Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / drivers / acpi / osl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37
38 #include "acpica/accommon.h"
39 #include "internal.h"
40
41 /* Definitions for ACPI_DEBUG_PRINT() */
42 #define _COMPONENT              ACPI_OS_SERVICES
43 ACPI_MODULE_NAME("osl");
44
45 struct acpi_os_dpc {
46         acpi_osd_exec_callback function;
47         void *context;
48         struct work_struct work;
49 };
50
51 #ifdef ENABLE_DEBUGGER
52 #include <linux/kdb.h>
53
54 /* stuff for debugger support */
55 int acpi_in_debugger;
56 EXPORT_SYMBOL(acpi_in_debugger);
57 #endif                          /*ENABLE_DEBUGGER */
58
59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60                                       u32 pm1b_ctrl);
61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62                                       u32 val_b);
63
64 static acpi_osd_handler acpi_irq_handler;
65 static void *acpi_irq_context;
66 static struct workqueue_struct *kacpid_wq;
67 static struct workqueue_struct *kacpi_notify_wq;
68 static struct workqueue_struct *kacpi_hotplug_wq;
69 static bool acpi_os_initialized;
70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71 bool acpi_permanent_mmap = false;
72
73 /*
74  * This list of permanent mappings is for memory that may be accessed from
75  * interrupt context, where we can't do the ioremap().
76  */
77 struct acpi_ioremap {
78         struct list_head list;
79         void __iomem *virt;
80         acpi_physical_address phys;
81         acpi_size size;
82         union {
83                 unsigned long refcount;
84                 struct rcu_work rwork;
85         } track;
86 };
87
88 static LIST_HEAD(acpi_ioremaps);
89 static DEFINE_MUTEX(acpi_ioremap_lock);
90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92 static void __init acpi_request_region (struct acpi_generic_address *gas,
93         unsigned int length, char *desc)
94 {
95         u64 addr;
96
97         /* Handle possible alignment issues */
98         memcpy(&addr, &gas->address, sizeof(addr));
99         if (!addr || !length)
100                 return;
101
102         /* Resources are never freed */
103         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104                 request_region(addr, length, desc);
105         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106                 request_mem_region(addr, length, desc);
107 }
108
109 static int __init acpi_reserve_resources(void)
110 {
111         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112                 "ACPI PM1a_EVT_BLK");
113
114         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115                 "ACPI PM1b_EVT_BLK");
116
117         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118                 "ACPI PM1a_CNT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121                 "ACPI PM1b_CNT_BLK");
122
123         if (acpi_gbl_FADT.pm_timer_length == 4)
124                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127                 "ACPI PM2_CNT_BLK");
128
129         /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139         return 0;
140 }
141 fs_initcall_sync(acpi_reserve_resources);
142
143 void acpi_os_printf(const char *fmt, ...)
144 {
145         va_list args;
146         va_start(args, fmt);
147         acpi_os_vprintf(fmt, args);
148         va_end(args);
149 }
150 EXPORT_SYMBOL(acpi_os_printf);
151
152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153 {
154         static char buffer[512];
155
156         vsprintf(buffer, fmt, args);
157
158 #ifdef ENABLE_DEBUGGER
159         if (acpi_in_debugger) {
160                 kdb_printf("%s", buffer);
161         } else {
162                 if (printk_get_level(buffer))
163                         printk("%s", buffer);
164                 else
165                         printk(KERN_CONT "%s", buffer);
166         }
167 #else
168         if (acpi_debugger_write_log(buffer) < 0) {
169                 if (printk_get_level(buffer))
170                         printk("%s", buffer);
171                 else
172                         printk(KERN_CONT "%s", buffer);
173         }
174 #endif
175 }
176
177 #ifdef CONFIG_KEXEC
178 static unsigned long acpi_rsdp;
179 static int __init setup_acpi_rsdp(char *arg)
180 {
181         return kstrtoul(arg, 16, &acpi_rsdp);
182 }
183 early_param("acpi_rsdp", setup_acpi_rsdp);
184 #endif
185
186 acpi_physical_address __init acpi_os_get_root_pointer(void)
187 {
188         acpi_physical_address pa;
189
190 #ifdef CONFIG_KEXEC
191         /*
192          * We may have been provided with an RSDP on the command line,
193          * but if a malicious user has done so they may be pointing us
194          * at modified ACPI tables that could alter kernel behaviour -
195          * so, we check the lockdown status before making use of
196          * it. If we trust it then also stash it in an architecture
197          * specific location (if appropriate) so it can be carried
198          * over further kexec()s.
