                 return ret;
1099         flatten_lpi_states(pr, prev, NULL);
1100
1101         status = acpi_get_parent(handle, &pr_ahandle);
1102         while (ACPI_SUCCESS(status)) {
1103                 d = acpi_fetch_acpi_dev(pr_ahandle);
1104                 handle = pr_ahandle;
1105
1106                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1107                         break;
1108
1109                 /* can be optional ? */
1110                 if (!acpi_has_method(handle, "_LPI"))
1111                         break;
1112
1113                 ret = acpi_processor_evaluate_lpi(handle, curr);
1114                 if (ret)
1115                         break;
1116
1117                 /* flatten all the LPI states in this level of hierarchy */
1118                 flatten_lpi_states(pr, curr, prev);
1119
1120                 tmp = prev, prev = curr, curr = tmp;
1121
1122                 status = acpi_get_parent(handle, &pr_ahandle);
1123         }
1124
1125         pr->power.count = flat_state_cnt;
1126         /* reset the index after flattening */
1127         for (i = 0; i < pr->power.count; i++)
1128                 pr->power.lpi_states[i].index = i;
1129
1130         /* Tell driver that _LPI is supported. */
1131         pr->flags.has_lpi = 1;
1132         pr->flags.power = 1;
1133
1134         return 0;
1135 }
1136
1137 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1138 {
1139         return -ENODEV;
1140 }
1141
1142 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1143 {
1144         return -ENODEV;
1145 }
1146
1147 /**
1148  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1149  * @dev: the target CPU
1150  * @drv: cpuidle driver containing cpuidle state info
1151  * @index: index of target state
1152  *
1153  * Return: 0 for success or negative value for error
1154  */
1155 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1156                                struct cpuidle_driver *drv, int index)
1157 {
1158         struct acpi_processor *pr;
1159         struct acpi_lpi_state *lpi;
1160
1161         pr = __this_cpu_read(processors);
1162
1163         if (unlikely(!pr))
1164                 return -EINVAL;
1165
1166         lpi = &pr->power.lpi_states[index];
1167         if (lpi->entry_method == ACPI_CSTATE_FFH)
1168                 return acpi_processor_ffh_lpi_enter(lpi);
1169
1170         return -EINVAL;
1171 }
1172
1173 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1174 {
1175         int i;
1176         struct acpi_lpi_state *lpi;
1177         struct cpuidle_state *state;
1178         struct cpuidle_driver *drv = &acpi_idle_driver;
1179
1180         if (!pr->flags.has_lpi)
1181                 return -EOPNOTSUPP;
1182
1183         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1184                 lpi = &pr->power.lpi_states[i];
1185
1186                 state = &drv->states[i];
1187                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1188                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1189                 state->exit_latency = lpi->wake_latency;
1190                 state->target_residency = lpi->min_residency;
1191                 if (lpi->arch_flags)
1192                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1193                 state->enter = acpi_idle_lpi_enter;
1194                 drv->safe_state_index = i;
1195         }
1196
1197         drv->state_count = i;
1198
1199         return 0;
1200 }
1201
1202 /**
1203  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1204  * global state data i.e. idle routines
1205  *
1206  * @pr: the ACPI processor
1207  */
1208 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1209 {
1210         int i;
1211         struct cpuidle_driver *drv = &acpi_idle_driver;
1212
1213         if (!pr->flags.power_setup_done || !pr->flags.power)
1214                 return -EINVAL;
1215
1216         drv->safe_state_index = -1;
1217         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1218                 drv->states[i].name[0] = '\0';
1219                 drv->states[i].desc[0] = '\0';
1220         }
1221
1222         if (pr->flags.has_lpi)
1223                 return acpi_processor_setup_lpi_states(pr);
1224
1225         return acpi_processor_setup_cstates(pr);
1226 }
1227
1228 /**
1229  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1230  * device i.e. per-cpu data
1231  *
1232  * @pr: the ACPI processor
1233  * @dev : the cpuidle device
1234  */
1235 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1236                                             struct cpuidle_device *dev)
1237 {
1238         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1239                 return -EINVAL;
1240
1241         dev->cpu = pr->id;
1242         if (pr->flags.has_lpi)
1243                 return acpi_processor_ffh_lpi_probe(pr->id);
1244
1245         return acpi_processor_setup_cpuidle_cx(pr, dev);
1246 }
1247
1248 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1249 {
1250         int ret;
1251
1252         ret = acpi_processor_get_lpi_info(pr);
1253         if (ret)
1254                 ret = acpi_processor_get_cstate_info(pr);
1255
1256         return ret;
1257 }
1258
1259 int acpi_processor_hotplug(struct acpi_processor *pr)
1260 {
1261         int ret = 0;
1262         struct cpuidle_device *dev;
1263
1264         if (disabled_by_idle_boot_param())
1265                 return 0;
1266
1267         if (!pr->flags.power_setup_done)
1268                 return -ENODEV;
1269
1270         dev = per_cpu(acpi_cpuidle_device, pr->id);
1271         cpuidle_pause_and_lock();
1272         cpuidle_disable_device(dev);
1273         ret = acpi_processor_get_power_info(pr);
1274         if (!ret && pr->flags.power) {
1275                 acpi_processor_setup_cpuidle_dev(pr, dev);
1276                 ret = cpuidle_enable_device(dev);
1277         }
1278         cpuidle_resume_and_unlock();
1279
1280         return ret;
1281 }
1282
1283 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1284 {
1285         int cpu;
1286         struct acpi_processor *_pr;
1287         struct cpuidle_device *dev;
1288
1289         if (disabled_by_idle_boot_param())
1290                 return 0;
1291
1292         if (!pr->flags.power_setup_done)
1293                 return -ENODEV;
1294
1295         /*
1296          * FIXME:  Design the ACPI notification to make it once per
1297          * system instead of once per-cpu.  This condition is a hack
1298          * to make the code that updates C-States be called once.
