Merge tag 'omap-for-v5.6/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37
38 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53         .name =         "acpi_idle",
54         .owner =        THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63         return boot_option_idle_override == IDLE_POLL ||
64                 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76                 return 0;
77
78         pr_notice("%s detected - limiting to C%ld max_cstate."
79                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
80                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82         max_cstate = (long)id->driver_data;
83
84         return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88         { set_max_cstate, "Clevo 5600D", {
89           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91          (void *)2},
92         { set_max_cstate, "Pavilion zv5000", {
93           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95          (void *)1},
96         { set_max_cstate, "Asus L8400B", {
97           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99          (void *)1},
100         {},
101 };
102
103
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110         if (!tif_need_resched()) {
111                 safe_halt();
112                 local_irq_disable();
113         }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125                                    struct acpi_processor_cx *cx)
126 {
127         struct acpi_processor_power *pwr = &pr->power;
128         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131                 return;
132
133         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134                 type = ACPI_STATE_C1;
135
136         /*
137          * Check, if one of the previous states already marked the lapic
138          * unstable
139          */
140         if (pwr->timer_broadcast_on_state < state)
141                 return;
142
143         if (cx->type >= type)
144                 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149         struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151         if (pr->power.timer_broadcast_on_state < INT_MAX)
152                 tick_broadcast_enable();
153         else
154                 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160                                  (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165                                        struct acpi_processor_cx *cx,
166                                        int broadcast)
167 {
168         int state = cx - pr->power.states;
169
170         if (state >= pr->power.timer_broadcast_on_state) {
171                 if (broadcast)
172                         tick_broadcast_enter();
173                 else
174                         tick_broadcast_exit();
175         }
176 }
177
178 #else
179
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181                                    struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184                                        struct acpi_processor_cx *cx,
185                                        int broadcast)
186 {
187 }
188
189 #endif
190
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
193 {
194         switch (boot_cpu_data.x86_vendor) {
195         case X86_VENDOR_HYGON:
196         case X86_VENDOR_AMD:
197         case X86_VENDOR_INTEL:
198         case X86_VENDOR_CENTAUR:
199         case X86_VENDOR_ZHAOXIN:
200                 /*
201                  * AMD Fam10h TSC will tick in all
202                  * C/P/S0/S1 states when this bit is set.
203                  */
204                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205                         return;
206
207                 /*FALL THROUGH*/
208         default:
209                 /* TSC could halt in idle, so notify users */
210                 if (state > ACPI_STATE_C1)
211                         mark_tsc_unstable("TSC halts in idle");
212         }
213 }
214 #else
215 static void tsc_check_state(int state) { return; }
216 #endif
217
218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
219 {
220
221         if (!pr->pblk)
222                 return -ENODEV;
223
224         /* if info is obtained from pblk/fadt, type equals state */
225         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
227
228 #ifndef CONFIG_HOTPLUG_CPU
229         /*
230          * Check for P_LVL2_UP flag before entering C2 and above on
231          * an SMP system.
232          */
233         if ((num_online_cpus() > 1) &&
234             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235                 return -ENODEV;
236 #endif
237
238         /* determine C2 and C3 address from pblk */
239         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
241
242         /* determine latencies from FADT */
243         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
245
246         /*
247          * FADT specified C2 latency must be less than or equal to
248          * 100 microseconds.
249          */
250         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
252                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
253                 /* invalidate C2 */
254                 pr->power.states[ACPI_STATE_C2].address = 0;
255         }
256
257         /*
258          * FADT supplied C3 latency must be less than or equal to
259          * 1000 microseconds.
260          */
261         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
264                 /* invalidate C3 */
265                 pr->power.states[ACPI_STATE_C3].address = 0;
266         }
267
268         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269                           "lvl2[0x%08x] lvl3[0x%08x]\n",
270                           pr->power.states[ACPI_STATE_C2].address,
271                           pr->power.states[ACPI_STATE_C3].address));
272
273         snprintf(pr->power.states[ACPI_STATE_C2].desc,
274                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
275                          pr->power.states[ACPI_STATE_C2].address);
276         snprintf(pr->power.states[ACPI_STATE_C3].desc,
277                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
278                          pr->power.states[ACPI_STATE_C3].address);
279
280         return 0;
281 }
282
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285         if (!pr->power.states[ACPI_STATE_C1].valid) {
286                 /* set the first C-State to C1 */
287                 /* all processors need to support C1 */
288                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289                 pr->power.states[ACPI_STATE_C1].valid = 1;
290                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291
292                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
293                          ACPI_CX_DESC_LEN, "ACPI HLT");
294         }
295         /* the C0 state only exists as a filler in our array */
296         pr->power.states[ACPI_STATE_C0].valid = 1;
297         return 0;
298 }
299
300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
301 {
302         int ret;
303
304         if (nocst)
305                 return -ENODEV;
306
307         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
308         if (ret)
309                 return ret;
310
311         /*
312          * It is expected that there will be at least 2 states, C1 and
313          * something else (C2 or C3), so fail if that is not the case.
