Merge tag 'dmaengine-5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <acpi/processor.h>
25
26 /*
27  * Include the apic definitions for x86 to have the APIC timer related defines
28  * available also for UP (on SMP it gets magically included via linux/smp.h).
29  * asm/acpi.h is not an option, as it would require more include magic. Also
30  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
31  */
32 #ifdef CONFIG_X86
33 #include <asm/apic.h>
34 #include <asm/cpu.h>
35 #endif
36
37 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
38
39 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
40 module_param(max_cstate, uint, 0000);
41 static unsigned int nocst __read_mostly;
42 module_param(nocst, uint, 0000);
43 static int bm_check_disable __read_mostly;
44 module_param(bm_check_disable, uint, 0000);
45
46 static unsigned int latency_factor __read_mostly = 2;
47 module_param(latency_factor, uint, 0644);
48
49 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
50
51 struct cpuidle_driver acpi_idle_driver = {
52         .name =         "acpi_idle",
53         .owner =        THIS_MODULE,
54 };
55
56 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
57 static
58 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
59
60 static int disabled_by_idle_boot_param(void)
61 {
62         return boot_option_idle_override == IDLE_POLL ||
63                 boot_option_idle_override == IDLE_HALT;
64 }
65
66 /*
67  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
68  * For now disable this. Probably a bug somewhere else.
69  *
70  * To skip this limit, boot/load with a large max_cstate limit.
71  */
72 static int set_max_cstate(const struct dmi_system_id *id)
73 {
74         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
75                 return 0;
76
77         pr_notice("%s detected - limiting to C%ld max_cstate."
78                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
79                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
80
81         max_cstate = (long)id->driver_data;
82
83         return 0;
84 }
85
86 static const struct dmi_system_id processor_power_dmi_table[] = {
87         { set_max_cstate, "Clevo 5600D", {
88           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
89           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
90          (void *)2},
91         { set_max_cstate, "Pavilion zv5000", {
92           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
93           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
94          (void *)1},
95         { set_max_cstate, "Asus L8400B", {
96           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
97           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
98          (void *)1},
99         /* T40 can not handle C3 idle state */
100         { set_max_cstate, "IBM ThinkPad T40", {
101           DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
102           DMI_MATCH(DMI_PRODUCT_NAME, "23737CU")},
103          (void *)2},
104         {},
105 };
106
107
108 /*
109  * Callers should disable interrupts before the call and enable
110  * interrupts after return.
111  */
112 static void __cpuidle acpi_safe_halt(void)
113 {
114         if (!tif_need_resched()) {
115                 safe_halt();
116                 local_irq_disable();
117         }
118 }
119
120 #ifdef ARCH_APICTIMER_STOPS_ON_C3
121
122 /*
123  * Some BIOS implementations switch to C3 in the published C2 state.
124  * This seems to be a common problem on AMD boxen, but other vendors
125  * are affected too. We pick the most conservative approach: we assume
126  * that the local APIC stops in both C2 and C3.
127  */
128 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
129                                    struct acpi_processor_cx *cx)
130 {
131         struct acpi_processor_power *pwr = &pr->power;
132         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
133
134         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
135                 return;
136
137         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
138                 type = ACPI_STATE_C1;
139
140         /*
141          * Check, if one of the previous states already marked the lapic
142          * unstable
143          */
144         if (pwr->timer_broadcast_on_state < state)
145                 return;
146
147         if (cx->type >= type)
148                 pr->power.timer_broadcast_on_state = state;
149 }
150
151 static void __lapic_timer_propagate_broadcast(void *arg)
152 {
153         struct acpi_processor *pr = (struct acpi_processor *) arg;
154
155         if (pr->power.timer_broadcast_on_state < INT_MAX)
156                 tick_broadcast_enable();
157         else
158                 tick_broadcast_disable();
159 }
160
161 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
162 {
163         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
164                                  (void *)pr, 1);
165 }
166
167 /* Power(C) State timer broadcast control */
168 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
169                                         struct acpi_processor_cx *cx)
170 {
171         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
172 }
173
174 #else
175
176 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
177                                    struct acpi_processor_cx *cstate) { }
178 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
179
180 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
181                                         struct acpi_processor_cx *cx)
182 {
183         return false;
184 }
185
186 #endif
187
188 #if defined(CONFIG_X86)
189 static void tsc_check_state(int state)
190 {
191         switch (boot_cpu_data.x86_vendor) {
192         case X86_VENDOR_HYGON:
193         case X86_VENDOR_AMD:
194         case X86_VENDOR_INTEL:
195         case X86_VENDOR_CENTAUR:
196         case X86_VENDOR_ZHAOXIN:
197                 /*
198                  * AMD Fam10h TSC will tick in all
199                  * C/P/S0/S1 states when this bit is set.