199          */
200         if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201                 acpi_arch_set_root_pointer(acpi_rsdp);
202                 return acpi_rsdp;
203         }
204 #endif
205         pa = acpi_arch_get_root_pointer();
206         if (pa)
207                 return pa;
208
209         if (efi_enabled(EFI_CONFIG_TABLES)) {
210                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211                         return efi.acpi20;
212                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213                         return efi.acpi;
214                 pr_err("System description tables not found\n");
215         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216                 acpi_find_root_pointer(&pa);
217         }
218
219         return pa;
220 }
221
222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223 static struct acpi_ioremap *
224 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225 {
226         struct acpi_ioremap *map;
227
228         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229                 if (map->phys <= phys &&
230                     phys + size <= map->phys + map->size)
231                         return map;
232
233         return NULL;
234 }
235
236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237 static void __iomem *
238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239 {
240         struct acpi_ioremap *map;
241
242         map = acpi_map_lookup(phys, size);
243         if (map)
244                 return map->virt + (phys - map->phys);
245
246         return NULL;
247 }
248
249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250 {
251         struct acpi_ioremap *map;
252         void __iomem *virt = NULL;
253
254         mutex_lock(&acpi_ioremap_lock);
255         map = acpi_map_lookup(phys, size);
256         if (map) {
257                 virt = map->virt + (phys - map->phys);
258                 map->track.refcount++;
259         }
260         mutex_unlock(&acpi_ioremap_lock);
261         return virt;
262 }
263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266 static struct acpi_ioremap *
267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268 {
269         struct acpi_ioremap *map;
270
271         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272                 if (map->virt <= virt &&
273                     virt + size <= map->virt + map->size)
274                         return map;
275
276         return NULL;
277 }
278
279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280 /* ioremap will take care of cache attributes */
281 #define should_use_kmap(pfn)   0
282 #else
283 #define should_use_kmap(pfn)   page_is_ram(pfn)
284 #endif
285
286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287 {
288         unsigned long pfn;
289
290         pfn = pg_off >> PAGE_SHIFT;
291         if (should_use_kmap(pfn)) {
292                 if (pg_sz > PAGE_SIZE)
293                         return NULL;
294                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295         } else
296                 return acpi_os_ioremap(pg_off, pg_sz);
297 }
298
299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300 {
301         unsigned long pfn;
302
303         pfn = pg_off >> PAGE_SHIFT;
304         if (should_use_kmap(pfn))
305                 kunmap(pfn_to_page(pfn));
306         else
307                 iounmap(vaddr);
308 }
309
310 /**
311  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312  * @phys: Start of the physical address range to map.
313  * @size: Size of the physical address range to map.
314  *
315  * Look up the given physical address range in the list of existing ACPI memory
316  * mappings.  If found, get a reference to it and return a pointer to it (its
317  * virtual address).  If not found, map it, add it to that list and return a
318  * pointer to it.
319  *
320  * During early init (when acpi_permanent_mmap has not been set yet) this
321  * routine simply calls __acpi_map_table() to get the job done.
322  */
323 void __iomem __ref
324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325 {
326         struct acpi_ioremap *map;
327         void __iomem *virt;
328         acpi_physical_address pg_off;
329         acpi_size pg_sz;
330
331         if (phys > ULONG_MAX) {
332                 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333                 return NULL;
334         }
335
336         if (!acpi_permanent_mmap)
337                 return __acpi_map_table((unsigned long)phys, size);
338
339         mutex_lock(&acpi_ioremap_lock);
340         /* Check if there's a suitable mapping already. */
341         map = acpi_map_lookup(phys, size);
342         if (map) {
343                 map->track.refcount++;
344                 goto out;
345         }
346
347         map = kzalloc(sizeof(*map), GFP_KERNEL);
348         if (!map) {
349                 mutex_unlock(&acpi_ioremap_lock);
350                 return NULL;
351         }
352
353         pg_off = round_down(phys, PAGE_SIZE);
354         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355         virt = acpi_map(phys, size);
356         if (!virt) {
357                 mutex_unlock(&acpi_ioremap_lock);
358                 kfree(map);
359                 return NULL;
360         }
361
362         INIT_LIST_HEAD(&map->list);
363         map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364         map->phys = pg_off;
365         map->size = pg_sz;
366         map->track.refcount = 1;
367
368         list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370 out:
371         mutex_unlock(&acpi_ioremap_lock);
372         return map->virt + (phys - map->phys);
373 }
374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377 {
378         return (void *)acpi_os_map_iomem(phys, size);
379 }
380 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382 static void acpi_os_map_remove(struct work_struct *work)
383 {
384         struct acpi_ioremap *map = container_of(to_rcu_work(work),
385                                                 struct acpi_ioremap,
386                                                 track.rwork);
387
388         acpi_unmap(map->phys, map->virt);
389         kfree(map);
390 }
391
392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394 {
395         if (--map->track.refcount)
396                 return;
397
398         list_del_rcu(&map->list);
399
400         INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401         queue_rcu_work(system_wq, &map->track.rwork);
402 }
403
404 /**
405  * acpi_os_unmap_iomem - Drop a memory mapping reference.
406  * @virt: Start of the address range to drop a reference to.
407  * @size: Size of the address range to drop a reference to.
408  *
409  * Look up the given virtual address range in the list of existing ACPI memory
410  * mappings, drop a reference to it and if there are no more active references
411  * to it, queue it up for later removal.
412  *
413  * During early init (when acpi_permanent_mmap has not been set yet) this
414  * routine simply calls __acpi_unmap_table() to get the job done.  Since
415  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416  * here.
417  */
418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419 {
420         struct acpi_ioremap *map;
421
422         if (!acpi_permanent_mmap) {
423                 __acpi_unmap_table(virt, size);
424                 return;
425         }
426
427         mutex_lock(&acpi_ioremap_lock);
428
429         map = acpi_map_lookup_virt(virt, size);
430         if (!map) {
431                 mutex_unlock(&acpi_ioremap_lock);
432                 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433                 return;
434         }
435         acpi_os_drop_map_ref(map);
436
437         mutex_unlock(&acpi_ioremap_lock);
438 }
439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441 /**
442  * acpi_os_unmap_memory - Drop a memory mapping reference.
443  * @virt: Start of the address range to drop a reference to.
444  * @size: Size of the address range to drop a reference to.
