Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT              ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54         acpi_osd_exec_callback function;
55         void *context;
56         struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif                          /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68                                       u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70                                       u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 bool acpi_permanent_mmap = false;
80
81 /*
82  * This list of permanent mappings is for memory that may be accessed from
83  * interrupt context, where we can't do the ioremap().
84  */
85 struct acpi_ioremap {
86         struct list_head list;
87         void __iomem *virt;
88         acpi_physical_address phys;
89         acpi_size size;
90         unsigned long refcount;
91 };
92
93 static LIST_HEAD(acpi_ioremaps);
94 static DEFINE_MUTEX(acpi_ioremap_lock);
95
96 static void __init acpi_request_region (struct acpi_generic_address *gas,
97         unsigned int length, char *desc)
98 {
99         u64 addr;
100
101         /* Handle possible alignment issues */
102         memcpy(&addr, &gas->address, sizeof(addr));
103         if (!addr || !length)
104                 return;
105
106         /* Resources are never freed */
107         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108                 request_region(addr, length, desc);
109         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110                 request_mem_region(addr, length, desc);
111 }
112
113 static int __init acpi_reserve_resources(void)
114 {
115         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116                 "ACPI PM1a_EVT_BLK");
117
118         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119                 "ACPI PM1b_EVT_BLK");
120
121         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122                 "ACPI PM1a_CNT_BLK");
123
124         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125                 "ACPI PM1b_CNT_BLK");
126
127         if (acpi_gbl_FADT.pm_timer_length == 4)
128                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131                 "ACPI PM2_CNT_BLK");
132
133         /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143         return 0;
144 }
145 fs_initcall_sync(acpi_reserve_resources);
146
147 void acpi_os_printf(const char *fmt, ...)
148 {
149         va_list args;
150         va_start(args, fmt);
151         acpi_os_vprintf(fmt, args);
152         va_end(args);
153 }
154 EXPORT_SYMBOL(acpi_os_printf);
155
156 void acpi_os_vprintf(const char *fmt, va_list args)
157 {
158         static char buffer[512];
159
160         vsprintf(buffer, fmt, args);
161
162 #ifdef ENABLE_DEBUGGER
163         if (acpi_in_debugger) {
164                 kdb_printf("%s", buffer);
165         } else {
166                 if (printk_get_level(buffer))
167                         printk("%s", buffer);
168                 else
169                         printk(KERN_CONT "%s", buffer);
170         }
171 #else
172         if (acpi_debugger_write_log(buffer) < 0) {
173                 if (printk_get_level(buffer))
174                         printk("%s", buffer);
175                 else
176                         printk(KERN_CONT "%s", buffer);
177         }
178 #endif
179 }
180
181 #ifdef CONFIG_KEXEC
182 static unsigned long acpi_rsdp;
183 static int __init setup_acpi_rsdp(char *arg)
184 {
185         return kstrtoul(arg, 16, &acpi_rsdp);
186 }
187 early_param("acpi_rsdp", setup_acpi_rsdp);
188 #endif
189
190 acpi_physical_address __init acpi_os_get_root_pointer(void)
191 {
192         acpi_physical_address pa;
193
194 #ifdef CONFIG_KEXEC
195         if (acpi_rsdp)
196                 return acpi_rsdp;
197 #endif
198         pa = acpi_arch_get_root_pointer();
199         if (pa)
200                 return pa;
201
202         if (efi_enabled(EFI_CONFIG_TABLES)) {
203                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
204                         return efi.acpi20;
205                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
206                         return efi.acpi;
207                 pr_err(PREFIX "System description tables not found\n");
208         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209                 acpi_find_root_pointer(&pa);
210         }
211
212         return pa;
213 }
214
215 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
216 static struct acpi_ioremap *
217 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
218 {
219         struct acpi_ioremap *map;
220
221         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
222                 if (map->phys <= phys &&
223                     phys + size <= map->phys + map->size)
224                         return map;
225
226         return NULL;
227 }
228
229 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
230 static void __iomem *
231 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
232 {
233         struct acpi_ioremap *map;
234
235         map = acpi_map_lookup(phys, size);
236         if (map)
237                 return map->virt + (phys - map->phys);
238
239         return NULL;
240 }
241
242 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
243 {
244         struct acpi_ioremap *map;
245         void __iomem *virt = NULL;
246
247         mutex_lock(&acpi_ioremap_lock);
248         map = acpi_map_lookup(phys, size);
249         if (map) {
250                 virt = map->virt + (phys - map->phys);
251                 map->refcount++;
252         }
253         mutex_unlock(&acpi_ioremap_lock);
254         return virt;
255 }
256 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
257
258 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
259 static struct acpi_ioremap *
260 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
261 {
262         struct acpi_ioremap *map;
263
264         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
265                 if (map->virt <= virt &&
266                     virt + size <= map->virt + map->size)
267                         return map;
268
269         return NULL;
270 }
271
272 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
273 /* ioremap will take care of cache attributes */
274 #define should_use_kmap(pfn)   0
275 #else
276 #define should_use_kmap(pfn)   page_is_ram(pfn)
277 #endif
278
279 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
280 {
281         unsigned long pfn;
282
283         pfn = pg_off >> PAGE_SHIFT;
284         if (should_use_kmap(pfn)) {
285                 if (pg_sz > PAGE_SIZE)
286                         return NULL;
287                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
288         } else
289                 return acpi_os_ioremap(pg_off, pg_sz);
290 }
291
292 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
293 {
294         unsigned long pfn;
295
296         pfn = pg_off >> PAGE_SHIFT;
297         if (should_use_kmap(pfn))
298                 kunmap(pfn_to_page(pfn));
299         else
300                 iounmap(vaddr);
301 }
302
303 /**
304  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
305  * @phys: Start of the physical address range to map.