200                  */
201                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
202                         return;
203                 fallthrough;
204         default:
205                 /* TSC could halt in idle, so notify users */
206                 if (state > ACPI_STATE_C1)
207                         mark_tsc_unstable("TSC halts in idle");
208         }
209 }
210 #else
211 static void tsc_check_state(int state) { return; }
212 #endif
213
214 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
215 {
216
217         if (!pr->pblk)
218                 return -ENODEV;
219
220         /* if info is obtained from pblk/fadt, type equals state */
221         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
222         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
223
224 #ifndef CONFIG_HOTPLUG_CPU
225         /*
226          * Check for P_LVL2_UP flag before entering C2 and above on
227          * an SMP system.
228          */
229         if ((num_online_cpus() > 1) &&
230             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
231                 return -ENODEV;
232 #endif
233
234         /* determine C2 and C3 address from pblk */
235         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
236         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
237
238         /* determine latencies from FADT */
239         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
240         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
241
242         /*
243          * FADT specified C2 latency must be less than or equal to
244          * 100 microseconds.
245          */
246         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
247                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
248                                   acpi_gbl_FADT.c2_latency);
249                 /* invalidate C2 */
250                 pr->power.states[ACPI_STATE_C2].address = 0;
251         }
252
253         /*
254          * FADT supplied C3 latency must be less than or equal to
255          * 1000 microseconds.
256          */
257         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
258                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
259                                   acpi_gbl_FADT.c3_latency);
260                 /* invalidate C3 */
261                 pr->power.states[ACPI_STATE_C3].address = 0;
262         }
263
264         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
265                           pr->power.states[ACPI_STATE_C2].address,
266                           pr->power.states[ACPI_STATE_C3].address);
267
268         snprintf(pr->power.states[ACPI_STATE_C2].desc,
269                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
270                          pr->power.states[ACPI_STATE_C2].address);
271         snprintf(pr->power.states[ACPI_STATE_C3].desc,
272                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
273                          pr->power.states[ACPI_STATE_C3].address);
274
275         return 0;
276 }
277
278 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
279 {
280         if (!pr->power.states[ACPI_STATE_C1].valid) {
281                 /* set the first C-State to C1 */
282                 /* all processors need to support C1 */
283                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
284                 pr->power.states[ACPI_STATE_C1].valid = 1;
285                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
286
287                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
288                          ACPI_CX_DESC_LEN, "ACPI HLT");
289         }
290         /* the C0 state only exists as a filler in our array */
291         pr->power.states[ACPI_STATE_C0].valid = 1;
292         return 0;
293 }
294
295 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
296 {
297         int ret;
298
299         if (nocst)
300                 return -ENODEV;
301
302         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
303         if (ret)
304                 return ret;
305
306         if (!pr->power.count)
307                 return -EFAULT;
308
309         pr->flags.has_cst = 1;
310         return 0;
311 }
312
313 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
314                                            struct acpi_processor_cx *cx)
315 {
316         static int bm_check_flag = -1;
317         static int bm_control_flag = -1;
318
319
320         if (!cx->address)
321                 return;
322
323         /*
324          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
325          * DMA transfers are used by any ISA device to avoid livelock.
326          * Note that we could disable Type-F DMA (as recommended by
327          * the erratum), but this is known to disrupt certain ISA
328          * devices thus we take the conservative approach.
329          */
330         else if (errata.piix4.fdma) {
331                 acpi_handle_debug(pr->handle,
332                                   "C3 not supported on PIIX4 with Type-F DMA\n");
333                 return;
334         }
335
336         /* All the logic here assumes flags.bm_check is same across all CPUs */
337         if (bm_check_flag == -1) {
338                 /* Determine whether bm_check is needed based on CPU  */
339                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
340                 bm_check_flag = pr->flags.bm_check;
341                 bm_control_flag = pr->flags.bm_control;
342         } else {
343                 pr->flags.bm_check = bm_check_flag;
344                 pr->flags.bm_control = bm_control_flag;
345         }
346
347         if (pr->flags.bm_check) {
348                 if (!pr->flags.bm_control) {
349                         if (pr->flags.has_cst != 1) {
350                                 /* bus mastering control is necessary */
351                                 acpi_handle_debug(pr->handle,
352                                                   "C3 support requires BM control\n");
353                                 return;
354                         } else {
355                                 /* Here we enter C3 without bus mastering */
356                                 acpi_handle_debug(pr->handle,
357                                                   "C3 support without BM control\n");
358                         }
359                 }
360         } else {
361                 /*
362                  * WBINVD should be set in fadt, for C3 state to be
363                  * supported on when bm_check is not required.
364                  */
365                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
366                         acpi_handle_debug(pr->handle,
367                                           "Cache invalidation should work properly"
368                                           " for C3 to be enabled on SMP systems\n");
369                         return;
370                 }
371         }
372
373         /*
374          * Otherwise we've met all of our C3 requirements.
