s390/qdio: remove internal polling in non-thinint path
[linux-2.6-microblaze.git] / drivers / acpi / osl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
31
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
35
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
39
40 #define _COMPONENT              ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
42
43 struct acpi_os_dpc {
44         acpi_osd_exec_callback function;
45         void *context;
46         struct work_struct work;
47 };
48
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
51
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif                          /*ENABLE_DEBUGGER */
56
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58                                       u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60                                       u32 val_b);
61
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
70
71 /*
72  * This list of permanent mappings is for memory that may be accessed from
73  * interrupt context, where we can't do the ioremap().
74  */
75 struct acpi_ioremap {
76         struct list_head list;
77         void __iomem *virt;
78         acpi_physical_address phys;
79         acpi_size size;
80         unsigned long refcount;
81 };
82
83 static LIST_HEAD(acpi_ioremaps);
84 static DEFINE_MUTEX(acpi_ioremap_lock);
85 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
86
87 static void __init acpi_request_region (struct acpi_generic_address *gas,
88         unsigned int length, char *desc)
89 {
90         u64 addr;
91
92         /* Handle possible alignment issues */
93         memcpy(&addr, &gas->address, sizeof(addr));
94         if (!addr || !length)
95                 return;
96
97         /* Resources are never freed */
98         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99                 request_region(addr, length, desc);
100         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101                 request_mem_region(addr, length, desc);
102 }
103
104 static int __init acpi_reserve_resources(void)
105 {
106         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107                 "ACPI PM1a_EVT_BLK");
108
109         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110                 "ACPI PM1b_EVT_BLK");
111
112         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113                 "ACPI PM1a_CNT_BLK");
114
115         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116                 "ACPI PM1b_CNT_BLK");
117
118         if (acpi_gbl_FADT.pm_timer_length == 4)
119                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
120
121         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122                 "ACPI PM2_CNT_BLK");
123
124         /* Length of GPE blocks must be a non-negative multiple of 2 */
125
126         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
129
130         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
133
134         return 0;
135 }
136 fs_initcall_sync(acpi_reserve_resources);
137
138 void acpi_os_printf(const char *fmt, ...)
139 {
140         va_list args;
141         va_start(args, fmt);
142         acpi_os_vprintf(fmt, args);
143         va_end(args);
144 }
145 EXPORT_SYMBOL(acpi_os_printf);
146
147 void acpi_os_vprintf(const char *fmt, va_list args)
148 {
149         static char buffer[512];
150
151         vsprintf(buffer, fmt, args);
152
153 #ifdef ENABLE_DEBUGGER
154         if (acpi_in_debugger) {
155                 kdb_printf("%s", buffer);
156         } else {
157                 if (printk_get_level(buffer))
158                         printk("%s", buffer);
159                 else
160                         printk(KERN_CONT "%s", buffer);
161         }
162 #else
163         if (acpi_debugger_write_log(buffer) < 0) {
164                 if (printk_get_level(buffer))
165                         printk("%s", buffer);
166                 else
167                         printk(KERN_CONT "%s", buffer);
168         }
169 #endif
170 }
171
172 #ifdef CONFIG_KEXEC
173 static unsigned long acpi_rsdp;
174 static int __init setup_acpi_rsdp(char *arg)
175 {
176         return kstrtoul(arg, 16, &acpi_rsdp);
177 }
178 early_param("acpi_rsdp", setup_acpi_rsdp);
179 #endif
180
181 acpi_physical_address __init acpi_os_get_root_pointer(void)
182 {
183         acpi_physical_address pa;
184
185 #ifdef CONFIG_KEXEC
186         /*
187          * We may have been provided with an RSDP on the command line,
188          * but if a malicious user has done so they may be pointing us
189          * at modified ACPI tables that could alter kernel behaviour -
190          * so, we check the lockdown status before making use of
191          * it. If we trust it then also stash it in an architecture
192          * specific location (if appropriate) so it can be carried
193          * over further kexec()s.
194          */
195         if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196                 acpi_arch_set_root_pointer(acpi_rsdp);
197                 return acpi_rsdp;
198         }
199 #endif
200         pa = acpi_arch_get_root_pointer();
201         if (pa)
202                 return pa;
203
204         if (efi_enabled(EFI_CONFIG_TABLES)) {
205                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206                         return efi.acpi20;
207                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208                         return efi.acpi;
209                 pr_err(PREFIX "System description tables not found\n");
210         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211                 acpi_find_root_pointer(&pa);
212         }
213
214         return pa;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221         struct acpi_ioremap *map;
222
223         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224                 if (map->phys <= phys &&
225                     phys + size <= map->phys + map->size)
226                         return map;
227
228         return NULL;
229 }
230
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235         struct acpi_ioremap *map;
236
237         map = acpi_map_lookup(phys, size);
238         if (map)
239                 return map->virt + (phys - map->phys);
240
241         return NULL;
242 }
243
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246         struct acpi_ioremap *map;
247         void __iomem *virt = NULL;
248
249         mutex_lock(&acpi_ioremap_lock);
250         map = acpi_map_lookup(phys, size);
251         if (map) {
252                 virt = map->virt + (phys - map->phys);
253                 map->refcount++;
254         }
255         mutex_unlock(&acpi_ioremap_lock);
256         return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264         struct acpi_ioremap *map;
265
266         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267                 if (map->virt <= virt &&
268                     virt + size <= map->virt + map->size)
269                         return map;
270
271         return NULL;
272 }
273
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283         unsigned long pfn;
284
285         pfn = pg_off >> PAGE_SHIFT;
286         if (should_use_kmap(pfn)) {
287                 if (pg_sz > PAGE_SIZE)
288                         return NULL;
289                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290         } else
291                 return acpi_os_ioremap(pg_off, pg_sz);
292 }
293
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296         unsigned long pfn;
297
298         pfn = pg_off >> PAGE_SHIFT;