445  */
446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447 {
448         acpi_os_unmap_iomem((void __iomem *)virt, size);
449 }
450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453 {
454         u64 addr;
455
456         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457                 return NULL;
458
459         /* Handle possible alignment issues */
460         memcpy(&addr, &gas->address, sizeof(addr));
461         if (!addr || !gas->bit_width)
462                 return NULL;
463
464         return acpi_os_map_iomem(addr, gas->bit_width / 8);
465 }
466 EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469 {
470         u64 addr;
471         struct acpi_ioremap *map;
472
473         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474                 return;
475
476         /* Handle possible alignment issues */
477         memcpy(&addr, &gas->address, sizeof(addr));
478         if (!addr || !gas->bit_width)
479                 return;
480
481         mutex_lock(&acpi_ioremap_lock);
482
483         map = acpi_map_lookup(addr, gas->bit_width / 8);
484         if (!map) {
485                 mutex_unlock(&acpi_ioremap_lock);
486                 return;
487         }
488         acpi_os_drop_map_ref(map);
489
490         mutex_unlock(&acpi_ioremap_lock);
491 }
492 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494 #ifdef ACPI_FUTURE_USAGE
495 acpi_status
496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497 {
498         if (!phys || !virt)
499                 return AE_BAD_PARAMETER;
500
501         *phys = virt_to_phys(virt);
502
503         return AE_OK;
504 }
505 #endif
506
507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508 static bool acpi_rev_override;
509
510 int __init acpi_rev_override_setup(char *str)
511 {
512         acpi_rev_override = true;
513         return 1;
514 }
515 __setup("acpi_rev_override", acpi_rev_override_setup);
516 #else
517 #define acpi_rev_override       false
518 #endif
519
520 #define ACPI_MAX_OVERRIDE_LEN 100
521
522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524 acpi_status
525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526                             acpi_string *new_val)
527 {
528         if (!init_val || !new_val)
529                 return AE_BAD_PARAMETER;
530
531         *new_val = NULL;
532         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533                 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534                 *new_val = acpi_os_name;
535         }
536
537         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538                 pr_info("Overriding _REV return value to 5\n");
539                 *new_val = (char *)5;
540         }
541
542         return AE_OK;
543 }
544
545 static irqreturn_t acpi_irq(int irq, void *dev_id)
546 {
547         if ((*acpi_irq_handler)(acpi_irq_context)) {
548                 acpi_irq_handled++;
549                 return IRQ_HANDLED;
550         } else {
551                 acpi_irq_not_handled++;
552                 return IRQ_NONE;
553         }
554 }
555
556 acpi_status
557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558                                   void *context)
559 {
560         unsigned int irq;
561
562         acpi_irq_stats_init();
563
564         /*
565          * ACPI interrupts different from the SCI in our copy of the FADT are
566          * not supported.
567          */
568         if (gsi != acpi_gbl_FADT.sci_interrupt)
569                 return AE_BAD_PARAMETER;
570
571         if (acpi_irq_handler)
572                 return AE_ALREADY_ACQUIRED;
573
574         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575                 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576                 return AE_OK;
577         }
578
579         acpi_irq_handler = handler;
580         acpi_irq_context = context;
581         if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582                                  "acpi", acpi_irq)) {
583                 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584                 acpi_irq_handler = NULL;
585                 return AE_NOT_ACQUIRED;
586         }
587         acpi_sci_irq = irq;
588
589         return AE_OK;
590 }
591
592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595                 return AE_BAD_PARAMETER;
596
597         free_irq(acpi_sci_irq, acpi_irq);
598         acpi_irq_handler = NULL;
599         acpi_sci_irq = INVALID_ACPI_IRQ;
600
601         return AE_OK;
602 }
603
604 /*
605  * Running in interpreter thread context, safe to sleep
606  */
607
608 void acpi_os_sleep(u64 ms)
609 {
610         msleep(ms);
611 }
612
613 void acpi_os_stall(u32 us)
614 {
615         while (us) {
616                 u32 delay = 1000;
617
618                 if (delay > us)
619                         delay = us;
620                 udelay(delay);
621                 touch_nmi_watchdog();
622                 us -= delay;
623         }
624 }
625
626 /*
627  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628  * monotonically increasing timer with 100ns granularity. Do not use
629  * ktime_get() to implement this function because this function may get
630  * called after timekeeping has been suspended. Note: calling this function
631  * after timekeeping has been suspended may lead to unexpected results
632  * because when timekeeping is suspended the jiffies counter is not
633  * incremented. See also timekeeping_suspend().