306  * @size: Size of the physical address range to map.
307  *
308  * Look up the given physical address range in the list of existing ACPI memory
309  * mappings.  If found, get a reference to it and return a pointer to it (its
310  * virtual address).  If not found, map it, add it to that list and return a
311  * pointer to it.
312  *
313  * During early init (when acpi_permanent_mmap has not been set yet) this
314  * routine simply calls __acpi_map_table() to get the job done.
315  */
316 void __iomem *__ref
317 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
318 {
319         struct acpi_ioremap *map;
320         void __iomem *virt;
321         acpi_physical_address pg_off;
322         acpi_size pg_sz;
323
324         if (phys > ULONG_MAX) {
325                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
326                 return NULL;
327         }
328
329         if (!acpi_permanent_mmap)
330                 return __acpi_map_table((unsigned long)phys, size);
331
332         mutex_lock(&acpi_ioremap_lock);
333         /* Check if there's a suitable mapping already. */
334         map = acpi_map_lookup(phys, size);
335         if (map) {
336                 map->refcount++;
337                 goto out;
338         }
339
340         map = kzalloc(sizeof(*map), GFP_KERNEL);
341         if (!map) {
342                 mutex_unlock(&acpi_ioremap_lock);
343                 return NULL;
344         }
345
346         pg_off = round_down(phys, PAGE_SIZE);
347         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
348         virt = acpi_map(pg_off, pg_sz);
349         if (!virt) {
350                 mutex_unlock(&acpi_ioremap_lock);
351                 kfree(map);
352                 return NULL;
353         }
354
355         INIT_LIST_HEAD(&map->list);
356         map->virt = virt;
357         map->phys = pg_off;
358         map->size = pg_sz;
359         map->refcount = 1;
360
361         list_add_tail_rcu(&map->list, &acpi_ioremaps);
362
363 out:
364         mutex_unlock(&acpi_ioremap_lock);
365         return map->virt + (phys - map->phys);
366 }
367 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
368
369 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
370 {
371         return (void *)acpi_os_map_iomem(phys, size);
372 }
373 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
374
375 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
376 {
377         if (!--map->refcount)
378                 list_del_rcu(&map->list);
379 }
380
381 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
382 {
383         if (!map->refcount) {
384                 synchronize_rcu_expedited();
385                 acpi_unmap(map->phys, map->virt);
386                 kfree(map);
387         }
388 }
389
390 /**
391  * acpi_os_unmap_iomem - Drop a memory mapping reference.
392  * @virt: Start of the address range to drop a reference to.
393  * @size: Size of the address range to drop a reference to.
394  *
395  * Look up the given virtual address range in the list of existing ACPI memory
396  * mappings, drop a reference to it and unmap it if there are no more active
397  * references to it.
398  *
399  * During early init (when acpi_permanent_mmap has not been set yet) this
400  * routine simply calls __acpi_unmap_table() to get the job done.  Since
401  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
402  * here.
403  */
404 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
405 {
406         struct acpi_ioremap *map;
407
408         if (!acpi_permanent_mmap) {
409                 __acpi_unmap_table(virt, size);
410                 return;
411         }
412
413         mutex_lock(&acpi_ioremap_lock);
414         map = acpi_map_lookup_virt(virt, size);
415         if (!map) {
416                 mutex_unlock(&acpi_ioremap_lock);
417                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
418                 return;
419         }
420         acpi_os_drop_map_ref(map);
421         mutex_unlock(&acpi_ioremap_lock);
422
423         acpi_os_map_cleanup(map);
424 }
425 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
426
427 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
428 {
429         return acpi_os_unmap_iomem((void __iomem *)virt, size);
430 }
431 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
432
433 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
434 {
435         u64 addr;
436         void __iomem *virt;
437
438         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
439                 return 0;
440
441         /* Handle possible alignment issues */
442         memcpy(&addr, &gas->address, sizeof(addr));
443         if (!addr || !gas->bit_width)
444                 return -EINVAL;
445
446         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
447         if (!virt)
448                 return -EIO;
449
450         return 0;
451 }
452 EXPORT_SYMBOL(acpi_os_map_generic_address);
453
454 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
455 {
456         u64 addr;
457         struct acpi_ioremap *map;
458
459         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
460                 return;
461
462         /* Handle possible alignment issues */
463         memcpy(&addr, &gas->address, sizeof(addr));
464         if (!addr || !gas->bit_width)
465                 return;
466
467         mutex_lock(&acpi_ioremap_lock);
468         map = acpi_map_lookup(addr, gas->bit_width / 8);
469         if (!map) {
470                 mutex_unlock(&acpi_ioremap_lock);
471                 return;
472         }
473         acpi_os_drop_map_ref(map);
474         mutex_unlock(&acpi_ioremap_lock);
475
476         acpi_os_map_cleanup(map);
477 }
478 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
479
480 #ifdef ACPI_FUTURE_USAGE
481 acpi_status
482 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
483 {
484         if (!phys || !virt)
485                 return AE_BAD_PARAMETER;
486
487         *phys = virt_to_phys(virt);
488
489         return AE_OK;
490 }
491 #endif
492
493 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
494 static bool acpi_rev_override;
495
496 int __init acpi_rev_override_setup(char *str)
497 {
498         acpi_rev_override = true;
499         return 1;
500 }
501 __setup("acpi_rev_override", acpi_rev_override_setup);
502 #else
503 #define acpi_rev_override       false
504 #endif
505
506 #define ACPI_MAX_OVERRIDE_LEN 100
507
508 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
509
510 acpi_status
511 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
512                             acpi_string *new_val)
513 {
514         if (!init_val || !new_val)
515                 return AE_BAD_PARAMETER;
516
517         *new_val = NULL;
518         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
519                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
520                        acpi_os_name);
521                 *new_val = acpi_os_name;
522         }
523
524         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
525                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
526                 *new_val = (char *)5;
527         }
528
529         return AE_OK;
530 }
531
532 static irqreturn_t acpi_irq(int irq, void *dev_id)
533 {
534         u32 handled;
535
536         handled = (*acpi_irq_handler) (acpi_irq_context);
537
538         if (handled) {
539                 acpi_irq_handled++;
540                 return IRQ_HANDLED;
541         } else {
542                 acpi_irq_not_handled++;
543                 return IRQ_NONE;
544         }
545 }
546
547 acpi_status
548 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
549                                   void *context)
550 {
551         unsigned int irq;
552
553         acpi_irq_stats_init();
554
555         /*
556          * ACPI interrupts different from the SCI in our copy of the FADT are
557          * not supported.