314          */
315         if (pr->power.count < 2)
316                 return -EFAULT;
317
318         pr->flags.has_cst = 1;
319         return 0;
320 }
321
322 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
323                                            struct acpi_processor_cx *cx)
324 {
325         static int bm_check_flag = -1;
326         static int bm_control_flag = -1;
327
328
329         if (!cx->address)
330                 return;
331
332         /*
333          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
334          * DMA transfers are used by any ISA device to avoid livelock.
335          * Note that we could disable Type-F DMA (as recommended by
336          * the erratum), but this is known to disrupt certain ISA
337          * devices thus we take the conservative approach.
338          */
339         else if (errata.piix4.fdma) {
340                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
341                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
342                 return;
343         }
344
345         /* All the logic here assumes flags.bm_check is same across all CPUs */
346         if (bm_check_flag == -1) {
347                 /* Determine whether bm_check is needed based on CPU  */
348                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
349                 bm_check_flag = pr->flags.bm_check;
350                 bm_control_flag = pr->flags.bm_control;
351         } else {
352                 pr->flags.bm_check = bm_check_flag;
353                 pr->flags.bm_control = bm_control_flag;
354         }
355
356         if (pr->flags.bm_check) {
357                 if (!pr->flags.bm_control) {
358                         if (pr->flags.has_cst != 1) {
359                                 /* bus mastering control is necessary */
360                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
361                                         "C3 support requires BM control\n"));
362                                 return;
363                         } else {
364                                 /* Here we enter C3 without bus mastering */
365                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
366                                         "C3 support without BM control\n"));
367                         }
368                 }
369         } else {
370                 /*
371                  * WBINVD should be set in fadt, for C3 state to be
372                  * supported on when bm_check is not required.
373                  */
374                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
375                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
376                                           "Cache invalidation should work properly"
377                                           " for C3 to be enabled on SMP systems\n"));
378                         return;
379                 }
380         }
381
382         /*
383          * Otherwise we've met all of our C3 requirements.
384          * Normalize the C3 latency to expidite policy.  Enable
385          * checking of bus mastering status (bm_check) so we can
386          * use this in our C3 policy
387          */
388         cx->valid = 1;
389
390         /*
391          * On older chipsets, BM_RLD needs to be set
392          * in order for Bus Master activity to wake the
393          * system from C3.  Newer chipsets handle DMA
394          * during C3 automatically and BM_RLD is a NOP.
395          * In either case, the proper way to
396          * handle BM_RLD is to set it and leave it set.
