sched: loadavg: make calc_load_n() public
[linux-2.6-microblaze.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT              ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56         acpi_osd_exec_callback function;
57         void *context;
58         struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif                          /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70                                       u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72                                       u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88         struct list_head list;
89         void __iomem *virt;
90         acpi_physical_address phys;
91         acpi_size size;
92         unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99         unsigned int length, char *desc)
100 {
101         u64 addr;
102
103         /* Handle possible alignment issues */
104         memcpy(&addr, &gas->address, sizeof(addr));
105         if (!addr || !length)
106                 return;
107
108         /* Resources are never freed */
109         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110                 request_region(addr, length, desc);
111         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112                 request_mem_region(addr, length, desc);
113 }
114
115 static int __init acpi_reserve_resources(void)
116 {
117         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1a_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121                 "ACPI PM1b_EVT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1a_CNT_BLK");
125
126         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127                 "ACPI PM1b_CNT_BLK");
128
129         if (acpi_gbl_FADT.pm_timer_length == 4)
130                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133                 "ACPI PM2_CNT_BLK");
134
135         /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145         return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
149 void acpi_os_printf(const char *fmt, ...)
150 {
151         va_list args;
152         va_start(args, fmt);
153         acpi_os_vprintf(fmt, args);
154         va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160         static char buffer[512];
161
162         vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165         if (acpi_in_debugger) {
166                 kdb_printf("%s", buffer);
167         } else {
168                 if (printk_get_level(buffer))
169                         printk("%s", buffer);
170                 else
171                         printk(KERN_CONT "%s", buffer);
172         }
173 #else
174         if (acpi_debugger_write_log(buffer) < 0) {
175                 if (printk_get_level(buffer))
176                         printk("%s", buffer);
177                 else
178                         printk(KERN_CONT "%s", buffer);
179         }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187         return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194         acpi_physical_address pa;
195
196 #ifdef CONFIG_KEXEC
197         if (acpi_rsdp)
198                 return acpi_rsdp;
199 #endif
200         pa = acpi_arch_get_root_pointer();
201         if (pa)
202                 return pa;
203
204         if (efi_enabled(EFI_CONFIG_TABLES)) {
205                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206                         return efi.acpi20;
207                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208                         return efi.acpi;
209                 pr_err(PREFIX "System description tables not found\n");
210         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211                 acpi_find_root_pointer(&pa);
212         }
213
214         return pa;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221         struct acpi_ioremap *map;
222
223         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224                 if (map->phys <= phys &&
225                     phys + size <= map->phys + map->size)
226                         return map;
227
228         return NULL;
229 }
230
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235         struct acpi_ioremap *map;
236
237         map = acpi_map_lookup(phys, size);
238         if (map)
239                 return map->virt + (phys - map->phys);
240
241         return NULL;
242 }
243
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246         struct acpi_ioremap *map;
247         void __iomem *virt = NULL;
248
249         mutex_lock(&acpi_ioremap_lock);
250         map = acpi_map_lookup(phys, size);
251         if (map) {
252                 virt = map->virt + (phys - map->phys);
253                 map->refcount++;
254         }
255         mutex_unlock(&acpi_ioremap_lock);
256         return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264         struct acpi_ioremap *map;
265
266         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267                 if (map->virt <= virt &&
268                     virt + size <= map->virt + map->size)
269                         return map;
270
271         return NULL;
272 }
273
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283         unsigned long pfn;
284
285         pfn = pg_off >> PAGE_SHIFT;
286         if (should_use_kmap(pfn)) {
287                 if (pg_sz > PAGE_SIZE)
288                         return NULL;
289                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290         } else
291                 return acpi_os_ioremap(pg_off, pg_sz);
292 }
293
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296         unsigned long pfn;
297
298         pfn = pg_off >> PAGE_SHIFT;
299         if (should_use_kmap(pfn))
300                 kunmap(pfn_to_page(pfn));
301         else
302                 iounmap(vaddr);
303 }
304
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321         struct acpi_ioremap *map;
322         void __iomem *virt;
323         acpi_physical_address pg_off;
324         acpi_size pg_sz;
325
326         if (phys > ULONG_MAX) {
327                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328                 return NULL;
329         }
330
331         if (!acpi_permanent_mmap)
332                 return __acpi_map_table((unsigned long)phys, size);
333
334         mutex_lock(&acpi_ioremap_lock);
335         /* Check if there's a suitable mapping already. */
336         map = acpi_map_lookup(phys, size);
337         if (map) {
338                 map->refcount++;
339                 goto out;
340         }
341
342         map = kzalloc(sizeof(*map), GFP_KERNEL);
343         if (!map) {
344                 mutex_unlock(&acpi_ioremap_lock);
345                 return NULL;
346         }
347
348         pg_off = round_down(phys, PAGE_SIZE);
349         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350         virt = acpi_map(pg_off, pg_sz);
351         if (!virt) {
352                 mutex_unlock(&acpi_ioremap_lock);
353                 kfree(map);
354                 return NULL;
355         }
356
357         INIT_LIST_HEAD(&map->list);
358         map->virt = virt;
359         map->phys = pg_off;
360         map->size = pg_sz;
361         map->refcount = 1;
362
363         list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365 out:
366         mutex_unlock(&acpi_ioremap_lock);
367         return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373         return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379         if (!--map->refcount)
380                 list_del_rcu(&map->list);
381 }
382
383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385         if (!map->refcount) {
386                 synchronize_rcu_expedited();
387                 acpi_unmap(map->phys, map->virt);
388                 kfree(map);
389         }
390 }
391
392 /**
393  * acpi_os_unmap_iomem - Drop a memory mapping reference.
