Merge tag 'irqchip-fixes-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37
38 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53         .name =         "acpi_idle",
54         .owner =        THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63         return boot_option_idle_override == IDLE_POLL ||
64                 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76                 return 0;
77
78         pr_notice("%s detected - limiting to C%ld max_cstate."
79                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
80                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82         max_cstate = (long)id->driver_data;
83
84         return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88         { set_max_cstate, "Clevo 5600D", {
89           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91          (void *)2},
92         { set_max_cstate, "Pavilion zv5000", {
93           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95          (void *)1},
96         { set_max_cstate, "Asus L8400B", {
97           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99          (void *)1},
100         {},
101 };
102
103
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110         if (!tif_need_resched()) {
111                 safe_halt();
112                 local_irq_disable();
113         }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125                                    struct acpi_processor_cx *cx)
126 {
127         struct acpi_processor_power *pwr = &pr->power;
128         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131                 return;
132
133         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134                 type = ACPI_STATE_C1;
135
136         /*
137          * Check, if one of the previous states already marked the lapic
138          * unstable
139          */
140         if (pwr->timer_broadcast_on_state < state)
141                 return;
142
143         if (cx->type >= type)
144                 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149         struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151         if (pr->power.timer_broadcast_on_state < INT_MAX)
152                 tick_broadcast_enable();
153         else
154                 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160                                  (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165                                        struct acpi_processor_cx *cx,
166                                        int broadcast)
167 {
168         int state = cx - pr->power.states;
169
170         if (state >= pr->power.timer_broadcast_on_state) {
171                 if (broadcast)
172                         tick_broadcast_enter();
173                 else
174                         tick_broadcast_exit();
175         }
176 }
177
178 #else
179
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181                                    struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184                                        struct acpi_processor_cx *cx,
185                                        int broadcast)
186 {
187 }
188
189 #endif
190
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
193 {
194         switch (boot_cpu_data.x86_vendor) {
195         case X86_VENDOR_HYGON:
196         case X86_VENDOR_AMD:
197         case X86_VENDOR_INTEL:
198         case X86_VENDOR_CENTAUR:
199         case X86_VENDOR_ZHAOXIN:
200                 /*
201                  * AMD Fam10h TSC will tick in all
202                  * C/P/S0/S1 states when this bit is set.
203                  */
204                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205                         return;
206                 fallthrough;
207         default:
208                 /* TSC could halt in idle, so notify users */
209                 if (state > ACPI_STATE_C1)
210                         mark_tsc_unstable("TSC halts in idle");
211         }
212 }
213 #else
214 static void tsc_check_state(int state) { return; }
215 #endif
216
217 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
218 {
219
220         if (!pr->pblk)
221                 return -ENODEV;
222
223         /* if info is obtained from pblk/fadt, type equals state */
224         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
225         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
226
227 #ifndef CONFIG_HOTPLUG_CPU
228         /*
229          * Check for P_LVL2_UP flag before entering C2 and above on
230          * an SMP system.
231          */
232         if ((num_online_cpus() > 1) &&
233             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
234                 return -ENODEV;
235 #endif
236
237         /* determine C2 and C3 address from pblk */
238         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
239         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
240
241         /* determine latencies from FADT */
242         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
243         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
244
245         /*
246          * FADT specified C2 latency must be less than or equal to
247          * 100 microseconds.
248          */
249         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
250                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
251                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
252                 /* invalidate C2 */
253                 pr->power.states[ACPI_STATE_C2].address = 0;
254         }
255
256         /*
257          * FADT supplied C3 latency must be less than or equal to
258          * 1000 microseconds.
