Merge branches 'acpi-processor', 'acpi-cppc', 'acpi-dbg', 'acpi-misc' and 'acpi-pci'
[linux-2.6-microblaze.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37
38 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53         .name =         "acpi_idle",
54         .owner =        THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63         return boot_option_idle_override == IDLE_POLL ||
64                 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76                 return 0;
77
78         pr_notice("%s detected - limiting to C%ld max_cstate."
79                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
80                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82         max_cstate = (long)id->driver_data;
83
84         return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88         { set_max_cstate, "Clevo 5600D", {
89           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91          (void *)2},
92         { set_max_cstate, "Pavilion zv5000", {
93           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95          (void *)1},
96         { set_max_cstate, "Asus L8400B", {
97           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99          (void *)1},
100         {},
101 };
102
103
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110         if (!tif_need_resched()) {
111                 safe_halt();
112                 local_irq_disable();
113         }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125                                    struct acpi_processor_cx *cx)
126 {
127         struct acpi_processor_power *pwr = &pr->power;
128         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131                 return;
132
133         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134                 type = ACPI_STATE_C1;
135
136         /*
137          * Check, if one of the previous states already marked the lapic
138          * unstable
139          */
140         if (pwr->timer_broadcast_on_state < state)
141                 return;
142
143         if (cx->type >= type)
144                 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149         struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151         if (pr->power.timer_broadcast_on_state < INT_MAX)
152                 tick_broadcast_enable();
153         else
154                 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160                                  (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165                                        struct acpi_processor_cx *cx,
166                                        int broadcast)
167 {
168         int state = cx - pr->power.states;
169
170         if (state >= pr->power.timer_broadcast_on_state) {
171                 if (broadcast)
172                         tick_broadcast_enter();
173                 else
174                         tick_broadcast_exit();
175         }
176 }
177
178 #else
179
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181                                    struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184                                        struct acpi_processor_cx *cx,
185                                        int broadcast)
186 {
187 }
188
189 #endif
190
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
193 {
194         switch (boot_cpu_data.x86_vendor) {
195         case X86_VENDOR_HYGON:
196         case X86_VENDOR_AMD:
197         case X86_VENDOR_INTEL:
198         case X86_VENDOR_CENTAUR:
199         case X86_VENDOR_ZHAOXIN:
200                 /*
201                  * AMD Fam10h TSC will tick in all
202                  * C/P/S0/S1 states when this bit is set.
203                  */
204                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205                         return;
206
207                 /*FALL THROUGH*/
208         default:
209                 /* TSC could halt in idle, so notify users */
210                 if (state > ACPI_STATE_C1)
211                         mark_tsc_unstable("TSC halts in idle");
212         }
213 }
214 #else
215 static void tsc_check_state(int state) { return; }
216 #endif
217
218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
219 {
220
221         if (!pr->pblk)
222                 return -ENODEV;
223
224         /* if info is obtained from pblk/fadt, type equals state */
225         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
227
228 #ifndef CONFIG_HOTPLUG_CPU
229         /*
230          * Check for P_LVL2_UP flag before entering C2 and above on
231          * an SMP system.
232          */
233         if ((num_online_cpus() > 1) &&
234             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235                 return -ENODEV;
236 #endif
237
238         /* determine C2 and C3 address from pblk */
239         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
241
242         /* determine latencies from FADT */
243         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
245
246         /*
247          * FADT specified C2 latency must be less than or equal to
248          * 100 microseconds.
249          */
250         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
252                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
253                 /* invalidate C2 */
254                 pr->power.states[ACPI_STATE_C2].address = 0;
255         }
256
257         /*
258          * FADT supplied C3 latency must be less than or equal to
259          * 1000 microseconds.