394  * @virt: Start of the address range to drop a reference to.
395  * @size: Size of the address range to drop a reference to.
396  *
397  * Look up the given virtual address range in the list of existing ACPI memory
398  * mappings, drop a reference to it and unmap it if there are no more active
399  * references to it.
400  *
401  * During early init (when acpi_permanent_mmap has not been set yet) this
402  * routine simply calls __acpi_unmap_table() to get the job done.  Since
403  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404  * here.
405  */
406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408         struct acpi_ioremap *map;
409
410         if (!acpi_permanent_mmap) {
411                 __acpi_unmap_table(virt, size);
412                 return;
413         }
414
415         mutex_lock(&acpi_ioremap_lock);
416         map = acpi_map_lookup_virt(virt, size);
417         if (!map) {
418                 mutex_unlock(&acpi_ioremap_lock);
419                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420                 return;
421         }
422         acpi_os_drop_map_ref(map);
423         mutex_unlock(&acpi_ioremap_lock);
424
425         acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431         return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437         u64 addr;
438         void __iomem *virt;
439
440         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441                 return 0;
442
443         /* Handle possible alignment issues */
444         memcpy(&addr, &gas->address, sizeof(addr));
445         if (!addr || !gas->bit_width)
446                 return -EINVAL;
447
448         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449         if (!virt)
450                 return -EIO;
451
452         return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458         u64 addr;
459         struct acpi_ioremap *map;
460
461         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462                 return;
463
464         /* Handle possible alignment issues */
465         memcpy(&addr, &gas->address, sizeof(addr));
466         if (!addr || !gas->bit_width)
467                 return;
468
469         mutex_lock(&acpi_ioremap_lock);
470         map = acpi_map_lookup(addr, gas->bit_width / 8);
471         if (!map) {
472                 mutex_unlock(&acpi_ioremap_lock);
473                 return;
474         }
475         acpi_os_drop_map_ref(map);
476         mutex_unlock(&acpi_ioremap_lock);
477
478         acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486         if (!phys || !virt)
487                 return AE_BAD_PARAMETER;
488
489         *phys = virt_to_phys(virt);
490
491         return AE_OK;
492 }
493 #endif
494
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497
498 int __init acpi_rev_override_setup(char *str)
499 {
500         acpi_rev_override = true;
501         return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override       false
506 #endif
507
508 #define ACPI_MAX_OVERRIDE_LEN 100
509
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512 acpi_status
513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514                             acpi_string *new_val)
515 {
516         if (!init_val || !new_val)
517                 return AE_BAD_PARAMETER;
518
519         *new_val = NULL;
520         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522                        acpi_os_name);
523                 *new_val = acpi_os_name;
524         }
525
526         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528                 *new_val = (char *)5;
529         }
530
531         return AE_OK;
532 }
533
534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536         u32 handled;
537
538         handled = (*acpi_irq_handler) (acpi_irq_context);
539
540         if (handled) {
541                 acpi_irq_handled++;
542                 return IRQ_HANDLED;
543         } else {
544                 acpi_irq_not_handled++;
545                 return IRQ_NONE;
546         }
547 }
548
549 acpi_status
550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551                                   void *context)
552 {
553         unsigned int irq;
554
555         acpi_irq_stats_init();
556
557         /*
558          * ACPI interrupts different from the SCI in our copy of the FADT are
559          * not supported.
560          */
561         if (gsi != acpi_gbl_FADT.sci_interrupt)
562                 return AE_BAD_PARAMETER;
563
564         if (acpi_irq_handler)
565                 return AE_ALREADY_ACQUIRED;
566
567         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569                        gsi);
570                 return AE_OK;
571         }
572
573         acpi_irq_handler = handler;
574         acpi_irq_context = context;
575         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577                 acpi_irq_handler = NULL;
578                 return AE_NOT_ACQUIRED;
579         }
580         acpi_sci_irq = irq;
581
582         return AE_OK;
583 }
584
585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588                 return AE_BAD_PARAMETER;
589
590         free_irq(acpi_sci_irq, acpi_irq);
591         acpi_irq_handler = NULL;
592         acpi_sci_irq = INVALID_ACPI_IRQ;
593
594         return AE_OK;
595 }
596
597 /*
598  * Running in interpreter thread context, safe to sleep
599  */
600
601 void acpi_os_sleep(u64 ms)
602 {
603         msleep(ms);
604 }
605
606 void acpi_os_stall(u32 us)
607 {
608         while (us) {
609                 u32 delay = 1000;
610
611                 if (delay > us)
612                         delay = us;
613                 udelay(delay);
614                 touch_nmi_watchdog();
615                 us -= delay;
616         }
617 }
618
619 /*
620  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621  * monotonically increasing timer with 100ns granularity. Do not use
622  * ktime_get() to implement this function because this function may get
623  * called after timekeeping has been suspended. Note: calling this function
624  * after timekeeping has been suspended may lead to unexpected results
625  * because when timekeeping is suspended the jiffies counter is not
626  * incremented. See also timekeeping_suspend().
