Merge tag 'pm-5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / drivers / acpi / osl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
31
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
35
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
39
40 #define _COMPONENT              ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
42
43 struct acpi_os_dpc {
44         acpi_osd_exec_callback function;
45         void *context;
46         struct work_struct work;
47 };
48
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
51
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif                          /*ENABLE_DEBUGGER */
56
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58                                       u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60                                       u32 val_b);
61
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
70
71 /*
72  * This list of permanent mappings is for memory that may be accessed from
73  * interrupt context, where we can't do the ioremap().
74  */
75 struct acpi_ioremap {
76         struct list_head list;
77         void __iomem *virt;
78         acpi_physical_address phys;
79         acpi_size size;
80         union {
81                 unsigned long refcount;
82                 struct rcu_work rwork;
83         } track;
84 };
85
86 static LIST_HEAD(acpi_ioremaps);
87 static DEFINE_MUTEX(acpi_ioremap_lock);
88 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89
90 static void __init acpi_request_region (struct acpi_generic_address *gas,
91         unsigned int length, char *desc)
92 {
93         u64 addr;
94
95         /* Handle possible alignment issues */
96         memcpy(&addr, &gas->address, sizeof(addr));
97         if (!addr || !length)
98                 return;
99
100         /* Resources are never freed */
101         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102                 request_region(addr, length, desc);
103         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104                 request_mem_region(addr, length, desc);
105 }
106
107 static int __init acpi_reserve_resources(void)
108 {
109         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110                 "ACPI PM1a_EVT_BLK");
111
112         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113                 "ACPI PM1b_EVT_BLK");
114
115         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116                 "ACPI PM1a_CNT_BLK");
117
118         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119                 "ACPI PM1b_CNT_BLK");
120
121         if (acpi_gbl_FADT.pm_timer_length == 4)
122                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123
124         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125                 "ACPI PM2_CNT_BLK");
126
127         /* Length of GPE blocks must be a non-negative multiple of 2 */
128
129         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132
133         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136
137         return 0;
138 }
139 fs_initcall_sync(acpi_reserve_resources);
140
141 void acpi_os_printf(const char *fmt, ...)
142 {
143         va_list args;
144         va_start(args, fmt);
145         acpi_os_vprintf(fmt, args);
146         va_end(args);
147 }
148 EXPORT_SYMBOL(acpi_os_printf);
149
150 void acpi_os_vprintf(const char *fmt, va_list args)
151 {
152         static char buffer[512];
153
154         vsprintf(buffer, fmt, args);
155
156 #ifdef ENABLE_DEBUGGER
157         if (acpi_in_debugger) {
158                 kdb_printf("%s", buffer);
159         } else {
160                 if (printk_get_level(buffer))
161                         printk("%s", buffer);
162                 else
163                         printk(KERN_CONT "%s", buffer);
164         }
165 #else
166         if (acpi_debugger_write_log(buffer) < 0) {
167                 if (printk_get_level(buffer))
168                         printk("%s", buffer);
169                 else
170                         printk(KERN_CONT "%s", buffer);
171         }
172 #endif
173 }
174
175 #ifdef CONFIG_KEXEC
176 static unsigned long acpi_rsdp;
177 static int __init setup_acpi_rsdp(char *arg)
178 {
179         return kstrtoul(arg, 16, &acpi_rsdp);
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183
184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186         acpi_physical_address pa;
187
188 #ifdef CONFIG_KEXEC
189         /*
190          * We may have been provided with an RSDP on the command line,
191          * but if a malicious user has done so they may be pointing us
192          * at modified ACPI tables that could alter kernel behaviour -
193          * so, we check the lockdown status before making use of
194          * it. If we trust it then also stash it in an architecture
195          * specific location (if appropriate) so it can be carried
196          * over further kexec()s.