260          */
261         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
264                 /* invalidate C3 */
265                 pr->power.states[ACPI_STATE_C3].address = 0;
266         }
267
268         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269                           "lvl2[0x%08x] lvl3[0x%08x]\n",
270                           pr->power.states[ACPI_STATE_C2].address,
271                           pr->power.states[ACPI_STATE_C3].address));
272
273         snprintf(pr->power.states[ACPI_STATE_C2].desc,
274                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
275                          pr->power.states[ACPI_STATE_C2].address);
276         snprintf(pr->power.states[ACPI_STATE_C3].desc,
277                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
278                          pr->power.states[ACPI_STATE_C3].address);
279
280         return 0;
281 }
282
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285         if (!pr->power.states[ACPI_STATE_C1].valid) {
286                 /* set the first C-State to C1 */
287                 /* all processors need to support C1 */
288                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289                 pr->power.states[ACPI_STATE_C1].valid = 1;
290                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291
292                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
293                          ACPI_CX_DESC_LEN, "ACPI HLT");
294         }
295         /* the C0 state only exists as a filler in our array */
296         pr->power.states[ACPI_STATE_C0].valid = 1;
297         return 0;
298 }
299
300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
301 {
302         int ret;
303
304         if (nocst)
305                 return -ENODEV;
306
307         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
308         if (ret)
309                 return ret;
310
311         if (!pr->power.count)
312                 return -EFAULT;
313
314         pr->flags.has_cst = 1;
315         return 0;
316 }
317
318 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
319                                            struct acpi_processor_cx *cx)
320 {
321         static int bm_check_flag = -1;
322         static int bm_control_flag = -1;
323
324
325         if (!cx->address)
326                 return;
327
328         /*
329          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
330          * DMA transfers are used by any ISA device to avoid livelock.
331          * Note that we could disable Type-F DMA (as recommended by
332          * the erratum), but this is known to disrupt certain ISA
333          * devices thus we take the conservative approach.
334          */
335         else if (errata.piix4.fdma) {
336                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
337                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
338                 return;
339         }
340
341         /* All the logic here assumes flags.bm_check is same across all CPUs */
342         if (bm_check_flag == -1) {
343                 /* Determine whether bm_check is needed based on CPU  */
344                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
345                 bm_check_flag = pr->flags.bm_check;
346                 bm_control_flag = pr->flags.bm_control;
347         } else {
348                 pr->flags.bm_check = bm_check_flag;
349                 pr->flags.bm_control = bm_control_flag;
350         }
351
352         if (pr->flags.bm_check) {
353                 if (!pr->flags.bm_control) {
354                         if (pr->flags.has_cst != 1) {
355                                 /* bus mastering control is necessary */
356                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
357                                         "C3 support requires BM control\n"));
358                                 return;
359                         } else {
360                                 /* Here we enter C3 without bus mastering */
361                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
362                                         "C3 support without BM control\n"));
363                         }
364                 }
365         } else {
366                 /*
367                  * WBINVD should be set in fadt, for C3 state to be
368                  * supported on when bm_check is not required.
369                  */
370                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
371                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
372                                           "Cache invalidation should work properly"
373                                           " for C3 to be enabled on SMP systems\n"));
374                         return;
375                 }
376         }
377
378         /*
379          * Otherwise we've met all of our C3 requirements.
380          * Normalize the C3 latency to expidite policy.  Enable
381          * checking of bus mastering status (bm_check) so we can
382          * use this in our C3 policy
383          */
384         cx->valid = 1;
385
386         /*
387          * On older chipsets, BM_RLD needs to be set
388          * in order for Bus Master activity to wake the
389          * system from C3.  Newer chipsets handle DMA
390          * during C3 automatically and BM_RLD is a NOP.
391          * In either case, the proper way to
392          * handle BM_RLD is to set it and leave it set.