627  */
628 u64 acpi_os_get_timer(void)
629 {
630         return (get_jiffies_64() - INITIAL_JIFFIES) *
631                 (ACPI_100NSEC_PER_SEC / HZ);
632 }
633
634 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635 {
636         u32 dummy;
637
638         if (!value)
639                 value = &dummy;
640
641         *value = 0;
642         if (width <= 8) {
643                 *(u8 *) value = inb(port);
644         } else if (width <= 16) {
645                 *(u16 *) value = inw(port);
646         } else if (width <= 32) {
647                 *(u32 *) value = inl(port);
648         } else {
649                 BUG();
650         }
651
652         return AE_OK;
653 }
654
655 EXPORT_SYMBOL(acpi_os_read_port);
656
657 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658 {
659         if (width <= 8) {
660                 outb(value, port);
661         } else if (width <= 16) {
662                 outw(value, port);
663         } else if (width <= 32) {
664                 outl(value, port);
665         } else {
666                 BUG();
667         }
668
669         return AE_OK;
670 }
671
672 EXPORT_SYMBOL(acpi_os_write_port);
673
674 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675 {
676
677         switch (width) {
678         case 8:
679                 *(u8 *) value = readb(virt_addr);
680                 break;
681         case 16:
682                 *(u16 *) value = readw(virt_addr);
683                 break;
684         case 32:
685                 *(u32 *) value = readl(virt_addr);
686                 break;
687         case 64:
688                 *(u64 *) value = readq(virt_addr);
689                 break;
690         default:
691                 return -EINVAL;
692         }
693
694         return 0;
695 }
696
697 acpi_status
698 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699 {
700         void __iomem *virt_addr;
701         unsigned int size = width / 8;
702         bool unmap = false;
703         u64 dummy;
704         int error;
705
706         rcu_read_lock();
707         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708         if (!virt_addr) {
709                 rcu_read_unlock();
710                 virt_addr = acpi_os_ioremap(phys_addr, size);
711                 if (!virt_addr)
712                         return AE_BAD_ADDRESS;
713                 unmap = true;
714         }
715
716         if (!value)
717                 value = &dummy;
718
719         error = acpi_os_read_iomem(virt_addr, value, width);
720         BUG_ON(error);
721
722         if (unmap)
723                 iounmap(virt_addr);
724         else
725                 rcu_read_unlock();
726
727         return AE_OK;
728 }
729
730 acpi_status
731 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732 {
733         void __iomem *virt_addr;
734         unsigned int size = width / 8;
735         bool unmap = false;
736
737         rcu_read_lock();
738         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739         if (!virt_addr) {
740                 rcu_read_unlock();
741                 virt_addr = acpi_os_ioremap(phys_addr, size);
742                 if (!virt_addr)
743                         return AE_BAD_ADDRESS;
744                 unmap = true;
745         }
746
747         switch (width) {
748         case 8:
749                 writeb(value, virt_addr);
750                 break;
751         case 16:
752                 writew(value, virt_addr);
753                 break;
754         case 32:
755                 writel(value, virt_addr);
756                 break;
757         case 64:
758                 writeq(value, virt_addr);
759                 break;
760         default:
761                 BUG();
762         }
763
764         if (unmap)
765                 iounmap(virt_addr);
766         else
767                 rcu_read_unlock();
768
769         return AE_OK;
770 }
771
772 acpi_status
773 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
774                                u64 *value, u32 width)
775 {
776         int result, size;
777         u32 value32;
778
779         if (!value)
780                 return AE_BAD_PARAMETER;
781
782         switch (width) {
783         case 8:
784                 size = 1;
785                 break;
786         case 16:
787                 size = 2;
788                 break;
789         case 32:
790                 size = 4;
791                 break;
792         default:
793                 return AE_ERROR;
794         }
795
796         result = raw_pci_read(pci_id->segment, pci_id->bus,
797                                 PCI_DEVFN(pci_id->device, pci_id->function),
798                                 reg, size, &value32);
799         *value = value32;
800
801         return (result ? AE_ERROR : AE_OK);
802 }
803
804 acpi_status
805 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
806                                 u64 value, u32 width)
807 {
808         int result, size;
809
810         switch (width) {
811         case 8:
812                 size = 1;
813                 break;
814         case 16:
815                 size = 2;
816                 break;
817         case 32:
818                 size = 4;
819                 break;
820         default:
821                 return AE_ERROR;
822         }
823
824         result = raw_pci_write(pci_id->segment, pci_id->bus,
825                                 PCI_DEVFN(pci_id->device, pci_id->function),
826                                 reg, size, value);
827
828         return (result ? AE_ERROR : AE_OK);
829 }
830
831 static void acpi_os_execute_deferred(struct work_struct *work)
832 {
833         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
834
835         dpc->function(dpc->context);
836         kfree(dpc);
837 }
838
839 #ifdef CONFIG_ACPI_DEBUGGER
840 static struct acpi_debugger acpi_debugger;
841 static bool acpi_debugger_initialized;
842
843 int acpi_register_debugger(struct module *owner,
844                            const struct acpi_debugger_ops *ops)
845 {
846         int ret = 0;
847