634  */
635 u64 acpi_os_get_timer(void)
636 {
637         return (get_jiffies_64() - INITIAL_JIFFIES) *
638                 (ACPI_100NSEC_PER_SEC / HZ);
639 }
640
641 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642 {
643         u32 dummy;
644
645         if (value)
646                 *value = 0;
647         else
648                 value = &dummy;
649
650         if (width <= 8) {
651                 *value = inb(port);
652         } else if (width <= 16) {
653                 *value = inw(port);
654         } else if (width <= 32) {
655                 *value = inl(port);
656         } else {
657                 pr_debug("%s: Access width %d not supported\n", __func__, width);
658                 return AE_BAD_PARAMETER;
659         }
660
661         return AE_OK;
662 }
663
664 EXPORT_SYMBOL(acpi_os_read_port);
665
666 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667 {
668         if (width <= 8) {
669                 outb(value, port);
670         } else if (width <= 16) {
671                 outw(value, port);
672         } else if (width <= 32) {
673                 outl(value, port);
674         } else {
675                 pr_debug("%s: Access width %d not supported\n", __func__, width);
676                 return AE_BAD_PARAMETER;
677         }
678
679         return AE_OK;
680 }
681
682 EXPORT_SYMBOL(acpi_os_write_port);
683
684 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685 {
686
687         switch (width) {
688         case 8:
689                 *(u8 *) value = readb(virt_addr);
690                 break;
691         case 16:
692                 *(u16 *) value = readw(virt_addr);
693                 break;
694         case 32:
695                 *(u32 *) value = readl(virt_addr);
696                 break;
697         case 64:
698                 *(u64 *) value = readq(virt_addr);
699                 break;
700         default:
701                 return -EINVAL;
702         }
703
704         return 0;
705 }
706
707 acpi_status
708 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709 {
710         void __iomem *virt_addr;
711         unsigned int size = width / 8;
712         bool unmap = false;
713         u64 dummy;
714         int error;
715
716         rcu_read_lock();
717         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718         if (!virt_addr) {
719                 rcu_read_unlock();
720                 virt_addr = acpi_os_ioremap(phys_addr, size);
721                 if (!virt_addr)
722                         return AE_BAD_ADDRESS;
723                 unmap = true;
724         }
725
726         if (!value)
727                 value = &dummy;
728
729         error = acpi_os_read_iomem(virt_addr, value, width);
730         BUG_ON(error);
731
732         if (unmap)
733                 iounmap(virt_addr);
734         else
735                 rcu_read_unlock();
736
737         return AE_OK;
738 }
739
740 acpi_status
741 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742 {
743         void __iomem *virt_addr;
744         unsigned int size = width / 8;
745         bool unmap = false;
746
747         rcu_read_lock();
748         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749         if (!virt_addr) {
750                 rcu_read_unlock();
751                 virt_addr = acpi_os_ioremap(phys_addr, size);
752                 if (!virt_addr)
753                         return AE_BAD_ADDRESS;
754                 unmap = true;
755         }
756
757         switch (width) {
758         case 8:
759                 writeb(value, virt_addr);
760                 break;
761         case 16:
762                 writew(value, virt_addr);
763                 break;
764         case 32:
765                 writel(value, virt_addr);
766                 break;
767         case 64:
768                 writeq(value, virt_addr);
769                 break;
770         default:
771                 BUG();
772         }
773
774         if (unmap)
775                 iounmap(virt_addr);
776         else
777                 rcu_read_unlock();
778
779         return AE_OK;
780 }
781
782 #ifdef CONFIG_PCI
783 acpi_status
784 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785                                u64 *value, u32 width)
786 {
787         int result, size;
788         u32 value32;
789
790         if (!value)
791                 return AE_BAD_PARAMETER;
792
793         switch (width) {
794         case 8:
795                 size = 1;
796                 break;
797         case 16:
798                 size = 2;
799                 break;
800         case 32:
801                 size = 4;
802                 break;
803         default:
804                 return AE_ERROR;
805         }
806
807         result = raw_pci_read(pci_id->segment, pci_id->bus,
808                                 PCI_DEVFN(pci_id->device, pci_id->function),
809                                 reg, size, &value32);
810         *value = value32;
811
812         return (result ? AE_ERROR : AE_OK);
813 }
814
815 acpi_status
816 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817                                 u64 value, u32 width)
818 {
819         int result, size;
820
821         switch (width) {
822         case 8:
823                 size = 1;
824                 break;
825         case 16:
826                 size = 2;
827                 break;
828         case 32:
829                 size = 4;
830                 break;
831         default:
832                 return AE_ERROR;
833         }
834
835         result = raw_pci_write(pci_id->segment, pci_id->bus,
836                                 PCI_DEVFN(pci_id->device, pci_id->function),
837                                 reg, size, value);
838
839         return (result ? AE_ERROR : AE_OK);
840 }
841 #endif
842
843 static void acpi_os_execute_deferred(struct work_struct *work)
844 {
845         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847         dpc->function(dpc->context);
848         kfree(dpc);
849 }
850
851 #ifdef CONFIG_ACPI_DEBUGGER
852 static struct acpi_debugger acpi_debugger;
853 static bool acpi_debugger_initialized;
854
855 int acpi_register_debugger(struct module *owner,
856                            const struct acpi_debugger_ops *ops)
857 {
858         int ret = 0;
859
860         mutex_lock(&acpi_debugger.lock);
861         if (acpi_debugger.ops) {
862                 ret = -EBUSY;
863                 goto err_lock;
864         }
865
866         acpi_debugger.owner = owner;
867         acpi_debugger.ops = ops;
868
869 err_lock:
870         mutex_unlock(&acpi_debugger.lock);
871         return ret;
872 }
873 EXPORT_SYMBOL(acpi_register_debugger);
874
875 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876 {
877         mutex_lock(&acpi_debugger.lock);
878         if (ops == acpi_debugger.ops) {
879                 acpi_debugger.ops = NULL;
880                 acpi_debugger.owner = NULL;
881         }
882         mutex_unlock(&acpi_debugger.lock);
883 }
884 EXPORT_SYMBOL(acpi_unregister_debugger);
885
886 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887 {
888         int ret;
889         int (*func)(acpi_osd_exec_callback, void *);
890         struct module *owner;
891
892         if (!acpi_debugger_initialized)
893                 return -ENODEV;
894         mutex_lock(&acpi_debugger.lock);
895         if (!acpi_debugger.ops) {
896                 ret = -ENODEV;
897                 goto err_lock;
