Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-microblaze.git] / drivers / acpi / osl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
31
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
35
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
39
40 #define _COMPONENT              ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
42
43 struct acpi_os_dpc {
44         acpi_osd_exec_callback function;
45         void *context;
46         struct work_struct work;
47 };
48
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
51
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif                          /*ENABLE_DEBUGGER */
56
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58                                       u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60                                       u32 val_b);
61
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
70
71 /*
72  * This list of permanent mappings is for memory that may be accessed from
73  * interrupt context, where we can't do the ioremap().
74  */
75 struct acpi_ioremap {
76         struct list_head list;
77         void __iomem *virt;
78         acpi_physical_address phys;
79         acpi_size size;
80         union {
81                 unsigned long refcount;
82                 struct rcu_work rwork;
83         } track;
84 };
85
86 static LIST_HEAD(acpi_ioremaps);
87 static DEFINE_MUTEX(acpi_ioremap_lock);
88 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89
90 static void __init acpi_request_region (struct acpi_generic_address *gas,
91         unsigned int length, char *desc)
92 {
93         u64 addr;
94
95         /* Handle possible alignment issues */
96         memcpy(&addr, &gas->address, sizeof(addr));
97         if (!addr || !length)
98                 return;
99
100         /* Resources are never freed */
101         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102                 request_region(addr, length, desc);
103         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104                 request_mem_region(addr, length, desc);
105 }
106
107 static int __init acpi_reserve_resources(void)
108 {
109         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110                 "ACPI PM1a_EVT_BLK");
111
112         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113                 "ACPI PM1b_EVT_BLK");
114
115         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116                 "ACPI PM1a_CNT_BLK");
117
118         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119                 "ACPI PM1b_CNT_BLK");
120
121         if (acpi_gbl_FADT.pm_timer_length == 4)
122                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123
124         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125                 "ACPI PM2_CNT_BLK");
126
127         /* Length of GPE blocks must be a non-negative multiple of 2 */
128
129         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132
133         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136
137         return 0;
138 }
139 fs_initcall_sync(acpi_reserve_resources);
140
141 void acpi_os_printf(const char *fmt, ...)
142 {
143         va_list args;
144         va_start(args, fmt);
145         acpi_os_vprintf(fmt, args);
146         va_end(args);
147 }
148 EXPORT_SYMBOL(acpi_os_printf);
149
150 void acpi_os_vprintf(const char *fmt, va_list args)
151 {
152         static char buffer[512];
153
154         vsprintf(buffer, fmt, args);
155
156 #ifdef ENABLE_DEBUGGER
157         if (acpi_in_debugger) {
158                 kdb_printf("%s", buffer);
159         } else {
160                 if (printk_get_level(buffer))
161                         printk("%s", buffer);
162                 else
163                         printk(KERN_CONT "%s", buffer);
164         }
165 #else
166         if (acpi_debugger_write_log(buffer) < 0) {
167                 if (printk_get_level(buffer))
168                         printk("%s", buffer);
169                 else
170                         printk(KERN_CONT "%s", buffer);
171         }
172 #endif
173 }
174
175 #ifdef CONFIG_KEXEC
176 static unsigned long acpi_rsdp;
177 static int __init setup_acpi_rsdp(char *arg)
178 {
179         return kstrtoul(arg, 16, &acpi_rsdp);
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183
184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186         acpi_physical_address pa;
187
188 #ifdef CONFIG_KEXEC
189         /*
190          * We may have been provided with an RSDP on the command line,
191          * but if a malicious user has done so they may be pointing us
192          * at modified ACPI tables that could alter kernel behaviour -
193          * so, we check the lockdown status before making use of
194          * it. If we trust it then also stash it in an architecture
195          * specific location (if appropriate) so it can be carried
196          * over further kexec()s.
197          */
198         if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199                 acpi_arch_set_root_pointer(acpi_rsdp);
200                 return acpi_rsdp;
201         }
202 #endif
203         pa = acpi_arch_get_root_pointer();
204         if (pa)
205                 return pa;
206
207         if (efi_enabled(EFI_CONFIG_TABLES)) {
208                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209                         return efi.acpi20;
210                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211                         return efi.acpi;
212                 pr_err(PREFIX "System description tables not found\n");
213         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214                 acpi_find_root_pointer(&pa);
215         }
216
217         return pa;
218 }
219
220 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221 static struct acpi_ioremap *
222 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223 {
224         struct acpi_ioremap *map;
225
226         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227                 if (map->phys <= phys &&
228                     phys + size <= map->phys + map->size)
229                         return map;
230
231         return NULL;
232 }
233
234 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235 static void __iomem *
236 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237 {
238         struct acpi_ioremap *map;
239
240         map = acpi_map_lookup(phys, size);
241         if (map)
242                 return map->virt + (phys - map->phys);
243
244         return NULL;
245 }
246
247 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248 {
249         struct acpi_ioremap *map;
250         void __iomem *virt = NULL;
251
252         mutex_lock(&acpi_ioremap_lock);
253         map = acpi_map_lookup(phys, size);
254         if (map) {
255                 virt = map->virt + (phys - map->phys);
256                 map->track.refcount++;
257         }
258         mutex_unlock(&acpi_ioremap_lock);
259         return virt;
260 }
261 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262
263 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264 static struct acpi_ioremap *
265 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266 {
267         struct acpi_ioremap *map;
268
269         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270                 if (map->virt <= virt &&
271                     virt + size <= map->virt + map->size)
272                         return map;
273
274         return NULL;
275 }
276
277 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278 /* ioremap will take care of cache attributes */
279 #define should_use_kmap(pfn)   0
280 #else
281 #define should_use_kmap(pfn)   page_is_ram(pfn)
282 #endif
283
284 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285 {
286         unsigned long pfn;
287
288         pfn = pg_off >> PAGE_SHIFT;
289         if (should_use_kmap(pfn)) {
290                 if (pg_sz > PAGE_SIZE)
291                         return NULL;
292                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
293         } else
294                 return acpi_os_ioremap(pg_off, pg_sz);
295 }
296
297 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298 {
299         unsigned long pfn;
300
301         pfn = pg_off >> PAGE_SHIFT;
302         if (should_use_kmap(pfn))
303                 kunmap(pfn_to_page(pfn));
304         else
305                 iounmap(vaddr);
306 }
307
308 /**
309  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310  * @phys: Start of the physical address range to map.