299         if (should_use_kmap(pfn))
300                 kunmap(pfn_to_page(pfn));
301         else
302                 iounmap(vaddr);
303 }
304
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem __ref
319 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321         struct acpi_ioremap *map;
322         void __iomem *virt;
323         acpi_physical_address pg_off;
324         acpi_size pg_sz;
325
326         if (phys > ULONG_MAX) {
327                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328                 return NULL;
329         }
330
331         if (!acpi_permanent_mmap)
332                 return __acpi_map_table((unsigned long)phys, size);
333
334         mutex_lock(&acpi_ioremap_lock);
335         /* Check if there's a suitable mapping already. */
336         map = acpi_map_lookup(phys, size);
337         if (map) {
338                 map->refcount++;
339                 goto out;
340         }
341
342         map = kzalloc(sizeof(*map), GFP_KERNEL);
343         if (!map) {
344                 mutex_unlock(&acpi_ioremap_lock);
345                 return NULL;
346         }
347
348         pg_off = round_down(phys, PAGE_SIZE);
349         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350         virt = acpi_map(pg_off, pg_sz);
351         if (!virt) {
352                 mutex_unlock(&acpi_ioremap_lock);
353                 kfree(map);
354                 return NULL;
355         }
356
357         INIT_LIST_HEAD(&map->list);
358         map->virt = virt;
359         map->phys = pg_off;
360         map->size = pg_sz;
361         map->refcount = 1;
362
363         list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365 out:
366         mutex_unlock(&acpi_ioremap_lock);
367         return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373         return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
378 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
379 {
380         unsigned long refcount = --map->refcount;
381
382         if (!refcount)
383                 list_del_rcu(&map->list);
384         return refcount;
385 }
386
387 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
388 {
389         synchronize_rcu_expedited();
390         acpi_unmap(map->phys, map->virt);
391         kfree(map);
392 }
393
394 /**
395  * acpi_os_unmap_iomem - Drop a memory mapping reference.
396  * @virt: Start of the address range to drop a reference to.
397  * @size: Size of the address range to drop a reference to.
398  *
399  * Look up the given virtual address range in the list of existing ACPI memory
400  * mappings, drop a reference to it and unmap it if there are no more active
401  * references to it.
402  *
403  * During early init (when acpi_permanent_mmap has not been set yet) this
404  * routine simply calls __acpi_unmap_table() to get the job done.  Since
405  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
406  * here.
407  */
408 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
409 {
410         struct acpi_ioremap *map;
411         unsigned long refcount;
412
413         if (!acpi_permanent_mmap) {
414                 __acpi_unmap_table(virt, size);
415                 return;
416         }
417
418         mutex_lock(&acpi_ioremap_lock);
419         map = acpi_map_lookup_virt(virt, size);
420         if (!map) {
421                 mutex_unlock(&acpi_ioremap_lock);
422                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
423                 return;
424         }
425         refcount = acpi_os_drop_map_ref(map);
426         mutex_unlock(&acpi_ioremap_lock);
427
428         if (!refcount)
429                 acpi_os_map_cleanup(map);
430 }
431 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
432
433 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
434 {
435         return acpi_os_unmap_iomem((void __iomem *)virt, size);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
438
439 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
440 {
441         u64 addr;
442         void __iomem *virt;
443
444         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
445                 return 0;
446
447         /* Handle possible alignment issues */
448         memcpy(&addr, &gas->address, sizeof(addr));
449         if (!addr || !gas->bit_width)
450                 return -EINVAL;
451
452         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
453         if (!virt)
454                 return -EIO;
455
456         return 0;
457 }
458 EXPORT_SYMBOL(acpi_os_map_generic_address);
459
460 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
461 {
462         u64 addr;
463         struct acpi_ioremap *map;
464         unsigned long refcount;
465
466         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
467                 return;
468
469         /* Handle possible alignment issues */
470         memcpy(&addr, &gas->address, sizeof(addr));
471         if (!addr || !gas->bit_width)
472                 return;
473
474         mutex_lock(&acpi_ioremap_lock);
475         map = acpi_map_lookup(addr, gas->bit_width / 8);
476         if (!map) {
477                 mutex_unlock(&acpi_ioremap_lock);
478                 return;
479         }
480         refcount = acpi_os_drop_map_ref(map);
481         mutex_unlock(&acpi_ioremap_lock);
482
483         if (!refcount)
484                 acpi_os_map_cleanup(map);
485 }
486 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
487
488 #ifdef ACPI_FUTURE_USAGE
489 acpi_status
490 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
491 {
492         if (!phys || !virt)
493                 return AE_BAD_PARAMETER;
494
495         *phys = virt_to_phys(virt);
496
497         return AE_OK;
498 }
499 #endif
500
501 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
502 static bool acpi_rev_override;
503
504 int __init acpi_rev_override_setup(char *str)
505 {
506         acpi_rev_override = true;
507         return 1;
508 }
509 __setup("acpi_rev_override", acpi_rev_override_setup);
510 #else
511 #define acpi_rev_override       false
512 #endif
513
514 #define ACPI_MAX_OVERRIDE_LEN 100
515
516 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
517
518 acpi_status
519 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
520                             acpi_string *new_val)
521 {
522         if (!init_val || !new_val)
523                 return AE_BAD_PARAMETER;
524
525         *new_val = NULL;
526         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
527                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
528                        acpi_os_name);
529                 *new_val = acpi_os_name;
530         }
531
532         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
533                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
534                 *new_val = (char *)5;
535         }
536
537         return AE_OK;
538 }
539
540 static irqreturn_t acpi_irq(int irq, void *dev_id)
541 {
542         u32 handled;
543
544         handled = (*acpi_irq_handler) (acpi_irq_context);
545
546         if (handled) {
547                 acpi_irq_handled++;
548                 return IRQ_HANDLED;
549         } else {
550                 acpi_irq_not_handled++;
551                 return IRQ_NONE;
552         }
553 }
554
555 acpi_status
556 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
557                                   void *context)
558 {
559         unsigned int irq;
560
561         acpi_irq_stats_init();
562
563         /*
564          * ACPI interrupts different from the SCI in our copy of the FADT are
565          * not supported.