848         mutex_lock(&acpi_debugger.lock);
849         if (acpi_debugger.ops) {
850                 ret = -EBUSY;
851                 goto err_lock;
852         }
853
854         acpi_debugger.owner = owner;
855         acpi_debugger.ops = ops;
856
857 err_lock:
858         mutex_unlock(&acpi_debugger.lock);
859         return ret;
860 }
861 EXPORT_SYMBOL(acpi_register_debugger);
862
863 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
864 {
865         mutex_lock(&acpi_debugger.lock);
866         if (ops == acpi_debugger.ops) {
867                 acpi_debugger.ops = NULL;
868                 acpi_debugger.owner = NULL;
869         }
870         mutex_unlock(&acpi_debugger.lock);
871 }
872 EXPORT_SYMBOL(acpi_unregister_debugger);
873
874 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
875 {
876         int ret;
877         int (*func)(acpi_osd_exec_callback, void *);
878         struct module *owner;
879
880         if (!acpi_debugger_initialized)
881                 return -ENODEV;
882         mutex_lock(&acpi_debugger.lock);
883         if (!acpi_debugger.ops) {
884                 ret = -ENODEV;
885                 goto err_lock;
886         }
887         if (!try_module_get(acpi_debugger.owner)) {
888                 ret = -ENODEV;
889                 goto err_lock;
890         }
891         func = acpi_debugger.ops->create_thread;
892         owner = acpi_debugger.owner;
893         mutex_unlock(&acpi_debugger.lock);
894
895         ret = func(function, context);
896
897         mutex_lock(&acpi_debugger.lock);
898         module_put(owner);
899 err_lock:
900         mutex_unlock(&acpi_debugger.lock);
901         return ret;
902 }
903
904 ssize_t acpi_debugger_write_log(const char *msg)
905 {
906         ssize_t ret;
907         ssize_t (*func)(const char *);
908         struct module *owner;
909
910         if (!acpi_debugger_initialized)
911                 return -ENODEV;
912         mutex_lock(&acpi_debugger.lock);
913         if (!acpi_debugger.ops) {
914                 ret = -ENODEV;
915                 goto err_lock;
916         }
917         if (!try_module_get(acpi_debugger.owner)) {
918                 ret = -ENODEV;
919                 goto err_lock;
920         }
921         func = acpi_debugger.ops->write_log;
922         owner = acpi_debugger.owner;
923         mutex_unlock(&acpi_debugger.lock);
924
925         ret = func(msg);
926
927         mutex_lock(&acpi_debugger.lock);
928         module_put(owner);
929 err_lock:
930         mutex_unlock(&acpi_debugger.lock);
931         return ret;
932 }
933
934 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
935 {
936         ssize_t ret;
937         ssize_t (*func)(char *, size_t);
938         struct module *owner;
939
940         if (!acpi_debugger_initialized)
941                 return -ENODEV;
942         mutex_lock(&acpi_debugger.lock);
943         if (!acpi_debugger.ops) {
944                 ret = -ENODEV;
945                 goto err_lock;
946         }
947         if (!try_module_get(acpi_debugger.owner)) {
948                 ret = -ENODEV;
949                 goto err_lock;
950         }
951         func = acpi_debugger.ops->read_cmd;
952         owner = acpi_debugger.owner;
953         mutex_unlock(&acpi_debugger.lock);
954
955         ret = func(buffer, buffer_length);
956
957         mutex_lock(&acpi_debugger.lock);
958         module_put(owner);
959 err_lock:
960         mutex_unlock(&acpi_debugger.lock);
961         return ret;
962 }
963
964 int acpi_debugger_wait_command_ready(void)
965 {
966         int ret;
967         int (*func)(bool, char *, size_t);
968         struct module *owner;
969
970         if (!acpi_debugger_initialized)
971                 return -ENODEV;
972         mutex_lock(&acpi_debugger.lock);
973         if (!acpi_debugger.ops) {
974                 ret = -ENODEV;
975                 goto err_lock;
976         }
977         if (!try_module_get(acpi_debugger.owner)) {
978                 ret = -ENODEV;
979                 goto err_lock;
980         }
981         func = acpi_debugger.ops->wait_command_ready;
982         owner = acpi_debugger.owner;
983         mutex_unlock(&acpi_debugger.lock);
984
985         ret = func(acpi_gbl_method_executing,
986                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
987
988         mutex_lock(&acpi_debugger.lock);
989         module_put(owner);
990 err_lock:
991         mutex_unlock(&acpi_debugger.lock);
992         return ret;
993 }
994
995 int acpi_debugger_notify_command_complete(void)
996 {
997         int ret;
998         int (*func)(void);
999         struct module *owner;
1000
1001         if (!acpi_debugger_initialized)
1002                 return -ENODEV;
1003         mutex_lock(&acpi_debugger.lock);
1004         if (!acpi_debugger.ops) {
1005                 ret = -ENODEV;
1006                 goto err_lock;
1007         }
1008         if (!try_module_get(acpi_debugger.owner)) {
1009                 ret = -ENODEV;
1010                 goto err_lock;
1011         }
1012         func = acpi_debugger.ops->notify_command_complete;
1013         owner = acpi_debugger.owner;
1014         mutex_unlock(&acpi_debugger.lock);
1015
1016         ret = func();
1017
1018         mutex_lock(&acpi_debugger.lock);
1019         module_put(owner);
1020 err_lock:
1021         mutex_unlock(&acpi_debugger.lock);
1022         return ret;
1023 }
1024
1025 int __init acpi_debugger_init(void)
1026 {
1027         mutex_init(&acpi_debugger.lock);
1028         acpi_debugger_initialized = true;
1029         return 0;
1030 }
1031 #endif
1032
1033 /*******************************************************************************
1034  *
1035  * FUNCTION:    acpi_os_execute
1036  *
1037  * PARAMETERS:  Type               - Type of the callback
1038  *              Function           - Function to be executed
1039  *              Context            - Function parameters
1040  *
1041  * RETURN:      Status
1042  *
1043  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1044  *              immediately executes function on a separate thread.