898         }
899         if (!try_module_get(acpi_debugger.owner)) {
900                 ret = -ENODEV;
901                 goto err_lock;
902         }
903         func = acpi_debugger.ops->create_thread;
904         owner = acpi_debugger.owner;
905         mutex_unlock(&acpi_debugger.lock);
906
907         ret = func(function, context);
908
909         mutex_lock(&acpi_debugger.lock);
910         module_put(owner);
911 err_lock:
912         mutex_unlock(&acpi_debugger.lock);
913         return ret;
914 }
915
916 ssize_t acpi_debugger_write_log(const char *msg)
917 {
918         ssize_t ret;
919         ssize_t (*func)(const char *);
920         struct module *owner;
921
922         if (!acpi_debugger_initialized)
923                 return -ENODEV;
924         mutex_lock(&acpi_debugger.lock);
925         if (!acpi_debugger.ops) {
926                 ret = -ENODEV;
927                 goto err_lock;
928         }
929         if (!try_module_get(acpi_debugger.owner)) {
930                 ret = -ENODEV;
931                 goto err_lock;
932         }
933         func = acpi_debugger.ops->write_log;
934         owner = acpi_debugger.owner;
935         mutex_unlock(&acpi_debugger.lock);
936
937         ret = func(msg);
938
939         mutex_lock(&acpi_debugger.lock);
940         module_put(owner);
941 err_lock:
942         mutex_unlock(&acpi_debugger.lock);
943         return ret;
944 }
945
946 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947 {
948         ssize_t ret;
949         ssize_t (*func)(char *, size_t);
950         struct module *owner;
951
952         if (!acpi_debugger_initialized)
953                 return -ENODEV;
954         mutex_lock(&acpi_debugger.lock);
955         if (!acpi_debugger.ops) {
956                 ret = -ENODEV;
957                 goto err_lock;
958         }
959         if (!try_module_get(acpi_debugger.owner)) {
960                 ret = -ENODEV;
961                 goto err_lock;
962         }
963         func = acpi_debugger.ops->read_cmd;
964         owner = acpi_debugger.owner;
965         mutex_unlock(&acpi_debugger.lock);
966
967         ret = func(buffer, buffer_length);
968
969         mutex_lock(&acpi_debugger.lock);
970         module_put(owner);
971 err_lock:
972         mutex_unlock(&acpi_debugger.lock);
973         return ret;
974 }
975
976 int acpi_debugger_wait_command_ready(void)
977 {
978         int ret;
979         int (*func)(bool, char *, size_t);
980         struct module *owner;
981
982         if (!acpi_debugger_initialized)
983                 return -ENODEV;
984         mutex_lock(&acpi_debugger.lock);
985         if (!acpi_debugger.ops) {
986                 ret = -ENODEV;
987                 goto err_lock;
988         }
989         if (!try_module_get(acpi_debugger.owner)) {
990                 ret = -ENODEV;
991                 goto err_lock;
992         }
993         func = acpi_debugger.ops->wait_command_ready;
994         owner = acpi_debugger.owner;
995         mutex_unlock(&acpi_debugger.lock);
996
997         ret = func(acpi_gbl_method_executing,
998                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000         mutex_lock(&acpi_debugger.lock);
1001         module_put(owner);
1002 err_lock:
1003         mutex_unlock(&acpi_debugger.lock);
1004         return ret;
1005 }
1006
1007 int acpi_debugger_notify_command_complete(void)
1008 {
1009         int ret;
1010         int (*func)(void);
1011         struct module *owner;
1012
1013         if (!acpi_debugger_initialized)
1014                 return -ENODEV;
1015         mutex_lock(&acpi_debugger.lock);
1016         if (!acpi_debugger.ops) {
1017                 ret = -ENODEV;
1018                 goto err_lock;
1019         }
1020         if (!try_module_get(acpi_debugger.owner)) {
1021                 ret = -ENODEV;
1022                 goto err_lock;
1023         }
1024         func = acpi_debugger.ops->notify_command_complete;
1025         owner = acpi_debugger.owner;
1026         mutex_unlock(&acpi_debugger.lock);
1027
1028         ret = func();
1029
1030         mutex_lock(&acpi_debugger.lock);
1031         module_put(owner);
1032 err_lock:
1033         mutex_unlock(&acpi_debugger.lock);
1034         return ret;
1035 }
1036
1037 int __init acpi_debugger_init(void)
1038 {
1039         mutex_init(&acpi_debugger.lock);
1040         acpi_debugger_initialized = true;
1041         return 0;
1042 }
1043 #endif
1044
1045 /*******************************************************************************
1046  *
1047  * FUNCTION:    acpi_os_execute
1048  *
1049  * PARAMETERS:  Type               - Type of the callback
1050  *              Function           - Function to be executed
1051  *              Context            - Function parameters
1052  *
1053  * RETURN:      Status
1054  *
1055  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056  *              immediately executes function on a separate thread.
1057  *
1058  ******************************************************************************/
1059
1060 acpi_status acpi_os_execute(acpi_execute_type type,
1061                             acpi_osd_exec_callback function, void *context)
1062 {
1063         struct acpi_os_dpc *dpc;
1064         int ret;
1065
1066         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067                           "Scheduling function [%p(%p)] for deferred execution.\n",
1068                           function, context));
1069
1070         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071                 ret = acpi_debugger_create_thread(function, context);
1072                 if (ret) {
1073                         pr_err("Kernel thread creation failed\n");
1074                         return AE_ERROR;
1075                 }
1076                 return AE_OK;
1077         }
1078
1079         /*
1080          * Allocate/initialize DPC structure.  Note that this memory will be
1081          * freed by the callee.  The kernel handles the work_struct list  in a
1082          * way that allows us to also free its memory inside the callee.
1083          * Because we may want to schedule several tasks with different
1084          * parameters we can't use the approach some kernel code uses of
1085          * having a static work_struct.
1086          */
1087
1088         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089         if (!dpc)
1090                 return AE_NO_MEMORY;
1091
1092         dpc->function = function;
1093         dpc->context = context;
1094         INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096         /*
1097          * To prevent lockdep from complaining unnecessarily, make sure that
1098          * there is a different static lockdep key for each workqueue by using
1099          * INIT_WORK() for each of them separately.
1100          */
1101         switch (type) {
1102         case OSL_NOTIFY_HANDLER:
1103                 ret = queue_work(kacpi_notify_wq, &dpc->work);
1104                 break;
1105         case OSL_GPE_HANDLER:
1106                 /*
1107                  * On some machines, a software-initiated SMI causes corruption
1108                  * unless the SMI runs on CPU 0.  An SMI can be initiated by
1109                  * any AML, but typically it's done in GPE-related methods that
1110                  * are run via workqueues, so we can avoid the known corruption
1111                  * cases by always queueing on CPU 0.