397          */
398         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
399
400         return;
401 }
402
403 static int acpi_processor_power_verify(struct acpi_processor *pr)
404 {
405         unsigned int i;
406         unsigned int working = 0;
407
408         pr->power.timer_broadcast_on_state = INT_MAX;
409
410         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
411                 struct acpi_processor_cx *cx = &pr->power.states[i];
412
413                 switch (cx->type) {
414                 case ACPI_STATE_C1:
415                         cx->valid = 1;
416                         break;
417
418                 case ACPI_STATE_C2:
419                         if (!cx->address)
420                                 break;
421                         cx->valid = 1;
422                         break;
423
424                 case ACPI_STATE_C3:
425                         acpi_processor_power_verify_c3(pr, cx);
426                         break;
427                 }
428                 if (!cx->valid)
429                         continue;
430
431                 lapic_timer_check_state(i, pr, cx);
432                 tsc_check_state(cx->type);
433                 working++;
434         }
435
436         lapic_timer_propagate_broadcast(pr);
437
438         return (working);
439 }
440
441 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
442 {
443         unsigned int i;
444         int result;
445
446
447         /* NOTE: the idle thread may not be running while calling
448          * this function */
449
450         /* Zero initialize all the C-states info. */
451         memset(pr->power.states, 0, sizeof(pr->power.states));
452
453         result = acpi_processor_get_power_info_cst(pr);
454         if (result == -ENODEV)
455                 result = acpi_processor_get_power_info_fadt(pr);
456
457         if (result)
458                 return result;
459
460         acpi_processor_get_power_info_default(pr);
461
462         pr->power.count = acpi_processor_power_verify(pr);
463
464         /*
465          * if one state of type C2 or C3 is available, mark this
466          * CPU as being "idle manageable"
467          */
468         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
469                 if (pr->power.states[i].valid) {
470                         pr->power.count = i;
471                         if (pr->power.states[i].type >= ACPI_STATE_C2)
472                                 pr->flags.power = 1;
473                 }
474         }
475
476         return 0;
477 }
478
479 /**
480  * acpi_idle_bm_check - checks if bus master activity was detected
481  */
482 static int acpi_idle_bm_check(void)
483 {
484         u32 bm_status = 0;
485
486         if (bm_check_disable)
487                 return 0;
488
489         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
490         if (bm_status)
491                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
492         /*
493          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
494          * the true state of bus mastering activity; forcing us to
495          * manually check the BMIDEA bit of each IDE channel.
496          */
497         else if (errata.piix4.bmisx) {
498                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
499                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
500                         bm_status = 1;
501         }
502         return bm_status;
503 }
504
505 static void wait_for_freeze(void)
506 {
507 #ifdef  CONFIG_X86
508         /* No delay is needed if we are in guest */
509         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
510                 return;
511 #endif
512         /* Dummy wait op - must do something useless after P_LVL2 read
513            because chipsets cannot guarantee that STPCLK# signal
514            gets asserted in time to freeze execution properly. */
515         inl(acpi_gbl_FADT.xpm_timer_block.address);
516 }
517
518 /**
519  * acpi_idle_do_entry - enter idle state using the appropriate method
520  * @cx: cstate data
521  *
522  * Caller disables interrupt before call and enables interrupt after return.
523  */
524 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
525 {
526         if (cx->entry_method == ACPI_CSTATE_FFH) {
527                 /* Call into architectural FFH based C-state */
528                 acpi_processor_ffh_cstate_enter(cx);
529         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
530                 acpi_safe_halt();
531         } else {
532                 /* IO port based C-state */
533                 inb(cx->address);
534                 wait_for_freeze();
535         }
536 }
537
538 /**
539  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
540  * @dev: the target CPU
541  * @index: the index of suggested state
542  */
543 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
544 {
545         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
546
547         ACPI_FLUSH_CPU_CACHE();
548
549         while (1) {
550
551                 if (cx->entry_method == ACPI_CSTATE_HALT)
552                         safe_halt();
553                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
554                         inb(cx->address);
555                         wait_for_freeze();
556                 } else
557                         return -ENODEV;
558         }
559
560         /* Never reached */
561         return 0;
562 }
563
564 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
565 {
566         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
567                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
568 }
569
570 static int c3_cpu_count;
571 static DEFINE_RAW_SPINLOCK(c3_lock);
572
573 /**
574  * acpi_idle_enter_bm - enters C3 with proper BM handling
575  * @pr: Target processor
576  * @cx: Target state context
577  * @timer_bc: Whether or not to change timer mode to broadcast
578  */
579 static void acpi_idle_enter_bm(struct acpi_processor *pr,
580                                struct acpi_processor_cx *cx, bool timer_bc)
581 {
582         acpi_unlazy_tlb(smp_processor_id());
583
584         /*
585          * Must be done before busmaster disable as we might need to
586          * access HPET !
587          */
588         if (timer_bc)
589                 lapic_timer_state_broadcast(pr, cx, 1);
590
591         /*
592          * disable bus master
593          * bm_check implies we need ARB_DIS
594          * bm_control implies whether we can do ARB_DIS
595          *
596          * That leaves a case where bm_check is set and bm_control is
597          * not set. In that case we cannot do much, we enter C3
598          * without doing anything.