259          */
260         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
261                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
262                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
263                 /* invalidate C3 */
264                 pr->power.states[ACPI_STATE_C3].address = 0;
265         }
266
267         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268                           "lvl2[0x%08x] lvl3[0x%08x]\n",
269                           pr->power.states[ACPI_STATE_C2].address,
270                           pr->power.states[ACPI_STATE_C3].address));
271
272         snprintf(pr->power.states[ACPI_STATE_C2].desc,
273                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
274                          pr->power.states[ACPI_STATE_C2].address);
275         snprintf(pr->power.states[ACPI_STATE_C3].desc,
276                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
277                          pr->power.states[ACPI_STATE_C3].address);
278
279         return 0;
280 }
281
282 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
283 {
284         if (!pr->power.states[ACPI_STATE_C1].valid) {
285                 /* set the first C-State to C1 */
286                 /* all processors need to support C1 */
287                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
288                 pr->power.states[ACPI_STATE_C1].valid = 1;
289                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
290
291                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
292                          ACPI_CX_DESC_LEN, "ACPI HLT");
293         }
294         /* the C0 state only exists as a filler in our array */
295         pr->power.states[ACPI_STATE_C0].valid = 1;
296         return 0;
297 }
298
299 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
300 {
301         int ret;
302
303         if (nocst)
304                 return -ENODEV;
305
306         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
307         if (ret)
308                 return ret;
309
310         if (!pr->power.count)
311                 return -EFAULT;
312
313         pr->flags.has_cst = 1;
314         return 0;
315 }
316
317 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
318                                            struct acpi_processor_cx *cx)
319 {
320         static int bm_check_flag = -1;
321         static int bm_control_flag = -1;
322
323
324         if (!cx->address)
325                 return;
326
327         /*
328          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
329          * DMA transfers are used by any ISA device to avoid livelock.
330          * Note that we could disable Type-F DMA (as recommended by
331          * the erratum), but this is known to disrupt certain ISA
332          * devices thus we take the conservative approach.
333          */
334         else if (errata.piix4.fdma) {
335                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
336                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
337                 return;
338         }
339
340         /* All the logic here assumes flags.bm_check is same across all CPUs */
341         if (bm_check_flag == -1) {
342                 /* Determine whether bm_check is needed based on CPU  */
343                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
344                 bm_check_flag = pr->flags.bm_check;
345                 bm_control_flag = pr->flags.bm_control;
346         } else {
347                 pr->flags.bm_check = bm_check_flag;
348                 pr->flags.bm_control = bm_control_flag;
349         }
350
351         if (pr->flags.bm_check) {
352                 if (!pr->flags.bm_control) {
353                         if (pr->flags.has_cst != 1) {
354                                 /* bus mastering control is necessary */
355                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
356                                         "C3 support requires BM control\n"));
357                                 return;
358                         } else {
359                                 /* Here we enter C3 without bus mastering */
360                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
361                                         "C3 support without BM control\n"));
362                         }
363                 }
364         } else {
365                 /*
366                  * WBINVD should be set in fadt, for C3 state to be
367                  * supported on when bm_check is not required.
368                  */
369                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
370                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
371                                           "Cache invalidation should work properly"
372                                           " for C3 to be enabled on SMP systems\n"));
373                         return;
374                 }
375         }
376
377         /*
378          * Otherwise we've met all of our C3 requirements.
379          * Normalize the C3 latency to expidite policy.  Enable
380          * checking of bus mastering status (bm_check) so we can
381          * use this in our C3 policy
382          */
383         cx->valid = 1;
384
385         /*
386          * On older chipsets, BM_RLD needs to be set
387          * in order for Bus Master activity to wake the
388          * system from C3.  Newer chipsets handle DMA
389          * during C3 automatically and BM_RLD is a NOP.
390          * In either case, the proper way to
391          * handle BM_RLD is to set it and leave it set.