1112                  */
1113                 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114                 break;
1115         default:
1116                 pr_err("Unsupported os_execute type %d.\n", type);
1117                 goto err;
1118         }
1119         if (!ret) {
1120                 pr_err("Unable to queue work\n");
1121                 goto err;
1122         }
1123
1124         return AE_OK;
1125
1126 err:
1127         kfree(dpc);
1128         return AE_ERROR;
1129 }
1130 EXPORT_SYMBOL(acpi_os_execute);
1131
1132 void acpi_os_wait_events_complete(void)
1133 {
1134         /*
1135          * Make sure the GPE handler or the fixed event handler is not used
1136          * on another CPU after removal.
1137          */
1138         if (acpi_sci_irq_valid())
1139                 synchronize_hardirq(acpi_sci_irq);
1140         flush_workqueue(kacpid_wq);
1141         flush_workqueue(kacpi_notify_wq);
1142 }
1143 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145 struct acpi_hp_work {
1146         struct work_struct work;
1147         struct acpi_device *adev;
1148         u32 src;
1149 };
1150
1151 static void acpi_hotplug_work_fn(struct work_struct *work)
1152 {
1153         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155         acpi_os_wait_events_complete();
1156         acpi_device_hotplug(hpw->adev, hpw->src);
1157         kfree(hpw);
1158 }
1159
1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161 {
1162         struct acpi_hp_work *hpw;
1163
1164         acpi_handle_debug(adev->handle,
1165                           "Scheduling hotplug event %u for deferred handling\n",
1166                            src);
1167
1168         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169         if (!hpw)
1170                 return AE_NO_MEMORY;
1171
1172         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173         hpw->adev = adev;
1174         hpw->src = src;
1175         /*
1176          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177          * the hotplug code may call driver .remove() functions, which may
1178          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179          * these workqueues.
1180          */
1181         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182                 kfree(hpw);
1183                 return AE_ERROR;
1184         }
1185         return AE_OK;
1186 }
1187
1188 bool acpi_queue_hotplug_work(struct work_struct *work)
1189 {
1190         return queue_work(kacpi_hotplug_wq, work);
1191 }
1192
1193 acpi_status
1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195 {
1196         struct semaphore *sem = NULL;
1197
1198         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199         if (!sem)
1200                 return AE_NO_MEMORY;
1201
1202         sema_init(sem, initial_units);
1203
1204         *handle = (acpi_handle *) sem;
1205
1206         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207                           *handle, initial_units));
1208
1209         return AE_OK;
1210 }
1211
1212 /*
1213  * TODO: A better way to delete semaphores?  Linux doesn't have a
1214  * 'delete_semaphore()' function -- may result in an invalid
1215  * pointer dereference for non-synchronized consumers.  Should
1216  * we at least check for blocked threads and signal/cancel them?
1217  */
1218
1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220 {
1221         struct semaphore *sem = (struct semaphore *)handle;
1222
1223         if (!sem)
1224                 return AE_BAD_PARAMETER;
1225
1226         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228         BUG_ON(!list_empty(&sem->wait_list));
1229         kfree(sem);
1230         sem = NULL;
1231
1232         return AE_OK;
1233 }
1234
1235 /*
1236  * TODO: Support for units > 1?
1237  */
1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239 {
1240         acpi_status status = AE_OK;
1241         struct semaphore *sem = (struct semaphore *)handle;
1242         long jiffies;
1243         int ret = 0;
1244
1245         if (!acpi_os_initialized)
1246                 return AE_OK;
1247
1248         if (!sem || (units < 1))
1249                 return AE_BAD_PARAMETER;
1250
1251         if (units > 1)
1252                 return AE_SUPPORT;
1253
1254         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255                           handle, units, timeout));
1256
1257         if (timeout == ACPI_WAIT_FOREVER)
1258                 jiffies = MAX_SCHEDULE_TIMEOUT;
1259         else
1260                 jiffies = msecs_to_jiffies(timeout);
1261
1262         ret = down_timeout(sem, jiffies);
1263         if (ret)
1264                 status = AE_TIME;
1265
1266         if (ACPI_FAILURE(status)) {
1267                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1269                                   handle, units, timeout,
1270                                   acpi_format_exception(status)));
1271         } else {
1272                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273                                   "Acquired semaphore[%p|%d|%d]", handle,
1274                                   units, timeout));
1275         }
1276
1277         return status;
1278 }
1279
1280 /*
1281  * TODO: Support for units > 1?