197          */
198         if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199                 acpi_arch_set_root_pointer(acpi_rsdp);
200                 return acpi_rsdp;
201         }
202 #endif
203         pa = acpi_arch_get_root_pointer();
204         if (pa)
205                 return pa;
206
207         if (efi_enabled(EFI_CONFIG_TABLES)) {
208                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209                         return efi.acpi20;
210                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211                         return efi.acpi;
212                 pr_err(PREFIX "System description tables not found\n");
213         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214                 acpi_find_root_pointer(&pa);
215         }
216
217         return pa;
218 }
219
220 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221 static struct acpi_ioremap *
222 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223 {
224         struct acpi_ioremap *map;
225
226         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227                 if (map->phys <= phys &&
228                     phys + size <= map->phys + map->size)
229                         return map;
230
231         return NULL;
232 }
233
234 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235 static void __iomem *
236 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237 {
238         struct acpi_ioremap *map;
239
240         map = acpi_map_lookup(phys, size);
241         if (map)
242                 return map->virt + (phys - map->phys);
243
244         return NULL;
245 }
246
247 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248 {
249         struct acpi_ioremap *map;
250         void __iomem *virt = NULL;
251
252         mutex_lock(&acpi_ioremap_lock);
253         map = acpi_map_lookup(phys, size);
254         if (map) {
255                 virt = map->virt + (phys - map->phys);
256                 map->track.refcount++;
257         }
258         mutex_unlock(&acpi_ioremap_lock);
259         return virt;
260 }
261 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262
263 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264 static struct acpi_ioremap *
265 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266 {
267         struct acpi_ioremap *map;
268
269         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270                 if (map->virt <= virt &&
271                     virt + size <= map->virt + map->size)
272                         return map;
273
274         return NULL;
275 }
276
277 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278 /* ioremap will take care of cache attributes */
279 #define should_use_kmap(pfn)   0
280 #else
281 #define should_use_kmap(pfn)   page_is_ram(pfn)
282 #endif
283
284 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285 {
286         unsigned long pfn;
287
288         pfn = pg_off >> PAGE_SHIFT;
289         if (should_use_kmap(pfn)) {
290                 if (pg_sz > PAGE_SIZE)
291                         return NULL;
292                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
293         } else
294                 return acpi_os_ioremap(pg_off, pg_sz);
295 }
296
297 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298 {
299         unsigned long pfn;
300
301         pfn = pg_off >> PAGE_SHIFT;
302         if (should_use_kmap(pfn))
303                 kunmap(pfn_to_page(pfn));
304         else
305                 iounmap(vaddr);
306 }
307
308 /**
309  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310  * @phys: Start of the physical address range to map.
311  * @size: Size of the physical address range to map.
312  *
313  * Look up the given physical address range in the list of existing ACPI memory
314  * mappings.  If found, get a reference to it and return a pointer to it (its
315  * virtual address).  If not found, map it, add it to that list and return a
316  * pointer to it.
317  *
318  * During early init (when acpi_permanent_mmap has not been set yet) this
319  * routine simply calls __acpi_map_table() to get the job done.
320  */
321 void __iomem __ref
322 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323 {
324         struct acpi_ioremap *map;
325         void __iomem *virt;
326         acpi_physical_address pg_off;
327         acpi_size pg_sz;
328
329         if (phys > ULONG_MAX) {
330                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331                 return NULL;
332         }
333
334         if (!acpi_permanent_mmap)
335                 return __acpi_map_table((unsigned long)phys, size);
336
337         mutex_lock(&acpi_ioremap_lock);
338         /* Check if there's a suitable mapping already. */
339         map = acpi_map_lookup(phys, size);
340         if (map) {
341                 map->track.refcount++;
342                 goto out;
343         }
344
345         map = kzalloc(sizeof(*map), GFP_KERNEL);
346         if (!map) {
347                 mutex_unlock(&acpi_ioremap_lock);
348                 return NULL;
349         }
350
351         pg_off = round_down(phys, PAGE_SIZE);
352         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353         virt = acpi_map(phys, size);
354         if (!virt) {
355                 mutex_unlock(&acpi_ioremap_lock);
356                 kfree(map);
357                 return NULL;
358         }
359
360         INIT_LIST_HEAD(&map->list);
361         map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362         map->phys = pg_off;
363         map->size = pg_sz;
364         map->track.refcount = 1;
365
366         list_add_tail_rcu(&map->list, &acpi_ioremaps);
367
368 out:
369         mutex_unlock(&acpi_ioremap_lock);
370         return map->virt + (phys - map->phys);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373
374 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375 {
376         return (void *)acpi_os_map_iomem(phys, size);
377 }
378 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379
380 static void acpi_os_map_remove(struct work_struct *work)
381 {
382         struct acpi_ioremap *map = container_of(to_rcu_work(work),
383                                                 struct acpi_ioremap,
384                                                 track.rwork);
385
386         acpi_unmap(map->phys, map->virt);
387         kfree(map);
388 }
389
390 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
391 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392 {
393         if (--map->track.refcount)
394                 return;
395
396         list_del_rcu(&map->list);
397
398         INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399         queue_rcu_work(system_wq, &map->track.rwork);
400 }
401
402 /**
403  * acpi_os_unmap_iomem - Drop a memory mapping reference.