558          */
559         if (gsi != acpi_gbl_FADT.sci_interrupt)
560                 return AE_BAD_PARAMETER;
561
562         if (acpi_irq_handler)
563                 return AE_ALREADY_ACQUIRED;
564
565         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
566                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
567                        gsi);
568                 return AE_OK;
569         }
570
571         acpi_irq_handler = handler;
572         acpi_irq_context = context;
573         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
574                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
575                 acpi_irq_handler = NULL;
576                 return AE_NOT_ACQUIRED;
577         }
578         acpi_sci_irq = irq;
579
580         return AE_OK;
581 }
582
583 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
584 {
585         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
586                 return AE_BAD_PARAMETER;
587
588         free_irq(acpi_sci_irq, acpi_irq);
589         acpi_irq_handler = NULL;
590         acpi_sci_irq = INVALID_ACPI_IRQ;
591
592         return AE_OK;
593 }
594
595 /*
596  * Running in interpreter thread context, safe to sleep
597  */
598
599 void acpi_os_sleep(u64 ms)
600 {
601         msleep(ms);
602 }
603
604 void acpi_os_stall(u32 us)
605 {
606         while (us) {
607                 u32 delay = 1000;
608
609                 if (delay > us)
610                         delay = us;
611                 udelay(delay);
612                 touch_nmi_watchdog();
613                 us -= delay;
614         }
615 }
616
617 /*
618  * Support ACPI 3.0 AML Timer operand
619  * Returns 64-bit free-running, monotonically increasing timer
620  * with 100ns granularity
621  */
622 u64 acpi_os_get_timer(void)
623 {
624         u64 time_ns = ktime_to_ns(ktime_get());
625         do_div(time_ns, 100);
626         return time_ns;
627 }
628
629 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
630 {
631         u32 dummy;
632
633         if (!value)
634                 value = &dummy;
635
636         *value = 0;
637         if (width <= 8) {
638                 *(u8 *) value = inb(port);
639         } else if (width <= 16) {
640                 *(u16 *) value = inw(port);
641         } else if (width <= 32) {
642                 *(u32 *) value = inl(port);
643         } else {
644                 BUG();
645         }
646
647         return AE_OK;
648 }
649
650 EXPORT_SYMBOL(acpi_os_read_port);
651
652 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
653 {
654         if (width <= 8) {
655                 outb(value, port);
656         } else if (width <= 16) {
657                 outw(value, port);
658         } else if (width <= 32) {
659                 outl(value, port);
660         } else {
661                 BUG();
662         }
663
664         return AE_OK;
665 }
666
667 EXPORT_SYMBOL(acpi_os_write_port);
668
669 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
670 {
671
672         switch (width) {
673         case 8:
674                 *(u8 *) value = readb(virt_addr);
675                 break;
676         case 16:
677                 *(u16 *) value = readw(virt_addr);
678                 break;
679         case 32:
680                 *(u32 *) value = readl(virt_addr);
681                 break;
682         case 64:
683                 *(u64 *) value = readq(virt_addr);
684                 break;
685         default:
686                 return -EINVAL;
687         }
688
689         return 0;
690 }
691
692 acpi_status
693 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
694 {
695         void __iomem *virt_addr;
696         unsigned int size = width / 8;
697         bool unmap = false;
698         u64 dummy;
699         int error;
700
701         rcu_read_lock();
702         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
703         if (!virt_addr) {
704                 rcu_read_unlock();
705                 virt_addr = acpi_os_ioremap(phys_addr, size);
706                 if (!virt_addr)
707                         return AE_BAD_ADDRESS;
708                 unmap = true;
709         }
710
711         if (!value)
712                 value = &dummy;
713
714         error = acpi_os_read_iomem(virt_addr, value, width);
715         BUG_ON(error);
716
717         if (unmap)
718                 iounmap(virt_addr);
719         else
720                 rcu_read_unlock();
721
722         return AE_OK;
723 }
724
725 acpi_status
726 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
727 {
728         void __iomem *virt_addr;
729         unsigned int size = width / 8;
730         bool unmap = false;
731
732         rcu_read_lock();
733         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
734         if (!virt_addr) {
735                 rcu_read_unlock();
736                 virt_addr = acpi_os_ioremap(phys_addr, size);
737                 if (!virt_addr)
738                         return AE_BAD_ADDRESS;
739                 unmap = true;
740         }
741
742         switch (width) {
743         case 8:
744                 writeb(value, virt_addr);
745                 break;
746         case 16:
747                 writew(value, virt_addr);
748                 break;
749         case 32:
750                 writel(value, virt_addr);
751                 break;
752         case 64:
753                 writeq(value, virt_addr);
754                 break;
755         default:
756                 BUG();
757         }
758
759         if (unmap)
760                 iounmap(virt_addr);
761         else
762                 rcu_read_unlock();
763
764         return AE_OK;
765 }
766
767 acpi_status
768 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
769                                u64 *value, u32 width)