1299          */
1300
1301         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1302
1303                 /* Protect against cpu-hotplug */
1304                 cpus_read_lock();
1305                 cpuidle_pause_and_lock();
1306
1307                 /* Disable all cpuidle devices */
1308                 for_each_online_cpu(cpu) {
1309                         _pr = per_cpu(processors, cpu);
1310                         if (!_pr || !_pr->flags.power_setup_done)
1311                                 continue;
1312                         dev = per_cpu(acpi_cpuidle_device, cpu);
1313                         cpuidle_disable_device(dev);
1314                 }
1315
1316                 /* Populate Updated C-state information */
1317                 acpi_processor_get_power_info(pr);
1318                 acpi_processor_setup_cpuidle_states(pr);
1319
1320                 /* Enable all cpuidle devices */
1321                 for_each_online_cpu(cpu) {
1322                         _pr = per_cpu(processors, cpu);
1323                         if (!_pr || !_pr->flags.power_setup_done)
1324                                 continue;
1325                         acpi_processor_get_power_info(_pr);
1326                         if (_pr->flags.power) {
1327                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1328                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1329                                 cpuidle_enable_device(dev);
1330                         }
1331                 }
1332                 cpuidle_resume_and_unlock();
1333                 cpus_read_unlock();
1334         }
1335
1336         return 0;
1337 }
1338
1339 static int acpi_processor_registered;
1340
1341 int acpi_processor_power_init(struct acpi_processor *pr)
1342 {
1343         int retval;
1344         struct cpuidle_device *dev;
1345
1346         if (disabled_by_idle_boot_param())
1347                 return 0;
1348
1349         acpi_processor_cstate_first_run_checks();
1350
1351         if (!acpi_processor_get_power_info(pr))
1352                 pr->flags.power_setup_done = 1;
1353
1354         /*
1355          * Install the idle handler if processor power management is supported.
1356          * Note that we use previously set idle handler will be used on
1357          * platforms that only support C1.
1358          */
1359         if (pr->flags.power) {
1360                 /* Register acpi_idle_driver if not already registered */
1361                 if (!acpi_processor_registered) {
1362                         acpi_processor_setup_cpuidle_states(pr);
1363                         retval = cpuidle_register_driver(&acpi_idle_driver);
1364                         if (retval)
1365                                 return retval;
1366                         pr_debug("%s registered with cpuidle\n",
1367                                  acpi_idle_driver.name);
1368                 }
1369
1370                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1371                 if (!dev)
1372                         return -ENOMEM;
1373                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1374
1375                 acpi_processor_setup_cpuidle_dev(pr, dev);
1376
1377                 /* Register per-cpu cpuidle_device. Cpuidle driver
1378                  * must already be registered before registering device
1379                  */
1380                 retval = cpuidle_register_device(dev);
1381                 if (retval) {
1382                         if (acpi_processor_registered == 0)
1383                                 cpuidle_unregister_driver(&acpi_idle_driver);
1384                         return retval;
1385                 }
1386                 acpi_processor_registered++;
1387         }
1388         return 0;
1389 }
1390
1391 int acpi_processor_power_exit(struct acpi_processor *pr)
1392 {
1393         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1394
1395         if (disabled_by_idle_boot_param())
1396                 return 0;
1397
1398         if (pr->flags.power) {
1399                 cpuidle_unregister_device(dev);
1400                 acpi_processor_registered--;
1401                 if (acpi_processor_registered == 0)
1402                         cpuidle_unregister_driver(&acpi_idle_driver);
1403         }
1404
1405         pr->flags.power_setup_done = 0;
1406         return 0;
1407 }