599          */
600         if (pr->flags.bm_control) {
601                 raw_spin_lock(&c3_lock);
602                 c3_cpu_count++;
603                 /* Disable bus master arbitration when all CPUs are in C3 */
604                 if (c3_cpu_count == num_online_cpus())
605                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
606                 raw_spin_unlock(&c3_lock);
607         }
608
609         acpi_idle_do_entry(cx);
610
611         /* Re-enable bus master arbitration */
612         if (pr->flags.bm_control) {
613                 raw_spin_lock(&c3_lock);
614                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
615                 c3_cpu_count--;
616                 raw_spin_unlock(&c3_lock);
617         }
618
619         if (timer_bc)
620                 lapic_timer_state_broadcast(pr, cx, 0);
621 }
622
623 static int acpi_idle_enter(struct cpuidle_device *dev,
624                            struct cpuidle_driver *drv, int index)
625 {
626         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
627         struct acpi_processor *pr;
628
629         pr = __this_cpu_read(processors);
630         if (unlikely(!pr))
631                 return -EINVAL;
632
633         if (cx->type != ACPI_STATE_C1) {
634                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
635                         index = ACPI_IDLE_STATE_START;
636                         cx = per_cpu(acpi_cstate[index], dev->cpu);
637                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
638                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
639                                 acpi_idle_enter_bm(pr, cx, true);
640                                 return index;
641                         } else if (drv->safe_state_index >= 0) {
642                                 index = drv->safe_state_index;
643                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
644                         } else {
645                                 acpi_safe_halt();
646                                 return -EBUSY;
647                         }
648                 }
649         }
650
651         lapic_timer_state_broadcast(pr, cx, 1);
652
653         if (cx->type == ACPI_STATE_C3)
654                 ACPI_FLUSH_CPU_CACHE();
655
656         acpi_idle_do_entry(cx);
657
658         lapic_timer_state_broadcast(pr, cx, 0);
659
660         return index;
661 }
662
663 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
664                                    struct cpuidle_driver *drv, int index)
665 {
666         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
667
668         if (cx->type == ACPI_STATE_C3) {
669                 struct acpi_processor *pr = __this_cpu_read(processors);
670
671                 if (unlikely(!pr))
672                         return;
673
674                 if (pr->flags.bm_check) {
675                         acpi_idle_enter_bm(pr, cx, false);
676                         return;
677                 } else {
678                         ACPI_FLUSH_CPU_CACHE();
679                 }
680         }
681         acpi_idle_do_entry(cx);
682 }
683
684 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
685                                            struct cpuidle_device *dev)
686 {
687         int i, count = ACPI_IDLE_STATE_START;
688         struct acpi_processor_cx *cx;
689
690         if (max_cstate == 0)
691                 max_cstate = 1;
692
693         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
694                 cx = &pr->power.states[i];
695
696                 if (!cx->valid)
697                         continue;
698
699                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
700
701                 count++;
702                 if (count == CPUIDLE_STATE_MAX)
703                         break;
704         }
705
706         if (!count)
707                 return -EINVAL;
708
709         return 0;
710 }
711
712 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
713 {
714         int i, count;
715         struct acpi_processor_cx *cx;
716         struct cpuidle_state *state;
717         struct cpuidle_driver *drv = &acpi_idle_driver;
718
719         if (max_cstate == 0)
720                 max_cstate = 1;
721
722         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
723                 cpuidle_poll_state_init(drv);
724                 count = 1;
725         } else {
726                 count = 0;
727         }
728
729         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
730                 cx = &pr->power.states[i];
731
732                 if (!cx->valid)
733                         continue;
734
735                 state = &drv->states[count];
736                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
737                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
738                 state->exit_latency = cx->latency;
739                 state->target_residency = cx->latency * latency_factor;
740                 state->enter = acpi_idle_enter;
741
742                 state->flags = 0;
743                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
744                         state->enter_dead = acpi_idle_play_dead;
745                         drv->safe_state_index = count;
746                 }
747                 /*
748                  * Halt-induced C1 is not good for ->enter_s2idle, because it
749                  * re-enables interrupts on exit.  Moreover, C1 is generally not
750                  * particularly interesting from the suspend-to-idle angle, so
751                  * avoid C1 and the situations in which we may need to fall back
752                  * to it altogether.