770 {
771         int result, size;
772         u32 value32;
773
774         if (!value)
775                 return AE_BAD_PARAMETER;
776
777         switch (width) {
778         case 8:
779                 size = 1;
780                 break;
781         case 16:
782                 size = 2;
783                 break;
784         case 32:
785                 size = 4;
786                 break;
787         default:
788                 return AE_ERROR;
789         }
790
791         result = raw_pci_read(pci_id->segment, pci_id->bus,
792                                 PCI_DEVFN(pci_id->device, pci_id->function),
793                                 reg, size, &value32);
794         *value = value32;
795
796         return (result ? AE_ERROR : AE_OK);
797 }
798
799 acpi_status
800 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
801                                 u64 value, u32 width)
802 {
803         int result, size;
804
805         switch (width) {
806         case 8:
807                 size = 1;
808                 break;
809         case 16:
810                 size = 2;
811                 break;
812         case 32:
813                 size = 4;
814                 break;
815         default:
816                 return AE_ERROR;
817         }
818
819         result = raw_pci_write(pci_id->segment, pci_id->bus,
820                                 PCI_DEVFN(pci_id->device, pci_id->function),
821                                 reg, size, value);
822
823         return (result ? AE_ERROR : AE_OK);
824 }
825
826 static void acpi_os_execute_deferred(struct work_struct *work)
827 {
828         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
829
830         dpc->function(dpc->context);
831         kfree(dpc);
832 }
833
834 #ifdef CONFIG_ACPI_DEBUGGER
835 static struct acpi_debugger acpi_debugger;
836 static bool acpi_debugger_initialized;
837
838 int acpi_register_debugger(struct module *owner,
839                            const struct acpi_debugger_ops *ops)
840 {
841         int ret = 0;
842
843         mutex_lock(&acpi_debugger.lock);
844         if (acpi_debugger.ops) {
845                 ret = -EBUSY;
846                 goto err_lock;
847         }
848
849         acpi_debugger.owner = owner;
850         acpi_debugger.ops = ops;
851
852 err_lock:
853         mutex_unlock(&acpi_debugger.lock);
854         return ret;
855 }
856 EXPORT_SYMBOL(acpi_register_debugger);
857
858 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
859 {
860         mutex_lock(&acpi_debugger.lock);
861         if (ops == acpi_debugger.ops) {
862                 acpi_debugger.ops = NULL;
863                 acpi_debugger.owner = NULL;
864         }
865         mutex_unlock(&acpi_debugger.lock);
866 }
867 EXPORT_SYMBOL(acpi_unregister_debugger);
868
869 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
870 {
871         int ret;
872         int (*func)(acpi_osd_exec_callback, void *);
873         struct module *owner;
874
875         if (!acpi_debugger_initialized)
876                 return -ENODEV;
877         mutex_lock(&acpi_debugger.lock);
878         if (!acpi_debugger.ops) {
879                 ret = -ENODEV;
880                 goto err_lock;
881         }
882         if (!try_module_get(acpi_debugger.owner)) {
883                 ret = -ENODEV;
884                 goto err_lock;
885         }
886         func = acpi_debugger.ops->create_thread;
887         owner = acpi_debugger.owner;
888         mutex_unlock(&acpi_debugger.lock);
889
890         ret = func(function, context);
891
892         mutex_lock(&acpi_debugger.lock);
893         module_put(owner);
894 err_lock:
895         mutex_unlock(&acpi_debugger.lock);
896         return ret;
897 }
898
899 ssize_t acpi_debugger_write_log(const char *msg)
900 {
901         ssize_t ret;
902         ssize_t (*func)(const char *);
903         struct module *owner;
904
905         if (!acpi_debugger_initialized)
906                 return -ENODEV;
907         mutex_lock(&acpi_debugger.lock);
908         if (!acpi_debugger.ops) {
909                 ret = -ENODEV;
910                 goto err_lock;
911         }
912         if (!try_module_get(acpi_debugger.owner)) {
913                 ret = -ENODEV;
914                 goto err_lock;
915         }
916         func = acpi_debugger.ops->write_log;
917         owner = acpi_debugger.owner;
918         mutex_unlock(&acpi_debugger.lock);
919
920         ret = func(msg);
921
922         mutex_lock(&acpi_debugger.lock);
923         module_put(owner);
924 err_lock:
925         mutex_unlock(&acpi_debugger.lock);
926         return ret;
927 }
928
929 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
930 {
931         ssize_t ret;
932         ssize_t (*func)(char *, size_t);
933         struct module *owner;
934
935         if (!acpi_debugger_initialized)
936                 return -ENODEV;
937         mutex_lock(&acpi_debugger.lock);
938         if (!acpi_debugger.ops) {
939                 ret = -ENODEV;
940                 goto err_lock;
941         }
942         if (!try_module_get(acpi_debugger.owner)) {
943                 ret = -ENODEV;
944                 goto err_lock;
945         }
946         func = acpi_debugger.ops->read_cmd;
947         owner = acpi_debugger.owner;
948         mutex_unlock(&acpi_debugger.lock);
949
950         ret = func(buffer, buffer_length);
951
952         mutex_lock(&acpi_debugger.lock);
953         module_put(owner);
954 err_lock:
955         mutex_unlock(&acpi_debugger.lock);
956         return ret;
957 }
958
959 int acpi_debugger_wait_command_ready(void)
960 {
961         int ret;
962         int (*func)(bool, char *, size_t);
963         struct module *owner;
964
965         if (!acpi_debugger_initialized)
966                 return -ENODEV;
967         mutex_lock(&acpi_debugger.lock);