393          */
394         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
395
396         return;
397 }
398
399 static int acpi_processor_power_verify(struct acpi_processor *pr)
400 {
401         unsigned int i;
402         unsigned int working = 0;
403
404         pr->power.timer_broadcast_on_state = INT_MAX;
405
406         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
407                 struct acpi_processor_cx *cx = &pr->power.states[i];
408
409                 switch (cx->type) {
410                 case ACPI_STATE_C1:
411                         cx->valid = 1;
412                         break;
413
414                 case ACPI_STATE_C2:
415                         if (!cx->address)
416                                 break;
417                         cx->valid = 1;
418                         break;
419
420                 case ACPI_STATE_C3:
421                         acpi_processor_power_verify_c3(pr, cx);
422                         break;
423                 }
424                 if (!cx->valid)
425                         continue;
426
427                 lapic_timer_check_state(i, pr, cx);
428                 tsc_check_state(cx->type);
429                 working++;
430         }
431
432         lapic_timer_propagate_broadcast(pr);
433
434         return (working);
435 }
436
437 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
438 {
439         unsigned int i;
440         int result;
441
442
443         /* NOTE: the idle thread may not be running while calling
444          * this function */
445
446         /* Zero initialize all the C-states info. */
447         memset(pr->power.states, 0, sizeof(pr->power.states));
448
449         result = acpi_processor_get_power_info_cst(pr);
450         if (result == -ENODEV)
451                 result = acpi_processor_get_power_info_fadt(pr);
452
453         if (result)
454                 return result;
455
456         acpi_processor_get_power_info_default(pr);
457
458         pr->power.count = acpi_processor_power_verify(pr);
459
460         /*
461          * if one state of type C2 or C3 is available, mark this
462          * CPU as being "idle manageable"
463          */
464         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
465                 if (pr->power.states[i].valid) {
466                         pr->power.count = i;
467                         pr->flags.power = 1;
468                 }
469         }
470
471         return 0;
472 }
473
474 /**
475  * acpi_idle_bm_check - checks if bus master activity was detected
476  */
477 static int acpi_idle_bm_check(void)
478 {
479         u32 bm_status = 0;
480
481         if (bm_check_disable)
482                 return 0;
483
484         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
485         if (bm_status)
486                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
487         /*
488          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
489          * the true state of bus mastering activity; forcing us to
490          * manually check the BMIDEA bit of each IDE channel.
491          */
492         else if (errata.piix4.bmisx) {
493                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
494                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
495                         bm_status = 1;
496         }
497         return bm_status;
498 }
499
500 static void wait_for_freeze(void)
501 {
502 #ifdef  CONFIG_X86
503         /* No delay is needed if we are in guest */
504         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
505                 return;
506 #endif
507         /* Dummy wait op - must do something useless after P_LVL2 read
508            because chipsets cannot guarantee that STPCLK# signal
509            gets asserted in time to freeze execution properly. */
510         inl(acpi_gbl_FADT.xpm_timer_block.address);
511 }
512
513 /**
514  * acpi_idle_do_entry - enter idle state using the appropriate method
515  * @cx: cstate data
516  *
517  * Caller disables interrupt before call and enables interrupt after return.
518  */
519 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
520 {
521         if (cx->entry_method == ACPI_CSTATE_FFH) {
522                 /* Call into architectural FFH based C-state */
523                 acpi_processor_ffh_cstate_enter(cx);
524         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
525                 acpi_safe_halt();
526         } else {
527                 /* IO port based C-state */
528                 inb(cx->address);
529                 wait_for_freeze();
530         }
531 }
532
533 /**
534  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
535  * @dev: the target CPU
536  * @index: the index of suggested state
537  */
538 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
539 {
540         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
541
542         ACPI_FLUSH_CPU_CACHE();
543
544         while (1) {
545
546                 if (cx->entry_method == ACPI_CSTATE_HALT)
547                         safe_halt();
548                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
549                         inb(cx->address);
550                         wait_for_freeze();
551                 } else
552                         return -ENODEV;
553         }
554
555         /* Never reached */
556         return 0;
557 }
558
559 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
560 {
561         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
562                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
563 }
564
565 static int c3_cpu_count;
566 static DEFINE_RAW_SPINLOCK(c3_lock);
567
568 /**
569  * acpi_idle_enter_bm - enters C3 with proper BM handling
570  * @pr: Target processor
571  * @cx: Target state context
572  * @timer_bc: Whether or not to change timer mode to broadcast
573  */
574 static void acpi_idle_enter_bm(struct acpi_processor *pr,
575                                struct acpi_processor_cx *cx, bool timer_bc)
576 {
577         acpi_unlazy_tlb(smp_processor_id());
578
579         /*
580          * Must be done before busmaster disable as we might need to
581          * access HPET !
582          */
583         if (timer_bc)
584                 lapic_timer_state_broadcast(pr, cx, 1);
585
586         /*
587          * disable bus master
588          * bm_check implies we need ARB_DIS
589          * bm_control implies whether we can do ARB_DIS
590          *
591          * That leaves a case where bm_check is set and bm_control is
592          * not set. In that case we cannot do much, we enter C3
593          * without doing anything.