375          * Normalize the C3 latency to expidite policy.  Enable
376          * checking of bus mastering status (bm_check) so we can
377          * use this in our C3 policy
378          */
379         cx->valid = 1;
380
381         /*
382          * On older chipsets, BM_RLD needs to be set
383          * in order for Bus Master activity to wake the
384          * system from C3.  Newer chipsets handle DMA
385          * during C3 automatically and BM_RLD is a NOP.
386          * In either case, the proper way to
387          * handle BM_RLD is to set it and leave it set.
388          */
389         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
390
391         return;
392 }
393
394 static int acpi_cst_latency_cmp(const void *a, const void *b)
395 {
396         const struct acpi_processor_cx *x = a, *y = b;
397
398         if (!(x->valid && y->valid))
399                 return 0;
400         if (x->latency > y->latency)
401                 return 1;
402         if (x->latency < y->latency)
403                 return -1;
404         return 0;
405 }
406 static void acpi_cst_latency_swap(void *a, void *b, int n)
407 {
408         struct acpi_processor_cx *x = a, *y = b;
409
410         if (!(x->valid && y->valid))
411                 return;
412         swap(x->latency, y->latency);
413 }
414
415 static int acpi_processor_power_verify(struct acpi_processor *pr)
416 {
417         unsigned int i;
418         unsigned int working = 0;
419         unsigned int last_latency = 0;
420         unsigned int last_type = 0;
421         bool buggy_latency = false;
422
423         pr->power.timer_broadcast_on_state = INT_MAX;
424
425         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
426                 struct acpi_processor_cx *cx = &pr->power.states[i];
427
428                 switch (cx->type) {
429                 case ACPI_STATE_C1:
430                         cx->valid = 1;
431                         break;
432
433                 case ACPI_STATE_C2:
434                         if (!cx->address)
435                                 break;
436                         cx->valid = 1;
437                         break;
438
439                 case ACPI_STATE_C3:
440                         acpi_processor_power_verify_c3(pr, cx);
441                         break;
442                 }
443                 if (!cx->valid)
444                         continue;
445                 if (cx->type >= last_type && cx->latency < last_latency)
446                         buggy_latency = true;
447                 last_latency = cx->latency;
448                 last_type = cx->type;
449
450                 lapic_timer_check_state(i, pr, cx);
451                 tsc_check_state(cx->type);
452                 working++;
453         }
454
455         if (buggy_latency) {
456                 pr_notice("FW issue: working around C-state latencies out of order\n");
457                 sort(&pr->power.states[1], max_cstate,
458                      sizeof(struct acpi_processor_cx),
459                      acpi_cst_latency_cmp,
460                      acpi_cst_latency_swap);
461         }
462
463         lapic_timer_propagate_broadcast(pr);
464
465         return (working);
466 }
467
468 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
469 {
470         unsigned int i;
471         int result;
472
473
474         /* NOTE: the idle thread may not be running while calling
475          * this function */
476
477         /* Zero initialize all the C-states info. */
478         memset(pr->power.states, 0, sizeof(pr->power.states));
479
480         result = acpi_processor_get_power_info_cst(pr);
481         if (result == -ENODEV)
482                 result = acpi_processor_get_power_info_fadt(pr);
483
484         if (result)
485                 return result;
486
487         acpi_processor_get_power_info_default(pr);
488
489         pr->power.count = acpi_processor_power_verify(pr);
490
491         /*
492          * if one state of type C2 or C3 is available, mark this
493          * CPU as being "idle manageable"
494          */
495         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
496                 if (pr->power.states[i].valid) {
497                         pr->power.count = i;
498                         pr->flags.power = 1;
499                 }
500         }
501
502         return 0;
503 }
504
505 /**
506  * acpi_idle_bm_check - checks if bus master activity was detected
507  */
508 static int acpi_idle_bm_check(void)
509 {
510         u32 bm_status = 0;
511
512         if (bm_check_disable)
513                 return 0;
514
515         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
516         if (bm_status)
517                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
518         /*
519          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
520          * the true state of bus mastering activity; forcing us to
521          * manually check the BMIDEA bit of each IDE channel.
522          */
523         else if (errata.piix4.bmisx) {
524                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
525                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
526                         bm_status = 1;
527         }
528         return bm_status;
529 }
530
531 static void wait_for_freeze(void)
532 {
533 #ifdef  CONFIG_X86
534         /* No delay is needed if we are in guest */
535         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
536                 return;
537 #endif
538         /* Dummy wait op - must do something useless after P_LVL2 read
539            because chipsets cannot guarantee that STPCLK# signal
540            gets asserted in time to freeze execution properly. */
541         inl(acpi_gbl_FADT.xpm_timer_block.address);
542 }
543
544 /**
545  * acpi_idle_do_entry - enter idle state using the appropriate method
546  * @cx: cstate data
547  *
548  * Caller disables interrupt before call and enables interrupt after return.