968         if (!acpi_debugger.ops) {
969                 ret = -ENODEV;
970                 goto err_lock;
971         }
972         if (!try_module_get(acpi_debugger.owner)) {
973                 ret = -ENODEV;
974                 goto err_lock;
975         }
976         func = acpi_debugger.ops->wait_command_ready;
977         owner = acpi_debugger.owner;
978         mutex_unlock(&acpi_debugger.lock);
979
980         ret = func(acpi_gbl_method_executing,
981                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
982
983         mutex_lock(&acpi_debugger.lock);
984         module_put(owner);
985 err_lock:
986         mutex_unlock(&acpi_debugger.lock);
987         return ret;
988 }
989
990 int acpi_debugger_notify_command_complete(void)
991 {
992         int ret;
993         int (*func)(void);
994         struct module *owner;
995
996         if (!acpi_debugger_initialized)
997                 return -ENODEV;
998         mutex_lock(&acpi_debugger.lock);
999         if (!acpi_debugger.ops) {
1000                 ret = -ENODEV;
1001                 goto err_lock;
1002         }
1003         if (!try_module_get(acpi_debugger.owner)) {
1004                 ret = -ENODEV;
1005                 goto err_lock;
1006         }
1007         func = acpi_debugger.ops->notify_command_complete;
1008         owner = acpi_debugger.owner;
1009         mutex_unlock(&acpi_debugger.lock);
1010
1011         ret = func();
1012
1013         mutex_lock(&acpi_debugger.lock);
1014         module_put(owner);
1015 err_lock:
1016         mutex_unlock(&acpi_debugger.lock);
1017         return ret;
1018 }
1019
1020 int __init acpi_debugger_init(void)
1021 {
1022         mutex_init(&acpi_debugger.lock);
1023         acpi_debugger_initialized = true;
1024         return 0;
1025 }
1026 #endif
1027
1028 /*******************************************************************************
1029  *
1030  * FUNCTION:    acpi_os_execute
1031  *
1032  * PARAMETERS:  Type               - Type of the callback
1033  *              Function           - Function to be executed
1034  *              Context            - Function parameters
1035  *
1036  * RETURN:      Status
1037  *
1038  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1039  *              immediately executes function on a separate thread.
1040  *
1041  ******************************************************************************/
1042
1043 acpi_status acpi_os_execute(acpi_execute_type type,
1044                             acpi_osd_exec_callback function, void *context)
1045 {
1046         acpi_status status = AE_OK;
1047         struct acpi_os_dpc *dpc;
1048         struct workqueue_struct *queue;
1049         int ret;
1050         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1051                           "Scheduling function [%p(%p)] for deferred execution.\n",
1052                           function, context));
1053
1054         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1055                 ret = acpi_debugger_create_thread(function, context);
1056                 if (ret) {
1057                         pr_err("Call to kthread_create() failed.\n");
1058                         status = AE_ERROR;
1059                 }
1060                 goto out_thread;
1061         }
1062
1063         /*
1064          * Allocate/initialize DPC structure.  Note that this memory will be
1065          * freed by the callee.  The kernel handles the work_struct list  in a
1066          * way that allows us to also free its memory inside the callee.
1067          * Because we may want to schedule several tasks with different
1068          * parameters we can't use the approach some kernel code uses of
1069          * having a static work_struct.
1070          */
1071
1072         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1073         if (!dpc)
1074                 return AE_NO_MEMORY;
1075
1076         dpc->function = function;
1077         dpc->context = context;
1078
1079         /*
1080          * To prevent lockdep from complaining unnecessarily, make sure that
1081          * there is a different static lockdep key for each workqueue by using
1082          * INIT_WORK() for each of them separately.
1083          */
1084         if (type == OSL_NOTIFY_HANDLER) {
1085                 queue = kacpi_notify_wq;
1086                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087         } else if (type == OSL_GPE_HANDLER) {
1088                 queue = kacpid_wq;
1089                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1090         } else {
1091                 pr_err("Unsupported os_execute type %d.\n", type);
1092                 status = AE_ERROR;
1093         }
1094
1095         if (ACPI_FAILURE(status))
1096                 goto err_workqueue;
1097
1098         /*
1099          * On some machines, a software-initiated SMI causes corruption unless
1100          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1101          * typically it's done in GPE-related methods that are run via
1102          * workqueues, so we can avoid the known corruption cases by always
1103          * queueing on CPU 0.
1104          */
1105         ret = queue_work_on(0, queue, &dpc->work);
1106         if (!ret) {
1107                 printk(KERN_ERR PREFIX
1108                           "Call to queue_work() failed.\n");
1109                 status = AE_ERROR;
1110         }
1111 err_workqueue:
1112         if (ACPI_FAILURE(status))
1113                 kfree(dpc);
1114 out_thread:
1115         return status;
1116 }
1117 EXPORT_SYMBOL(acpi_os_execute);
1118
1119 void acpi_os_wait_events_complete(void)
1120 {
1121         /*
1122          * Make sure the GPE handler or the fixed event handler is not used
1123          * on another CPU after removal.