404  * @virt: Start of the address range to drop a reference to.
405  * @size: Size of the address range to drop a reference to.
406  *
407  * Look up the given virtual address range in the list of existing ACPI memory
408  * mappings, drop a reference to it and if there are no more active references
409  * to it, queue it up for later removal.
410  *
411  * During early init (when acpi_permanent_mmap has not been set yet) this
412  * routine simply calls __acpi_unmap_table() to get the job done.  Since
413  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414  * here.
415  */
416 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417 {
418         struct acpi_ioremap *map;
419
420         if (!acpi_permanent_mmap) {
421                 __acpi_unmap_table(virt, size);
422                 return;
423         }
424
425         mutex_lock(&acpi_ioremap_lock);
426
427         map = acpi_map_lookup_virt(virt, size);
428         if (!map) {
429                 mutex_unlock(&acpi_ioremap_lock);
430                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431                 return;
432         }
433         acpi_os_drop_map_ref(map);
434
435         mutex_unlock(&acpi_ioremap_lock);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438
439 /**
440  * acpi_os_unmap_memory - Drop a memory mapping reference.
441  * @virt: Start of the address range to drop a reference to.
442  * @size: Size of the address range to drop a reference to.
443  */
444 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445 {
446         acpi_os_unmap_iomem((void __iomem *)virt, size);
447 }
448 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
451 {
452         u64 addr;
453
454         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
455                 return NULL;
456
457         /* Handle possible alignment issues */
458         memcpy(&addr, &gas->address, sizeof(addr));
459         if (!addr || !gas->bit_width)
460                 return NULL;
461
462         return acpi_os_map_iomem(addr, gas->bit_width / 8);
463 }
464 EXPORT_SYMBOL(acpi_os_map_generic_address);
465
466 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
467 {
468         u64 addr;
469         struct acpi_ioremap *map;
470
471         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
472                 return;
473
474         /* Handle possible alignment issues */
475         memcpy(&addr, &gas->address, sizeof(addr));
476         if (!addr || !gas->bit_width)
477                 return;
478
479         mutex_lock(&acpi_ioremap_lock);
480
481         map = acpi_map_lookup(addr, gas->bit_width / 8);
482         if (!map) {
483                 mutex_unlock(&acpi_ioremap_lock);
484                 return;
485         }
486         acpi_os_drop_map_ref(map);
487
488         mutex_unlock(&acpi_ioremap_lock);
489 }
490 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
491
492 #ifdef ACPI_FUTURE_USAGE
493 acpi_status
494 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
495 {
496         if (!phys || !virt)
497                 return AE_BAD_PARAMETER;
498
499         *phys = virt_to_phys(virt);
500
501         return AE_OK;
502 }
503 #endif
504
505 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
506 static bool acpi_rev_override;
507
508 int __init acpi_rev_override_setup(char *str)
509 {
510         acpi_rev_override = true;
511         return 1;
512 }
513 __setup("acpi_rev_override", acpi_rev_override_setup);
514 #else
515 #define acpi_rev_override       false
516 #endif
517
518 #define ACPI_MAX_OVERRIDE_LEN 100
519
520 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
521
522 acpi_status
523 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
524                             acpi_string *new_val)
525 {
526         if (!init_val || !new_val)
527                 return AE_BAD_PARAMETER;
528
529         *new_val = NULL;
530         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
531                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
532                        acpi_os_name);
533                 *new_val = acpi_os_name;
534         }
535
536         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
537                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
538                 *new_val = (char *)5;
539         }
540
541         return AE_OK;
542 }
543
544 static irqreturn_t acpi_irq(int irq, void *dev_id)
545 {
546         u32 handled;
547
548         handled = (*acpi_irq_handler) (acpi_irq_context);
549
550         if (handled) {
551                 acpi_irq_handled++;
552                 return IRQ_HANDLED;
553         } else {
554                 acpi_irq_not_handled++;
555                 return IRQ_NONE;
556         }
557 }
558
559 acpi_status
560 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
561                                   void *context)
562 {
563         unsigned int irq;
564
565         acpi_irq_stats_init();
566
567         /*
568          * ACPI interrupts different from the SCI in our copy of the FADT are
569          * not supported.