594          */
595         if (pr->flags.bm_control) {
596                 raw_spin_lock(&c3_lock);
597                 c3_cpu_count++;
598                 /* Disable bus master arbitration when all CPUs are in C3 */
599                 if (c3_cpu_count == num_online_cpus())
600                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
601                 raw_spin_unlock(&c3_lock);
602         }
603
604         acpi_idle_do_entry(cx);
605
606         /* Re-enable bus master arbitration */
607         if (pr->flags.bm_control) {
608                 raw_spin_lock(&c3_lock);
609                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
610                 c3_cpu_count--;
611                 raw_spin_unlock(&c3_lock);
612         }
613
614         if (timer_bc)
615                 lapic_timer_state_broadcast(pr, cx, 0);
616 }
617
618 static int acpi_idle_enter(struct cpuidle_device *dev,
619                            struct cpuidle_driver *drv, int index)
620 {
621         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
622         struct acpi_processor *pr;
623
624         pr = __this_cpu_read(processors);
625         if (unlikely(!pr))
626                 return -EINVAL;
627
628         if (cx->type != ACPI_STATE_C1) {
629                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
630                         index = ACPI_IDLE_STATE_START;
631                         cx = per_cpu(acpi_cstate[index], dev->cpu);
632                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
633                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
634                                 acpi_idle_enter_bm(pr, cx, true);
635                                 return index;
636                         } else if (drv->safe_state_index >= 0) {
637                                 index = drv->safe_state_index;
638                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
639                         } else {
640                                 acpi_safe_halt();
641                                 return -EBUSY;
642                         }
643                 }
644         }
645
646         lapic_timer_state_broadcast(pr, cx, 1);
647
648         if (cx->type == ACPI_STATE_C3)
649                 ACPI_FLUSH_CPU_CACHE();
650
651         acpi_idle_do_entry(cx);
652
653         lapic_timer_state_broadcast(pr, cx, 0);
654
655         return index;
656 }
657
658 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
659                                    struct cpuidle_driver *drv, int index)
660 {
661         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
662
663         if (cx->type == ACPI_STATE_C3) {
664                 struct acpi_processor *pr = __this_cpu_read(processors);
665
666                 if (unlikely(!pr))
667                         return;
668
669                 if (pr->flags.bm_check) {
670                         acpi_idle_enter_bm(pr, cx, false);
671                         return;
672                 } else {
673                         ACPI_FLUSH_CPU_CACHE();
674                 }
675         }
676         acpi_idle_do_entry(cx);
677 }
678
679 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
680                                            struct cpuidle_device *dev)
681 {
682         int i, count = ACPI_IDLE_STATE_START;
683         struct acpi_processor_cx *cx;
684
685         if (max_cstate == 0)
686                 max_cstate = 1;
687
688         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
689                 cx = &pr->power.states[i];
690
691                 if (!cx->valid)
692                         continue;
693
694                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
695
696                 count++;
697                 if (count == CPUIDLE_STATE_MAX)
698                         break;
699         }
700
701         if (!count)
702                 return -EINVAL;
703
704         return 0;
705 }
706
707 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
708 {
709         int i, count;
710         struct acpi_processor_cx *cx;
711         struct cpuidle_state *state;
712         struct cpuidle_driver *drv = &acpi_idle_driver;
713
714         if (max_cstate == 0)
715                 max_cstate = 1;
716
717         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
718                 cpuidle_poll_state_init(drv);
719                 count = 1;
720         } else {
721                 count = 0;
722         }
723
724         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
725                 cx = &pr->power.states[i];
726
727                 if (!cx->valid)
728                         continue;
729
730                 state = &drv->states[count];
731                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
732                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
733                 state->exit_latency = cx->latency;
734                 state->target_residency = cx->latency * latency_factor;
735                 state->enter = acpi_idle_enter;
736
737                 state->flags = 0;
738                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
739                         state->enter_dead = acpi_idle_play_dead;
740                         drv->safe_state_index = count;
741                 }
742                 /*
743                  * Halt-induced C1 is not good for ->enter_s2idle, because it
744                  * re-enables interrupts on exit.  Moreover, C1 is generally not
745                  * particularly interesting from the suspend-to-idle angle, so
746                  * avoid C1 and the situations in which we may need to fall back
747                  * to it altogether.