1045  *
1046  ******************************************************************************/
1047
1048 acpi_status acpi_os_execute(acpi_execute_type type,
1049                             acpi_osd_exec_callback function, void *context)
1050 {
1051         acpi_status status = AE_OK;
1052         struct acpi_os_dpc *dpc;
1053         struct workqueue_struct *queue;
1054         int ret;
1055         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1056                           "Scheduling function [%p(%p)] for deferred execution.\n",
1057                           function, context));
1058
1059         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1060                 ret = acpi_debugger_create_thread(function, context);
1061                 if (ret) {
1062                         pr_err("Call to kthread_create() failed.\n");
1063                         status = AE_ERROR;
1064                 }
1065                 goto out_thread;
1066         }
1067
1068         /*
1069          * Allocate/initialize DPC structure.  Note that this memory will be
1070          * freed by the callee.  The kernel handles the work_struct list  in a
1071          * way that allows us to also free its memory inside the callee.
1072          * Because we may want to schedule several tasks with different
1073          * parameters we can't use the approach some kernel code uses of
1074          * having a static work_struct.
1075          */
1076
1077         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1078         if (!dpc)
1079                 return AE_NO_MEMORY;
1080
1081         dpc->function = function;
1082         dpc->context = context;
1083
1084         /*
1085          * To prevent lockdep from complaining unnecessarily, make sure that
1086          * there is a different static lockdep key for each workqueue by using
1087          * INIT_WORK() for each of them separately.
1088          */
1089         if (type == OSL_NOTIFY_HANDLER) {
1090                 queue = kacpi_notify_wq;
1091                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1092         } else if (type == OSL_GPE_HANDLER) {
1093                 queue = kacpid_wq;
1094                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095         } else {
1096                 pr_err("Unsupported os_execute type %d.\n", type);
1097                 status = AE_ERROR;
1098         }
1099
1100         if (ACPI_FAILURE(status))
1101                 goto err_workqueue;
1102
1103         /*
1104          * On some machines, a software-initiated SMI causes corruption unless
1105          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1106          * typically it's done in GPE-related methods that are run via
1107          * workqueues, so we can avoid the known corruption cases by always
1108          * queueing on CPU 0.
1109          */
1110         ret = queue_work_on(0, queue, &dpc->work);
1111         if (!ret) {
1112                 printk(KERN_ERR PREFIX
1113                           "Call to queue_work() failed.\n");
1114                 status = AE_ERROR;
1115         }
1116 err_workqueue:
1117         if (ACPI_FAILURE(status))
1118                 kfree(dpc);
1119 out_thread:
1120         return status;
1121 }
1122 EXPORT_SYMBOL(acpi_os_execute);
1123
1124 void acpi_os_wait_events_complete(void)
1125 {
1126         /*
1127          * Make sure the GPE handler or the fixed event handler is not used
1128          * on another CPU after removal.
1129          */
1130         if (acpi_sci_irq_valid())
1131                 synchronize_hardirq(acpi_sci_irq);
1132         flush_workqueue(kacpid_wq);
1133         flush_workqueue(kacpi_notify_wq);
1134 }
1135 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1136
1137 struct acpi_hp_work {
1138         struct work_struct work;
1139         struct acpi_device *adev;
1140         u32 src;
1141 };
1142
1143 static void acpi_hotplug_work_fn(struct work_struct *work)
1144 {
1145         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1146
1147         acpi_os_wait_events_complete();
1148         acpi_device_hotplug(hpw->adev, hpw->src);
1149         kfree(hpw);
1150 }
1151
1152 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1153 {
1154         struct acpi_hp_work *hpw;
1155
1156         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1157                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1158                   adev, src));
1159
1160         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1161         if (!hpw)
1162                 return AE_NO_MEMORY;
1163
1164         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1165         hpw->adev = adev;
1166         hpw->src = src;
1167         /*
1168          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1169          * the hotplug code may call driver .remove() functions, which may
1170          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1171          * these workqueues.
1172          */
1173         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1174                 kfree(hpw);
1175                 return AE_ERROR;
1176         }
1177         return AE_OK;
1178 }
1179
1180 bool acpi_queue_hotplug_work(struct work_struct *work)
1181 {
1182         return queue_work(kacpi_hotplug_wq, work);
1183 }
1184
1185 acpi_status
1186 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1187 {
1188         struct semaphore *sem = NULL;
1189
1190         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1191         if (!sem)
1192                 return AE_NO_MEMORY;
1193
1194         sema_init(sem, initial_units);
1195
1196         *handle = (acpi_handle *) sem;
1197
1198         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1199                           *handle, initial_units));
1200
1201         return AE_OK;
1202 }
1203
1204 /*
1205  * TODO: A better way to delete semaphores?  Linux doesn't have a
1206  * 'delete_semaphore()' function -- may result in an invalid
1207  * pointer dereference for non-synchronized consumers.  Should
1208  * we at least check for blocked threads and signal/cancel them?
1209  */
1210
1211 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1212 {
1213         struct semaphore *sem = (struct semaphore *)handle;
1214
1215         if (!sem)
1216                 return AE_BAD_PARAMETER;
1217
1218         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1219
1220         BUG_ON(!list_empty(&sem->wait_list));
1221         kfree(sem);
1222         sem = NULL;
1223
1224         return AE_OK;
1225 }
1226
1227 /*
1228  * TODO: Support for units > 1?