570          */
571         if (gsi != acpi_gbl_FADT.sci_interrupt)
572                 return AE_BAD_PARAMETER;
573
574         if (acpi_irq_handler)
575                 return AE_ALREADY_ACQUIRED;
576
577         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
578                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
579                        gsi);
580                 return AE_OK;
581         }
582
583         acpi_irq_handler = handler;
584         acpi_irq_context = context;
585         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
586                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
587                 acpi_irq_handler = NULL;
588                 return AE_NOT_ACQUIRED;
589         }
590         acpi_sci_irq = irq;
591
592         return AE_OK;
593 }
594
595 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
596 {
597         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
598                 return AE_BAD_PARAMETER;
599
600         free_irq(acpi_sci_irq, acpi_irq);
601         acpi_irq_handler = NULL;
602         acpi_sci_irq = INVALID_ACPI_IRQ;
603
604         return AE_OK;
605 }
606
607 /*
608  * Running in interpreter thread context, safe to sleep
609  */
610
611 void acpi_os_sleep(u64 ms)
612 {
613         msleep(ms);
614 }
615
616 void acpi_os_stall(u32 us)
617 {
618         while (us) {
619                 u32 delay = 1000;
620
621                 if (delay > us)
622                         delay = us;
623                 udelay(delay);
624                 touch_nmi_watchdog();
625                 us -= delay;
626         }
627 }
628
629 /*
630  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
631  * monotonically increasing timer with 100ns granularity. Do not use
632  * ktime_get() to implement this function because this function may get
633  * called after timekeeping has been suspended. Note: calling this function
634  * after timekeeping has been suspended may lead to unexpected results
635  * because when timekeeping is suspended the jiffies counter is not
636  * incremented. See also timekeeping_suspend().