753                  */
754                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
755                         state->enter_s2idle = acpi_idle_enter_s2idle;
756
757                 count++;
758                 if (count == CPUIDLE_STATE_MAX)
759                         break;
760         }
761
762         drv->state_count = count;
763
764         if (!count)
765                 return -EINVAL;
766
767         return 0;
768 }
769
770 static inline void acpi_processor_cstate_first_run_checks(void)
771 {
772         static int first_run;
773
774         if (first_run)
775                 return;
776         dmi_check_system(processor_power_dmi_table);
777         max_cstate = acpi_processor_cstate_check(max_cstate);
778         if (max_cstate < ACPI_C_STATES_MAX)
779                 pr_notice("ACPI: processor limited to max C-state %d\n",
780                           max_cstate);
781         first_run++;
782
783         if (nocst)
784                 return;
785
786         acpi_processor_claim_cst_control();
787 }
788 #else
789
790 static inline int disabled_by_idle_boot_param(void) { return 0; }
791 static inline void acpi_processor_cstate_first_run_checks(void) { }
792 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
793 {
794         return -ENODEV;
795 }
796
797 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
798                                            struct cpuidle_device *dev)
799 {
800         return -EINVAL;
801 }
802
803 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
804 {
805         return -EINVAL;
806 }
807
808 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
809
810 struct acpi_lpi_states_array {
811         unsigned int size;
812         unsigned int composite_states_size;
813         struct acpi_lpi_state *entries;
814         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
815 };
816
817 static int obj_get_integer(union acpi_object *obj, u32 *value)
818 {
819         if (obj->type != ACPI_TYPE_INTEGER)
820                 return -EINVAL;
821
822         *value = obj->integer.value;
823         return 0;
824 }
825
826 static int acpi_processor_evaluate_lpi(acpi_handle handle,
827                                        struct acpi_lpi_states_array *info)
828 {
829         acpi_status status;
830         int ret = 0;
831         int pkg_count, state_idx = 1, loop;
832         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
833         union acpi_object *lpi_data;
834         struct acpi_lpi_state *lpi_state;
835
836         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
837         if (ACPI_FAILURE(status)) {
838                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
839                 return -ENODEV;
840         }
841
842         lpi_data = buffer.pointer;
843
844         /* There must be at least 4 elements = 3 elements + 1 package */
845         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
846             lpi_data->package.count < 4) {
847                 pr_debug("not enough elements in _LPI\n");
848                 ret = -ENODATA;
849                 goto end;
850         }
851
852         pkg_count = lpi_data->package.elements[2].integer.value;
853
854         /* Validate number of power states. */
855         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
856                 pr_debug("count given by _LPI is not valid\n");
857                 ret = -ENODATA;
858                 goto end;
859         }
860
861         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
862         if (!lpi_state) {
863                 ret = -ENOMEM;
864                 goto end;
865         }
866
867         info->size = pkg_count;
868         info->entries = lpi_state;
869
870         /* LPI States start at index 3 */
871         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
872                 union acpi_object *element, *pkg_elem, *obj;
873
874                 element = &lpi_data->package.elements[loop];
875                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
876                         continue;
877
878                 pkg_elem = element->package.elements;
879
880                 obj = pkg_elem + 6;
881                 if (obj->type == ACPI_TYPE_BUFFER) {
882                         struct acpi_power_register *reg;
883
884                         reg = (struct acpi_power_register *)obj->buffer.pointer;
885                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
886                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
887                                 continue;
888
889                         lpi_state->address = reg->address;
890                         lpi_state->entry_method =
891                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
892                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
893                 } else if (obj->type == ACPI_TYPE_INTEGER) {
894                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
895                         lpi_state->address = obj->integer.value;
896                 } else {
897                         continue;
898                 }
899
900                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
901
902                 obj = pkg_elem + 9;
903                 if (obj->type == ACPI_TYPE_STRING)
904                         strlcpy(lpi_state->desc, obj->string.pointer,
905                                 ACPI_CX_DESC_LEN);
906
907                 lpi_state->index = state_idx;
908                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
909                         pr_debug("No min. residency found, assuming 10 us\n");
910                         lpi_state->min_residency = 10;
911                 }
912
913                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
914                         pr_debug("No wakeup residency found, assuming 10 us\n");