311  * @size: Size of the physical address range to map.
312  *
313  * Look up the given physical address range in the list of existing ACPI memory
314  * mappings.  If found, get a reference to it and return a pointer to it (its
315  * virtual address).  If not found, map it, add it to that list and return a
316  * pointer to it.
317  *
318  * During early init (when acpi_permanent_mmap has not been set yet) this
319  * routine simply calls __acpi_map_table() to get the job done.
320  */
321 void __iomem __ref
322 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323 {
324         struct acpi_ioremap *map;
325         void __iomem *virt;
326         acpi_physical_address pg_off;
327         acpi_size pg_sz;
328
329         if (phys > ULONG_MAX) {
330                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331                 return NULL;
332         }
333
334         if (!acpi_permanent_mmap)
335                 return __acpi_map_table((unsigned long)phys, size);
336
337         mutex_lock(&acpi_ioremap_lock);
338         /* Check if there's a suitable mapping already. */
339         map = acpi_map_lookup(phys, size);
340         if (map) {
341                 map->track.refcount++;
342                 goto out;
343         }
344
345         map = kzalloc(sizeof(*map), GFP_KERNEL);
346         if (!map) {
347                 mutex_unlock(&acpi_ioremap_lock);
348                 return NULL;
349         }
350
351         pg_off = round_down(phys, PAGE_SIZE);
352         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353         virt = acpi_map(phys, size);
354         if (!virt) {
355                 mutex_unlock(&acpi_ioremap_lock);
356                 kfree(map);
357                 return NULL;
358         }
359
360         INIT_LIST_HEAD(&map->list);
361         map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362         map->phys = pg_off;
363         map->size = pg_sz;
364         map->track.refcount = 1;
365
366         list_add_tail_rcu(&map->list, &acpi_ioremaps);
367
368 out:
369         mutex_unlock(&acpi_ioremap_lock);
370         return map->virt + (phys - map->phys);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373
374 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375 {
376         return (void *)acpi_os_map_iomem(phys, size);
377 }
378 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379
380 static void acpi_os_map_remove(struct work_struct *work)
381 {
382         struct acpi_ioremap *map = container_of(to_rcu_work(work),
383                                                 struct acpi_ioremap,
384                                                 track.rwork);
385
386         acpi_unmap(map->phys, map->virt);
387         kfree(map);
388 }
389
390 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
391 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392 {
393         if (--map->track.refcount)
394                 return;
395
396         list_del_rcu(&map->list);
397
398         INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399         queue_rcu_work(system_wq, &map->track.rwork);
400 }
401
402 /**
403  * acpi_os_unmap_iomem - Drop a memory mapping reference.
404  * @virt: Start of the address range to drop a reference to.
405  * @size: Size of the address range to drop a reference to.
406  *
407  * Look up the given virtual address range in the list of existing ACPI memory
408  * mappings, drop a reference to it and if there are no more active references
409  * to it, queue it up for later removal.
410  *
411  * During early init (when acpi_permanent_mmap has not been set yet) this
412  * routine simply calls __acpi_unmap_table() to get the job done.  Since
413  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414  * here.
415  */
416 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417 {
418         struct acpi_ioremap *map;
419
420         if (!acpi_permanent_mmap) {
421                 __acpi_unmap_table(virt, size);
422                 return;
423         }
424
425         mutex_lock(&acpi_ioremap_lock);
426
427         map = acpi_map_lookup_virt(virt, size);
428         if (!map) {
429                 mutex_unlock(&acpi_ioremap_lock);
430                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431                 return;
432         }
433         acpi_os_drop_map_ref(map);
434
435         mutex_unlock(&acpi_ioremap_lock);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438
439 /**
440  * acpi_os_unmap_memory - Drop a memory mapping reference.
441  * @virt: Start of the address range to drop a reference to.
442  * @size: Size of the address range to drop a reference to.
443  */
444 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445 {
446         acpi_os_unmap_iomem((void __iomem *)virt, size);
447 }
448 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
451 {
452         u64 addr;
453         void __iomem *virt;
454
455         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
456                 return 0;
457
458         /* Handle possible alignment issues */
459         memcpy(&addr, &gas->address, sizeof(addr));
460         if (!addr || !gas->bit_width)
461                 return -EINVAL;
462
463         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
464         if (!virt)
465                 return -EIO;
466
467         return 0;
468 }
469 EXPORT_SYMBOL(acpi_os_map_generic_address);
470
471 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472 {
473         u64 addr;
474         struct acpi_ioremap *map;
475
476         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477                 return;
478
479         /* Handle possible alignment issues */
480         memcpy(&addr, &gas->address, sizeof(addr));
481         if (!addr || !gas->bit_width)
482                 return;
483
484         mutex_lock(&acpi_ioremap_lock);
485
486         map = acpi_map_lookup(addr, gas->bit_width / 8);
487         if (!map) {
488                 mutex_unlock(&acpi_ioremap_lock);
489                 return;
490         }
491         acpi_os_drop_map_ref(map);
492
493         mutex_unlock(&acpi_ioremap_lock);
494 }
495 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
496
497 #ifdef ACPI_FUTURE_USAGE
498 acpi_status
499 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500 {
501         if (!phys || !virt)
502                 return AE_BAD_PARAMETER;
503
504         *phys = virt_to_phys(virt);
505
506         return AE_OK;
507 }
508 #endif
509
510 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
511 static bool acpi_rev_override;
512
513 int __init acpi_rev_override_setup(char *str)
514 {
515         acpi_rev_override = true;
516         return 1;
517 }
518 __setup("acpi_rev_override", acpi_rev_override_setup);
519 #else
520 #define acpi_rev_override       false
521 #endif
522
523 #define ACPI_MAX_OVERRIDE_LEN 100
524
525 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526
527 acpi_status
528 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
529                             acpi_string *new_val)
530 {
531         if (!init_val || !new_val)
532                 return AE_BAD_PARAMETER;
533
534         *new_val = NULL;
535         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
536                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
537                        acpi_os_name);
538                 *new_val = acpi_os_name;
539         }
540
541         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
542                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
543                 *new_val = (char *)5;
544         }
545
546         return AE_OK;
547 }
548
549 static irqreturn_t acpi_irq(int irq, void *dev_id)
550 {
551         u32 handled;
552
553         handled = (*acpi_irq_handler) (acpi_irq_context);
554
555         if (handled) {
556                 acpi_irq_handled++;
557                 return IRQ_HANDLED;
558         } else {
559                 acpi_irq_not_handled++;
560                 return IRQ_NONE;
561         }
562 }
563
564 acpi_status
565 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
566                                   void *context)
567 {
568         unsigned int irq;
569
570         acpi_irq_stats_init();
571
572         /*
573          * ACPI interrupts different from the SCI in our copy of the FADT are
574          * not supported.