549  */
550 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
551 {
552         if (cx->entry_method == ACPI_CSTATE_FFH) {
553                 /* Call into architectural FFH based C-state */
554                 acpi_processor_ffh_cstate_enter(cx);
555         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
556                 acpi_safe_halt();
557         } else {
558                 /* IO port based C-state */
559                 inb(cx->address);
560                 wait_for_freeze();
561         }
562 }
563
564 /**
565  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
566  * @dev: the target CPU
567  * @index: the index of suggested state
568  */
569 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
570 {
571         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
572
573         if (cx->type == ACPI_STATE_C3)
574                 ACPI_FLUSH_CPU_CACHE();
575
576         while (1) {
577
578                 if (cx->entry_method == ACPI_CSTATE_HALT)
579                         safe_halt();
580                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
581                         inb(cx->address);
582                         wait_for_freeze();
583                 } else
584                         return -ENODEV;
585
586 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
587                 cond_wakeup_cpu0();
588 #endif
589         }
590
591         /* Never reached */
592         return 0;
593 }
594
595 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
596 {
597         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
598                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
599 }
600
601 static int c3_cpu_count;
602 static DEFINE_RAW_SPINLOCK(c3_lock);
603
604 /**
605  * acpi_idle_enter_bm - enters C3 with proper BM handling
606  * @drv: cpuidle driver
607  * @pr: Target processor
608  * @cx: Target state context
609  * @index: index of target state
610  */
611 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
612                                struct acpi_processor *pr,
613                                struct acpi_processor_cx *cx,
614                                int index)
615 {
616         static struct acpi_processor_cx safe_cx = {
617                 .entry_method = ACPI_CSTATE_HALT,
618         };
619
620         /*
621          * disable bus master
622          * bm_check implies we need ARB_DIS
623          * bm_control implies whether we can do ARB_DIS
624          *
625          * That leaves a case where bm_check is set and bm_control is not set.
626          * In that case we cannot do much, we enter C3 without doing anything.
627          */
628         bool dis_bm = pr->flags.bm_control;
629
630         /* If we can skip BM, demote to a safe state. */
631         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
632                 dis_bm = false;
633                 index = drv->safe_state_index;
634                 if (index >= 0) {
635                         cx = this_cpu_read(acpi_cstate[index]);
636                 } else {
637                         cx = &safe_cx;
638                         index = -EBUSY;
639                 }
640         }
641
642         if (dis_bm) {
643                 raw_spin_lock(&c3_lock);
644                 c3_cpu_count++;
645                 /* Disable bus master arbitration when all CPUs are in C3 */
646                 if (c3_cpu_count == num_online_cpus())
647                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
648                 raw_spin_unlock(&c3_lock);
649         }
650
651         rcu_idle_enter();
652
653         acpi_idle_do_entry(cx);
654
655         rcu_idle_exit();
656
657         /* Re-enable bus master arbitration */
658         if (dis_bm) {
659                 raw_spin_lock(&c3_lock);
660                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
661                 c3_cpu_count--;
662                 raw_spin_unlock(&c3_lock);
663         }
664
665         return index;
666 }
667
668 static int acpi_idle_enter(struct cpuidle_device *dev,
669                            struct cpuidle_driver *drv, int index)
670 {
671         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
672         struct acpi_processor *pr;
673
674         pr = __this_cpu_read(processors);
675         if (unlikely(!pr))
676                 return -EINVAL;
677
678         if (cx->type != ACPI_STATE_C1) {
679                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
680                         return acpi_idle_enter_bm(drv, pr, cx, index);
681
682                 /* C2 to C1 demotion. */
683                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
684                         index = ACPI_IDLE_STATE_START;
685                         cx = per_cpu(acpi_cstate[index], dev->cpu);
686                 }
687         }
688
689         if (cx->type == ACPI_STATE_C3)
690                 ACPI_FLUSH_CPU_CACHE();
691
692         acpi_idle_do_entry(cx);
693
694         return index;
695 }
696
697 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
698                                   struct cpuidle_driver *drv, int index)
699 {
700         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
701
702         if (cx->type == ACPI_STATE_C3) {
703                 struct acpi_processor *pr = __this_cpu_read(processors);
704
705                 if (unlikely(!pr))
706                         return 0;
707
708                 if (pr->flags.bm_check) {
709                         u8 bm_sts_skip = cx->bm_sts_skip;
710
711                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
712                         cx->bm_sts_skip = 1;
713                         acpi_idle_enter_bm(drv, pr, cx, index);
714                         cx->bm_sts_skip = bm_sts_skip;
715
716                         return 0;
717                 } else {
718                         ACPI_FLUSH_CPU_CACHE();
719                 }
720         }
721         acpi_idle_do_entry(cx);
722
723         return 0;
724 }
725
726 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
727                                            struct cpuidle_device *dev)
728 {
729         int i, count = ACPI_IDLE_STATE_START;
730         struct acpi_processor_cx *cx;
731         struct cpuidle_state *state;
732
733         if (max_cstate == 0)
734                 max_cstate = 1;
735
736         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
737                 state = &acpi_idle_driver.states[count];
738                 cx = &pr->power.states[i];
739
740                 if (!cx->valid)
741                         continue;
742
743                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
744
745                 if (lapic_timer_needs_broadcast(pr, cx))