1282  */
1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284 {
1285         struct semaphore *sem = (struct semaphore *)handle;
1286
1287         if (!acpi_os_initialized)
1288                 return AE_OK;
1289
1290         if (!sem || (units < 1))
1291                 return AE_BAD_PARAMETER;
1292
1293         if (units > 1)
1294                 return AE_SUPPORT;
1295
1296         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297                           units));
1298
1299         up(sem);
1300
1301         return AE_OK;
1302 }
1303
1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305 {
1306 #ifdef ENABLE_DEBUGGER
1307         if (acpi_in_debugger) {
1308                 u32 chars;
1309
1310                 kdb_read(buffer, buffer_length);
1311
1312                 /* remove the CR kdb includes */
1313                 chars = strlen(buffer) - 1;
1314                 buffer[chars] = '\0';
1315         }
1316 #else
1317         int ret;
1318
1319         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320         if (ret < 0)
1321                 return AE_ERROR;
1322         if (bytes_read)
1323                 *bytes_read = ret;
1324 #endif
1325
1326         return AE_OK;
1327 }
1328 EXPORT_SYMBOL(acpi_os_get_line);
1329
1330 acpi_status acpi_os_wait_command_ready(void)
1331 {
1332         int ret;
1333
1334         ret = acpi_debugger_wait_command_ready();
1335         if (ret < 0)
1336                 return AE_ERROR;
1337         return AE_OK;
1338 }
1339
1340 acpi_status acpi_os_notify_command_complete(void)
1341 {
1342         int ret;
1343
1344         ret = acpi_debugger_notify_command_complete();
1345         if (ret < 0)
1346                 return AE_ERROR;
1347         return AE_OK;
1348 }
1349
1350 acpi_status acpi_os_signal(u32 function, void *info)
1351 {
1352         switch (function) {
1353         case ACPI_SIGNAL_FATAL:
1354                 pr_err("Fatal opcode executed\n");
1355                 break;
1356         case ACPI_SIGNAL_BREAKPOINT:
1357                 /*
1358                  * AML Breakpoint
1359                  * ACPI spec. says to treat it as a NOP unless
1360                  * you are debugging.  So if/when we integrate
1361                  * AML debugger into the kernel debugger its
1362                  * hook will go here.  But until then it is
1363                  * not useful to print anything on breakpoints.
1364                  */
1365                 break;
1366         default:
1367                 break;
1368         }
1369
1370         return AE_OK;
1371 }
1372
1373 static int __init acpi_os_name_setup(char *str)
1374 {
1375         char *p = acpi_os_name;
1376         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378         if (!str || !*str)
1379                 return 0;
1380
1381         for (; count-- && *str; str++) {
1382                 if (isalnum(*str) || *str == ' ' || *str == ':')
1383                         *p++ = *str;
1384                 else if (*str == '\'' || *str == '"')
1385                         continue;
1386                 else
1387                         break;
1388         }
1389         *p = 0;
1390
1391         return 1;
1392
1393 }
1394
1395 __setup("acpi_os_name=", acpi_os_name_setup);
1396
1397 /*
1398  * Disable the auto-serialization of named objects creation methods.
1399  *
1400  * This feature is enabled by default.  It marks the AML control methods
1401  * that contain the opcodes to create named objects as "Serialized".
1402  */
1403 static int __init acpi_no_auto_serialize_setup(char *str)
1404 {
1405         acpi_gbl_auto_serialize_methods = FALSE;
1406         pr_info("Auto-serialization disabled\n");
1407
1408         return 1;
1409 }
1410
1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413 /* Check of resource interference between native drivers and ACPI
1414  * OperationRegions (SystemIO and System Memory only).
1415  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416  * in arbitrary AML code and can interfere with legacy drivers.
1417  * acpi_enforce_resources= can be set to:
1418  *
1419  *   - strict (default) (2)
1420  *     -> further driver trying to access the resources will not load
1421  *   - lax              (1)
1422  *     -> further driver trying to access the resources will load, but you
1423  *     get a system message that something might go wrong...
1424  *
1425  *   - no               (0)
1426  *     -> ACPI Operation Region resources will not be registered
1427  *
1428  */
1429 #define ENFORCE_RESOURCES_STRICT 2
1430 #define ENFORCE_RESOURCES_LAX    1
1431 #define ENFORCE_RESOURCES_NO     0
1432
1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435 static int __init acpi_enforce_resources_setup(char *str)
1436 {
1437         if (str == NULL || *str == '\0')
1438                 return 0;
1439
1440         if (!strcmp("strict", str))
1441                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442         else if (!strcmp("lax", str))
1443                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444         else if (!strcmp("no", str))
1445                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447         return 1;
1448 }
1449
1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452 /* Check for resource conflicts between ACPI OperationRegions and native
1453  * drivers */
1454 int acpi_check_resource_conflict(const struct resource *res)
1455 {
1456         acpi_adr_space_type space_id;
1457
1458         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459                 return 0;
1460
1461         if (res->flags & IORESOURCE_IO)
1462                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463         else if (res->flags & IORESOURCE_MEM)
1464                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465         else
1466                 return 0;
1467
1468         if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469                 return 0;
1470
1471         pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473         if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474                 return -EBUSY;
1475
1476         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477                 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479         return 0;
1480 }
1481 EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483 int acpi_check_region(resource_size_t start, resource_size_t n,
1484                       const char *name)
1485 {
1486         struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488         return acpi_check_resource_conflict(&res);
1489 }
1490 EXPORT_SYMBOL(acpi_check_region);
1491
1492 /*
1493  * Let drivers know whether the resource checks are effective
1494  */
1495 int acpi_resources_are_enforced(void)
1496 {
1497         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498 }
1499 EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501 /*
1502  * Deallocate the memory for a spinlock.
1503  */
1504 void acpi_os_delete_lock(acpi_spinlock handle)
1505 {
1506         ACPI_FREE(handle);
1507 }
1508
1509 /*
1510  * Acquire a spinlock.
1511  *
1512  * handle is a pointer to the spinlock_t.
1513  */
1514
1515 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516         __acquires(lockp)
1517 {
1518         spin_lock(lockp);
1519         return 0;
1520 }
1521
1522 /*
1523  * Release a spinlock. See above.