575          */
576         if (gsi != acpi_gbl_FADT.sci_interrupt)
577                 return AE_BAD_PARAMETER;
578
579         if (acpi_irq_handler)
580                 return AE_ALREADY_ACQUIRED;
581
582         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
583                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
584                        gsi);
585                 return AE_OK;
586         }
587
588         acpi_irq_handler = handler;
589         acpi_irq_context = context;
590         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
591                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
592                 acpi_irq_handler = NULL;
593                 return AE_NOT_ACQUIRED;
594         }
595         acpi_sci_irq = irq;
596
597         return AE_OK;
598 }
599
600 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
601 {
602         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
603                 return AE_BAD_PARAMETER;
604
605         free_irq(acpi_sci_irq, acpi_irq);
606         acpi_irq_handler = NULL;
607         acpi_sci_irq = INVALID_ACPI_IRQ;
608
609         return AE_OK;
610 }
611
612 /*
613  * Running in interpreter thread context, safe to sleep
614  */
615
616 void acpi_os_sleep(u64 ms)
617 {
618         msleep(ms);
619 }
620
621 void acpi_os_stall(u32 us)
622 {
623         while (us) {
624                 u32 delay = 1000;
625
626                 if (delay > us)
627                         delay = us;
628                 udelay(delay);
629                 touch_nmi_watchdog();
630                 us -= delay;
631         }
632 }
633
634 /*
635  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
636  * monotonically increasing timer with 100ns granularity. Do not use
637  * ktime_get() to implement this function because this function may get
638  * called after timekeeping has been suspended. Note: calling this function
639  * after timekeeping has been suspended may lead to unexpected results
640  * because when timekeeping is suspended the jiffies counter is not
641  * incremented. See also timekeeping_suspend().
642  */
643 u64 acpi_os_get_timer(void)
644 {
645         return (get_jiffies_64() - INITIAL_JIFFIES) *
646                 (ACPI_100NSEC_PER_SEC / HZ);
647 }
648
649 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
650 {
651         u32 dummy;
652
653         if (!value)
654                 value = &dummy;
655
656         *value = 0;
657         if (width <= 8) {
658                 *(u8 *) value = inb(port);
659         } else if (width <= 16) {
660                 *(u16 *) value = inw(port);
661         } else if (width <= 32) {
662                 *(u32 *) value = inl(port);
663         } else {
664                 BUG();
665         }
666
667         return AE_OK;
668 }
669
670 EXPORT_SYMBOL(acpi_os_read_port);
671
672 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
673 {
674         if (width <= 8) {
675                 outb(value, port);
676         } else if (width <= 16) {
677                 outw(value, port);
678         } else if (width <= 32) {
679                 outl(value, port);
680         } else {
681                 BUG();
682         }
683
684         return AE_OK;
685 }
686
687 EXPORT_SYMBOL(acpi_os_write_port);
688
689 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690 {
691
692         switch (width) {
693         case 8:
694                 *(u8 *) value = readb(virt_addr);
695                 break;
696         case 16:
697                 *(u16 *) value = readw(virt_addr);
698                 break;
699         case 32:
700                 *(u32 *) value = readl(virt_addr);
701                 break;
702         case 64:
703                 *(u64 *) value = readq(virt_addr);
704                 break;
705         default:
706                 return -EINVAL;
707         }
708
709         return 0;
710 }
711
712 acpi_status
713 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
714 {
715         void __iomem *virt_addr;
716         unsigned int size = width / 8;
717         bool unmap = false;
718         u64 dummy;
719         int error;
720
721         rcu_read_lock();
722         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
723         if (!virt_addr) {
724                 rcu_read_unlock();
725                 virt_addr = acpi_os_ioremap(phys_addr, size);
726                 if (!virt_addr)
727                         return AE_BAD_ADDRESS;
728                 unmap = true;
729         }
730
731         if (!value)
732                 value = &dummy;
733
734         error = acpi_os_read_iomem(virt_addr, value, width);
735         BUG_ON(error);
736
737         if (unmap)
738                 iounmap(virt_addr);
739         else
740                 rcu_read_unlock();
741
742         return AE_OK;
743 }
744
745 acpi_status
746 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
747 {
748         void __iomem *virt_addr;
749         unsigned int size = width / 8;
750         bool unmap = false;
751
752         rcu_read_lock();
753         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
754         if (!virt_addr) {
755                 rcu_read_unlock();
756                 virt_addr = acpi_os_ioremap(phys_addr, size);
757                 if (!virt_addr)
758                         return AE_BAD_ADDRESS;
759                 unmap = true;
760         }
761
762         switch (width) {
763         case 8:
764                 writeb(value, virt_addr);
765                 break;
766         case 16:
767                 writew(value, virt_addr);
768                 break;
769         case 32:
770                 writel(value, virt_addr);
771                 break;
772         case 64:
773                 writeq(value, virt_addr);
774                 break;
775         default:
776                 BUG();
777         }
778
779         if (unmap)
780                 iounmap(virt_addr);
781         else
782                 rcu_read_unlock();
783
784         return AE_OK;
785 }
786
787 #ifdef CONFIG_PCI
788 acpi_status
789 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
790                                u64 *value, u32 width)
791 {
792         int result, size;
793         u32 value32;
794
795         if (!value)
796                 return AE_BAD_PARAMETER;
797
798         switch (width) {
799         case 8:
800                 size = 1;
801                 break;