566          */
567         if (gsi != acpi_gbl_FADT.sci_interrupt)
568                 return AE_BAD_PARAMETER;
569
570         if (acpi_irq_handler)
571                 return AE_ALREADY_ACQUIRED;
572
573         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
574                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
575                        gsi);
576                 return AE_OK;
577         }
578
579         acpi_irq_handler = handler;
580         acpi_irq_context = context;
581         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
582                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
583                 acpi_irq_handler = NULL;
584                 return AE_NOT_ACQUIRED;
585         }
586         acpi_sci_irq = irq;
587
588         return AE_OK;
589 }
590
591 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
592 {
593         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
594                 return AE_BAD_PARAMETER;
595
596         free_irq(acpi_sci_irq, acpi_irq);
597         acpi_irq_handler = NULL;
598         acpi_sci_irq = INVALID_ACPI_IRQ;
599
600         return AE_OK;
601 }
602
603 /*
604  * Running in interpreter thread context, safe to sleep
605  */
606
607 void acpi_os_sleep(u64 ms)
608 {
609         msleep(ms);
610 }
611
612 void acpi_os_stall(u32 us)
613 {
614         while (us) {
615                 u32 delay = 1000;
616
617                 if (delay > us)
618                         delay = us;
619                 udelay(delay);
620                 touch_nmi_watchdog();
621                 us -= delay;
622         }
623 }
624
625 /*
626  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
627  * monotonically increasing timer with 100ns granularity. Do not use
628  * ktime_get() to implement this function because this function may get
629  * called after timekeeping has been suspended. Note: calling this function
630  * after timekeeping has been suspended may lead to unexpected results
631  * because when timekeeping is suspended the jiffies counter is not
632  * incremented. See also timekeeping_suspend().
633  */
634 u64 acpi_os_get_timer(void)
635 {
636         return (get_jiffies_64() - INITIAL_JIFFIES) *
637                 (ACPI_100NSEC_PER_SEC / HZ);
638 }
639
640 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
641 {
642         u32 dummy;
643
644         if (!value)
645                 value = &dummy;
646
647         *value = 0;
648         if (width <= 8) {
649                 *(u8 *) value = inb(port);
650         } else if (width <= 16) {
651                 *(u16 *) value = inw(port);
652         } else if (width <= 32) {
653                 *(u32 *) value = inl(port);
654         } else {
655                 BUG();
656         }
657
658         return AE_OK;
659 }
660
661 EXPORT_SYMBOL(acpi_os_read_port);
662
663 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
664 {
665         if (width <= 8) {
666                 outb(value, port);
667         } else if (width <= 16) {
668                 outw(value, port);
669         } else if (width <= 32) {
670                 outl(value, port);
671         } else {
672                 BUG();
673         }
674
675         return AE_OK;
676 }
677
678 EXPORT_SYMBOL(acpi_os_write_port);
679
680 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
681 {
682
683         switch (width) {
684         case 8:
685                 *(u8 *) value = readb(virt_addr);
686                 break;
687         case 16:
688                 *(u16 *) value = readw(virt_addr);
689                 break;
690         case 32:
691                 *(u32 *) value = readl(virt_addr);
692                 break;
693         case 64:
694                 *(u64 *) value = readq(virt_addr);
695                 break;
696         default:
697                 return -EINVAL;
698         }
699
700         return 0;
701 }
702
703 acpi_status
704 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
705 {
706         void __iomem *virt_addr;
707         unsigned int size = width / 8;
708         bool unmap = false;
709         u64 dummy;
710         int error;
711
712         rcu_read_lock();
713         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
714         if (!virt_addr) {
715                 rcu_read_unlock();
716                 virt_addr = acpi_os_ioremap(phys_addr, size);
717                 if (!virt_addr)
718                         return AE_BAD_ADDRESS;
719                 unmap = true;
720         }
721
722         if (!value)
723                 value = &dummy;
724
725         error = acpi_os_read_iomem(virt_addr, value, width);
726         BUG_ON(error);
727
728         if (unmap)
729                 iounmap(virt_addr);
730         else
731                 rcu_read_unlock();
732
733         return AE_OK;
734 }
735
736 acpi_status
737 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
738 {
739         void __iomem *virt_addr;
740         unsigned int size = width / 8;
741         bool unmap = false;
742
743         rcu_read_lock();
744         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
745         if (!virt_addr) {
746                 rcu_read_unlock();
747                 virt_addr = acpi_os_ioremap(phys_addr, size);
748                 if (!virt_addr)
749                         return AE_BAD_ADDRESS;
750                 unmap = true;
751         }
752
753         switch (width) {
754         case 8:
755                 writeb(value, virt_addr);
756                 break;
757         case 16:
758                 writew(value, virt_addr);
759                 break;
760         case 32:
761                 writel(value, virt_addr);
762                 break;
763         case 64:
764                 writeq(value, virt_addr);
765                 break;
766         default:
767                 BUG();
768         }
769
770         if (unmap)
771                 iounmap(virt_addr);
772         else
773                 rcu_read_unlock();
774
775         return AE_OK;
776 }
777
778 #ifdef CONFIG_PCI
779 acpi_status
780 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
781                                u64 *value, u32 width)
782 {
783         int result, size;
784         u32 value32;
785
786         if (!value)
787                 return AE_BAD_PARAMETER;
788
789         switch (width) {
790         case 8:
791                 size = 1;
792                 break;
793         case 16:
794                 size = 2;
795                 break;
796         case 32:
797                 size = 4;
798                 break;
799         default:
800                 return AE_ERROR;
801         }
802
803         result = raw_pci_read(pci_id->segment, pci_id->bus,
804                                 PCI_DEVFN(pci_id->device, pci_id->function),
805                                 reg, size, &value32);
806         *value = value32;
807
808         return (result ? AE_ERROR : AE_OK);
809 }
810
811 acpi_status
812 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
813                                 u64 value, u32 width)
814 {
815         int result, size;
816
817         switch (width) {
818         case 8:
819                 size = 1;
820                 break;
821         case 16:
822                 size = 2;
823                 break;
824         case 32:
825                 size = 4;
826                 break;
827         default:
828                 return AE_ERROR;
829         }
830
831         result = raw_pci_write(pci_id->segment, pci_id->bus,
832                                 PCI_DEVFN(pci_id->device, pci_id->function),
833                                 reg, size, value);
834
835         return (result ? AE_ERROR : AE_OK);
836 }
837 #endif
838
839 static void acpi_os_execute_deferred(struct work_struct *work)
840 {
841         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
842
843         dpc->function(dpc->context);
844         kfree(dpc);
845 }
846
847 #ifdef CONFIG_ACPI_DEBUGGER
848 static struct acpi_debugger acpi_debugger;
849 static bool acpi_debugger_initialized;
850
851 int acpi_register_debugger(struct module *owner,
852                            const struct acpi_debugger_ops *ops)
853 {
854         int ret = 0;
855
856         mutex_lock(&acpi_debugger.lock);
857         if (acpi_debugger.ops) {
858                 ret = -EBUSY;
859                 goto err_lock;
860         }
861
862         acpi_debugger.owner = owner;
863         acpi_debugger.ops = ops;
864
865 err_lock:
866         mutex_unlock(&acpi_debugger.lock);
867         return ret;
868 }
869 EXPORT_SYMBOL(acpi_register_debugger);
870
871 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
872 {
873         mutex_lock(&acpi_debugger.lock);
874         if (ops == acpi_debugger.ops) {
875                 acpi_debugger.ops = NULL;
876                 acpi_debugger.owner = NULL;
877         }
878         mutex_unlock(&acpi_debugger.lock);
879 }
880 EXPORT_SYMBOL(acpi_unregister_debugger);
881
882 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
883 {
884         int ret;
885         int (*func)(acpi_osd_exec_callback, void *);
886         struct module *owner;
887
888         if (!acpi_debugger_initialized)
889                 return -ENODEV;
890         mutex_lock(&acpi_debugger.lock);
891         if (!acpi_debugger.ops) {
892                 ret = -ENODEV;
893                 goto err_lock;
894         }
895         if (!try_module_get(acpi_debugger.owner)) {
896                 ret = -ENODEV;
897                 goto err_lock;
898         }
899         func = acpi_debugger.ops->create_thread;
900         owner = acpi_debugger.owner;
901         mutex_unlock(&acpi_debugger.lock);
902
903         ret = func(function, context);
904
905         mutex_lock(&acpi_debugger.lock);
906         module_put(owner);
907 err_lock:
908         mutex_unlock(&acpi_debugger.lock);
909         return ret;
910 }
911
912 ssize_t acpi_debugger_write_log(const char *msg)
913 {
914         ssize_t ret;
915         ssize_t (*func)(const char *);
916         struct module *owner;
917
918         if (!acpi_debugger_initialized)
919                 return -ENODEV;
920         mutex_lock(&acpi_debugger.lock);
921         if (!acpi_debugger.ops) {
922                 ret = -ENODEV;
923                 goto err_lock;
924         }
925         if (!try_module_get(acpi_debugger.owner)) {
926                 ret = -ENODEV;
927                 goto err_lock;
928         }
929         func = acpi_debugger.ops->write_log;
930         owner = acpi_debugger.owner;
931         mutex_unlock(&acpi_debugger.lock);
932
933         ret = func(msg);
934
935         mutex_lock(&acpi_debugger.lock);
936         module_put(owner);
937 err_lock:
938         mutex_unlock(&acpi_debugger.lock);
939         return ret;
940 }
941
942 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
943 {
944         ssize_t ret;
945         ssize_t (*func)(char *, size_t);
946         struct module *owner;
947
948         if (!acpi_debugger_initialized)
949                 return -ENODEV;
950         mutex_lock(&acpi_debugger.lock);
951         if (!acpi_debugger.ops) {
952                 ret = -ENODEV;
953                 goto err_lock;
954         }
955         if (!try_module_get(acpi_debugger.owner)) {
956                 ret = -ENODEV;
957                 goto err_lock;
958         }
959         func = acpi_debugger.ops->read_cmd;
960         owner = acpi_debugger.owner;
961         mutex_unlock(&acpi_debugger.lock);
962
963         ret = func(buffer, buffer_length);
964
965         mutex_lock(&acpi_debugger.lock);
966         module_put(owner);
967 err_lock:
968         mutex_unlock(&acpi_debugger.lock);
969         return ret;
970 }
971
972 int acpi_debugger_wait_command_ready(void)
973 {
974         int ret;
975         int (*func)(bool, char *, size_t);
976         struct module *owner;
977
978         if (!acpi_debugger_initialized)
979                 return -ENODEV;
980         mutex_lock(&acpi_debugger.lock);
981         if (!acpi_debugger.ops) {
982                 ret = -ENODEV;
983                 goto err_lock;
984         }
985         if (!try_module_get(acpi_debugger.owner)) {
986                 ret = -ENODEV;
987                 goto err_lock;
988         }
989         func = acpi_debugger.ops->wait_command_ready;
990         owner = acpi_debugger.owner;
991         mutex_unlock(&acpi_debugger.lock);
992
993         ret = func(acpi_gbl_method_executing,
994                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
995
996         mutex_lock(&acpi_debugger.lock);
997         module_put(owner);
998 err_lock:
999         mutex_unlock(&acpi_debugger.lock);
1000         return ret;
1001 }
1002
1003 int acpi_debugger_notify_command_complete(void)
1004 {
1005         int ret;
1006         int (*func)(void);
1007         struct module *owner;
1008
1009         if (!acpi_debugger_initialized)
1010                 return -ENODEV;
1011         mutex_lock(&acpi_debugger.lock);
1012         if (!acpi_debugger.ops) {
1013                 ret = -ENODEV;
1014                 goto err_lock;
1015         }
1016         if (!try_module_get(acpi_debugger.owner)) {
1017                 ret = -ENODEV;
1018                 goto err_lock;
1019         }
1020         func = acpi_debugger.ops->notify_command_complete;
1021         owner = acpi_debugger.owner;
1022         mutex_unlock(&acpi_debugger.lock);
1023
1024         ret = func();
1025
1026         mutex_lock(&acpi_debugger.lock);
1027         module_put(owner);
1028 err_lock:
1029         mutex_unlock(&acpi_debugger.lock);
1030         return ret;
1031 }
1032
1033 int __init acpi_debugger_init(void)
1034 {
1035         mutex_init(&acpi_debugger.lock);
1036         acpi_debugger_initialized = true;
1037         return 0;
1038 }
1039 #endif
1040
1041 /*******************************************************************************
1042  *
1043  * FUNCTION:    acpi_os_execute
1044  *
1045  * PARAMETERS:  Type               - Type of the callback
1046  *              Function           - Function to be executed
1047  *              Context            - Function parameters
1048  *
1049  * RETURN:      Status
1050  *
1051  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1052  *              immediately executes function on a separate thread.