392          */
393         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
394
395         return;
396 }
397
398 static int acpi_processor_power_verify(struct acpi_processor *pr)
399 {
400         unsigned int i;
401         unsigned int working = 0;
402
403         pr->power.timer_broadcast_on_state = INT_MAX;
404
405         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
406                 struct acpi_processor_cx *cx = &pr->power.states[i];
407
408                 switch (cx->type) {
409                 case ACPI_STATE_C1:
410                         cx->valid = 1;
411                         break;
412
413                 case ACPI_STATE_C2:
414                         if (!cx->address)
415                                 break;
416                         cx->valid = 1;
417                         break;
418
419                 case ACPI_STATE_C3:
420                         acpi_processor_power_verify_c3(pr, cx);
421                         break;
422                 }
423                 if (!cx->valid)
424                         continue;
425
426                 lapic_timer_check_state(i, pr, cx);
427                 tsc_check_state(cx->type);
428                 working++;
429         }
430
431         lapic_timer_propagate_broadcast(pr);
432
433         return (working);
434 }
435
436 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
437 {
438         unsigned int i;
439         int result;
440
441
442         /* NOTE: the idle thread may not be running while calling
443          * this function */
444
445         /* Zero initialize all the C-states info. */
446         memset(pr->power.states, 0, sizeof(pr->power.states));
447
448         result = acpi_processor_get_power_info_cst(pr);
449         if (result == -ENODEV)
450                 result = acpi_processor_get_power_info_fadt(pr);
451
452         if (result)
453                 return result;
454
455         acpi_processor_get_power_info_default(pr);
456
457         pr->power.count = acpi_processor_power_verify(pr);
458
459         /*
460          * if one state of type C2 or C3 is available, mark this
461          * CPU as being "idle manageable"
462          */
463         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
464                 if (pr->power.states[i].valid) {
465                         pr->power.count = i;
466                         pr->flags.power = 1;
467                 }
468         }
469
470         return 0;
471 }
472
473 /**
474  * acpi_idle_bm_check - checks if bus master activity was detected
475  */
476 static int acpi_idle_bm_check(void)
477 {
478         u32 bm_status = 0;
479
480         if (bm_check_disable)
481                 return 0;
482
483         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
484         if (bm_status)
485                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
486         /*
487          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
488          * the true state of bus mastering activity; forcing us to
489          * manually check the BMIDEA bit of each IDE channel.
490          */
491         else if (errata.piix4.bmisx) {
492                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
493                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
494                         bm_status = 1;
495         }
496         return bm_status;
497 }
498
499 static void wait_for_freeze(void)
500 {
501 #ifdef  CONFIG_X86
502         /* No delay is needed if we are in guest */
503         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
504                 return;
505 #endif
506         /* Dummy wait op - must do something useless after P_LVL2 read
507            because chipsets cannot guarantee that STPCLK# signal
508            gets asserted in time to freeze execution properly. */
509         inl(acpi_gbl_FADT.xpm_timer_block.address);
510 }
511
512 /**
513  * acpi_idle_do_entry - enter idle state using the appropriate method
514  * @cx: cstate data
515  *
516  * Caller disables interrupt before call and enables interrupt after return.
517  */
518 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
519 {
520         if (cx->entry_method == ACPI_CSTATE_FFH) {
521                 /* Call into architectural FFH based C-state */
522                 acpi_processor_ffh_cstate_enter(cx);
523         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
524                 acpi_safe_halt();
525         } else {
526                 /* IO port based C-state */
527                 inb(cx->address);
528                 wait_for_freeze();
529         }
530 }
531
532 /**
533  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
534  * @dev: the target CPU
535  * @index: the index of suggested state
536  */
537 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
538 {
539         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
540
541         ACPI_FLUSH_CPU_CACHE();
542
543         while (1) {
544
545                 if (cx->entry_method == ACPI_CSTATE_HALT)
546                         safe_halt();
547                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
548                         inb(cx->address);
549                         wait_for_freeze();
550                 } else
551                         return -ENODEV;
552         }
553
554         /* Never reached */
555         return 0;
556 }
557
558 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
559 {
560         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
561                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
562 }
563
564 static int c3_cpu_count;
565 static DEFINE_RAW_SPINLOCK(c3_lock);
566
567 /**
568  * acpi_idle_enter_bm - enters C3 with proper BM handling
569  * @pr: Target processor
570  * @cx: Target state context
571  * @timer_bc: Whether or not to change timer mode to broadcast
572  */
573 static void acpi_idle_enter_bm(struct acpi_processor *pr,
574                                struct acpi_processor_cx *cx, bool timer_bc)
575 {
576         acpi_unlazy_tlb(smp_processor_id());
577
578         /*
579          * Must be done before busmaster disable as we might need to
580          * access HPET !
581          */
582         if (timer_bc)
583                 lapic_timer_state_broadcast(pr, cx, 1);
584
585         /*
586          * disable bus master
587          * bm_check implies we need ARB_DIS
588          * bm_control implies whether we can do ARB_DIS
589          *
590          * That leaves a case where bm_check is set and bm_control is
591          * not set. In that case we cannot do much, we enter C3
592          * without doing anything.