802         case 16:
803                 size = 2;
804                 break;
805         case 32:
806                 size = 4;
807                 break;
808         default:
809                 return AE_ERROR;
810         }
811
812         result = raw_pci_read(pci_id->segment, pci_id->bus,
813                                 PCI_DEVFN(pci_id->device, pci_id->function),
814                                 reg, size, &value32);
815         *value = value32;
816
817         return (result ? AE_ERROR : AE_OK);
818 }
819
820 acpi_status
821 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
822                                 u64 value, u32 width)
823 {
824         int result, size;
825
826         switch (width) {
827         case 8:
828                 size = 1;
829                 break;
830         case 16:
831                 size = 2;
832                 break;
833         case 32:
834                 size = 4;
835                 break;
836         default:
837                 return AE_ERROR;
838         }
839
840         result = raw_pci_write(pci_id->segment, pci_id->bus,
841                                 PCI_DEVFN(pci_id->device, pci_id->function),
842                                 reg, size, value);
843
844         return (result ? AE_ERROR : AE_OK);
845 }
846 #endif
847
848 static void acpi_os_execute_deferred(struct work_struct *work)
849 {
850         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
851
852         dpc->function(dpc->context);
853         kfree(dpc);
854 }
855
856 #ifdef CONFIG_ACPI_DEBUGGER
857 static struct acpi_debugger acpi_debugger;
858 static bool acpi_debugger_initialized;
859
860 int acpi_register_debugger(struct module *owner,
861                            const struct acpi_debugger_ops *ops)
862 {
863         int ret = 0;
864
865         mutex_lock(&acpi_debugger.lock);
866         if (acpi_debugger.ops) {
867                 ret = -EBUSY;
868                 goto err_lock;
869         }
870
871         acpi_debugger.owner = owner;
872         acpi_debugger.ops = ops;
873
874 err_lock:
875         mutex_unlock(&acpi_debugger.lock);
876         return ret;
877 }
878 EXPORT_SYMBOL(acpi_register_debugger);
879
880 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
881 {
882         mutex_lock(&acpi_debugger.lock);
883         if (ops == acpi_debugger.ops) {
884                 acpi_debugger.ops = NULL;
885                 acpi_debugger.owner = NULL;
886         }
887         mutex_unlock(&acpi_debugger.lock);
888 }
889 EXPORT_SYMBOL(acpi_unregister_debugger);
890
891 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
892 {
893         int ret;
894         int (*func)(acpi_osd_exec_callback, void *);
895         struct module *owner;
896
897         if (!acpi_debugger_initialized)
898                 return -ENODEV;
899         mutex_lock(&acpi_debugger.lock);
900         if (!acpi_debugger.ops) {
901                 ret = -ENODEV;
902                 goto err_lock;
903         }
904         if (!try_module_get(acpi_debugger.owner)) {
905                 ret = -ENODEV;
906                 goto err_lock;
907         }
908         func = acpi_debugger.ops->create_thread;
909         owner = acpi_debugger.owner;
910         mutex_unlock(&acpi_debugger.lock);
911
912         ret = func(function, context);
913
914         mutex_lock(&acpi_debugger.lock);
915         module_put(owner);
916 err_lock:
917         mutex_unlock(&acpi_debugger.lock);
918         return ret;
919 }
920
921 ssize_t acpi_debugger_write_log(const char *msg)
922 {
923         ssize_t ret;
924         ssize_t (*func)(const char *);
925         struct module *owner;
926
927         if (!acpi_debugger_initialized)
928                 return -ENODEV;
929         mutex_lock(&acpi_debugger.lock);
930         if (!acpi_debugger.ops) {
931                 ret = -ENODEV;
932                 goto err_lock;
933         }
934         if (!try_module_get(acpi_debugger.owner)) {
935                 ret = -ENODEV;
936                 goto err_lock;
937         }
938         func = acpi_debugger.ops->write_log;
939         owner = acpi_debugger.owner;
940         mutex_unlock(&acpi_debugger.lock);
941
942         ret = func(msg);
943
944         mutex_lock(&acpi_debugger.lock);
945         module_put(owner);
946 err_lock:
947         mutex_unlock(&acpi_debugger.lock);
948         return ret;
949 }
950
951 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
952 {
953         ssize_t ret;
954         ssize_t (*func)(char *, size_t);
955         struct module *owner;
956
957         if (!acpi_debugger_initialized)
958                 return -ENODEV;
959         mutex_lock(&acpi_debugger.lock);
960         if (!acpi_debugger.ops) {
961                 ret = -ENODEV;
962                 goto err_lock;
963         }
964         if (!try_module_get(acpi_debugger.owner)) {
965                 ret = -ENODEV;
966                 goto err_lock;
967         }
968         func = acpi_debugger.ops->read_cmd;
969         owner = acpi_debugger.owner;
970         mutex_unlock(&acpi_debugger.lock);
971
972         ret = func(buffer, buffer_length);
973
974         mutex_lock(&acpi_debugger.lock);
975         module_put(owner);
976 err_lock:
977         mutex_unlock(&acpi_debugger.lock);
978         return ret;
979 }
980
981 int acpi_debugger_wait_command_ready(void)
982 {
983         int ret;
984         int (*func)(bool, char *, size_t);
985         struct module *owner;
986
987         if (!acpi_debugger_initialized)
988                 return -ENODEV;
989         mutex_lock(&acpi_debugger.lock);
990         if (!acpi_debugger.ops) {
991                 ret = -ENODEV;
992                 goto err_lock;
993         }
994         if (!try_module_get(acpi_debugger.owner)) {
995                 ret = -ENODEV;
996                 goto err_lock;
997         }
998         func = acpi_debugger.ops->wait_command_ready;
999         owner = acpi_debugger.owner;
1000         mutex_unlock(&acpi_debugger.lock);
1001
1002         ret = func(acpi_gbl_method_executing,
1003                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004
1005         mutex_lock(&acpi_debugger.lock);
1006         module_put(owner);
1007 err_lock:
1008         mutex_unlock(&acpi_debugger.lock);
1009         return ret;
1010 }
1011
1012 int acpi_debugger_notify_command_complete(void)
1013 {
1014         int ret;
1015         int (*func)(void);