637  */
638 u64 acpi_os_get_timer(void)
639 {
640         return (get_jiffies_64() - INITIAL_JIFFIES) *
641                 (ACPI_100NSEC_PER_SEC / HZ);
642 }
643
644 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
645 {
646         u32 dummy;
647
648         if (!value)
649                 value = &dummy;
650
651         *value = 0;
652         if (width <= 8) {
653                 *(u8 *) value = inb(port);
654         } else if (width <= 16) {
655                 *(u16 *) value = inw(port);
656         } else if (width <= 32) {
657                 *(u32 *) value = inl(port);
658         } else {
659                 BUG();
660         }
661
662         return AE_OK;
663 }
664
665 EXPORT_SYMBOL(acpi_os_read_port);
666
667 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
668 {
669         if (width <= 8) {
670                 outb(value, port);
671         } else if (width <= 16) {
672                 outw(value, port);
673         } else if (width <= 32) {
674                 outl(value, port);
675         } else {
676                 BUG();
677         }
678
679         return AE_OK;
680 }
681
682 EXPORT_SYMBOL(acpi_os_write_port);
683
684 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685 {
686
687         switch (width) {
688         case 8:
689                 *(u8 *) value = readb(virt_addr);
690                 break;
691         case 16:
692                 *(u16 *) value = readw(virt_addr);
693                 break;
694         case 32:
695                 *(u32 *) value = readl(virt_addr);
696                 break;
697         case 64:
698                 *(u64 *) value = readq(virt_addr);
699                 break;
700         default:
701                 return -EINVAL;
702         }
703
704         return 0;
705 }
706
707 acpi_status
708 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709 {
710         void __iomem *virt_addr;
711         unsigned int size = width / 8;
712         bool unmap = false;
713         u64 dummy;
714         int error;
715
716         rcu_read_lock();
717         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718         if (!virt_addr) {
719                 rcu_read_unlock();
720                 virt_addr = acpi_os_ioremap(phys_addr, size);
721                 if (!virt_addr)
722                         return AE_BAD_ADDRESS;
723                 unmap = true;
724         }
725
726         if (!value)
727                 value = &dummy;
728
729         error = acpi_os_read_iomem(virt_addr, value, width);
730         BUG_ON(error);
731
732         if (unmap)
733                 iounmap(virt_addr);
734         else
735                 rcu_read_unlock();
736
737         return AE_OK;
738 }
739
740 acpi_status
741 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742 {
743         void __iomem *virt_addr;
744         unsigned int size = width / 8;
745         bool unmap = false;
746
747         rcu_read_lock();
748         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749         if (!virt_addr) {
750                 rcu_read_unlock();
751                 virt_addr = acpi_os_ioremap(phys_addr, size);
752                 if (!virt_addr)
753                         return AE_BAD_ADDRESS;
754                 unmap = true;
755         }
756
757         switch (width) {
758         case 8:
759                 writeb(value, virt_addr);
760                 break;
761         case 16:
762                 writew(value, virt_addr);
763                 break;
764         case 32:
765                 writel(value, virt_addr);
766                 break;
767         case 64:
768                 writeq(value, virt_addr);
769                 break;
770         default:
771                 BUG();
772         }
773
774         if (unmap)
775                 iounmap(virt_addr);
776         else
777                 rcu_read_unlock();
778
779         return AE_OK;
780 }
781
782 #ifdef CONFIG_PCI
783 acpi_status
784 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
785                                u64 *value, u32 width)
786 {
787         int result, size;
788         u32 value32;
789
790         if (!value)
791                 return AE_BAD_PARAMETER;
792
793         switch (width) {
794         case 8:
795                 size = 1;
796                 break;
797         case 16:
798                 size = 2;
799                 break;
800         case 32:
801                 size = 4;
802                 break;
803         default:
804                 return AE_ERROR;
805         }
806
807         result = raw_pci_read(pci_id->segment, pci_id->bus,
808                                 PCI_DEVFN(pci_id->device, pci_id->function),
809                                 reg, size, &value32);