915                         lpi_state->wake_latency = 10;
916                 }
917
918                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
919                         lpi_state->flags = 0;
920
921                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
922                         lpi_state->arch_flags = 0;
923
924                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
925                         lpi_state->res_cnt_freq = 1;
926
927                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
928                         lpi_state->enable_parent_state = 0;
929         }
930
931         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
932 end:
933         kfree(buffer.pointer);
934         return ret;
935 }
936
937 /*
938  * flat_state_cnt - the number of composite LPI states after the process of flattening
939  */
940 static int flat_state_cnt;
941
942 /**
943  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
944  *
945  * @local: local LPI state
946  * @parent: parent LPI state
947  * @result: composite LPI state
948  */
949 static bool combine_lpi_states(struct acpi_lpi_state *local,
950                                struct acpi_lpi_state *parent,
951                                struct acpi_lpi_state *result)
952 {
953         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
954                 if (!parent->address) /* 0 means autopromotable */
955                         return false;
956                 result->address = local->address + parent->address;
957         } else {
958                 result->address = parent->address;
959         }
960
961         result->min_residency = max(local->min_residency, parent->min_residency);
962         result->wake_latency = local->wake_latency + parent->wake_latency;
963         result->enable_parent_state = parent->enable_parent_state;
964         result->entry_method = local->entry_method;
965
966         result->flags = parent->flags;
967         result->arch_flags = parent->arch_flags;
968         result->index = parent->index;
969
970         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
971         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
972         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
973         return true;
974 }
975
976 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
977
978 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
979                                   struct acpi_lpi_state *t)
980 {
981         curr_level->composite_states[curr_level->composite_states_size++] = t;
982 }
983
984 static int flatten_lpi_states(struct acpi_processor *pr,
985                               struct acpi_lpi_states_array *curr_level,
986                               struct acpi_lpi_states_array *prev_level)
987 {
988         int i, j, state_count = curr_level->size;
989         struct acpi_lpi_state *p, *t = curr_level->entries;
990
991         curr_level->composite_states_size = 0;
992         for (j = 0; j < state_count; j++, t++) {
993                 struct acpi_lpi_state *flpi;
994
995                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
996                         continue;
997
998                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
999                         pr_warn("Limiting number of LPI states to max (%d)\n",
1000                                 ACPI_PROCESSOR_MAX_POWER);
1001                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1002                         break;
1003                 }
1004
1005                 flpi = &pr->power.lpi_states[flat_state_cnt];
1006
1007                 if (!prev_level) { /* leaf/processor node */
1008                         memcpy(flpi, t, sizeof(*t));
1009                         stash_composite_state(curr_level, flpi);
1010                         flat_state_cnt++;
1011                         continue;
1012                 }
1013
1014                 for (i = 0; i < prev_level->composite_states_size; i++) {
1015                         p = prev_level->composite_states[i];
1016                         if (t->index <= p->enable_parent_state &&
1017                             combine_lpi_states(p, t, flpi)) {
1018                                 stash_composite_state(curr_level, flpi);
1019                                 flat_state_cnt++;
1020                                 flpi++;
1021                         }
1022                 }
1023         }
1024
1025         kfree(curr_level->entries);
1026         return 0;
1027 }
1028
1029 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1030 {
1031         int ret, i;
1032         acpi_status status;
1033         acpi_handle handle = pr->handle, pr_ahandle;
1034         struct acpi_device *d = NULL;
1035         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1036
1037         if (!osc_pc_lpi_support_confirmed)
1038                 return -EOPNOTSUPP;
1039
1040         if (!acpi_has_method(handle, "_LPI"))
1041                 return -EINVAL;
1042
1043         flat_state_cnt = 0;
1044         prev = &info[0];
1045         curr = &info[1];
1046         handle = pr->handle;
1047         ret = acpi_processor_evaluate_lpi(handle, prev);
1048         if (ret)
1049                 return ret;
1050         flatten_lpi_states(pr, prev, NULL);
1051
1052         status = acpi_get_parent(handle, &pr_ahandle);
1053         while (ACPI_SUCCESS(status)) {
1054                 acpi_bus_get_device(pr_ahandle, &d);
1055                 handle = pr_ahandle;
1056
1057                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1058                         break;
1059
1060                 /* can be optional ? */
1061                 if (!acpi_has_method(handle, "_LPI"))
1062                         break;
1063
1064                 ret = acpi_processor_evaluate_lpi(handle, curr);
1065                 if (ret)