748                  */
749                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
750                         state->enter_s2idle = acpi_idle_enter_s2idle;
751
752                 count++;
753                 if (count == CPUIDLE_STATE_MAX)
754                         break;
755         }
756
757         drv->state_count = count;
758
759         if (!count)
760                 return -EINVAL;
761
762         return 0;
763 }
764
765 static inline void acpi_processor_cstate_first_run_checks(void)
766 {
767         static int first_run;
768
769         if (first_run)
770                 return;
771         dmi_check_system(processor_power_dmi_table);
772         max_cstate = acpi_processor_cstate_check(max_cstate);
773         if (max_cstate < ACPI_C_STATES_MAX)
774                 pr_notice("ACPI: processor limited to max C-state %d\n",
775                           max_cstate);
776         first_run++;
777
778         if (nocst)
779                 return;
780
781         acpi_processor_claim_cst_control();
782 }
783 #else
784
785 static inline int disabled_by_idle_boot_param(void) { return 0; }
786 static inline void acpi_processor_cstate_first_run_checks(void) { }
787 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
788 {
789         return -ENODEV;
790 }
791
792 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
793                                            struct cpuidle_device *dev)
794 {
795         return -EINVAL;
796 }
797
798 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
799 {
800         return -EINVAL;
801 }
802
803 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
804
805 struct acpi_lpi_states_array {
806         unsigned int size;
807         unsigned int composite_states_size;
808         struct acpi_lpi_state *entries;
809         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
810 };
811
812 static int obj_get_integer(union acpi_object *obj, u32 *value)
813 {
814         if (obj->type != ACPI_TYPE_INTEGER)
815                 return -EINVAL;
816
817         *value = obj->integer.value;
818         return 0;
819 }
820
821 static int acpi_processor_evaluate_lpi(acpi_handle handle,
822                                        struct acpi_lpi_states_array *info)
823 {
824         acpi_status status;
825         int ret = 0;
826         int pkg_count, state_idx = 1, loop;
827         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
828         union acpi_object *lpi_data;
829         struct acpi_lpi_state *lpi_state;
830
831         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
832         if (ACPI_FAILURE(status)) {
833                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
834                 return -ENODEV;
835         }
836
837         lpi_data = buffer.pointer;
838
839         /* There must be at least 4 elements = 3 elements + 1 package */
840         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
841             lpi_data->package.count < 4) {
842                 pr_debug("not enough elements in _LPI\n");
843                 ret = -ENODATA;
844                 goto end;
845         }
846
847         pkg_count = lpi_data->package.elements[2].integer.value;
848
849         /* Validate number of power states. */
850         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
851                 pr_debug("count given by _LPI is not valid\n");
852                 ret = -ENODATA;
853                 goto end;
854         }
855
856         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
857         if (!lpi_state) {
858                 ret = -ENOMEM;
859                 goto end;
860         }
861
862         info->size = pkg_count;
863         info->entries = lpi_state;
864
865         /* LPI States start at index 3 */
866         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
867                 union acpi_object *element, *pkg_elem, *obj;
868
869                 element = &lpi_data->package.elements[loop];
870                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
871                         continue;
872
873                 pkg_elem = element->package.elements;
874
875                 obj = pkg_elem + 6;
876                 if (obj->type == ACPI_TYPE_BUFFER) {
877                         struct acpi_power_register *reg;
878
879                         reg = (struct acpi_power_register *)obj->buffer.pointer;
880                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
881                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
882                                 continue;
883
884                         lpi_state->address = reg->address;
885                         lpi_state->entry_method =
886                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
887                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
888                 } else if (obj->type == ACPI_TYPE_INTEGER) {
889                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
890                         lpi_state->address = obj->integer.value;
891                 } else {
892                         continue;
893                 }
894
895                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
896
897                 obj = pkg_elem + 9;
898                 if (obj->type == ACPI_TYPE_STRING)
899                         strlcpy(lpi_state->desc, obj->string.pointer,
900                                 ACPI_CX_DESC_LEN);
901
902                 lpi_state->index = state_idx;
903                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
904                         pr_debug("No min. residency found, assuming 10 us\n");
905                         lpi_state->min_residency = 10;
906                 }
907
908                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
909                         pr_debug("No wakeup residency found, assuming 10 us\n");