810         *value = value32;
811
812         return (result ? AE_ERROR : AE_OK);
813 }
814
815 acpi_status
816 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
817                                 u64 value, u32 width)
818 {
819         int result, size;
820
821         switch (width) {
822         case 8:
823                 size = 1;
824                 break;
825         case 16:
826                 size = 2;
827                 break;
828         case 32:
829                 size = 4;
830                 break;
831         default:
832                 return AE_ERROR;
833         }
834
835         result = raw_pci_write(pci_id->segment, pci_id->bus,
836                                 PCI_DEVFN(pci_id->device, pci_id->function),
837                                 reg, size, value);
838
839         return (result ? AE_ERROR : AE_OK);
840 }
841 #endif
842
843 static void acpi_os_execute_deferred(struct work_struct *work)
844 {
845         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847         dpc->function(dpc->context);
848         kfree(dpc);
849 }
850
851 #ifdef CONFIG_ACPI_DEBUGGER
852 static struct acpi_debugger acpi_debugger;
853 static bool acpi_debugger_initialized;
854
855 int acpi_register_debugger(struct module *owner,
856                            const struct acpi_debugger_ops *ops)
857 {
858         int ret = 0;
859
860         mutex_lock(&acpi_debugger.lock);
861         if (acpi_debugger.ops) {
862                 ret = -EBUSY;
863                 goto err_lock;
864         }
865
866         acpi_debugger.owner = owner;
867         acpi_debugger.ops = ops;
868
869 err_lock:
870         mutex_unlock(&acpi_debugger.lock);
871         return ret;
872 }
873 EXPORT_SYMBOL(acpi_register_debugger);
874
875 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876 {
877         mutex_lock(&acpi_debugger.lock);
878         if (ops == acpi_debugger.ops) {
879                 acpi_debugger.ops = NULL;
880                 acpi_debugger.owner = NULL;
881         }
882         mutex_unlock(&acpi_debugger.lock);
883 }
884 EXPORT_SYMBOL(acpi_unregister_debugger);
885
886 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887 {
888         int ret;
889         int (*func)(acpi_osd_exec_callback, void *);
890         struct module *owner;
891
892         if (!acpi_debugger_initialized)
893                 return -ENODEV;
894         mutex_lock(&acpi_debugger.lock);
895         if (!acpi_debugger.ops) {
896                 ret = -ENODEV;
897                 goto err_lock;
898         }
899         if (!try_module_get(acpi_debugger.owner)) {
900                 ret = -ENODEV;
901                 goto err_lock;
902         }
903         func = acpi_debugger.ops->create_thread;
904         owner = acpi_debugger.owner;
905         mutex_unlock(&acpi_debugger.lock);
906
907         ret = func(function, context);
908
909         mutex_lock(&acpi_debugger.lock);
910         module_put(owner);
911 err_lock:
912         mutex_unlock(&acpi_debugger.lock);
913         return ret;
914 }
915
916 ssize_t acpi_debugger_write_log(const char *msg)
917 {
918         ssize_t ret;
919         ssize_t (*func)(const char *);
920         struct module *owner;
921
922         if (!acpi_debugger_initialized)
923                 return -ENODEV;
924         mutex_lock(&acpi_debugger.lock);
925         if (!acpi_debugger.ops) {
926                 ret = -ENODEV;
927                 goto err_lock;
928         }
929         if (!try_module_get(acpi_debugger.owner)) {
930                 ret = -ENODEV;
931                 goto err_lock;
932         }
933         func = acpi_debugger.ops->write_log;
934         owner = acpi_debugger.owner;
935         mutex_unlock(&acpi_debugger.lock);
936
937         ret = func(msg);
938
939         mutex_lock(&acpi_debugger.lock);
940         module_put(owner);
941 err_lock:
942         mutex_unlock(&acpi_debugger.lock);
943         return ret;
944 }
945
946 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947 {
948         ssize_t ret;
949         ssize_t (*func)(char *, size_t);
950         struct module *owner;
951
952         if (!acpi_debugger_initialized)
953                 return -ENODEV;
954         mutex_lock(&acpi_debugger.lock);
955         if (!acpi_debugger.ops) {
956                 ret = -ENODEV;
957                 goto err_lock;
958         }
959         if (!try_module_get(acpi_debugger.owner)) {
960                 ret = -ENODEV;
961                 goto err_lock;
962         }
963         func = acpi_debugger.ops->read_cmd;
964         owner = acpi_debugger.owner;
965         mutex_unlock(&acpi_debugger.lock);
966
967         ret = func(buffer, buffer_length);