1053  *
1054  ******************************************************************************/
1055
1056 acpi_status acpi_os_execute(acpi_execute_type type,
1057                             acpi_osd_exec_callback function, void *context)
1058 {
1059         acpi_status status = AE_OK;
1060         struct acpi_os_dpc *dpc;
1061         struct workqueue_struct *queue;
1062         int ret;
1063         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1064                           "Scheduling function [%p(%p)] for deferred execution.\n",
1065                           function, context));
1066
1067         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1068                 ret = acpi_debugger_create_thread(function, context);
1069                 if (ret) {
1070                         pr_err("Call to kthread_create() failed.\n");
1071                         status = AE_ERROR;
1072                 }
1073                 goto out_thread;
1074         }
1075
1076         /*
1077          * Allocate/initialize DPC structure.  Note that this memory will be
1078          * freed by the callee.  The kernel handles the work_struct list  in a
1079          * way that allows us to also free its memory inside the callee.
1080          * Because we may want to schedule several tasks with different
1081          * parameters we can't use the approach some kernel code uses of
1082          * having a static work_struct.
1083          */
1084
1085         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1086         if (!dpc)
1087                 return AE_NO_MEMORY;
1088
1089         dpc->function = function;
1090         dpc->context = context;
1091
1092         /*
1093          * To prevent lockdep from complaining unnecessarily, make sure that
1094          * there is a different static lockdep key for each workqueue by using
1095          * INIT_WORK() for each of them separately.
1096          */
1097         if (type == OSL_NOTIFY_HANDLER) {
1098                 queue = kacpi_notify_wq;
1099                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1100         } else if (type == OSL_GPE_HANDLER) {
1101                 queue = kacpid_wq;
1102                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1103         } else {
1104                 pr_err("Unsupported os_execute type %d.\n", type);
1105                 status = AE_ERROR;
1106         }
1107
1108         if (ACPI_FAILURE(status))
1109                 goto err_workqueue;
1110
1111         /*
1112          * On some machines, a software-initiated SMI causes corruption unless
1113          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1114          * typically it's done in GPE-related methods that are run via
1115          * workqueues, so we can avoid the known corruption cases by always
1116          * queueing on CPU 0.
1117          */
1118         ret = queue_work_on(0, queue, &dpc->work);
1119         if (!ret) {
1120                 printk(KERN_ERR PREFIX
1121                           "Call to queue_work() failed.\n");
1122                 status = AE_ERROR;
1123         }
1124 err_workqueue:
1125         if (ACPI_FAILURE(status))
1126                 kfree(dpc);
1127 out_thread:
1128         return status;
1129 }
1130 EXPORT_SYMBOL(acpi_os_execute);
1131
1132 void acpi_os_wait_events_complete(void)
1133 {
1134         /*
1135          * Make sure the GPE handler or the fixed event handler is not used
1136          * on another CPU after removal.
1137          */
1138         if (acpi_sci_irq_valid())
1139                 synchronize_hardirq(acpi_sci_irq);
1140         flush_workqueue(kacpid_wq);
1141         flush_workqueue(kacpi_notify_wq);
1142 }
1143 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145 struct acpi_hp_work {
1146         struct work_struct work;
1147         struct acpi_device *adev;
1148         u32 src;
1149 };
1150
1151 static void acpi_hotplug_work_fn(struct work_struct *work)
1152 {
1153         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155         acpi_os_wait_events_complete();
1156         acpi_device_hotplug(hpw->adev, hpw->src);
1157         kfree(hpw);
1158 }
1159
1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161 {
1162         struct acpi_hp_work *hpw;
1163
1164         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1165                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1166                   adev, src));
1167
1168         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169         if (!hpw)
1170                 return AE_NO_MEMORY;
1171
1172         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173         hpw->adev = adev;
1174         hpw->src = src;
1175         /*
1176          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177          * the hotplug code may call driver .remove() functions, which may
1178          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179          * these workqueues.