1229  */
1230 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1231 {
1232         acpi_status status = AE_OK;
1233         struct semaphore *sem = (struct semaphore *)handle;
1234         long jiffies;
1235         int ret = 0;
1236
1237         if (!acpi_os_initialized)
1238                 return AE_OK;
1239
1240         if (!sem || (units < 1))
1241                 return AE_BAD_PARAMETER;
1242
1243         if (units > 1)
1244                 return AE_SUPPORT;
1245
1246         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1247                           handle, units, timeout));
1248
1249         if (timeout == ACPI_WAIT_FOREVER)
1250                 jiffies = MAX_SCHEDULE_TIMEOUT;
1251         else
1252                 jiffies = msecs_to_jiffies(timeout);
1253
1254         ret = down_timeout(sem, jiffies);
1255         if (ret)
1256                 status = AE_TIME;
1257
1258         if (ACPI_FAILURE(status)) {
1259                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1260                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1261                                   handle, units, timeout,
1262                                   acpi_format_exception(status)));
1263         } else {
1264                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1265                                   "Acquired semaphore[%p|%d|%d]", handle,
1266                                   units, timeout));
1267         }
1268
1269         return status;
1270 }
1271
1272 /*
1273  * TODO: Support for units > 1?
1274  */
1275 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1276 {
1277         struct semaphore *sem = (struct semaphore *)handle;
1278
1279         if (!acpi_os_initialized)
1280                 return AE_OK;
1281
1282         if (!sem || (units < 1))
1283                 return AE_BAD_PARAMETER;
1284
1285         if (units > 1)
1286                 return AE_SUPPORT;
1287
1288         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1289                           units));
1290
1291         up(sem);
1292
1293         return AE_OK;
1294 }
1295
1296 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1297 {
1298 #ifdef ENABLE_DEBUGGER
1299         if (acpi_in_debugger) {
1300                 u32 chars;
1301
1302                 kdb_read(buffer, buffer_length);
1303
1304                 /* remove the CR kdb includes */
1305                 chars = strlen(buffer) - 1;
1306                 buffer[chars] = '\0';
1307         }
1308 #else
1309         int ret;
1310
1311         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1312         if (ret < 0)
1313                 return AE_ERROR;
1314         if (bytes_read)
1315                 *bytes_read = ret;
1316 #endif
1317
1318         return AE_OK;
1319 }
1320 EXPORT_SYMBOL(acpi_os_get_line);
1321
1322 acpi_status acpi_os_wait_command_ready(void)
1323 {
1324         int ret;
1325
1326         ret = acpi_debugger_wait_command_ready();
1327         if (ret < 0)
1328                 return AE_ERROR;
1329         return AE_OK;
1330 }
1331
1332 acpi_status acpi_os_notify_command_complete(void)
1333 {
1334         int ret;
1335
1336         ret = acpi_debugger_notify_command_complete();
1337         if (ret < 0)
1338                 return AE_ERROR;
1339         return AE_OK;
1340 }
1341
1342 acpi_status acpi_os_signal(u32 function, void *info)
1343 {
1344         switch (function) {
1345         case ACPI_SIGNAL_FATAL:
1346                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1347                 break;
1348         case ACPI_SIGNAL_BREAKPOINT:
1349                 /*
1350                  * AML Breakpoint
1351                  * ACPI spec. says to treat it as a NOP unless
1352                  * you are debugging.  So if/when we integrate
1353                  * AML debugger into the kernel debugger its
1354                  * hook will go here.  But until then it is
1355                  * not useful to print anything on breakpoints.
1356                  */
1357                 break;
1358         default:
1359                 break;
1360         }
1361
1362         return AE_OK;
1363 }
1364
1365 static int __init acpi_os_name_setup(char *str)
1366 {
1367         char *p = acpi_os_name;
1368         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1369
1370         if (!str || !*str)
1371                 return 0;
1372
1373         for (; count-- && *str; str++) {
1374                 if (isalnum(*str) || *str == ' ' || *str == ':')
1375                         *p++ = *str;
1376                 else if (*str == '\'' || *str == '"')
1377                         continue;
1378                 else
1379                         break;
1380         }
1381         *p = 0;
1382
1383         return 1;
1384
1385 }
1386
1387 __setup("acpi_os_name=", acpi_os_name_setup);
1388
1389 /*
1390  * Disable the auto-serialization of named objects creation methods.
1391  *
1392  * This feature is enabled by default.  It marks the AML control methods
1393  * that contain the opcodes to create named objects as "Serialized".
1394  */
1395 static int __init acpi_no_auto_serialize_setup(char *str)
1396 {
1397         acpi_gbl_auto_serialize_methods = FALSE;
1398         pr_info("ACPI: auto-serialization disabled\n");
1399
1400         return 1;
1401 }
1402
1403 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1404
1405 /* Check of resource interference between native drivers and ACPI
1406  * OperationRegions (SystemIO and System Memory only).
1407  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1408  * in arbitrary AML code and can interfere with legacy drivers.
1409  * acpi_enforce_resources= can be set to:
1410  *
1411  *   - strict (default) (2)
1412  *     -> further driver trying to access the resources will not load
1413  *   - lax              (1)
1414  *     -> further driver trying to access the resources will load, but you
1415  *     get a system message that something might go wrong...