1124          */
1125         if (acpi_sci_irq_valid())
1126                 synchronize_hardirq(acpi_sci_irq);
1127         flush_workqueue(kacpid_wq);
1128         flush_workqueue(kacpi_notify_wq);
1129 }
1130
1131 struct acpi_hp_work {
1132         struct work_struct work;
1133         struct acpi_device *adev;
1134         u32 src;
1135 };
1136
1137 static void acpi_hotplug_work_fn(struct work_struct *work)
1138 {
1139         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1140
1141         acpi_os_wait_events_complete();
1142         acpi_device_hotplug(hpw->adev, hpw->src);
1143         kfree(hpw);
1144 }
1145
1146 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1147 {
1148         struct acpi_hp_work *hpw;
1149
1150         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1151                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1152                   adev, src));
1153
1154         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1155         if (!hpw)
1156                 return AE_NO_MEMORY;
1157
1158         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1159         hpw->adev = adev;
1160         hpw->src = src;
1161         /*
1162          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1163          * the hotplug code may call driver .remove() functions, which may
1164          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1165          * these workqueues.
1166          */
1167         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1168                 kfree(hpw);
1169                 return AE_ERROR;
1170         }
1171         return AE_OK;
1172 }
1173
1174 bool acpi_queue_hotplug_work(struct work_struct *work)
1175 {
1176         return queue_work(kacpi_hotplug_wq, work);
1177 }
1178
1179 acpi_status
1180 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1181 {
1182         struct semaphore *sem = NULL;
1183
1184         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1185         if (!sem)
1186                 return AE_NO_MEMORY;
1187
1188         sema_init(sem, initial_units);
1189
1190         *handle = (acpi_handle *) sem;
1191
1192         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1193                           *handle, initial_units));
1194
1195         return AE_OK;
1196 }
1197
1198 /*
1199  * TODO: A better way to delete semaphores?  Linux doesn't have a
1200  * 'delete_semaphore()' function -- may result in an invalid
1201  * pointer dereference for non-synchronized consumers.  Should
1202  * we at least check for blocked threads and signal/cancel them?
1203  */
1204
1205 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1206 {
1207         struct semaphore *sem = (struct semaphore *)handle;
1208
1209         if (!sem)
1210                 return AE_BAD_PARAMETER;
1211
1212         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1213
1214         BUG_ON(!list_empty(&sem->wait_list));
1215         kfree(sem);
1216         sem = NULL;
1217
1218         return AE_OK;
1219 }
1220
1221 /*
1222  * TODO: Support for units > 1?
1223  */
1224 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1225 {
1226         acpi_status status = AE_OK;
1227         struct semaphore *sem = (struct semaphore *)handle;
1228         long jiffies;
1229         int ret = 0;
1230
1231         if (!acpi_os_initialized)
1232                 return AE_OK;
1233
1234         if (!sem || (units < 1))
1235                 return AE_BAD_PARAMETER;
1236
1237         if (units > 1)
1238                 return AE_SUPPORT;
1239
1240         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1241                           handle, units, timeout));
1242
1243         if (timeout == ACPI_WAIT_FOREVER)
1244                 jiffies = MAX_SCHEDULE_TIMEOUT;
1245         else
1246                 jiffies = msecs_to_jiffies(timeout);
1247
1248         ret = down_timeout(sem, jiffies);
1249         if (ret)
1250                 status = AE_TIME;
1251
1252         if (ACPI_FAILURE(status)) {
1253                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1254                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1255                                   handle, units, timeout,
1256                                   acpi_format_exception(status)));
1257         } else {
1258                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1259                                   "Acquired semaphore[%p|%d|%d]", handle,
1260                                   units, timeout));
1261         }
1262
1263         return status;
1264 }
1265
1266 /*
1267  * TODO: Support for units > 1?
1268  */
1269 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1270 {
1271         struct semaphore *sem = (struct semaphore *)handle;
1272
1273         if (!acpi_os_initialized)
1274                 return AE_OK;
1275
1276         if (!sem || (units < 1))
1277                 return AE_BAD_PARAMETER;
1278
1279         if (units > 1)
1280                 return AE_SUPPORT;
1281
1282         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1283                           units));
1284
1285         up(sem);
1286
1287         return AE_OK;
1288 }
1289
1290 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1291 {
1292 #ifdef ENABLE_DEBUGGER
1293         if (acpi_in_debugger) {
1294                 u32 chars;
1295
1296                 kdb_read(buffer, buffer_length);
1297
1298                 /* remove the CR kdb includes */
1299                 chars = strlen(buffer) - 1;
1300                 buffer[chars] = '\0';
1301         }
1302 #else
1303         int ret;
1304
1305         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1306         if (ret < 0)
1307                 return AE_ERROR;
1308         if (bytes_read)
1309                 *bytes_read = ret;
1310 #endif
1311
1312         return AE_OK;
1313 }
1314 EXPORT_SYMBOL(acpi_os_get_line);
1315
1316 acpi_status acpi_os_wait_command_ready(void)
1317 {
1318         int ret;
1319
1320         ret = acpi_debugger_wait_command_ready();
1321         if (ret < 0)
1322                 return AE_ERROR;
1323         return AE_OK;
1324 }
1325
1326 acpi_status acpi_os_notify_command_complete(void)
1327 {
1328         int ret;
1329
1330         ret = acpi_debugger_notify_command_complete();
1331         if (ret < 0)
1332                 return AE_ERROR;
1333         return AE_OK;
1334 }
1335
1336 acpi_status acpi_os_signal(u32 function, void *info)
1337 {
1338         switch (function) {
1339         case ACPI_SIGNAL_FATAL:
1340                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1341                 break;
1342         case ACPI_SIGNAL_BREAKPOINT:
1343                 /*
1344                  * AML Breakpoint
1345                  * ACPI spec. says to treat it as a NOP unless
1346                  * you are debugging.  So if/when we integrate
1347                  * AML debugger into the kernel debugger its
1348                  * hook will go here.  But until then it is
1349                  * not useful to print anything on breakpoints.