1066                         break;
1067
1068                 /* flatten all the LPI states in this level of hierarchy */
1069                 flatten_lpi_states(pr, curr, prev);
1070
1071                 tmp = prev, prev = curr, curr = tmp;
1072
1073                 status = acpi_get_parent(handle, &pr_ahandle);
1074         }
1075
1076         pr->power.count = flat_state_cnt;
1077         /* reset the index after flattening */
1078         for (i = 0; i < pr->power.count; i++)
1079                 pr->power.lpi_states[i].index = i;
1080
1081         /* Tell driver that _LPI is supported. */
1082         pr->flags.has_lpi = 1;
1083         pr->flags.power = 1;
1084
1085         return 0;
1086 }
1087
1088 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1089 {
1090         return -ENODEV;
1091 }
1092
1093 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1094 {
1095         return -ENODEV;
1096 }
1097
1098 /**
1099  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1100  * @dev: the target CPU
1101  * @drv: cpuidle driver containing cpuidle state info
1102  * @index: index of target state
1103  *
1104  * Return: 0 for success or negative value for error
1105  */
1106 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1107                                struct cpuidle_driver *drv, int index)
1108 {
1109         struct acpi_processor *pr;
1110         struct acpi_lpi_state *lpi;
1111
1112         pr = __this_cpu_read(processors);
1113
1114         if (unlikely(!pr))
1115                 return -EINVAL;
1116
1117         lpi = &pr->power.lpi_states[index];
1118         if (lpi->entry_method == ACPI_CSTATE_FFH)
1119                 return acpi_processor_ffh_lpi_enter(lpi);
1120
1121         return -EINVAL;
1122 }
1123
1124 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1125 {
1126         int i;
1127         struct acpi_lpi_state *lpi;
1128         struct cpuidle_state *state;
1129         struct cpuidle_driver *drv = &acpi_idle_driver;
1130
1131         if (!pr->flags.has_lpi)
1132                 return -EOPNOTSUPP;
1133
1134         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1135                 lpi = &pr->power.lpi_states[i];
1136
1137                 state = &drv->states[i];
1138                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1139                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1140                 state->exit_latency = lpi->wake_latency;
1141                 state->target_residency = lpi->min_residency;
1142                 if (lpi->arch_flags)
1143                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1144                 state->enter = acpi_idle_lpi_enter;
1145                 drv->safe_state_index = i;
1146         }
1147
1148         drv->state_count = i;
1149
1150         return 0;
1151 }
1152
1153 /**
1154  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1155  * global state data i.e. idle routines
1156  *
1157  * @pr: the ACPI processor
1158  */
1159 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1160 {
1161         int i;
1162         struct cpuidle_driver *drv = &acpi_idle_driver;
1163
1164         if (!pr->flags.power_setup_done || !pr->flags.power)
1165                 return -EINVAL;
1166
1167         drv->safe_state_index = -1;
1168         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1169                 drv->states[i].name[0] = '\0';
1170                 drv->states[i].desc[0] = '\0';
1171         }
1172
1173         if (pr->flags.has_lpi)
1174                 return acpi_processor_setup_lpi_states(pr);
1175
1176         return acpi_processor_setup_cstates(pr);
1177 }
1178
1179 /**
1180  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1181  * device i.e. per-cpu data
1182  *
1183  * @pr: the ACPI processor
1184  * @dev : the cpuidle device
1185  */
1186 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1187                                             struct cpuidle_device *dev)
1188 {
1189         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1190                 return -EINVAL;
1191
1192         dev->cpu = pr->id;
1193         if (pr->flags.has_lpi)
1194                 return acpi_processor_ffh_lpi_probe(pr->id);
1195
1196         return acpi_processor_setup_cpuidle_cx(pr, dev);
1197 }
1198
1199 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1200 {
1201         int ret;
1202
1203         ret = acpi_processor_get_lpi_info(pr);
1204         if (ret)
1205                 ret = acpi_processor_get_cstate_info(pr);
1206
1207         return ret;
1208 }
1209
1210 int acpi_processor_hotplug(struct acpi_processor *pr)
1211 {
1212         int ret = 0;
1213         struct cpuidle_device *dev;
1214
1215         if (disabled_by_idle_boot_param())
1216                 return 0;
1217
1218         if (!pr->flags.power_setup_done)
1219                 return -ENODEV;
1220
1221         dev = per_cpu(acpi_cpuidle_device, pr->id);
1222         cpuidle_pause_and_lock();
1223         cpuidle_disable_device(dev);
1224         ret = acpi_processor_get_power_info(pr);
1225         if (!ret && pr->flags.power) {
1226                 acpi_processor_setup_cpuidle_dev(pr, dev);
1227                 ret = cpuidle_enable_device(dev);
1228         }
1229         cpuidle_resume_and_unlock();
1230
1231         return ret;
1232 }
1233
1234 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1235 {
1236         int cpu;
1237         struct acpi_processor *_pr;
1238         struct cpuidle_device *dev;
1239
1240         if (disabled_by_idle_boot_param())
1241                 return 0;
1242
1243         if (!pr->flags.power_setup_done)
1244                 return -ENODEV;
1245
1246         /*
1247          * FIXME:  Design the ACPI notification to make it once per
1248          * system instead of once per-cpu.  This condition is a hack
1249          * to make the code that updates C-States be called once.