968
969         mutex_lock(&acpi_debugger.lock);
970         module_put(owner);
971 err_lock:
972         mutex_unlock(&acpi_debugger.lock);
973         return ret;
974 }
975
976 int acpi_debugger_wait_command_ready(void)
977 {
978         int ret;
979         int (*func)(bool, char *, size_t);
980         struct module *owner;
981
982         if (!acpi_debugger_initialized)
983                 return -ENODEV;
984         mutex_lock(&acpi_debugger.lock);
985         if (!acpi_debugger.ops) {
986                 ret = -ENODEV;
987                 goto err_lock;
988         }
989         if (!try_module_get(acpi_debugger.owner)) {
990                 ret = -ENODEV;
991                 goto err_lock;
992         }
993         func = acpi_debugger.ops->wait_command_ready;
994         owner = acpi_debugger.owner;
995         mutex_unlock(&acpi_debugger.lock);
996
997         ret = func(acpi_gbl_method_executing,
998                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000         mutex_lock(&acpi_debugger.lock);
1001         module_put(owner);
1002 err_lock:
1003         mutex_unlock(&acpi_debugger.lock);
1004         return ret;
1005 }
1006
1007 int acpi_debugger_notify_command_complete(void)
1008 {
1009         int ret;
1010         int (*func)(void);
1011         struct module *owner;
1012
1013         if (!acpi_debugger_initialized)
1014                 return -ENODEV;
1015         mutex_lock(&acpi_debugger.lock);
1016         if (!acpi_debugger.ops) {
1017                 ret = -ENODEV;
1018                 goto err_lock;
1019         }
1020         if (!try_module_get(acpi_debugger.owner)) {
1021                 ret = -ENODEV;
1022                 goto err_lock;
1023         }
1024         func = acpi_debugger.ops->notify_command_complete;
1025         owner = acpi_debugger.owner;
1026         mutex_unlock(&acpi_debugger.lock);
1027
1028         ret = func();
1029
1030         mutex_lock(&acpi_debugger.lock);
1031         module_put(owner);
1032 err_lock:
1033         mutex_unlock(&acpi_debugger.lock);
1034         return ret;
1035 }
1036
1037 int __init acpi_debugger_init(void)
1038 {
1039         mutex_init(&acpi_debugger.lock);
1040         acpi_debugger_initialized = true;
1041         return 0;
1042 }
1043 #endif
1044
1045 /*******************************************************************************
1046  *
1047  * FUNCTION:    acpi_os_execute
1048  *
1049  * PARAMETERS:  Type               - Type of the callback
1050  *              Function           - Function to be executed
1051  *              Context            - Function parameters
1052  *
1053  * RETURN:      Status
1054  *
1055  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056  *              immediately executes function on a separate thread.
1057  *
1058  ******************************************************************************/
1059
1060 acpi_status acpi_os_execute(acpi_execute_type type,
1061                             acpi_osd_exec_callback function, void *context)
1062 {
1063         acpi_status status = AE_OK;
1064         struct acpi_os_dpc *dpc;
1065         struct workqueue_struct *queue;
1066         int ret;
1067         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1068                           "Scheduling function [%p(%p)] for deferred execution.\n",
1069                           function, context));
1070
1071         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1072                 ret = acpi_debugger_create_thread(function, context);
1073                 if (ret) {
1074                         pr_err("Call to kthread_create() failed.\n");
1075                         status = AE_ERROR;
1076                 }
1077                 goto out_thread;
1078         }
1079
1080         /*
1081          * Allocate/initialize DPC structure.  Note that this memory will be
1082          * freed by the callee.  The kernel handles the work_struct list  in a
1083          * way that allows us to also free its memory inside the callee.
1084          * Because we may want to schedule several tasks with different
1085          * parameters we can't use the approach some kernel code uses of
1086          * having a static work_struct.
1087          */
1088
1089         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1090         if (!dpc)
1091                 return AE_NO_MEMORY;
1092
1093         dpc->function = function;
1094         dpc->context = context;
1095
1096         /*
1097          * To prevent lockdep from complaining unnecessarily, make sure that
1098          * there is a different static lockdep key for each workqueue by using
1099          * INIT_WORK() for each of them separately.