1416  *
1417  *   - no               (0)
1418  *     -> ACPI Operation Region resources will not be registered
1419  *
1420  */
1421 #define ENFORCE_RESOURCES_STRICT 2
1422 #define ENFORCE_RESOURCES_LAX    1
1423 #define ENFORCE_RESOURCES_NO     0
1424
1425 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1426
1427 static int __init acpi_enforce_resources_setup(char *str)
1428 {
1429         if (str == NULL || *str == '\0')
1430                 return 0;
1431
1432         if (!strcmp("strict", str))
1433                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434         else if (!strcmp("lax", str))
1435                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1436         else if (!strcmp("no", str))
1437                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1438
1439         return 1;
1440 }
1441
1442 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1443
1444 /* Check for resource conflicts between ACPI OperationRegions and native
1445  * drivers */
1446 int acpi_check_resource_conflict(const struct resource *res)
1447 {
1448         acpi_adr_space_type space_id;
1449         acpi_size length;
1450         u8 warn = 0;
1451         int clash = 0;
1452
1453         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1454                 return 0;
1455         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1456                 return 0;
1457
1458         if (res->flags & IORESOURCE_IO)
1459                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1460         else
1461                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1462
1463         length = resource_size(res);
1464         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1465                 warn = 1;
1466         clash = acpi_check_address_range(space_id, res->start, length, warn);
1467
1468         if (clash) {
1469                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1470                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1471                                 printk(KERN_NOTICE "ACPI: This conflict may"
1472                                        " cause random problems and system"
1473                                        " instability\n");
1474                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1475                                " for this device, you should use it instead of"
1476                                " the native driver\n");
1477                 }
1478                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1479                         return -EBUSY;
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(acpi_check_resource_conflict);
1484
1485 int acpi_check_region(resource_size_t start, resource_size_t n,
1486                       const char *name)
1487 {
1488         struct resource res = {
1489                 .start = start,
1490                 .end   = start + n - 1,
1491                 .name  = name,
1492                 .flags = IORESOURCE_IO,
1493         };
1494
1495         return acpi_check_resource_conflict(&res);
1496 }
1497 EXPORT_SYMBOL(acpi_check_region);
1498
1499 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1500                                               void *_res, void **return_value)
1501 {
1502         struct acpi_mem_space_context **mem_ctx;
1503         union acpi_operand_object *handler_obj;
1504         union acpi_operand_object *region_obj2;
1505         union acpi_operand_object *region_obj;
1506         struct resource *res = _res;
1507         acpi_status status;
1508
1509         region_obj = acpi_ns_get_attached_object(handle);
1510         if (!region_obj)
1511                 return AE_OK;
1512
1513         handler_obj = region_obj->region.handler;
1514         if (!handler_obj)
1515                 return AE_OK;
1516
1517         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1518                 return AE_OK;
1519
1520         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1521                 return AE_OK;
1522
1523         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1524         if (!region_obj2)
1525                 return AE_OK;
1526
1527         mem_ctx = (void *)&region_obj2->extra.region_context;
1528
1529         if (!(mem_ctx[0]->address >= res->start &&
1530               mem_ctx[0]->address < res->end))
1531                 return AE_OK;
1532
1533         status = handler_obj->address_space.setup(region_obj,
1534                                                   ACPI_REGION_DEACTIVATE,
1535                                                   NULL, (void **)mem_ctx);
1536         if (ACPI_SUCCESS(status))
1537                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1538
1539         return status;
1540 }
1541
1542 /**
1543  * acpi_release_memory - Release any mappings done to a memory region
1544  * @handle: Handle to namespace node
1545  * @res: Memory resource
1546  * @level: A level that terminates the search
1547  *
1548  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1549  * overlap with @res and that have already been activated (mapped).
1550  *
1551  * This is a helper that allows drivers to place special requirements on memory
1552  * region that may overlap with operation regions, primarily allowing them to
1553  * safely map the region as non-cached memory.
1554  *
1555  * The unmapped Operation Regions will be automatically remapped next time they
1556  * are called, so the drivers do not need to do anything else.
1557  */
1558 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1559                                 u32 level)
1560 {
1561         if (!(res->flags & IORESOURCE_MEM))
1562                 return AE_TYPE;
1563
1564         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1565                                    acpi_deactivate_mem_region, NULL, res, NULL);
1566 }
1567 EXPORT_SYMBOL_GPL(acpi_release_memory);
1568
1569 /*
1570  * Let drivers know whether the resource checks are effective
1571  */
1572 int acpi_resources_are_enforced(void)
1573 {
1574         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1575 }
1576 EXPORT_SYMBOL(acpi_resources_are_enforced);
1577
1578 /*
1579  * Deallocate the memory for a spinlock.
1580  */
1581 void acpi_os_delete_lock(acpi_spinlock handle)
1582 {
1583         ACPI_FREE(handle);
1584 }
1585
1586 /*
1587  * Acquire a spinlock.
1588  *
1589  * handle is a pointer to the spinlock_t.
1590  */
1591
1592 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1593 {
1594         acpi_cpu_flags flags;
1595         spin_lock_irqsave(lockp, flags);
1596         return flags;
1597 }
1598
1599 /*
1600  * Release a spinlock. See above.