1180          */
1181         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182                 kfree(hpw);
1183                 return AE_ERROR;
1184         }
1185         return AE_OK;
1186 }
1187
1188 bool acpi_queue_hotplug_work(struct work_struct *work)
1189 {
1190         return queue_work(kacpi_hotplug_wq, work);
1191 }
1192
1193 acpi_status
1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1195 {
1196         struct semaphore *sem = NULL;
1197
1198         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199         if (!sem)
1200                 return AE_NO_MEMORY;
1201
1202         sema_init(sem, initial_units);
1203
1204         *handle = (acpi_handle *) sem;
1205
1206         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207                           *handle, initial_units));
1208
1209         return AE_OK;
1210 }
1211
1212 /*
1213  * TODO: A better way to delete semaphores?  Linux doesn't have a
1214  * 'delete_semaphore()' function -- may result in an invalid
1215  * pointer dereference for non-synchronized consumers.  Should
1216  * we at least check for blocked threads and signal/cancel them?
1217  */
1218
1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220 {
1221         struct semaphore *sem = (struct semaphore *)handle;
1222
1223         if (!sem)
1224                 return AE_BAD_PARAMETER;
1225
1226         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228         BUG_ON(!list_empty(&sem->wait_list));
1229         kfree(sem);
1230         sem = NULL;
1231
1232         return AE_OK;
1233 }
1234
1235 /*
1236  * TODO: Support for units > 1?
1237  */
1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239 {
1240         acpi_status status = AE_OK;
1241         struct semaphore *sem = (struct semaphore *)handle;
1242         long jiffies;
1243         int ret = 0;
1244
1245         if (!acpi_os_initialized)
1246                 return AE_OK;
1247
1248         if (!sem || (units < 1))
1249                 return AE_BAD_PARAMETER;
1250
1251         if (units > 1)
1252                 return AE_SUPPORT;
1253
1254         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255                           handle, units, timeout));
1256
1257         if (timeout == ACPI_WAIT_FOREVER)
1258                 jiffies = MAX_SCHEDULE_TIMEOUT;
1259         else
1260                 jiffies = msecs_to_jiffies(timeout);
1261
1262         ret = down_timeout(sem, jiffies);
1263         if (ret)
1264                 status = AE_TIME;
1265
1266         if (ACPI_FAILURE(status)) {
1267                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1269                                   handle, units, timeout,
1270                                   acpi_format_exception(status)));
1271         } else {
1272                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273                                   "Acquired semaphore[%p|%d|%d]", handle,
1274                                   units, timeout));
1275         }
1276
1277         return status;
1278 }
1279
1280 /*
1281  * TODO: Support for units > 1?
1282  */
1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284 {
1285         struct semaphore *sem = (struct semaphore *)handle;
1286
1287         if (!acpi_os_initialized)
1288                 return AE_OK;
1289
1290         if (!sem || (units < 1))
1291                 return AE_BAD_PARAMETER;
1292
1293         if (units > 1)
1294                 return AE_SUPPORT;
1295
1296         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297                           units));
1298
1299         up(sem);
1300
1301         return AE_OK;
1302 }
1303
1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305 {
1306 #ifdef ENABLE_DEBUGGER
1307         if (acpi_in_debugger) {
1308                 u32 chars;
1309
1310                 kdb_read(buffer, buffer_length);
1311
1312                 /* remove the CR kdb includes */
1313                 chars = strlen(buffer) - 1;
1314                 buffer[chars] = '\0';
1315         }
1316 #else
1317         int ret;
1318
1319         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320         if (ret < 0)
1321                 return AE_ERROR;
1322         if (bytes_read)
1323                 *bytes_read = ret;
1324 #endif
1325
1326         return AE_OK;
1327 }
1328 EXPORT_SYMBOL(acpi_os_get_line);
1329
1330 acpi_status acpi_os_wait_command_ready(void)
1331 {
1332         int ret;
1333
1334         ret = acpi_debugger_wait_command_ready();
1335         if (ret < 0)
1336                 return AE_ERROR;
1337         return AE_OK;
1338 }
1339
1340 acpi_status acpi_os_notify_command_complete(void)
1341 {
1342         int ret;
1343
1344         ret = acpi_debugger_notify_command_complete();
1345         if (ret < 0)
1346                 return AE_ERROR;
1347         return AE_OK;
1348 }
1349
1350 acpi_status acpi_os_signal(u32 function, void *info)
1351 {
1352         switch (function) {
1353         case ACPI_SIGNAL_FATAL:
1354                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1355                 break;
1356         case ACPI_SIGNAL_BREAKPOINT:
1357                 /*
1358                  * AML Breakpoint
1359                  * ACPI spec. says to treat it as a NOP unless
1360                  * you are debugging.  So if/when we integrate
1361                  * AML debugger into the kernel debugger its
1362                  * hook will go here.  But until then it is
1363                  * not useful to print anything on breakpoints.
1364                  */
1365                 break;
1366         default:
1367                 break;
1368         }
1369
1370         return AE_OK;
1371 }
1372
1373 static int __init acpi_os_name_setup(char *str)
1374 {
1375         char *p = acpi_os_name;
1376         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378         if (!str || !*str)
1379                 return 0;
1380
1381         for (; count-- && *str; str++) {
1382                 if (isalnum(*str) || *str == ' ' || *str == ':')
1383                         *p++ = *str;
1384                 else if (*str == '\'' || *str == '"')
1385                         continue;
1386                 else
1387                         break;
1388         }
1389         *p = 0;
1390
1391         return 1;
1392
1393 }
1394
1395 __setup("acpi_os_name=", acpi_os_name_setup);
1396
1397 /*
1398  * Disable the auto-serialization of named objects creation methods.
1399  *
1400  * This feature is enabled by default.  It marks the AML control methods
1401  * that contain the opcodes to create named objects as "Serialized".
1402  */
1403 static int __init acpi_no_auto_serialize_setup(char *str)
1404 {
1405         acpi_gbl_auto_serialize_methods = FALSE;
1406         pr_info("ACPI: auto-serialization disabled\n");
1407
1408         return 1;
1409 }
1410
1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413 /* Check of resource interference between native drivers and ACPI
1414  * OperationRegions (SystemIO and System Memory only).