593          */
594         if (pr->flags.bm_control) {
595                 raw_spin_lock(&c3_lock);
596                 c3_cpu_count++;
597                 /* Disable bus master arbitration when all CPUs are in C3 */
598                 if (c3_cpu_count == num_online_cpus())
599                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
600                 raw_spin_unlock(&c3_lock);
601         }
602
603         acpi_idle_do_entry(cx);
604
605         /* Re-enable bus master arbitration */
606         if (pr->flags.bm_control) {
607                 raw_spin_lock(&c3_lock);
608                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
609                 c3_cpu_count--;
610                 raw_spin_unlock(&c3_lock);
611         }
612
613         if (timer_bc)
614                 lapic_timer_state_broadcast(pr, cx, 0);
615 }
616
617 static int acpi_idle_enter(struct cpuidle_device *dev,
618                            struct cpuidle_driver *drv, int index)
619 {
620         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
621         struct acpi_processor *pr;
622
623         pr = __this_cpu_read(processors);
624         if (unlikely(!pr))
625                 return -EINVAL;
626
627         if (cx->type != ACPI_STATE_C1) {
628                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
629                         index = ACPI_IDLE_STATE_START;
630                         cx = per_cpu(acpi_cstate[index], dev->cpu);
631                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
632                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
633                                 acpi_idle_enter_bm(pr, cx, true);
634                                 return index;
635                         } else if (drv->safe_state_index >= 0) {
636                                 index = drv->safe_state_index;
637                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
638                         } else {
639                                 acpi_safe_halt();
640                                 return -EBUSY;
641                         }
642                 }
643         }
644
645         lapic_timer_state_broadcast(pr, cx, 1);
646
647         if (cx->type == ACPI_STATE_C3)
648                 ACPI_FLUSH_CPU_CACHE();
649
650         acpi_idle_do_entry(cx);
651
652         lapic_timer_state_broadcast(pr, cx, 0);
653
654         return index;
655 }
656
657 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
658                                   struct cpuidle_driver *drv, int index)
659 {
660         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
661
662         if (cx->type == ACPI_STATE_C3) {
663                 struct acpi_processor *pr = __this_cpu_read(processors);
664
665                 if (unlikely(!pr))
666                         return 0;
667
668                 if (pr->flags.bm_check) {
669                         acpi_idle_enter_bm(pr, cx, false);
670                         return 0;
671                 } else {
672                         ACPI_FLUSH_CPU_CACHE();
673                 }
674         }
675         acpi_idle_do_entry(cx);
676
677         return 0;
678 }
679
680 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
681                                            struct cpuidle_device *dev)
682 {
683         int i, count = ACPI_IDLE_STATE_START;
684         struct acpi_processor_cx *cx;
685
686         if (max_cstate == 0)
687                 max_cstate = 1;
688
689         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
690                 cx = &pr->power.states[i];
691
692                 if (!cx->valid)
693                         continue;
694
695                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
696
697                 count++;
698                 if (count == CPUIDLE_STATE_MAX)
699                         break;
700         }
701
702         if (!count)
703                 return -EINVAL;
704
705         return 0;
706 }
707
708 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
709 {
710         int i, count;
711         struct acpi_processor_cx *cx;
712         struct cpuidle_state *state;
713         struct cpuidle_driver *drv = &acpi_idle_driver;
714
715         if (max_cstate == 0)
716                 max_cstate = 1;
717
718         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
719                 cpuidle_poll_state_init(drv);
720                 count = 1;
721         } else {
722                 count = 0;
723         }
724
725         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
726                 cx = &pr->power.states[i];
727
728                 if (!cx->valid)
729                         continue;
730
731                 state = &drv->states[count];
732                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
733                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
734                 state->exit_latency = cx->latency;
735                 state->target_residency = cx->latency * latency_factor;
736                 state->enter = acpi_idle_enter;
737
738                 state->flags = 0;
739                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
740                         state->enter_dead = acpi_idle_play_dead;
741                         drv->safe_state_index = count;
742                 }
743                 /*
744                  * Halt-induced C1 is not good for ->enter_s2idle, because it
745                  * re-enables interrupts on exit.  Moreover, C1 is generally not
746                  * particularly interesting from the suspend-to-idle angle, so
747                  * avoid C1 and the situations in which we may need to fall back
748                  * to it altogether.