1250          */
1251
1252         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1253
1254                 /* Protect against cpu-hotplug */
1255                 get_online_cpus();
1256                 cpuidle_pause_and_lock();
1257
1258                 /* Disable all cpuidle devices */
1259                 for_each_online_cpu(cpu) {
1260                         _pr = per_cpu(processors, cpu);
1261                         if (!_pr || !_pr->flags.power_setup_done)
1262                                 continue;
1263                         dev = per_cpu(acpi_cpuidle_device, cpu);
1264                         cpuidle_disable_device(dev);
1265                 }
1266
1267                 /* Populate Updated C-state information */
1268                 acpi_processor_get_power_info(pr);
1269                 acpi_processor_setup_cpuidle_states(pr);
1270
1271                 /* Enable all cpuidle devices */
1272                 for_each_online_cpu(cpu) {
1273                         _pr = per_cpu(processors, cpu);
1274                         if (!_pr || !_pr->flags.power_setup_done)
1275                                 continue;
1276                         acpi_processor_get_power_info(_pr);
1277                         if (_pr->flags.power) {
1278                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1279                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1280                                 cpuidle_enable_device(dev);
1281                         }
1282                 }
1283                 cpuidle_resume_and_unlock();
1284                 put_online_cpus();
1285         }
1286
1287         return 0;
1288 }
1289
1290 static int acpi_processor_registered;
1291
1292 int acpi_processor_power_init(struct acpi_processor *pr)
1293 {
1294         int retval;
1295         struct cpuidle_device *dev;
1296
1297         if (disabled_by_idle_boot_param())
1298                 return 0;
1299
1300         acpi_processor_cstate_first_run_checks();
1301
1302         if (!acpi_processor_get_power_info(pr))
1303                 pr->flags.power_setup_done = 1;
1304
1305         /*
1306          * Install the idle handler if processor power management is supported.
1307          * Note that we use previously set idle handler will be used on
1308          * platforms that only support C1.
1309          */
1310         if (pr->flags.power) {
1311                 /* Register acpi_idle_driver if not already registered */
1312                 if (!acpi_processor_registered) {
1313                         acpi_processor_setup_cpuidle_states(pr);
1314                         retval = cpuidle_register_driver(&acpi_idle_driver);
1315                         if (retval)
1316                                 return retval;
1317                         pr_debug("%s registered with cpuidle\n",
1318                                  acpi_idle_driver.name);
1319                 }
1320
1321                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1322                 if (!dev)
1323                         return -ENOMEM;
1324                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1325
1326                 acpi_processor_setup_cpuidle_dev(pr, dev);
1327
1328                 /* Register per-cpu cpuidle_device. Cpuidle driver
1329                  * must already be registered before registering device
1330                  */
1331                 retval = cpuidle_register_device(dev);
1332                 if (retval) {
1333                         if (acpi_processor_registered == 0)
1334                                 cpuidle_unregister_driver(&acpi_idle_driver);
1335                         return retval;
1336                 }
1337                 acpi_processor_registered++;
1338         }
1339         return 0;
1340 }
1341
1342 int acpi_processor_power_exit(struct acpi_processor *pr)
1343 {
1344         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1345
1346         if (disabled_by_idle_boot_param())
1347                 return 0;
1348
1349         if (pr->flags.power) {
1350                 cpuidle_unregister_device(dev);
1351                 acpi_processor_registered--;
1352                 if (acpi_processor_registered == 0)
1353                         cpuidle_unregister_driver(&acpi_idle_driver);
1354         }
1355
1356         pr->flags.power_setup_done = 0;
1357         return 0;
1358 }