1016         struct module *owner;
1017
1018         if (!acpi_debugger_initialized)
1019                 return -ENODEV;
1020         mutex_lock(&acpi_debugger.lock);
1021         if (!acpi_debugger.ops) {
1022                 ret = -ENODEV;
1023                 goto err_lock;
1024         }
1025         if (!try_module_get(acpi_debugger.owner)) {
1026                 ret = -ENODEV;
1027                 goto err_lock;
1028         }
1029         func = acpi_debugger.ops->notify_command_complete;
1030         owner = acpi_debugger.owner;
1031         mutex_unlock(&acpi_debugger.lock);
1032
1033         ret = func();
1034
1035         mutex_lock(&acpi_debugger.lock);
1036         module_put(owner);
1037 err_lock:
1038         mutex_unlock(&acpi_debugger.lock);
1039         return ret;
1040 }
1041
1042 int __init acpi_debugger_init(void)
1043 {
1044         mutex_init(&acpi_debugger.lock);
1045         acpi_debugger_initialized = true;
1046         return 0;
1047 }
1048 #endif
1049
1050 /*******************************************************************************
1051  *
1052  * FUNCTION:    acpi_os_execute
1053  *
1054  * PARAMETERS:  Type               - Type of the callback
1055  *              Function           - Function to be executed
1056  *              Context            - Function parameters
1057  *
1058  * RETURN:      Status
1059  *
1060  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061  *              immediately executes function on a separate thread.
1062  *
1063  ******************************************************************************/
1064
1065 acpi_status acpi_os_execute(acpi_execute_type type,
1066                             acpi_osd_exec_callback function, void *context)
1067 {
1068         acpi_status status = AE_OK;
1069         struct acpi_os_dpc *dpc;
1070         struct workqueue_struct *queue;
1071         int ret;
1072         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073                           "Scheduling function [%p(%p)] for deferred execution.\n",
1074                           function, context));
1075
1076         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077                 ret = acpi_debugger_create_thread(function, context);
1078                 if (ret) {
1079                         pr_err("Call to kthread_create() failed.\n");
1080                         status = AE_ERROR;
1081                 }
1082                 goto out_thread;
1083         }
1084
1085         /*
1086          * Allocate/initialize DPC structure.  Note that this memory will be
1087          * freed by the callee.  The kernel handles the work_struct list  in a
1088          * way that allows us to also free its memory inside the callee.
1089          * Because we may want to schedule several tasks with different
1090          * parameters we can't use the approach some kernel code uses of
1091          * having a static work_struct.
1092          */
1093
1094         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095         if (!dpc)
1096                 return AE_NO_MEMORY;
1097
1098         dpc->function = function;
1099         dpc->context = context;
1100
1101         /*
1102          * To prevent lockdep from complaining unnecessarily, make sure that
1103          * there is a different static lockdep key for each workqueue by using
1104          * INIT_WORK() for each of them separately.
1105          */
1106         if (type == OSL_NOTIFY_HANDLER) {
1107                 queue = kacpi_notify_wq;
1108                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109         } else if (type == OSL_GPE_HANDLER) {
1110                 queue = kacpid_wq;
1111                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112         } else {
1113                 pr_err("Unsupported os_execute type %d.\n", type);
1114                 status = AE_ERROR;
1115         }
1116
1117         if (ACPI_FAILURE(status))
1118                 goto err_workqueue;
1119
1120         /*
1121          * On some machines, a software-initiated SMI causes corruption unless
1122          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1123          * typically it's done in GPE-related methods that are run via
1124          * workqueues, so we can avoid the known corruption cases by always
1125          * queueing on CPU 0.
1126          */
1127         ret = queue_work_on(0, queue, &dpc->work);
1128         if (!ret) {
1129                 printk(KERN_ERR PREFIX
1130                           "Call to queue_work() failed.\n");
1131                 status = AE_ERROR;
1132         }
1133 err_workqueue:
1134         if (ACPI_FAILURE(status))
1135                 kfree(dpc);
1136 out_thread:
1137         return status;
1138 }
1139 EXPORT_SYMBOL(acpi_os_execute);
1140
1141 void acpi_os_wait_events_complete(void)
1142 {
1143         /*
1144          * Make sure the GPE handler or the fixed event handler is not used
1145          * on another CPU after removal.
1146          */
1147         if (acpi_sci_irq_valid())
1148                 synchronize_hardirq(acpi_sci_irq);
1149         flush_workqueue(kacpid_wq);
1150         flush_workqueue(kacpi_notify_wq);
1151 }
1152 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153
1154 struct acpi_hp_work {
1155         struct work_struct work;
1156         struct acpi_device *adev;
1157         u32 src;
1158 };
1159
1160 static void acpi_hotplug_work_fn(struct work_struct *work)
1161 {
1162         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163
1164         acpi_os_wait_events_complete();
1165         acpi_device_hotplug(hpw->adev, hpw->src);
1166         kfree(hpw);
1167 }
1168
1169 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170 {
1171         struct acpi_hp_work *hpw;
1172
1173         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175                   adev, src));
1176
1177         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178         if (!hpw)
1179                 return AE_NO_MEMORY;
1180
1181         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182         hpw->adev = adev;
1183         hpw->src = src;
1184         /*
1185          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186          * the hotplug code may call driver .remove() functions, which may
1187          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188          * these workqueues.