1415  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416  * in arbitrary AML code and can interfere with legacy drivers.
1417  * acpi_enforce_resources= can be set to:
1418  *
1419  *   - strict (default) (2)
1420  *     -> further driver trying to access the resources will not load
1421  *   - lax              (1)
1422  *     -> further driver trying to access the resources will load, but you
1423  *     get a system message that something might go wrong...
1424  *
1425  *   - no               (0)
1426  *     -> ACPI Operation Region resources will not be registered
1427  *
1428  */
1429 #define ENFORCE_RESOURCES_STRICT 2
1430 #define ENFORCE_RESOURCES_LAX    1
1431 #define ENFORCE_RESOURCES_NO     0
1432
1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435 static int __init acpi_enforce_resources_setup(char *str)
1436 {
1437         if (str == NULL || *str == '\0')
1438                 return 0;
1439
1440         if (!strcmp("strict", str))
1441                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442         else if (!strcmp("lax", str))
1443                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444         else if (!strcmp("no", str))
1445                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447         return 1;
1448 }
1449
1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452 /* Check for resource conflicts between ACPI OperationRegions and native
1453  * drivers */
1454 int acpi_check_resource_conflict(const struct resource *res)
1455 {
1456         acpi_adr_space_type space_id;
1457         acpi_size length;
1458         u8 warn = 0;
1459         int clash = 0;
1460
1461         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1462                 return 0;
1463         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1464                 return 0;
1465
1466         if (res->flags & IORESOURCE_IO)
1467                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1468         else
1469                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1470
1471         length = resource_size(res);
1472         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1473                 warn = 1;
1474         clash = acpi_check_address_range(space_id, res->start, length, warn);
1475
1476         if (clash) {
1477                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1478                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1479                                 printk(KERN_NOTICE "ACPI: This conflict may"
1480                                        " cause random problems and system"
1481                                        " instability\n");
1482                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1483                                " for this device, you should use it instead of"
1484                                " the native driver\n");
1485                 }
1486                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1487                         return -EBUSY;
1488         }
1489         return 0;
1490 }
1491 EXPORT_SYMBOL(acpi_check_resource_conflict);
1492
1493 int acpi_check_region(resource_size_t start, resource_size_t n,
1494                       const char *name)
1495 {
1496         struct resource res = {
1497                 .start = start,
1498                 .end   = start + n - 1,
1499                 .name  = name,
1500                 .flags = IORESOURCE_IO,
1501         };
1502
1503         return acpi_check_resource_conflict(&res);
1504 }
1505 EXPORT_SYMBOL(acpi_check_region);
1506
1507 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1508                                               void *_res, void **return_value)
1509 {
1510         struct acpi_mem_space_context **mem_ctx;
1511         union acpi_operand_object *handler_obj;
1512         union acpi_operand_object *region_obj2;
1513         union acpi_operand_object *region_obj;
1514         struct resource *res = _res;
1515         acpi_status status;
1516
1517         region_obj = acpi_ns_get_attached_object(handle);
1518         if (!region_obj)
1519                 return AE_OK;
1520
1521         handler_obj = region_obj->region.handler;
1522         if (!handler_obj)
1523                 return AE_OK;
1524
1525         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1526                 return AE_OK;
1527
1528         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1529                 return AE_OK;
1530
1531         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1532         if (!region_obj2)
1533                 return AE_OK;
1534
1535         mem_ctx = (void *)&region_obj2->extra.region_context;
1536
1537         if (!(mem_ctx[0]->address >= res->start &&
1538               mem_ctx[0]->address < res->end))
1539                 return AE_OK;
1540
1541         status = handler_obj->address_space.setup(region_obj,
1542                                                   ACPI_REGION_DEACTIVATE,
1543                                                   NULL, (void **)mem_ctx);
1544         if (ACPI_SUCCESS(status))
1545                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1546
1547         return status;
1548 }
1549
1550 /**
1551  * acpi_release_memory - Release any mappings done to a memory region
1552  * @handle: Handle to namespace node
1553  * @res: Memory resource
1554  * @level: A level that terminates the search
1555  *
1556  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1557  * overlap with @res and that have already been activated (mapped).
1558  *
1559  * This is a helper that allows drivers to place special requirements on memory
1560  * region that may overlap with operation regions, primarily allowing them to
1561  * safely map the region as non-cached memory.
1562  *
1563  * The unmapped Operation Regions will be automatically remapped next time they
1564  * are called, so the drivers do not need to do anything else.
1565  */
1566 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1567                                 u32 level)
1568 {
1569         if (!(res->flags & IORESOURCE_MEM))
1570                 return AE_TYPE;
1571
1572         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1573                                    acpi_deactivate_mem_region, NULL, res, NULL);
1574 }
1575 EXPORT_SYMBOL_GPL(acpi_release_memory);
1576
1577 /*
1578  * Let drivers know whether the resource checks are effective
1579  */
1580 int acpi_resources_are_enforced(void)
1581 {
1582         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1583 }
1584 EXPORT_SYMBOL(acpi_resources_are_enforced);
1585
1586 /*
1587  * Deallocate the memory for a spinlock.
1588  */
1589 void acpi_os_delete_lock(acpi_spinlock handle)
1590 {
1591         ACPI_FREE(handle);
1592 }
1593
1594 /*
1595  * Acquire a spinlock.
1596  *
1597  * handle is a pointer to the spinlock_t.
1598  */
1599
1600 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1601         __acquires(lockp)
1602 {
1603         acpi_cpu_flags flags;
1604         spin_lock_irqsave(lockp, flags);
1605         return flags;
1606 }
1607
1608 /*
1609  * Release a spinlock. See above.