749                  */
750                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
751                         state->enter_s2idle = acpi_idle_enter_s2idle;
752
753                 count++;
754                 if (count == CPUIDLE_STATE_MAX)
755                         break;
756         }
757
758         drv->state_count = count;
759
760         if (!count)
761                 return -EINVAL;
762
763         return 0;
764 }
765
766 static inline void acpi_processor_cstate_first_run_checks(void)
767 {
768         static int first_run;
769
770         if (first_run)
771                 return;
772         dmi_check_system(processor_power_dmi_table);
773         max_cstate = acpi_processor_cstate_check(max_cstate);
774         if (max_cstate < ACPI_C_STATES_MAX)
775                 pr_notice("ACPI: processor limited to max C-state %d\n",
776                           max_cstate);
777         first_run++;
778
779         if (nocst)
780                 return;
781
782         acpi_processor_claim_cst_control();
783 }
784 #else
785
786 static inline int disabled_by_idle_boot_param(void) { return 0; }
787 static inline void acpi_processor_cstate_first_run_checks(void) { }
788 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
789 {
790         return -ENODEV;
791 }
792
793 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
794                                            struct cpuidle_device *dev)
795 {
796         return -EINVAL;
797 }
798
799 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
800 {
801         return -EINVAL;
802 }
803
804 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
805
806 struct acpi_lpi_states_array {
807         unsigned int size;
808         unsigned int composite_states_size;
809         struct acpi_lpi_state *entries;
810         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
811 };
812
813 static int obj_get_integer(union acpi_object *obj, u32 *value)
814 {
815         if (obj->type != ACPI_TYPE_INTEGER)
816                 return -EINVAL;
817
818         *value = obj->integer.value;
819         return 0;
820 }
821
822 static int acpi_processor_evaluate_lpi(acpi_handle handle,
823                                        struct acpi_lpi_states_array *info)
824 {
825         acpi_status status;
826         int ret = 0;
827         int pkg_count, state_idx = 1, loop;
828         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
829         union acpi_object *lpi_data;
830         struct acpi_lpi_state *lpi_state;
831
832         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
833         if (ACPI_FAILURE(status)) {
834                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
835                 return -ENODEV;
836         }
837
838         lpi_data = buffer.pointer;
839
840         /* There must be at least 4 elements = 3 elements + 1 package */
841         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
842             lpi_data->package.count < 4) {
843                 pr_debug("not enough elements in _LPI\n");
844                 ret = -ENODATA;
845                 goto end;
846         }
847
848         pkg_count = lpi_data->package.elements[2].integer.value;
849
850         /* Validate number of power states. */
851         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
852                 pr_debug("count given by _LPI is not valid\n");
853                 ret = -ENODATA;
854                 goto end;
855         }
856
857         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
858         if (!lpi_state) {
859                 ret = -ENOMEM;
860                 goto end;
861         }
862
863         info->size = pkg_count;
864         info->entries = lpi_state;
865
866         /* LPI States start at index 3 */
867         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
868                 union acpi_object *element, *pkg_elem, *obj;
869
870                 element = &lpi_data->package.elements[loop];
871                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
872                         continue;
873
874                 pkg_elem = element->package.elements;
875
876                 obj = pkg_elem + 6;
877                 if (obj->type == ACPI_TYPE_BUFFER) {
878                         struct acpi_power_register *reg;
879
880                         reg = (struct acpi_power_register *)obj->buffer.pointer;
881                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
882                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
883                                 continue;
884
885                         lpi_state->address = reg->address;
886                         lpi_state->entry_method =
887                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
888                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
889                 } else if (obj->type == ACPI_TYPE_INTEGER) {
890                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
891                         lpi_state->address = obj->integer.value;
892                 } else {
893                         continue;
894                 }
895
896                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
897
898                 obj = pkg_elem + 9;
899                 if (obj->type == ACPI_TYPE_STRING)
900                         strlcpy(lpi_state->desc, obj->string.pointer,
901                                 ACPI_CX_DESC_LEN);
902
903                 lpi_state->index = state_idx;
904                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
905                         pr_debug("No min. residency found, assuming 10 us\n");
906                         lpi_state->min_residency = 10;
907                 }
908
909                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
910                         pr_debug("No wakeup residency found, assuming 10 us\n");