1350                  */
1351                 break;
1352         default:
1353                 break;
1354         }
1355
1356         return AE_OK;
1357 }
1358
1359 static int __init acpi_os_name_setup(char *str)
1360 {
1361         char *p = acpi_os_name;
1362         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1363
1364         if (!str || !*str)
1365                 return 0;
1366
1367         for (; count-- && *str; str++) {
1368                 if (isalnum(*str) || *str == ' ' || *str == ':')
1369                         *p++ = *str;
1370                 else if (*str == '\'' || *str == '"')
1371                         continue;
1372                 else
1373                         break;
1374         }
1375         *p = 0;
1376
1377         return 1;
1378
1379 }
1380
1381 __setup("acpi_os_name=", acpi_os_name_setup);
1382
1383 /*
1384  * Disable the auto-serialization of named objects creation methods.
1385  *
1386  * This feature is enabled by default.  It marks the AML control methods
1387  * that contain the opcodes to create named objects as "Serialized".
1388  */
1389 static int __init acpi_no_auto_serialize_setup(char *str)
1390 {
1391         acpi_gbl_auto_serialize_methods = FALSE;
1392         pr_info("ACPI: auto-serialization disabled\n");
1393
1394         return 1;
1395 }
1396
1397 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1398
1399 /* Check of resource interference between native drivers and ACPI
1400  * OperationRegions (SystemIO and System Memory only).
1401  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1402  * in arbitrary AML code and can interfere with legacy drivers.
1403  * acpi_enforce_resources= can be set to:
1404  *
1405  *   - strict (default) (2)
1406  *     -> further driver trying to access the resources will not load
1407  *   - lax              (1)
1408  *     -> further driver trying to access the resources will load, but you
1409  *     get a system message that something might go wrong...
1410  *
1411  *   - no               (0)
1412  *     -> ACPI Operation Region resources will not be registered
1413  *
1414  */
1415 #define ENFORCE_RESOURCES_STRICT 2
1416 #define ENFORCE_RESOURCES_LAX    1
1417 #define ENFORCE_RESOURCES_NO     0
1418
1419 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1420
1421 static int __init acpi_enforce_resources_setup(char *str)
1422 {
1423         if (str == NULL || *str == '\0')
1424                 return 0;
1425
1426         if (!strcmp("strict", str))
1427                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428         else if (!strcmp("lax", str))
1429                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1430         else if (!strcmp("no", str))
1431                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1432
1433         return 1;
1434 }
1435
1436 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1437
1438 /* Check for resource conflicts between ACPI OperationRegions and native
1439  * drivers */
1440 int acpi_check_resource_conflict(const struct resource *res)
1441 {
1442         acpi_adr_space_type space_id;
1443         acpi_size length;
1444         u8 warn = 0;
1445         int clash = 0;
1446
1447         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1448                 return 0;
1449         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1450                 return 0;
1451
1452         if (res->flags & IORESOURCE_IO)
1453                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1454         else
1455                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1456
1457         length = resource_size(res);
1458         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1459                 warn = 1;
1460         clash = acpi_check_address_range(space_id, res->start, length, warn);
1461
1462         if (clash) {
1463                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1464                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1465                                 printk(KERN_NOTICE "ACPI: This conflict may"
1466                                        " cause random problems and system"
1467                                        " instability\n");
1468                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1469                                " for this device, you should use it instead of"
1470                                " the native driver\n");
1471                 }
1472                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1473                         return -EBUSY;
1474         }
1475         return 0;
1476 }
1477 EXPORT_SYMBOL(acpi_check_resource_conflict);
1478
1479 int acpi_check_region(resource_size_t start, resource_size_t n,
1480                       const char *name)
1481 {
1482         struct resource res = {
1483                 .start = start,
1484                 .end   = start + n - 1,
1485                 .name  = name,
1486                 .flags = IORESOURCE_IO,
1487         };
1488
1489         return acpi_check_resource_conflict(&res);
1490 }
1491 EXPORT_SYMBOL(acpi_check_region);
1492
1493 /*
1494  * Let drivers know whether the resource checks are effective
1495  */
1496 int acpi_resources_are_enforced(void)
1497 {
1498         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1499 }
1500 EXPORT_SYMBOL(acpi_resources_are_enforced);
1501
1502 /*
1503  * Deallocate the memory for a spinlock.
1504  */
1505 void acpi_os_delete_lock(acpi_spinlock handle)
1506 {
1507         ACPI_FREE(handle);
1508 }
1509
1510 /*
1511  * Acquire a spinlock.
1512  *
1513  * handle is a pointer to the spinlock_t.
1514  */
1515
1516 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1517 {
1518         acpi_cpu_flags flags;
1519         spin_lock_irqsave(lockp, flags);
1520         return flags;
1521 }
1522
1523 /*
1524  * Release a spinlock. See above.