746                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
747
748                 if (cx->type == ACPI_STATE_C3) {
749                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
750                         if (pr->flags.bm_check)
751                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
752                 }
753
754                 count++;
755                 if (count == CPUIDLE_STATE_MAX)
756                         break;
757         }
758
759         if (!count)
760                 return -EINVAL;
761
762         return 0;
763 }
764
765 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
766 {
767         int i, count;
768         struct acpi_processor_cx *cx;
769         struct cpuidle_state *state;
770         struct cpuidle_driver *drv = &acpi_idle_driver;
771
772         if (max_cstate == 0)
773                 max_cstate = 1;
774
775         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
776                 cpuidle_poll_state_init(drv);
777                 count = 1;
778         } else {
779                 count = 0;
780         }
781
782         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
783                 cx = &pr->power.states[i];
784
785                 if (!cx->valid)
786                         continue;
787
788                 state = &drv->states[count];
789                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
790                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
791                 state->exit_latency = cx->latency;
792                 state->target_residency = cx->latency * latency_factor;
793                 state->enter = acpi_idle_enter;
794
795                 state->flags = 0;
796                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
797                     cx->type == ACPI_STATE_C3) {
798                         state->enter_dead = acpi_idle_play_dead;
799                         drv->safe_state_index = count;
800                 }
801                 /*
802                  * Halt-induced C1 is not good for ->enter_s2idle, because it
803                  * re-enables interrupts on exit.  Moreover, C1 is generally not
804                  * particularly interesting from the suspend-to-idle angle, so
805                  * avoid C1 and the situations in which we may need to fall back
806                  * to it altogether.
807                  */
808                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
809                         state->enter_s2idle = acpi_idle_enter_s2idle;
810
811                 count++;
812                 if (count == CPUIDLE_STATE_MAX)
813                         break;
814         }
815
816         drv->state_count = count;
817
818         if (!count)
819                 return -EINVAL;
820
821         return 0;
822 }
823
824 static inline void acpi_processor_cstate_first_run_checks(void)
825 {
826         static int first_run;
827
828         if (first_run)
829                 return;
830         dmi_check_system(processor_power_dmi_table);
831         max_cstate = acpi_processor_cstate_check(max_cstate);
832         if (max_cstate < ACPI_C_STATES_MAX)
833                 pr_notice("processor limited to max C-state %d\n", max_cstate);
834
835         first_run++;
836
837         if (nocst)
838                 return;
839
840         acpi_processor_claim_cst_control();
841 }
842 #else
843
844 static inline int disabled_by_idle_boot_param(void) { return 0; }
845 static inline void acpi_processor_cstate_first_run_checks(void) { }
846 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
847 {
848         return -ENODEV;
849 }
850
851 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
852                                            struct cpuidle_device *dev)
853 {
854         return -EINVAL;
855 }
856
857 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
858 {
859         return -EINVAL;
860 }
861
862 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
863
864 struct acpi_lpi_states_array {
865         unsigned int size;
866         unsigned int composite_states_size;
867         struct acpi_lpi_state *entries;
868         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
869 };
870
871 static int obj_get_integer(union acpi_object *obj, u32 *value)
872 {
873         if (obj->type != ACPI_TYPE_INTEGER)
874                 return -EINVAL;
875
876         *value = obj->integer.value;
877         return 0;
878 }
879
880 static int acpi_processor_evaluate_lpi(acpi_handle handle,
881                                        struct acpi_lpi_states_array *info)
882 {
883         acpi_status status;
884         int ret = 0;
885         int pkg_count, state_idx = 1, loop;
886         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
887         union acpi_object *lpi_data;
888         struct acpi_lpi_state *lpi_state;
889
890         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
891         if (ACPI_FAILURE(status)) {
892                 acpi_handle_debug(handle, "No _LPI, giving up\n");
893                 return -ENODEV;
894         }
895
896         lpi_data = buffer.pointer;
897
898         /* There must be at least 4 elements = 3 elements + 1 package */
899         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
900             lpi_data->package.count < 4) {
901                 pr_debug("not enough elements in _LPI\n");
902                 ret = -ENODATA;
903                 goto end;
904         }
905
906         pkg_count = lpi_data->package.elements[2].integer.value;
907
908         /* Validate number of power states. */
909         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
910                 pr_debug("count given by _LPI is not valid\n");
911                 ret = -ENODATA;
912                 goto end;
913         }
914
915         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
916         if (!lpi_state) {
917                 ret = -ENOMEM;
918                 goto end;
919         }
920
921         info->size = pkg_count;
922         info->entries = lpi_state;
923
924         /* LPI States start at index 3 */
925         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
926                 union acpi_object *element, *pkg_elem, *obj;
927
928                 element = &lpi_data->package.elements[loop];
929                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
930                         continue;
931
932                 pkg_elem = element->package.elements;
933
934                 obj = pkg_elem + 6;
935                 if (obj->type == ACPI_TYPE_BUFFER) {
936                         struct acpi_power_register *reg;
937
938                         reg = (struct acpi_power_register *)obj->buffer.pointer;