911                         lpi_state->wake_latency = 10;
912                 }
913
914                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
915                         lpi_state->flags = 0;
916
917                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
918                         lpi_state->arch_flags = 0;
919
920                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
921                         lpi_state->res_cnt_freq = 1;
922
923                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
924                         lpi_state->enable_parent_state = 0;
925         }
926
927         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
928 end:
929         kfree(buffer.pointer);
930         return ret;
931 }
932
933 /*
934  * flat_state_cnt - the number of composite LPI states after the process of flattening
935  */
936 static int flat_state_cnt;
937
938 /**
939  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
940  *
941  * @local: local LPI state
942  * @parent: parent LPI state
943  * @result: composite LPI state
944  */
945 static bool combine_lpi_states(struct acpi_lpi_state *local,
946                                struct acpi_lpi_state *parent,
947                                struct acpi_lpi_state *result)
948 {
949         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
950                 if (!parent->address) /* 0 means autopromotable */
951                         return false;
952                 result->address = local->address + parent->address;
953         } else {
954                 result->address = parent->address;
955         }
956
957         result->min_residency = max(local->min_residency, parent->min_residency);
958         result->wake_latency = local->wake_latency + parent->wake_latency;
959         result->enable_parent_state = parent->enable_parent_state;
960         result->entry_method = local->entry_method;
961
962         result->flags = parent->flags;
963         result->arch_flags = parent->arch_flags;
964         result->index = parent->index;
965
966         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
967         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
968         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
969         return true;
970 }
971
972 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
973
974 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
975                                   struct acpi_lpi_state *t)
976 {
977         curr_level->composite_states[curr_level->composite_states_size++] = t;
978 }
979
980 static int flatten_lpi_states(struct acpi_processor *pr,
981                               struct acpi_lpi_states_array *curr_level,
982                               struct acpi_lpi_states_array *prev_level)
983 {
984         int i, j, state_count = curr_level->size;
985         struct acpi_lpi_state *p, *t = curr_level->entries;
986
987         curr_level->composite_states_size = 0;
988         for (j = 0; j < state_count; j++, t++) {
989                 struct acpi_lpi_state *flpi;
990
991                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
992                         continue;
993
994                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
995                         pr_warn("Limiting number of LPI states to max (%d)\n",
996                                 ACPI_PROCESSOR_MAX_POWER);
997                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
998                         break;
999                 }
1000
1001                 flpi = &pr->power.lpi_states[flat_state_cnt];
1002
1003                 if (!prev_level) { /* leaf/processor node */
1004                         memcpy(flpi, t, sizeof(*t));
1005                         stash_composite_state(curr_level, flpi);
1006                         flat_state_cnt++;
1007                         continue;
1008                 }
1009
1010                 for (i = 0; i < prev_level->composite_states_size; i++) {
1011                         p = prev_level->composite_states[i];
1012                         if (t->index <= p->enable_parent_state &&
1013                             combine_lpi_states(p, t, flpi)) {
1014                                 stash_composite_state(curr_level, flpi);
1015                                 flat_state_cnt++;
1016                                 flpi++;
1017                         }
1018                 }
1019         }
1020
1021         kfree(curr_level->entries);
1022         return 0;
1023 }
1024
1025 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1026 {
1027         int ret, i;
1028         acpi_status status;
1029         acpi_handle handle = pr->handle, pr_ahandle;
1030         struct acpi_device *d = NULL;
1031         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1032
1033         if (!osc_pc_lpi_support_confirmed)
1034                 return -EOPNOTSUPP;
1035
1036         if (!acpi_has_method(handle, "_LPI"))
1037                 return -EINVAL;
1038
1039         flat_state_cnt = 0;
1040         prev = &info[0];
1041         curr = &info[1];
1042         handle = pr->handle;
1043         ret = acpi_processor_evaluate_lpi(handle, prev);
1044         if (ret)
1045                 return ret;
1046         flatten_lpi_states(pr, prev, NULL);
1047
1048         status = acpi_get_parent(handle, &pr_ahandle);
1049         while (ACPI_SUCCESS(status)) {
1050                 acpi_bus_get_device(pr_ahandle, &d);
1051                 handle = pr_ahandle;
1052
1053                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1054                         break;
1055
1056                 /* can be optional ? */
1057                 if (!acpi_has_method(handle, "_LPI"))
1058                         break;
1059
1060                 ret = acpi_processor_evaluate_lpi(handle, curr);
1061                 if (ret)