910                         lpi_state->wake_latency = 10;
911                 }
912
913                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
914                         lpi_state->flags = 0;
915
916                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
917                         lpi_state->arch_flags = 0;
918
919                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
920                         lpi_state->res_cnt_freq = 1;
921
922                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
923                         lpi_state->enable_parent_state = 0;
924         }
925
926         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
927 end:
928         kfree(buffer.pointer);
929         return ret;
930 }
931
932 /*
933  * flat_state_cnt - the number of composite LPI states after the process of flattening
934  */
935 static int flat_state_cnt;
936
937 /**
938  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
939  *
940  * @local: local LPI state
941  * @parent: parent LPI state
942  * @result: composite LPI state
943  */
944 static bool combine_lpi_states(struct acpi_lpi_state *local,
945                                struct acpi_lpi_state *parent,
946                                struct acpi_lpi_state *result)
947 {
948         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
949                 if (!parent->address) /* 0 means autopromotable */
950                         return false;
951                 result->address = local->address + parent->address;
952         } else {
953                 result->address = parent->address;
954         }
955
956         result->min_residency = max(local->min_residency, parent->min_residency);
957         result->wake_latency = local->wake_latency + parent->wake_latency;
958         result->enable_parent_state = parent->enable_parent_state;
959         result->entry_method = local->entry_method;
960
961         result->flags = parent->flags;
962         result->arch_flags = parent->arch_flags;
963         result->index = parent->index;
964
965         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
966         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
967         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
968         return true;
969 }
970
971 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
972
973 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
974                                   struct acpi_lpi_state *t)
975 {
976         curr_level->composite_states[curr_level->composite_states_size++] = t;
977 }
978
979 static int flatten_lpi_states(struct acpi_processor *pr,
980                               struct acpi_lpi_states_array *curr_level,
981                               struct acpi_lpi_states_array *prev_level)
982 {
983         int i, j, state_count = curr_level->size;
984         struct acpi_lpi_state *p, *t = curr_level->entries;
985
986         curr_level->composite_states_size = 0;
987         for (j = 0; j < state_count; j++, t++) {
988                 struct acpi_lpi_state *flpi;
989
990                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
991                         continue;
992
993                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
994                         pr_warn("Limiting number of LPI states to max (%d)\n",
995                                 ACPI_PROCESSOR_MAX_POWER);
996                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
997                         break;
998                 }
999
1000                 flpi = &pr->power.lpi_states[flat_state_cnt];
1001
1002                 if (!prev_level) { /* leaf/processor node */
1003                         memcpy(flpi, t, sizeof(*t));
1004                         stash_composite_state(curr_level, flpi);
1005                         flat_state_cnt++;
1006                         continue;
1007                 }
1008
1009                 for (i = 0; i < prev_level->composite_states_size; i++) {
1010                         p = prev_level->composite_states[i];
1011                         if (t->index <= p->enable_parent_state &&
1012                             combine_lpi_states(p, t, flpi)) {
1013                                 stash_composite_state(curr_level, flpi);
1014                                 flat_state_cnt++;
1015                                 flpi++;
1016                         }
1017                 }
1018         }
1019
1020         kfree(curr_level->entries);
1021         return 0;
1022 }
1023
1024 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1025 {
1026         int ret, i;
1027         acpi_status status;
1028         acpi_handle handle = pr->handle, pr_ahandle;
1029         struct acpi_device *d = NULL;
1030         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1031
1032         if (!osc_pc_lpi_support_confirmed)
1033                 return -EOPNOTSUPP;
1034
1035         if (!acpi_has_method(handle, "_LPI"))
1036                 return -EINVAL;
1037
1038         flat_state_cnt = 0;
1039         prev = &info[0];
1040         curr = &info[1];
1041         handle = pr->handle;
1042         ret = acpi_processor_evaluate_lpi(handle, prev);
1043         if (ret)
1044                 return ret;
1045         flatten_lpi_states(pr, prev, NULL);
1046
1047         status = acpi_get_parent(handle, &pr_ahandle);
1048         while (ACPI_SUCCESS(status)) {
1049                 acpi_bus_get_device(pr_ahandle, &d);
1050                 handle = pr_ahandle;
1051
1052                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1053                         break;
1054
1055                 /* can be optional ? */
1056                 if (!acpi_has_method(handle, "_LPI"))
1057                         break;
1058
1059                 ret = acpi_processor_evaluate_lpi(handle, curr);
1060                 if (ret)