1189          */
1190         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191                 kfree(hpw);
1192                 return AE_ERROR;
1193         }
1194         return AE_OK;
1195 }
1196
1197 bool acpi_queue_hotplug_work(struct work_struct *work)
1198 {
1199         return queue_work(kacpi_hotplug_wq, work);
1200 }
1201
1202 acpi_status
1203 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204 {
1205         struct semaphore *sem = NULL;
1206
1207         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208         if (!sem)
1209                 return AE_NO_MEMORY;
1210
1211         sema_init(sem, initial_units);
1212
1213         *handle = (acpi_handle *) sem;
1214
1215         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216                           *handle, initial_units));
1217
1218         return AE_OK;
1219 }
1220
1221 /*
1222  * TODO: A better way to delete semaphores?  Linux doesn't have a
1223  * 'delete_semaphore()' function -- may result in an invalid
1224  * pointer dereference for non-synchronized consumers.  Should
1225  * we at least check for blocked threads and signal/cancel them?
1226  */
1227
1228 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229 {
1230         struct semaphore *sem = (struct semaphore *)handle;
1231
1232         if (!sem)
1233                 return AE_BAD_PARAMETER;
1234
1235         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236
1237         BUG_ON(!list_empty(&sem->wait_list));
1238         kfree(sem);
1239         sem = NULL;
1240
1241         return AE_OK;
1242 }
1243
1244 /*
1245  * TODO: Support for units > 1?
1246  */
1247 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248 {
1249         acpi_status status = AE_OK;
1250         struct semaphore *sem = (struct semaphore *)handle;
1251         long jiffies;
1252         int ret = 0;
1253
1254         if (!acpi_os_initialized)
1255                 return AE_OK;
1256
1257         if (!sem || (units < 1))
1258                 return AE_BAD_PARAMETER;
1259
1260         if (units > 1)
1261                 return AE_SUPPORT;
1262
1263         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264                           handle, units, timeout));
1265
1266         if (timeout == ACPI_WAIT_FOREVER)
1267                 jiffies = MAX_SCHEDULE_TIMEOUT;
1268         else
1269                 jiffies = msecs_to_jiffies(timeout);
1270
1271         ret = down_timeout(sem, jiffies);
1272         if (ret)
1273                 status = AE_TIME;
1274
1275         if (ACPI_FAILURE(status)) {
1276                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1278                                   handle, units, timeout,
1279                                   acpi_format_exception(status)));
1280         } else {
1281                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282                                   "Acquired semaphore[%p|%d|%d]", handle,
1283                                   units, timeout));
1284         }
1285
1286         return status;
1287 }
1288
1289 /*
1290  * TODO: Support for units > 1?
1291  */
1292 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293 {
1294         struct semaphore *sem = (struct semaphore *)handle;
1295
1296         if (!acpi_os_initialized)
1297                 return AE_OK;
1298
1299         if (!sem || (units < 1))
1300                 return AE_BAD_PARAMETER;
1301
1302         if (units > 1)
1303                 return AE_SUPPORT;
1304
1305         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306                           units));
1307
1308         up(sem);
1309
1310         return AE_OK;
1311 }
1312
1313 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314 {
1315 #ifdef ENABLE_DEBUGGER
1316         if (acpi_in_debugger) {
1317                 u32 chars;
1318
1319                 kdb_read(buffer, buffer_length);
1320
1321                 /* remove the CR kdb includes */
1322                 chars = strlen(buffer) - 1;
1323                 buffer[chars] = '\0';
1324         }
1325 #else
1326         int ret;
1327
1328         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329         if (ret < 0)
1330                 return AE_ERROR;
1331         if (bytes_read)
1332                 *bytes_read = ret;
1333 #endif
1334
1335         return AE_OK;
1336 }
1337 EXPORT_SYMBOL(acpi_os_get_line);
1338
1339 acpi_status acpi_os_wait_command_ready(void)
1340 {
1341         int ret;
1342
1343         ret = acpi_debugger_wait_command_ready();
1344         if (ret < 0)
1345                 return AE_ERROR;
1346         return AE_OK;
1347 }
1348
1349 acpi_status acpi_os_notify_command_complete(void)
1350 {
1351         int ret;
1352
1353         ret = acpi_debugger_notify_command_complete();
1354         if (ret < 0)
1355                 return AE_ERROR;
1356         return AE_OK;
1357 }
1358
1359 acpi_status acpi_os_signal(u32 function, void *info)
1360 {
1361         switch (function) {
1362         case ACPI_SIGNAL_FATAL:
1363                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364                 break;
1365         case ACPI_SIGNAL_BREAKPOINT:
1366                 /*
1367                  * AML Breakpoint
1368                  * ACPI spec. says to treat it as a NOP unless
1369                  * you are debugging.  So if/when we integrate
1370                  * AML debugger into the kernel debugger its
1371                  * hook will go here.  But until then it is
1372                  * not useful to print anything on breakpoints.
1373                  */
1374                 break;
1375         default:
1376                 break;
1377         }
1378
1379         return AE_OK;
1380 }
1381
1382 static int __init acpi_os_name_setup(char *str)
1383 {
1384         char *p = acpi_os_name;
1385         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386
1387         if (!str || !*str)
1388                 return 0;
1389
1390         for (; count-- && *str; str++) {
1391                 if (isalnum(*str) || *str == ' ' || *str == ':')
1392                         *p++ = *str;
1393                 else if (*str == '\'' || *str == '"')
1394                         continue;
1395                 else
1396                         break;
1397         }
1398         *p = 0;
1399
1400         return 1;
1401
1402 }
1403
1404 __setup("acpi_os_name=", acpi_os_name_setup);
1405
1406 /*
1407  * Disable the auto-serialization of named objects creation methods.
1408  *
1409  * This feature is enabled by default.  It marks the AML control methods
1410  * that contain the opcodes to create named objects as "Serialized".
1411  */
1412 static int __init acpi_no_auto_serialize_setup(char *str)
1413 {
1414         acpi_gbl_auto_serialize_methods = FALSE;
1415         pr_info("ACPI: auto-serialization disabled\n");
1416
1417         return 1;
1418 }
1419
1420 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421
1422 /* Check of resource interference between native drivers and ACPI
1423  * OperationRegions (SystemIO and System Memory only).