1062                         break;
1063
1064                 /* flatten all the LPI states in this level of hierarchy */
1065                 flatten_lpi_states(pr, curr, prev);
1066
1067                 tmp = prev, prev = curr, curr = tmp;
1068
1069                 status = acpi_get_parent(handle, &pr_ahandle);
1070         }
1071
1072         pr->power.count = flat_state_cnt;
1073         /* reset the index after flattening */
1074         for (i = 0; i < pr->power.count; i++)
1075                 pr->power.lpi_states[i].index = i;
1076
1077         /* Tell driver that _LPI is supported. */
1078         pr->flags.has_lpi = 1;
1079         pr->flags.power = 1;
1080
1081         return 0;
1082 }
1083
1084 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1085 {
1086         return -ENODEV;
1087 }
1088
1089 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1090 {
1091         return -ENODEV;
1092 }
1093
1094 /**
1095  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1096  * @dev: the target CPU
1097  * @drv: cpuidle driver containing cpuidle state info
1098  * @index: index of target state
1099  *
1100  * Return: 0 for success or negative value for error
1101  */
1102 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1103                                struct cpuidle_driver *drv, int index)
1104 {
1105         struct acpi_processor *pr;
1106         struct acpi_lpi_state *lpi;
1107
1108         pr = __this_cpu_read(processors);
1109
1110         if (unlikely(!pr))
1111                 return -EINVAL;
1112
1113         lpi = &pr->power.lpi_states[index];
1114         if (lpi->entry_method == ACPI_CSTATE_FFH)
1115                 return acpi_processor_ffh_lpi_enter(lpi);
1116
1117         return -EINVAL;
1118 }
1119
1120 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1121 {
1122         int i;
1123         struct acpi_lpi_state *lpi;
1124         struct cpuidle_state *state;
1125         struct cpuidle_driver *drv = &acpi_idle_driver;
1126
1127         if (!pr->flags.has_lpi)
1128                 return -EOPNOTSUPP;
1129
1130         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1131                 lpi = &pr->power.lpi_states[i];
1132
1133                 state = &drv->states[i];
1134                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1135                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1136                 state->exit_latency = lpi->wake_latency;
1137                 state->target_residency = lpi->min_residency;
1138                 if (lpi->arch_flags)
1139                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1140                 state->enter = acpi_idle_lpi_enter;
1141                 drv->safe_state_index = i;
1142         }
1143
1144         drv->state_count = i;
1145
1146         return 0;
1147 }
1148
1149 /**
1150  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1151  * global state data i.e. idle routines
1152  *
1153  * @pr: the ACPI processor
1154  */
1155 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1156 {
1157         int i;
1158         struct cpuidle_driver *drv = &acpi_idle_driver;
1159
1160         if (!pr->flags.power_setup_done || !pr->flags.power)
1161                 return -EINVAL;
1162
1163         drv->safe_state_index = -1;
1164         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1165                 drv->states[i].name[0] = '\0';
1166                 drv->states[i].desc[0] = '\0';
1167         }
1168
1169         if (pr->flags.has_lpi)
1170                 return acpi_processor_setup_lpi_states(pr);
1171
1172         return acpi_processor_setup_cstates(pr);
1173 }
1174
1175 /**
1176  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1177  * device i.e. per-cpu data
1178  *
1179  * @pr: the ACPI processor
1180  * @dev : the cpuidle device
1181  */
1182 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1183                                             struct cpuidle_device *dev)
1184 {
1185         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1186                 return -EINVAL;
1187
1188         dev->cpu = pr->id;
1189         if (pr->flags.has_lpi)
1190                 return acpi_processor_ffh_lpi_probe(pr->id);
1191
1192         return acpi_processor_setup_cpuidle_cx(pr, dev);
1193 }
1194
1195 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1196 {
1197         int ret;
1198
1199         ret = acpi_processor_get_lpi_info(pr);
1200         if (ret)
1201                 ret = acpi_processor_get_cstate_info(pr);
1202
1203         return ret;
1204 }
1205
1206 int acpi_processor_hotplug(struct acpi_processor *pr)
1207 {
1208         int ret = 0;
1209         struct cpuidle_device *dev;
1210
1211         if (disabled_by_idle_boot_param())
1212                 return 0;
1213
1214         if (!pr->flags.power_setup_done)
1215                 return -ENODEV;
1216
1217         dev = per_cpu(acpi_cpuidle_device, pr->id);
1218         cpuidle_pause_and_lock();
1219         cpuidle_disable_device(dev);
1220         ret = acpi_processor_get_power_info(pr);
1221         if (!ret && pr->flags.power) {
1222                 acpi_processor_setup_cpuidle_dev(pr, dev);
1223                 ret = cpuidle_enable_device(dev);
1224         }
1225         cpuidle_resume_and_unlock();
1226
1227         return ret;
1228 }
1229
1230 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1231 {
1232         int cpu;
1233         struct acpi_processor *_pr;
1234         struct cpuidle_device *dev;
1235
1236         if (disabled_by_idle_boot_param())
1237                 return 0;
1238
1239         if (!pr->flags.power_setup_done)
1240                 return -ENODEV;
1241
1242         /*
1243          * FIXME:  Design the ACPI notification to make it once per
1244          * system instead of once per-cpu.  This condition is a hack
1245          * to make the code that updates C-States be called once.