1061                         break;
1062
1063                 /* flatten all the LPI states in this level of hierarchy */
1064                 flatten_lpi_states(pr, curr, prev);
1065
1066                 tmp = prev, prev = curr, curr = tmp;
1067
1068                 status = acpi_get_parent(handle, &pr_ahandle);
1069         }
1070
1071         pr->power.count = flat_state_cnt;
1072         /* reset the index after flattening */
1073         for (i = 0; i < pr->power.count; i++)
1074                 pr->power.lpi_states[i].index = i;
1075
1076         /* Tell driver that _LPI is supported. */
1077         pr->flags.has_lpi = 1;
1078         pr->flags.power = 1;
1079
1080         return 0;
1081 }
1082
1083 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1084 {
1085         return -ENODEV;
1086 }
1087
1088 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1089 {
1090         return -ENODEV;
1091 }
1092
1093 /**
1094  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1095  * @dev: the target CPU
1096  * @drv: cpuidle driver containing cpuidle state info
1097  * @index: index of target state
1098  *
1099  * Return: 0 for success or negative value for error
1100  */
1101 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1102                                struct cpuidle_driver *drv, int index)
1103 {
1104         struct acpi_processor *pr;
1105         struct acpi_lpi_state *lpi;
1106
1107         pr = __this_cpu_read(processors);
1108
1109         if (unlikely(!pr))
1110                 return -EINVAL;
1111
1112         lpi = &pr->power.lpi_states[index];
1113         if (lpi->entry_method == ACPI_CSTATE_FFH)
1114                 return acpi_processor_ffh_lpi_enter(lpi);
1115
1116         return -EINVAL;
1117 }
1118
1119 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1120 {
1121         int i;
1122         struct acpi_lpi_state *lpi;
1123         struct cpuidle_state *state;
1124         struct cpuidle_driver *drv = &acpi_idle_driver;
1125
1126         if (!pr->flags.has_lpi)
1127                 return -EOPNOTSUPP;
1128
1129         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1130                 lpi = &pr->power.lpi_states[i];
1131
1132                 state = &drv->states[i];
1133                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1134                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1135                 state->exit_latency = lpi->wake_latency;
1136                 state->target_residency = lpi->min_residency;
1137                 if (lpi->arch_flags)
1138                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1139                 state->enter = acpi_idle_lpi_enter;
1140                 drv->safe_state_index = i;
1141         }
1142
1143         drv->state_count = i;
1144
1145         return 0;
1146 }
1147
1148 /**
1149  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1150  * global state data i.e. idle routines
1151  *
1152  * @pr: the ACPI processor
1153  */
1154 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1155 {
1156         int i;
1157         struct cpuidle_driver *drv = &acpi_idle_driver;
1158
1159         if (!pr->flags.power_setup_done || !pr->flags.power)
1160                 return -EINVAL;
1161
1162         drv->safe_state_index = -1;
1163         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1164                 drv->states[i].name[0] = '\0';
1165                 drv->states[i].desc[0] = '\0';
1166         }
1167
1168         if (pr->flags.has_lpi)
1169                 return acpi_processor_setup_lpi_states(pr);
1170
1171         return acpi_processor_setup_cstates(pr);
1172 }
1173
1174 /**
1175  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1176  * device i.e. per-cpu data
1177  *
1178  * @pr: the ACPI processor
1179  * @dev : the cpuidle device
1180  */
1181 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1182                                             struct cpuidle_device *dev)
1183 {
1184         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1185                 return -EINVAL;
1186
1187         dev->cpu = pr->id;
1188         if (pr->flags.has_lpi)
1189                 return acpi_processor_ffh_lpi_probe(pr->id);
1190
1191         return acpi_processor_setup_cpuidle_cx(pr, dev);
1192 }
1193
1194 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1195 {
1196         int ret;
1197
1198         ret = acpi_processor_get_lpi_info(pr);
1199         if (ret)
1200                 ret = acpi_processor_get_cstate_info(pr);
1201
1202         return ret;
1203 }
1204
1205 int acpi_processor_hotplug(struct acpi_processor *pr)
1206 {
1207         int ret = 0;
1208         struct cpuidle_device *dev;
1209
1210         if (disabled_by_idle_boot_param())
1211                 return 0;
1212
1213         if (!pr->flags.power_setup_done)
1214                 return -ENODEV;
1215
1216         dev = per_cpu(acpi_cpuidle_device, pr->id);
1217         cpuidle_pause_and_lock();
1218         cpuidle_disable_device(dev);
1219         ret = acpi_processor_get_power_info(pr);
1220         if (!ret && pr->flags.power) {
1221                 acpi_processor_setup_cpuidle_dev(pr, dev);
1222                 ret = cpuidle_enable_device(dev);
1223         }
1224         cpuidle_resume_and_unlock();
1225
1226         return ret;
1227 }
1228
1229 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1230 {
1231         int cpu;
1232         struct acpi_processor *_pr;
1233         struct cpuidle_device *dev;
1234
1235         if (disabled_by_idle_boot_param())
1236                 return 0;
1237
1238         if (!pr->flags.power_setup_done)
1239                 return -ENODEV;
1240
1241         /*
1242          * FIXME:  Design the ACPI notification to make it once per
1243          * system instead of once per-cpu.  This condition is a hack
1244          * to make the code that updates C-States be called once.