1424  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425  * in arbitrary AML code and can interfere with legacy drivers.
1426  * acpi_enforce_resources= can be set to:
1427  *
1428  *   - strict (default) (2)
1429  *     -> further driver trying to access the resources will not load
1430  *   - lax              (1)
1431  *     -> further driver trying to access the resources will load, but you
1432  *     get a system message that something might go wrong...
1433  *
1434  *   - no               (0)
1435  *     -> ACPI Operation Region resources will not be registered
1436  *
1437  */
1438 #define ENFORCE_RESOURCES_STRICT 2
1439 #define ENFORCE_RESOURCES_LAX    1
1440 #define ENFORCE_RESOURCES_NO     0
1441
1442 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443
1444 static int __init acpi_enforce_resources_setup(char *str)
1445 {
1446         if (str == NULL || *str == '\0')
1447                 return 0;
1448
1449         if (!strcmp("strict", str))
1450                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451         else if (!strcmp("lax", str))
1452                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453         else if (!strcmp("no", str))
1454                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455
1456         return 1;
1457 }
1458
1459 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460
1461 /* Check for resource conflicts between ACPI OperationRegions and native
1462  * drivers */
1463 int acpi_check_resource_conflict(const struct resource *res)
1464 {
1465         acpi_adr_space_type space_id;
1466         acpi_size length;
1467         u8 warn = 0;
1468         int clash = 0;
1469
1470         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471                 return 0;
1472         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473                 return 0;
1474
1475         if (res->flags & IORESOURCE_IO)
1476                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477         else
1478                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479
1480         length = resource_size(res);
1481         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482                 warn = 1;
1483         clash = acpi_check_address_range(space_id, res->start, length, warn);
1484
1485         if (clash) {
1486                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488                                 printk(KERN_NOTICE "ACPI: This conflict may"
1489                                        " cause random problems and system"
1490                                        " instability\n");
1491                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492                                " for this device, you should use it instead of"
1493                                " the native driver\n");
1494                 }
1495                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496                         return -EBUSY;
1497         }
1498         return 0;
1499 }
1500 EXPORT_SYMBOL(acpi_check_resource_conflict);
1501
1502 int acpi_check_region(resource_size_t start, resource_size_t n,
1503                       const char *name)
1504 {
1505         struct resource res = {
1506                 .start = start,
1507                 .end   = start + n - 1,
1508                 .name  = name,
1509                 .flags = IORESOURCE_IO,
1510         };
1511
1512         return acpi_check_resource_conflict(&res);
1513 }
1514 EXPORT_SYMBOL(acpi_check_region);
1515
1516 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517                                               void *_res, void **return_value)
1518 {
1519         struct acpi_mem_space_context **mem_ctx;
1520         union acpi_operand_object *handler_obj;
1521         union acpi_operand_object *region_obj2;
1522         union acpi_operand_object *region_obj;
1523         struct resource *res = _res;
1524         acpi_status status;
1525
1526         region_obj = acpi_ns_get_attached_object(handle);
1527         if (!region_obj)
1528                 return AE_OK;
1529
1530         handler_obj = region_obj->region.handler;
1531         if (!handler_obj)
1532                 return AE_OK;
1533
1534         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535                 return AE_OK;
1536
1537         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538                 return AE_OK;
1539
1540         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541         if (!region_obj2)
1542                 return AE_OK;
1543
1544         mem_ctx = (void *)&region_obj2->extra.region_context;
1545
1546         if (!(mem_ctx[0]->address >= res->start &&
1547               mem_ctx[0]->address < res->end))
1548                 return AE_OK;
1549
1550         status = handler_obj->address_space.setup(region_obj,
1551                                                   ACPI_REGION_DEACTIVATE,
1552                                                   NULL, (void **)mem_ctx);
1553         if (ACPI_SUCCESS(status))
1554                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555
1556         return status;
1557 }
1558
1559 /**
1560  * acpi_release_memory - Release any mappings done to a memory region
1561  * @handle: Handle to namespace node
1562  * @res: Memory resource
1563  * @level: A level that terminates the search
1564  *
1565  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566  * overlap with @res and that have already been activated (mapped).
1567  *
1568  * This is a helper that allows drivers to place special requirements on memory
1569  * region that may overlap with operation regions, primarily allowing them to
1570  * safely map the region as non-cached memory.
1571  *
1572  * The unmapped Operation Regions will be automatically remapped next time they
1573  * are called, so the drivers do not need to do anything else.
1574  */
1575 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576                                 u32 level)
1577 {
1578         acpi_status status;
1579
1580         if (!(res->flags & IORESOURCE_MEM))
1581                 return AE_TYPE;
1582
1583         status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584                                      acpi_deactivate_mem_region, NULL,
1585                                      res, NULL);
1586         if (ACPI_FAILURE(status))
1587                 return status;
1588
1589         /*
1590          * Wait for all of the mappings queued up for removal by
1591          * acpi_deactivate_mem_region() to actually go away.
1592          */
1593         synchronize_rcu();
1594         rcu_barrier();
1595         flush_scheduled_work();
1596
1597         return AE_OK;
1598 }
1599 EXPORT_SYMBOL_GPL(acpi_release_memory);
1600
1601 /*
1602  * Let drivers know whether the resource checks are effective
1603  */
1604 int acpi_resources_are_enforced(void)
1605 {
1606         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607 }
1608 EXPORT_SYMBOL(acpi_resources_are_enforced);
1609
1610 /*
1611  * Deallocate the memory for a spinlock.
1612  */
1613 void acpi_os_delete_lock(acpi_spinlock handle)
1614 {
1615         ACPI_FREE(handle);
1616 }
1617
1618 /*
1619  * Acquire a spinlock.
1620  *
1621  * handle is a pointer to the spinlock_t.