1601  */
1602
1603 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1604 {
1605         spin_unlock_irqrestore(lockp, flags);
1606 }
1607
1608 #ifndef ACPI_USE_LOCAL_CACHE
1609
1610 /*******************************************************************************
1611  *
1612  * FUNCTION:    acpi_os_create_cache
1613  *
1614  * PARAMETERS:  name      - Ascii name for the cache
1615  *              size      - Size of each cached object
1616  *              depth     - Maximum depth of the cache (in objects) <ignored>
1617  *              cache     - Where the new cache object is returned
1618  *
1619  * RETURN:      status
1620  *
1621  * DESCRIPTION: Create a cache object
1622  *
1623  ******************************************************************************/
1624
1625 acpi_status
1626 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1627 {
1628         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1629         if (*cache == NULL)
1630                 return AE_ERROR;
1631         else
1632                 return AE_OK;
1633 }
1634
1635 /*******************************************************************************
1636  *
1637  * FUNCTION:    acpi_os_purge_cache
1638  *
1639  * PARAMETERS:  Cache           - Handle to cache object
1640  *
1641  * RETURN:      Status
1642  *
1643  * DESCRIPTION: Free all objects within the requested cache.
1644  *
1645  ******************************************************************************/
1646
1647 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1648 {
1649         kmem_cache_shrink(cache);
1650         return (AE_OK);
1651 }
1652
1653 /*******************************************************************************
1654  *
1655  * FUNCTION:    acpi_os_delete_cache
1656  *
1657  * PARAMETERS:  Cache           - Handle to cache object
1658  *
1659  * RETURN:      Status
1660  *
1661  * DESCRIPTION: Free all objects within the requested cache and delete the
1662  *              cache object.
1663  *
1664  ******************************************************************************/
1665
1666 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1667 {
1668         kmem_cache_destroy(cache);
1669         return (AE_OK);
1670 }
1671
1672 /*******************************************************************************
1673  *
1674  * FUNCTION:    acpi_os_release_object
1675  *
1676  * PARAMETERS:  Cache       - Handle to cache object
1677  *              Object      - The object to be released
1678  *
1679  * RETURN:      None
1680  *
1681  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1682  *              the object is deleted.
1683  *
1684  ******************************************************************************/
1685
1686 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1687 {
1688         kmem_cache_free(cache, object);
1689         return (AE_OK);
1690 }
1691 #endif
1692
1693 static int __init acpi_no_static_ssdt_setup(char *s)
1694 {
1695         acpi_gbl_disable_ssdt_table_install = TRUE;
1696         pr_info("ACPI: static SSDT installation disabled\n");
1697
1698         return 0;
1699 }
1700
1701 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1702
1703 static int __init acpi_disable_return_repair(char *s)
1704 {
1705         printk(KERN_NOTICE PREFIX
1706                "ACPI: Predefined validation mechanism disabled\n");
1707         acpi_gbl_disable_auto_repair = TRUE;
1708
1709         return 1;
1710 }
1711
1712 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1713
1714 acpi_status __init acpi_os_initialize(void)
1715 {
1716         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1717         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1718         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1719         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1720         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1721                 /*
1722                  * Use acpi_os_map_generic_address to pre-map the reset
1723                  * register if it's in system memory.
1724                  */
1725                 int rv;
1726
1727                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1728                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1729         }
1730         acpi_os_initialized = true;
1731
1732         return AE_OK;
1733 }
1734
1735 acpi_status __init acpi_os_initialize1(void)
1736 {
1737         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1738         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1739         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1740         BUG_ON(!kacpid_wq);
1741         BUG_ON(!kacpi_notify_wq);
1742         BUG_ON(!kacpi_hotplug_wq);
1743         acpi_osi_init();
1744         return AE_OK;
1745 }
1746
1747 acpi_status acpi_os_terminate(void)
1748 {
1749         if (acpi_irq_handler) {
1750                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1751                                                  acpi_irq_handler);
1752         }
1753
1754         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1755         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1756         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1757         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1758         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1759                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1760
1761         destroy_workqueue(kacpid_wq);
1762         destroy_workqueue(kacpi_notify_wq);
1763         destroy_workqueue(kacpi_hotplug_wq);
1764
1765         return AE_OK;
1766 }
1767
1768 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1769                                   u32 pm1b_control)
1770 {
1771         int rc = 0;
1772         if (__acpi_os_prepare_sleep)
1773                 rc = __acpi_os_prepare_sleep(sleep_state,
1774                                              pm1a_control, pm1b_control);
1775         if (rc < 0)
1776                 return AE_ERROR;
1777         else if (rc > 0)
1778                 return AE_CTRL_TERMINATE;
1779
1780         return AE_OK;
1781 }
1782
1783 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1784                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1785 {
1786         __acpi_os_prepare_sleep = func;
1787 }
1788
1789 #if (ACPI_REDUCED_HARDWARE)
1790 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1791                                   u32 val_b)
1792 {
1793         int rc = 0;
1794         if (__acpi_os_prepare_extended_sleep)
1795                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1796                                              val_a, val_b);
1797         if (rc < 0)
1798                 return AE_ERROR;
1799         else if (rc > 0)
1800                 return AE_CTRL_TERMINATE;
1801
1802         return AE_OK;
1803 }
1804 #else
1805 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1806                                   u32 val_b)
1807 {
1808         return AE_OK;
1809 }
1810 #endif
1811
1812 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1813                                u32 val_a, u32 val_b))
1814 {
1815         __acpi_os_prepare_extended_sleep = func;
1816 }
1817
1818 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1819                                 u32 reg_a_value, u32 reg_b_value)
1820 {
1821         acpi_status status;
1822
1823         if (acpi_gbl_reduced_hardware)
1824                 status = acpi_os_prepare_extended_sleep(sleep_state,
1825                                                         reg_a_value,
1826                                                         reg_b_value);
1827         else
1828                 status = acpi_os_prepare_sleep(sleep_state,
1829                                                reg_a_value, reg_b_value);
1830         return status;
1831 }