1524  */
1525
1526 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527         __releases(lockp)
1528 {
1529         spin_unlock(lockp);
1530 }
1531
1532 #ifndef ACPI_USE_LOCAL_CACHE
1533
1534 /*******************************************************************************
1535  *
1536  * FUNCTION:    acpi_os_create_cache
1537  *
1538  * PARAMETERS:  name      - Ascii name for the cache
1539  *              size      - Size of each cached object
1540  *              depth     - Maximum depth of the cache (in objects) <ignored>
1541  *              cache     - Where the new cache object is returned
1542  *
1543  * RETURN:      status
1544  *
1545  * DESCRIPTION: Create a cache object
1546  *
1547  ******************************************************************************/
1548
1549 acpi_status
1550 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551 {
1552         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553         if (*cache == NULL)
1554                 return AE_ERROR;
1555         else
1556                 return AE_OK;
1557 }
1558
1559 /*******************************************************************************
1560  *
1561  * FUNCTION:    acpi_os_purge_cache
1562  *
1563  * PARAMETERS:  Cache           - Handle to cache object
1564  *
1565  * RETURN:      Status
1566  *
1567  * DESCRIPTION: Free all objects within the requested cache.
1568  *
1569  ******************************************************************************/
1570
1571 acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572 {
1573         kmem_cache_shrink(cache);
1574         return AE_OK;
1575 }
1576
1577 /*******************************************************************************
1578  *
1579  * FUNCTION:    acpi_os_delete_cache
1580  *
1581  * PARAMETERS:  Cache           - Handle to cache object
1582  *
1583  * RETURN:      Status
1584  *
1585  * DESCRIPTION: Free all objects within the requested cache and delete the
1586  *              cache object.
1587  *
1588  ******************************************************************************/
1589
1590 acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591 {
1592         kmem_cache_destroy(cache);
1593         return AE_OK;
1594 }
1595
1596 /*******************************************************************************
1597  *
1598  * FUNCTION:    acpi_os_release_object
1599  *
1600  * PARAMETERS:  Cache       - Handle to cache object
1601  *              Object      - The object to be released
1602  *
1603  * RETURN:      None
1604  *
1605  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1606  *              the object is deleted.
1607  *
1608  ******************************************************************************/
1609
1610 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611 {
1612         kmem_cache_free(cache, object);
1613         return AE_OK;
1614 }
1615 #endif
1616
1617 static int __init acpi_no_static_ssdt_setup(char *s)
1618 {
1619         acpi_gbl_disable_ssdt_table_install = TRUE;
1620         pr_info("Static SSDT installation disabled\n");
1621
1622         return 0;
1623 }
1624
1625 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627 static int __init acpi_disable_return_repair(char *s)
1628 {
1629         pr_notice("Predefined validation mechanism disabled\n");
1630         acpi_gbl_disable_auto_repair = TRUE;
1631
1632         return 1;
1633 }
1634
1635 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637 acpi_status __init acpi_os_initialize(void)
1638 {
1639         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642         acpi_gbl_xgpe0_block_logical_address =
1643                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644         acpi_gbl_xgpe1_block_logical_address =
1645                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648                 /*
1649                  * Use acpi_os_map_generic_address to pre-map the reset
1650                  * register if it's in system memory.
1651                  */
1652                 void *rv;
1653
1654                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655                 pr_debug("%s: Reset register mapping %s\n", __func__,
1656                          rv ? "successful" : "failed");
1657         }
1658         acpi_os_initialized = true;
1659
1660         return AE_OK;
1661 }
1662
1663 acpi_status __init acpi_os_initialize1(void)
1664 {
1665         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668         BUG_ON(!kacpid_wq);
1669         BUG_ON(!kacpi_notify_wq);
1670         BUG_ON(!kacpi_hotplug_wq);
1671         acpi_osi_init();
1672         return AE_OK;
1673 }
1674
1675 acpi_status acpi_os_terminate(void)
1676 {
1677         if (acpi_irq_handler) {
1678                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679                                                  acpi_irq_handler);
1680         }
1681
1682         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684         acpi_gbl_xgpe0_block_logical_address = 0UL;
1685         acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693         destroy_workqueue(kacpid_wq);
1694         destroy_workqueue(kacpi_notify_wq);
1695         destroy_workqueue(kacpi_hotplug_wq);
1696
1697         return AE_OK;
1698 }
1699
1700 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701                                   u32 pm1b_control)
1702 {
1703         int rc = 0;
1704
1705         if (__acpi_os_prepare_sleep)
1706                 rc = __acpi_os_prepare_sleep(sleep_state,
1707                                              pm1a_control, pm1b_control);
1708         if (rc < 0)
1709                 return AE_ERROR;
1710         else if (rc > 0)
1711                 return AE_CTRL_TERMINATE;
1712
1713         return AE_OK;
1714 }
1715
1716 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1718 {
1719         __acpi_os_prepare_sleep = func;
1720 }
1721
1722 #if (ACPI_REDUCED_HARDWARE)
1723 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724                                   u32 val_b)
1725 {
1726         int rc = 0;
1727
1728         if (__acpi_os_prepare_extended_sleep)
1729                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730                                              val_a, val_b);
1731         if (rc < 0)
1732                 return AE_ERROR;
1733         else if (rc > 0)
1734                 return AE_CTRL_TERMINATE;
1735
1736         return AE_OK;
1737 }
1738 #else
1739 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740                                   u32 val_b)
1741 {
1742         return AE_OK;
1743 }
1744 #endif
1745
1746 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747                                u32 val_a, u32 val_b))
1748 {
1749         __acpi_os_prepare_extended_sleep = func;
1750 }
1751
1752 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753                                 u32 reg_a_value, u32 reg_b_value)
1754 {
1755         acpi_status status;
1756
1757         if (acpi_gbl_reduced_hardware)
1758                 status = acpi_os_prepare_extended_sleep(sleep_state,
1759                                                         reg_a_value,
1760                                                         reg_b_value);
1761         else
1762                 status = acpi_os_prepare_sleep(sleep_state,
1763                                                reg_a_value, reg_b_value);
1764         return status;
1765 }