1622  */
1623
1624 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625         __acquires(lockp)
1626 {
1627         acpi_cpu_flags flags;
1628         spin_lock_irqsave(lockp, flags);
1629         return flags;
1630 }
1631
1632 /*
1633  * Release a spinlock. See above.
1634  */
1635
1636 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637         __releases(lockp)
1638 {
1639         spin_unlock_irqrestore(lockp, flags);
1640 }
1641
1642 #ifndef ACPI_USE_LOCAL_CACHE
1643
1644 /*******************************************************************************
1645  *
1646  * FUNCTION:    acpi_os_create_cache
1647  *
1648  * PARAMETERS:  name      - Ascii name for the cache
1649  *              size      - Size of each cached object
1650  *              depth     - Maximum depth of the cache (in objects) <ignored>
1651  *              cache     - Where the new cache object is returned
1652  *
1653  * RETURN:      status
1654  *
1655  * DESCRIPTION: Create a cache object
1656  *
1657  ******************************************************************************/
1658
1659 acpi_status
1660 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661 {
1662         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1663         if (*cache == NULL)
1664                 return AE_ERROR;
1665         else
1666                 return AE_OK;
1667 }
1668
1669 /*******************************************************************************
1670  *
1671  * FUNCTION:    acpi_os_purge_cache
1672  *
1673  * PARAMETERS:  Cache           - Handle to cache object
1674  *
1675  * RETURN:      Status
1676  *
1677  * DESCRIPTION: Free all objects within the requested cache.
1678  *
1679  ******************************************************************************/
1680
1681 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682 {
1683         kmem_cache_shrink(cache);
1684         return (AE_OK);
1685 }
1686
1687 /*******************************************************************************
1688  *
1689  * FUNCTION:    acpi_os_delete_cache
1690  *
1691  * PARAMETERS:  Cache           - Handle to cache object
1692  *
1693  * RETURN:      Status
1694  *
1695  * DESCRIPTION: Free all objects within the requested cache and delete the
1696  *              cache object.
1697  *
1698  ******************************************************************************/
1699
1700 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701 {
1702         kmem_cache_destroy(cache);
1703         return (AE_OK);
1704 }
1705
1706 /*******************************************************************************
1707  *
1708  * FUNCTION:    acpi_os_release_object
1709  *
1710  * PARAMETERS:  Cache       - Handle to cache object
1711  *              Object      - The object to be released
1712  *
1713  * RETURN:      None
1714  *
1715  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1716  *              the object is deleted.
1717  *
1718  ******************************************************************************/
1719
1720 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721 {
1722         kmem_cache_free(cache, object);
1723         return (AE_OK);
1724 }
1725 #endif
1726
1727 static int __init acpi_no_static_ssdt_setup(char *s)
1728 {
1729         acpi_gbl_disable_ssdt_table_install = TRUE;
1730         pr_info("ACPI: static SSDT installation disabled\n");
1731
1732         return 0;
1733 }
1734
1735 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736
1737 static int __init acpi_disable_return_repair(char *s)
1738 {
1739         printk(KERN_NOTICE PREFIX
1740                "ACPI: Predefined validation mechanism disabled\n");
1741         acpi_gbl_disable_auto_repair = TRUE;
1742
1743         return 1;
1744 }
1745
1746 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1747
1748 acpi_status __init acpi_os_initialize(void)
1749 {
1750         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755                 /*
1756                  * Use acpi_os_map_generic_address to pre-map the reset
1757                  * register if it's in system memory.
1758                  */
1759                 int rv;
1760
1761                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763         }
1764         acpi_os_initialized = true;
1765
1766         return AE_OK;
1767 }
1768
1769 acpi_status __init acpi_os_initialize1(void)
1770 {
1771         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774         BUG_ON(!kacpid_wq);
1775         BUG_ON(!kacpi_notify_wq);
1776         BUG_ON(!kacpi_hotplug_wq);
1777         acpi_osi_init();
1778         return AE_OK;
1779 }
1780
1781 acpi_status acpi_os_terminate(void)
1782 {
1783         if (acpi_irq_handler) {
1784                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785                                                  acpi_irq_handler);
1786         }
1787
1788         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794
1795         destroy_workqueue(kacpid_wq);
1796         destroy_workqueue(kacpi_notify_wq);
1797         destroy_workqueue(kacpi_hotplug_wq);
1798
1799         return AE_OK;
1800 }
1801
1802 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803                                   u32 pm1b_control)
1804 {
1805         int rc = 0;
1806         if (__acpi_os_prepare_sleep)
1807                 rc = __acpi_os_prepare_sleep(sleep_state,
1808                                              pm1a_control, pm1b_control);
1809         if (rc < 0)
1810                 return AE_ERROR;
1811         else if (rc > 0)
1812                 return AE_CTRL_TERMINATE;
1813
1814         return AE_OK;
1815 }
1816
1817 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1819 {
1820         __acpi_os_prepare_sleep = func;
1821 }
1822
1823 #if (ACPI_REDUCED_HARDWARE)
1824 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825                                   u32 val_b)
1826 {
1827         int rc = 0;
1828         if (__acpi_os_prepare_extended_sleep)
1829                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830                                              val_a, val_b);
1831         if (rc < 0)
1832                 return AE_ERROR;
1833         else if (rc > 0)
1834                 return AE_CTRL_TERMINATE;
1835
1836         return AE_OK;
1837 }
1838 #else
1839 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840                                   u32 val_b)
1841 {
1842         return AE_OK;
1843 }
1844 #endif
1845
1846 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847                                u32 val_a, u32 val_b))
1848 {
1849         __acpi_os_prepare_extended_sleep = func;
1850 }
1851
1852 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853                                 u32 reg_a_value, u32 reg_b_value)
1854 {
1855         acpi_status status;
1856
1857         if (acpi_gbl_reduced_hardware)
1858                 status = acpi_os_prepare_extended_sleep(sleep_state,
1859                                                         reg_a_value,
1860                                                         reg_b_value);
1861         else
1862                 status = acpi_os_prepare_sleep(sleep_state,
1863                                                reg_a_value, reg_b_value);
1864         return status;
1865 }