939                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
940                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
941                                 continue;
942
943                         lpi_state->address = reg->address;
944                         lpi_state->entry_method =
945                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
946                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
947                 } else if (obj->type == ACPI_TYPE_INTEGER) {
948                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
949                         lpi_state->address = obj->integer.value;
950                 } else {
951                         continue;
952                 }
953
954                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
955
956                 obj = pkg_elem + 9;
957                 if (obj->type == ACPI_TYPE_STRING)
958                         strlcpy(lpi_state->desc, obj->string.pointer,
959                                 ACPI_CX_DESC_LEN);
960
961                 lpi_state->index = state_idx;
962                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
963                         pr_debug("No min. residency found, assuming 10 us\n");
964                         lpi_state->min_residency = 10;
965                 }
966
967                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
968                         pr_debug("No wakeup residency found, assuming 10 us\n");
969                         lpi_state->wake_latency = 10;
970                 }
971
972                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
973                         lpi_state->flags = 0;
974
975                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
976                         lpi_state->arch_flags = 0;
977
978                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
979                         lpi_state->res_cnt_freq = 1;
980
981                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
982                         lpi_state->enable_parent_state = 0;
983         }
984
985         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
986 end:
987         kfree(buffer.pointer);
988         return ret;
989 }
990
991 /*
992  * flat_state_cnt - the number of composite LPI states after the process of flattening
993  */
994 static int flat_state_cnt;
995
996 /**
997  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
998  *
999  * @local: local LPI state
1000  * @parent: parent LPI state
1001  * @result: composite LPI state
1002  */
1003 static bool combine_lpi_states(struct acpi_lpi_state *local,
1004                                struct acpi_lpi_state *parent,
1005                                struct acpi_lpi_state *result)
1006 {
1007         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1008                 if (!parent->address) /* 0 means autopromotable */
1009                         return false;
1010                 result->address = local->address + parent->address;
1011         } else {
1012                 result->address = parent->address;
1013         }
1014
1015         result->min_residency = max(local->min_residency, parent->min_residency);
1016         result->wake_latency = local->wake_latency + parent->wake_latency;
1017         result->enable_parent_state = parent->enable_parent_state;
1018         result->entry_method = local->entry_method;
1019
1020         result->flags = parent->flags;
1021         result->arch_flags = parent->arch_flags;
1022         result->index = parent->index;
1023
1024         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1025         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1026         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1027         return true;
1028 }
1029
1030 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1031
1032 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1033                                   struct acpi_lpi_state *t)
1034 {
1035         curr_level->composite_states[curr_level->composite_states_size++] = t;
1036 }
1037
1038 static int flatten_lpi_states(struct acpi_processor *pr,
1039                               struct acpi_lpi_states_array *curr_level,
1040                               struct acpi_lpi_states_array *prev_level)
1041 {
1042         int i, j, state_count = curr_level->size;
1043         struct acpi_lpi_state *p, *t = curr_level->entries;
1044
1045         curr_level->composite_states_size = 0;
1046         for (j = 0; j < state_count; j++, t++) {
1047                 struct acpi_lpi_state *flpi;
1048
1049                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1050                         continue;
1051
1052                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1053                         pr_warn("Limiting number of LPI states to max (%d)\n",
1054                                 ACPI_PROCESSOR_MAX_POWER);
1055                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1056                         break;
1057                 }
1058
1059                 flpi = &pr->power.lpi_states[flat_state_cnt];
1060
1061                 if (!prev_level) { /* leaf/processor node */
1062                         memcpy(flpi, t, sizeof(*t));
1063                         stash_composite_state(curr_level, flpi);
1064                         flat_state_cnt++;
1065                         continue;
1066                 }
1067
1068                 for (i = 0; i < prev_level->composite_states_size; i++) {
1069                         p = prev_level->composite_states[i];
1070                         if (t->index <= p->enable_parent_state &&
1071                             combine_lpi_states(p, t, flpi)) {
1072                                 stash_composite_state(curr_level, flpi);
1073                                 flat_state_cnt++;
1074                                 flpi++;
1075                         }
1076                 }
1077         }
1078
1079         kfree(curr_level->entries);
1080         return 0;
1081 }
1082
1083 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1084 {
1085         return -EOPNOTSUPP;
1086 }
1087
1088 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1089 {
1090         int ret, i;
1091         acpi_status status;
1092         acpi_handle handle = pr->handle, pr_ahandle;
1093         struct acpi_device *d = NULL;
1094         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1095
1096         /* make sure our architecture has support */
1097         ret = acpi_processor_ffh_lpi_probe(pr->id);
1098         if (ret == -EOPNOTSUPP)
1099                 return ret;
1100
1101         if (!osc_pc_lpi_support_confirmed)
1102                 return -EOPNOTSUPP;