1610  */
1611
1612 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1613         __releases(lockp)
1614 {
1615         spin_unlock_irqrestore(lockp, flags);
1616 }
1617
1618 #ifndef ACPI_USE_LOCAL_CACHE
1619
1620 /*******************************************************************************
1621  *
1622  * FUNCTION:    acpi_os_create_cache
1623  *
1624  * PARAMETERS:  name      - Ascii name for the cache
1625  *              size      - Size of each cached object
1626  *              depth     - Maximum depth of the cache (in objects) <ignored>
1627  *              cache     - Where the new cache object is returned
1628  *
1629  * RETURN:      status
1630  *
1631  * DESCRIPTION: Create a cache object
1632  *
1633  ******************************************************************************/
1634
1635 acpi_status
1636 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1637 {
1638         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1639         if (*cache == NULL)
1640                 return AE_ERROR;
1641         else
1642                 return AE_OK;
1643 }
1644
1645 /*******************************************************************************
1646  *
1647  * FUNCTION:    acpi_os_purge_cache
1648  *
1649  * PARAMETERS:  Cache           - Handle to cache object
1650  *
1651  * RETURN:      Status
1652  *
1653  * DESCRIPTION: Free all objects within the requested cache.
1654  *
1655  ******************************************************************************/
1656
1657 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1658 {
1659         kmem_cache_shrink(cache);
1660         return (AE_OK);
1661 }
1662
1663 /*******************************************************************************
1664  *
1665  * FUNCTION:    acpi_os_delete_cache
1666  *
1667  * PARAMETERS:  Cache           - Handle to cache object
1668  *
1669  * RETURN:      Status
1670  *
1671  * DESCRIPTION: Free all objects within the requested cache and delete the
1672  *              cache object.
1673  *
1674  ******************************************************************************/
1675
1676 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1677 {
1678         kmem_cache_destroy(cache);
1679         return (AE_OK);
1680 }
1681
1682 /*******************************************************************************
1683  *
1684  * FUNCTION:    acpi_os_release_object
1685  *
1686  * PARAMETERS:  Cache       - Handle to cache object
1687  *              Object      - The object to be released
1688  *
1689  * RETURN:      None
1690  *
1691  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1692  *              the object is deleted.
1693  *
1694  ******************************************************************************/
1695
1696 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1697 {
1698         kmem_cache_free(cache, object);
1699         return (AE_OK);
1700 }
1701 #endif
1702
1703 static int __init acpi_no_static_ssdt_setup(char *s)
1704 {
1705         acpi_gbl_disable_ssdt_table_install = TRUE;
1706         pr_info("ACPI: static SSDT installation disabled\n");
1707
1708         return 0;
1709 }
1710
1711 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1712
1713 static int __init acpi_disable_return_repair(char *s)
1714 {
1715         printk(KERN_NOTICE PREFIX
1716                "ACPI: Predefined validation mechanism disabled\n");
1717         acpi_gbl_disable_auto_repair = TRUE;
1718
1719         return 1;
1720 }
1721
1722 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1723
1724 acpi_status __init acpi_os_initialize(void)
1725 {
1726         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1727         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1728         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1729         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1730         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1731                 /*
1732                  * Use acpi_os_map_generic_address to pre-map the reset
1733                  * register if it's in system memory.
1734                  */
1735                 int rv;
1736
1737                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1738                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1739         }
1740         acpi_os_initialized = true;
1741
1742         return AE_OK;
1743 }
1744
1745 acpi_status __init acpi_os_initialize1(void)
1746 {
1747         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1748         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1749         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1750         BUG_ON(!kacpid_wq);
1751         BUG_ON(!kacpi_notify_wq);
1752         BUG_ON(!kacpi_hotplug_wq);
1753         acpi_osi_init();
1754         return AE_OK;
1755 }
1756
1757 acpi_status acpi_os_terminate(void)
1758 {
1759         if (acpi_irq_handler) {
1760                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1761                                                  acpi_irq_handler);
1762         }
1763
1764         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1765         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1766         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1767         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1768         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1769                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1770
1771         destroy_workqueue(kacpid_wq);
1772         destroy_workqueue(kacpi_notify_wq);
1773         destroy_workqueue(kacpi_hotplug_wq);
1774
1775         return AE_OK;
1776 }
1777
1778 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1779                                   u32 pm1b_control)
1780 {
1781         int rc = 0;
1782         if (__acpi_os_prepare_sleep)
1783                 rc = __acpi_os_prepare_sleep(sleep_state,
1784                                              pm1a_control, pm1b_control);
1785         if (rc < 0)
1786                 return AE_ERROR;
1787         else if (rc > 0)
1788                 return AE_CTRL_TERMINATE;
1789
1790         return AE_OK;
1791 }
1792
1793 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1794                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1795 {
1796         __acpi_os_prepare_sleep = func;
1797 }
1798
1799 #if (ACPI_REDUCED_HARDWARE)
1800 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1801                                   u32 val_b)
1802 {
1803         int rc = 0;
1804         if (__acpi_os_prepare_extended_sleep)
1805                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1806                                              val_a, val_b);
1807         if (rc < 0)
1808                 return AE_ERROR;
1809         else if (rc > 0)
1810                 return AE_CTRL_TERMINATE;
1811
1812         return AE_OK;
1813 }
1814 #else
1815 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1816                                   u32 val_b)
1817 {
1818         return AE_OK;
1819 }
1820 #endif
1821
1822 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1823                                u32 val_a, u32 val_b))
1824 {
1825         __acpi_os_prepare_extended_sleep = func;
1826 }
1827
1828 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1829                                 u32 reg_a_value, u32 reg_b_value)
1830 {
1831         acpi_status status;
1832
1833         if (acpi_gbl_reduced_hardware)
1834                 status = acpi_os_prepare_extended_sleep(sleep_state,
1835                                                         reg_a_value,
1836                                                         reg_b_value);
1837         else
1838                 status = acpi_os_prepare_sleep(sleep_state,
1839                                                reg_a_value, reg_b_value);
1840         return status;
1841 }