1525  */
1526
1527 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1528 {
1529         spin_unlock_irqrestore(lockp, flags);
1530 }
1531
1532 #ifndef ACPI_USE_LOCAL_CACHE
1533
1534 /*******************************************************************************
1535  *
1536  * FUNCTION:    acpi_os_create_cache
1537  *
1538  * PARAMETERS:  name      - Ascii name for the cache
1539  *              size      - Size of each cached object
1540  *              depth     - Maximum depth of the cache (in objects) <ignored>
1541  *              cache     - Where the new cache object is returned
1542  *
1543  * RETURN:      status
1544  *
1545  * DESCRIPTION: Create a cache object
1546  *
1547  ******************************************************************************/
1548
1549 acpi_status
1550 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1551 {
1552         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553         if (*cache == NULL)
1554                 return AE_ERROR;
1555         else
1556                 return AE_OK;
1557 }
1558
1559 /*******************************************************************************
1560  *
1561  * FUNCTION:    acpi_os_purge_cache
1562  *
1563  * PARAMETERS:  Cache           - Handle to cache object
1564  *
1565  * RETURN:      Status
1566  *
1567  * DESCRIPTION: Free all objects within the requested cache.
1568  *
1569  ******************************************************************************/
1570
1571 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1572 {
1573         kmem_cache_shrink(cache);
1574         return (AE_OK);
1575 }
1576
1577 /*******************************************************************************
1578  *
1579  * FUNCTION:    acpi_os_delete_cache
1580  *
1581  * PARAMETERS:  Cache           - Handle to cache object
1582  *
1583  * RETURN:      Status
1584  *
1585  * DESCRIPTION: Free all objects within the requested cache and delete the
1586  *              cache object.
1587  *
1588  ******************************************************************************/
1589
1590 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1591 {
1592         kmem_cache_destroy(cache);
1593         return (AE_OK);
1594 }
1595
1596 /*******************************************************************************
1597  *
1598  * FUNCTION:    acpi_os_release_object
1599  *
1600  * PARAMETERS:  Cache       - Handle to cache object
1601  *              Object      - The object to be released
1602  *
1603  * RETURN:      None
1604  *
1605  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1606  *              the object is deleted.
1607  *
1608  ******************************************************************************/
1609
1610 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1611 {
1612         kmem_cache_free(cache, object);
1613         return (AE_OK);
1614 }
1615 #endif
1616
1617 static int __init acpi_no_static_ssdt_setup(char *s)
1618 {
1619         acpi_gbl_disable_ssdt_table_install = TRUE;
1620         pr_info("ACPI: static SSDT installation disabled\n");
1621
1622         return 0;
1623 }
1624
1625 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627 static int __init acpi_disable_return_repair(char *s)
1628 {
1629         printk(KERN_NOTICE PREFIX
1630                "ACPI: Predefined validation mechanism disabled\n");
1631         acpi_gbl_disable_auto_repair = TRUE;
1632
1633         return 1;
1634 }
1635
1636 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1637
1638 acpi_status __init acpi_os_initialize(void)
1639 {
1640         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1641         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1642         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1643         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1644         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1645                 /*
1646                  * Use acpi_os_map_generic_address to pre-map the reset
1647                  * register if it's in system memory.
1648                  */
1649                 int rv;
1650
1651                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1652                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1653         }
1654         acpi_os_initialized = true;
1655
1656         return AE_OK;
1657 }
1658
1659 acpi_status __init acpi_os_initialize1(void)
1660 {
1661         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1662         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1663         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1664         BUG_ON(!kacpid_wq);
1665         BUG_ON(!kacpi_notify_wq);
1666         BUG_ON(!kacpi_hotplug_wq);
1667         acpi_osi_init();
1668         return AE_OK;
1669 }
1670
1671 acpi_status acpi_os_terminate(void)
1672 {
1673         if (acpi_irq_handler) {
1674                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1675                                                  acpi_irq_handler);
1676         }
1677
1678         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1679         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1680         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1681         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1682         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1683                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1684
1685         destroy_workqueue(kacpid_wq);
1686         destroy_workqueue(kacpi_notify_wq);
1687         destroy_workqueue(kacpi_hotplug_wq);
1688
1689         return AE_OK;
1690 }
1691
1692 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1693                                   u32 pm1b_control)
1694 {
1695         int rc = 0;
1696         if (__acpi_os_prepare_sleep)
1697                 rc = __acpi_os_prepare_sleep(sleep_state,
1698                                              pm1a_control, pm1b_control);
1699         if (rc < 0)
1700                 return AE_ERROR;
1701         else if (rc > 0)
1702                 return AE_CTRL_TERMINATE;
1703
1704         return AE_OK;
1705 }
1706
1707 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1708                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1709 {
1710         __acpi_os_prepare_sleep = func;
1711 }
1712
1713 #if (ACPI_REDUCED_HARDWARE)
1714 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1715                                   u32 val_b)
1716 {
1717         int rc = 0;
1718         if (__acpi_os_prepare_extended_sleep)
1719                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1720                                              val_a, val_b);
1721         if (rc < 0)
1722                 return AE_ERROR;
1723         else if (rc > 0)
1724                 return AE_CTRL_TERMINATE;
1725
1726         return AE_OK;
1727 }
1728 #else
1729 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730                                   u32 val_b)
1731 {
1732         return AE_OK;
1733 }
1734 #endif
1735
1736 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1737                                u32 val_a, u32 val_b))
1738 {
1739         __acpi_os_prepare_extended_sleep = func;
1740 }
1741
1742 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1743                                 u32 reg_a_value, u32 reg_b_value)
1744 {
1745         acpi_status status;
1746
1747         if (acpi_gbl_reduced_hardware)
1748                 status = acpi_os_prepare_extended_sleep(sleep_state,
1749                                                         reg_a_value,
1750                                                         reg_b_value);
1751         else
1752                 status = acpi_os_prepare_sleep(sleep_state,
1753                                                reg_a_value, reg_b_value);
1754         return status;
1755 }