1103
1104         if (!acpi_has_method(handle, "_LPI"))
1105                 return -EINVAL;
1106
1107         flat_state_cnt = 0;
1108         prev = &info[0];
1109         curr = &info[1];
1110         handle = pr->handle;
1111         ret = acpi_processor_evaluate_lpi(handle, prev);
1112         if (ret)
1113                 return ret;
1114         flatten_lpi_states(pr, prev, NULL);
1115
1116         status = acpi_get_parent(handle, &pr_ahandle);
1117         while (ACPI_SUCCESS(status)) {
1118                 d = acpi_fetch_acpi_dev(pr_ahandle);
1119                 handle = pr_ahandle;
1120
1121                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1122                         break;
1123
1124                 /* can be optional ? */
1125                 if (!acpi_has_method(handle, "_LPI"))
1126                         break;
1127
1128                 ret = acpi_processor_evaluate_lpi(handle, curr);
1129                 if (ret)
1130                         break;
1131
1132                 /* flatten all the LPI states in this level of hierarchy */
1133                 flatten_lpi_states(pr, curr, prev);
1134
1135                 tmp = prev, prev = curr, curr = tmp;
1136
1137                 status = acpi_get_parent(handle, &pr_ahandle);
1138         }
1139
1140         pr->power.count = flat_state_cnt;
1141         /* reset the index after flattening */
1142         for (i = 0; i < pr->power.count; i++)
1143                 pr->power.lpi_states[i].index = i;
1144
1145         /* Tell driver that _LPI is supported. */
1146         pr->flags.has_lpi = 1;
1147         pr->flags.power = 1;
1148
1149         return 0;
1150 }
1151
1152 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1153 {
1154         return -ENODEV;
1155 }
1156
1157 /**
1158  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1159  * @dev: the target CPU
1160  * @drv: cpuidle driver containing cpuidle state info
1161  * @index: index of target state
1162  *
1163  * Return: 0 for success or negative value for error
1164  */
1165 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1166                                struct cpuidle_driver *drv, int index)
1167 {
1168         struct acpi_processor *pr;
1169         struct acpi_lpi_state *lpi;
1170
1171         pr = __this_cpu_read(processors);
1172
1173         if (unlikely(!pr))
1174                 return -EINVAL;
1175
1176         lpi = &pr->power.lpi_states[index];
1177         if (lpi->entry_method == ACPI_CSTATE_FFH)
1178                 return acpi_processor_ffh_lpi_enter(lpi);
1179
1180         return -EINVAL;
1181 }
1182
1183 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1184 {
1185         int i;
1186         struct acpi_lpi_state *lpi;
1187         struct cpuidle_state *state;
1188         struct cpuidle_driver *drv = &acpi_idle_driver;
1189
1190         if (!pr->flags.has_lpi)
1191                 return -EOPNOTSUPP;
1192
1193         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1194                 lpi = &pr->power.lpi_states[i];
1195
1196                 state = &drv->states[i];
1197                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1198                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1199                 state->exit_latency = lpi->wake_latency;
1200                 state->target_residency = lpi->min_residency;
1201                 if (lpi->arch_flags)
1202                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1203                 state->enter = acpi_idle_lpi_enter;
1204                 drv->safe_state_index = i;
1205         }
1206
1207         drv->state_count = i;
1208
1209         return 0;
1210 }
1211
1212 /**
1213  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1214  * global state data i.e. idle routines
1215  *
1216  * @pr: the ACPI processor
1217  */
1218 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1219 {
1220         int i;
1221         struct cpuidle_driver *drv = &acpi_idle_driver;
1222
1223         if (!pr->flags.power_setup_done || !pr->flags.power)
1224                 return -EINVAL;
1225
1226         drv->safe_state_index = -1;
1227         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1228                 drv->states[i].name[0] = '\0';
1229                 drv->states[i].desc[0] = '\0';
1230         }
1231
1232         if (pr->flags.has_lpi)
1233                 return acpi_processor_setup_lpi_states(pr);
1234
1235         return acpi_processor_setup_cstates(pr);
1236 }
1237
1238 /**
1239  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1240  * device i.e. per-cpu data
1241  *
1242  * @pr: the ACPI processor
1243  * @dev : the cpuidle device
1244  */
1245 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1246                                             struct cpuidle_device *dev)
1247 {
1248         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1249                 return -EINVAL;
1250
1251         dev->cpu = pr->id;
1252         if (pr->flags.has_lpi)
1253                 return acpi_processor_ffh_lpi_probe(pr->id);
1254
1255         return acpi_processor_setup_cpuidle_cx(pr, dev);
1256 }
1257
1258 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1259 {
1260         int ret;
1261
1262         ret = acpi_processor_get_lpi_info(pr);
1263         if (ret)
1264                 ret = acpi_processor_get_cstate_info(pr);
1265
1266         return ret;
1267 }
1268
1269 int acpi_processor_hotplug(struct acpi_processor *pr)
1270 {
1271         int ret = 0;
1272         struct cpuidle_device *dev;
1273
1274         if (disabled_by_idle_boot_param())
1275                 return 0;
1276
1277         if (!pr->flags.power_setup_done)
1278                 return -ENODEV;
1279
1280         dev = per_cpu(acpi_cpuidle_device, pr->id);
1281         cpuidle_pause_and_lock();
1282         cpuidle_disable_device(dev);
1283         ret = acpi_processor_get_power_info(pr);
1284         if (!ret && pr->flags.power) {
1285                 acpi_processor_setup_cpuidle_dev(pr, dev);
1286                 ret = cpuidle_enable_device(dev);
1287         }
1288         cpuidle_resume_and_unlock();
1289
1290         return ret;
1291 }
1292
1293 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1294 {
1295         int cpu;
1296         struct acpi_processor *_pr;
1297         struct cpuidle_device *dev;
1298
1299         if (disabled_by_idle_boot_param())
1300                 return 0;
1301
1302         if (!pr->flags.power_setup_done)
1303                 return -ENODEV;
1304
1305         /*
1306          * FIXME:  Design the ACPI notification to make it once per
1307          * system instead of once per-cpu.  This condition is a hack
1308          * to make the code that updates C-States be called once.