1246          */
1247
1248         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1249
1250                 /* Protect against cpu-hotplug */
1251                 get_online_cpus();
1252                 cpuidle_pause_and_lock();
1253
1254                 /* Disable all cpuidle devices */
1255                 for_each_online_cpu(cpu) {
1256                         _pr = per_cpu(processors, cpu);
1257                         if (!_pr || !_pr->flags.power_setup_done)
1258                                 continue;
1259                         dev = per_cpu(acpi_cpuidle_device, cpu);
1260                         cpuidle_disable_device(dev);
1261                 }
1262
1263                 /* Populate Updated C-state information */
1264                 acpi_processor_get_power_info(pr);
1265                 acpi_processor_setup_cpuidle_states(pr);
1266
1267                 /* Enable all cpuidle devices */
1268                 for_each_online_cpu(cpu) {
1269                         _pr = per_cpu(processors, cpu);
1270                         if (!_pr || !_pr->flags.power_setup_done)
1271                                 continue;
1272                         acpi_processor_get_power_info(_pr);
1273                         if (_pr->flags.power) {
1274                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1275                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1276                                 cpuidle_enable_device(dev);
1277                         }
1278                 }
1279                 cpuidle_resume_and_unlock();
1280                 put_online_cpus();
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int acpi_processor_registered;
1287
1288 int acpi_processor_power_init(struct acpi_processor *pr)
1289 {
1290         int retval;
1291         struct cpuidle_device *dev;
1292
1293         if (disabled_by_idle_boot_param())
1294                 return 0;
1295
1296         acpi_processor_cstate_first_run_checks();
1297
1298         if (!acpi_processor_get_power_info(pr))
1299                 pr->flags.power_setup_done = 1;
1300
1301         /*
1302          * Install the idle handler if processor power management is supported.
1303          * Note that we use previously set idle handler will be used on
1304          * platforms that only support C1.
1305          */
1306         if (pr->flags.power) {
1307                 /* Register acpi_idle_driver if not already registered */
1308                 if (!acpi_processor_registered) {
1309                         acpi_processor_setup_cpuidle_states(pr);
1310                         retval = cpuidle_register_driver(&acpi_idle_driver);
1311                         if (retval)
1312                                 return retval;
1313                         pr_debug("%s registered with cpuidle\n",
1314                                  acpi_idle_driver.name);
1315                 }
1316
1317                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1318                 if (!dev)
1319                         return -ENOMEM;
1320                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1321
1322                 acpi_processor_setup_cpuidle_dev(pr, dev);
1323
1324                 /* Register per-cpu cpuidle_device. Cpuidle driver
1325                  * must already be registered before registering device
1326                  */
1327                 retval = cpuidle_register_device(dev);
1328                 if (retval) {
1329                         if (acpi_processor_registered == 0)
1330                                 cpuidle_unregister_driver(&acpi_idle_driver);
1331                         return retval;
1332                 }
1333                 acpi_processor_registered++;
1334         }
1335         return 0;
1336 }
1337
1338 int acpi_processor_power_exit(struct acpi_processor *pr)
1339 {
1340         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1341
1342         if (disabled_by_idle_boot_param())
1343                 return 0;
1344
1345         if (pr->flags.power) {
1346                 cpuidle_unregister_device(dev);
1347                 acpi_processor_registered--;
1348                 if (acpi_processor_registered == 0)
1349                         cpuidle_unregister_driver(&acpi_idle_driver);
1350         }
1351
1352         pr->flags.power_setup_done = 0;
1353         return 0;
1354 }