1245          */
1246
1247         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1248
1249                 /* Protect against cpu-hotplug */
1250                 get_online_cpus();
1251                 cpuidle_pause_and_lock();
1252
1253                 /* Disable all cpuidle devices */
1254                 for_each_online_cpu(cpu) {
1255                         _pr = per_cpu(processors, cpu);
1256                         if (!_pr || !_pr->flags.power_setup_done)
1257                                 continue;
1258                         dev = per_cpu(acpi_cpuidle_device, cpu);
1259                         cpuidle_disable_device(dev);
1260                 }
1261
1262                 /* Populate Updated C-state information */
1263                 acpi_processor_get_power_info(pr);
1264                 acpi_processor_setup_cpuidle_states(pr);
1265
1266                 /* Enable all cpuidle devices */
1267                 for_each_online_cpu(cpu) {
1268                         _pr = per_cpu(processors, cpu);
1269                         if (!_pr || !_pr->flags.power_setup_done)
1270                                 continue;
1271                         acpi_processor_get_power_info(_pr);
1272                         if (_pr->flags.power) {
1273                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1274                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1275                                 cpuidle_enable_device(dev);
1276                         }
1277                 }
1278                 cpuidle_resume_and_unlock();
1279                 put_online_cpus();
1280         }
1281
1282         return 0;
1283 }
1284
1285 static int acpi_processor_registered;
1286
1287 int acpi_processor_power_init(struct acpi_processor *pr)
1288 {
1289         int retval;
1290         struct cpuidle_device *dev;
1291
1292         if (disabled_by_idle_boot_param())
1293                 return 0;
1294
1295         acpi_processor_cstate_first_run_checks();
1296
1297         if (!acpi_processor_get_power_info(pr))
1298                 pr->flags.power_setup_done = 1;
1299
1300         /*
1301          * Install the idle handler if processor power management is supported.
1302          * Note that we use previously set idle handler will be used on
1303          * platforms that only support C1.
1304          */
1305         if (pr->flags.power) {
1306                 /* Register acpi_idle_driver if not already registered */
1307                 if (!acpi_processor_registered) {
1308                         acpi_processor_setup_cpuidle_states(pr);
1309                         retval = cpuidle_register_driver(&acpi_idle_driver);
1310                         if (retval)
1311                                 return retval;
1312                         pr_debug("%s registered with cpuidle\n",
1313                                  acpi_idle_driver.name);
1314                 }
1315
1316                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1317                 if (!dev)
1318                         return -ENOMEM;
1319                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1320
1321                 acpi_processor_setup_cpuidle_dev(pr, dev);
1322
1323                 /* Register per-cpu cpuidle_device. Cpuidle driver
1324                  * must already be registered before registering device
1325                  */
1326                 retval = cpuidle_register_device(dev);
1327                 if (retval) {
1328                         if (acpi_processor_registered == 0)
1329                                 cpuidle_unregister_driver(&acpi_idle_driver);
1330                         return retval;
1331                 }
1332                 acpi_processor_registered++;
1333         }
1334         return 0;
1335 }
1336
1337 int acpi_processor_power_exit(struct acpi_processor *pr)
1338 {
1339         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1340
1341         if (disabled_by_idle_boot_param())
1342                 return 0;
1343
1344         if (pr->flags.power) {
1345                 cpuidle_unregister_device(dev);
1346                 acpi_processor_registered--;
1347                 if (acpi_processor_registered == 0)
1348                         cpuidle_unregister_driver(&acpi_idle_driver);
1349         }
1350
1351         pr->flags.power_setup_done = 0;
1352         return 0;
1353 }