1309          */
1310
1311         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1312
1313                 /* Protect against cpu-hotplug */
1314                 cpus_read_lock();
1315                 cpuidle_pause_and_lock();
1316
1317                 /* Disable all cpuidle devices */
1318                 for_each_online_cpu(cpu) {
1319                         _pr = per_cpu(processors, cpu);
1320                         if (!_pr || !_pr->flags.power_setup_done)
1321                                 continue;
1322                         dev = per_cpu(acpi_cpuidle_device, cpu);
1323                         cpuidle_disable_device(dev);
1324                 }
1325
1326                 /* Populate Updated C-state information */
1327                 acpi_processor_get_power_info(pr);
1328                 acpi_processor_setup_cpuidle_states(pr);
1329
1330                 /* Enable all cpuidle devices */
1331                 for_each_online_cpu(cpu) {
1332                         _pr = per_cpu(processors, cpu);
1333                         if (!_pr || !_pr->flags.power_setup_done)
1334                                 continue;
1335                         acpi_processor_get_power_info(_pr);
1336                         if (_pr->flags.power) {
1337                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1338                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1339                                 cpuidle_enable_device(dev);
1340                         }
1341                 }
1342                 cpuidle_resume_and_unlock();
1343                 cpus_read_unlock();
1344         }
1345
1346         return 0;
1347 }
1348
1349 static int acpi_processor_registered;
1350
1351 int acpi_processor_power_init(struct acpi_processor *pr)
1352 {
1353         int retval;
1354         struct cpuidle_device *dev;
1355
1356         if (disabled_by_idle_boot_param())
1357                 return 0;
1358
1359         acpi_processor_cstate_first_run_checks();
1360
1361         if (!acpi_processor_get_power_info(pr))
1362                 pr->flags.power_setup_done = 1;
1363
1364         /*
1365          * Install the idle handler if processor power management is supported.
1366          * Note that we use previously set idle handler will be used on
1367          * platforms that only support C1.
1368          */
1369         if (pr->flags.power) {
1370                 /* Register acpi_idle_driver if not already registered */
1371                 if (!acpi_processor_registered) {
1372                         acpi_processor_setup_cpuidle_states(pr);
1373                         retval = cpuidle_register_driver(&acpi_idle_driver);
1374                         if (retval)
1375                                 return retval;
1376                         pr_debug("%s registered with cpuidle\n",
1377                                  acpi_idle_driver.name);
1378                 }
1379
1380                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1381                 if (!dev)
1382                         return -ENOMEM;
1383                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1384
1385                 acpi_processor_setup_cpuidle_dev(pr, dev);
1386
1387                 /* Register per-cpu cpuidle_device. Cpuidle driver
1388                  * must already be registered before registering device
1389                  */
1390                 retval = cpuidle_register_device(dev);
1391                 if (retval) {
1392                         if (acpi_processor_registered == 0)
1393                                 cpuidle_unregister_driver(&acpi_idle_driver);
1394                         return retval;
1395                 }
1396                 acpi_processor_registered++;
1397         }
1398         return 0;
1399 }
1400
1401 int acpi_processor_power_exit(struct acpi_processor *pr)
1402 {
1403         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1404
1405         if (disabled_by_idle_boot_param())
1406                 return 0;
1407
1408         if (pr->flags.power) {
1409                 cpuidle_unregister_device(dev);
1410                 acpi_processor_registered--;
1411                 if (acpi_processor_registered == 0)
1412                         cpuidle_unregister_driver(&acpi_idle_driver);
1413         }
1414
1415         pr->flags.power_setup_done = 0;
1416         return 0;
1417 }