1100          */
1101         if (type == OSL_NOTIFY_HANDLER) {
1102                 queue = kacpi_notify_wq;
1103                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1104         } else if (type == OSL_GPE_HANDLER) {
1105                 queue = kacpid_wq;
1106                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107         } else {
1108                 pr_err("Unsupported os_execute type %d.\n", type);
1109                 status = AE_ERROR;
1110         }
1111
1112         if (ACPI_FAILURE(status))
1113                 goto err_workqueue;
1114
1115         /*
1116          * On some machines, a software-initiated SMI causes corruption unless
1117          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1118          * typically it's done in GPE-related methods that are run via
1119          * workqueues, so we can avoid the known corruption cases by always
1120          * queueing on CPU 0.
1121          */
1122         ret = queue_work_on(0, queue, &dpc->work);
1123         if (!ret) {
1124                 printk(KERN_ERR PREFIX
1125                           "Call to queue_work() failed.\n");
1126                 status = AE_ERROR;
1127         }
1128 err_workqueue:
1129         if (ACPI_FAILURE(status))
1130                 kfree(dpc);
1131 out_thread:
1132         return status;
1133 }
1134 EXPORT_SYMBOL(acpi_os_execute);
1135
1136 void acpi_os_wait_events_complete(void)
1137 {
1138         /*
1139          * Make sure the GPE handler or the fixed event handler is not used
1140          * on another CPU after removal.
1141          */
1142         if (acpi_sci_irq_valid())
1143                 synchronize_hardirq(acpi_sci_irq);
1144         flush_workqueue(kacpid_wq);
1145         flush_workqueue(kacpi_notify_wq);
1146 }
1147 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148
1149 struct acpi_hp_work {
1150         struct work_struct work;
1151         struct acpi_device *adev;
1152         u32 src;
1153 };
1154
1155 static void acpi_hotplug_work_fn(struct work_struct *work)
1156 {
1157         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158
1159         acpi_os_wait_events_complete();
1160         acpi_device_hotplug(hpw->adev, hpw->src);
1161         kfree(hpw);
1162 }
1163
1164 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165 {
1166         struct acpi_hp_work *hpw;
1167
1168         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1169                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1170                   adev, src));
1171
1172         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173         if (!hpw)
1174                 return AE_NO_MEMORY;
1175
1176         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177         hpw->adev = adev;
1178         hpw->src = src;
1179         /*
1180          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181          * the hotplug code may call driver .remove() functions, which may
1182          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183          * these workqueues.
1184          */
1185         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186                 kfree(hpw);
1187                 return AE_ERROR;
1188         }
1189         return AE_OK;
1190 }
1191
1192 bool acpi_queue_hotplug_work(struct work_struct *work)
1193 {
1194         return queue_work(kacpi_hotplug_wq, work);
1195 }
1196
1197 acpi_status
1198 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199 {
1200         struct semaphore *sem = NULL;
1201
1202         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203         if (!sem)
1204                 return AE_NO_MEMORY;
1205
1206         sema_init(sem, initial_units);
1207
1208         *handle = (acpi_handle *) sem;
1209
1210         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211                           *handle, initial_units));
1212
1213         return AE_OK;
1214 }
1215
1216 /*
1217  * TODO: A better way to delete semaphores?  Linux doesn't have a
1218  * 'delete_semaphore()' function -- may result in an invalid
1219  * pointer dereference for non-synchronized consumers.  Should
1220  * we at least check for blocked threads and signal/cancel them?
1221  */
1222
1223 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224 {
1225         struct semaphore *sem = (struct semaphore *)handle;
1226
1227         if (!sem)
1228                 return AE_BAD_PARAMETER;
1229
1230         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231
1232         BUG_ON(!list_empty(&sem->wait_list));
1233         kfree(sem);
1234         sem = NULL;
1235
1236         return AE_OK;
1237 }
1238
1239 /*
1240  * TODO: Support for units > 1?
1241  */
1242 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243 {
1244         acpi_status status = AE_OK;
1245         struct semaphore *sem = (struct semaphore *)handle;
1246         long jiffies;
1247         int ret = 0;
1248
1249         if (!acpi_os_initialized)
1250                 return AE_OK;
1251
1252         if (!sem || (units < 1))
1253                 return AE_BAD_PARAMETER;
1254
1255         if (units > 1)
1256                 return AE_SUPPORT;
1257
1258         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259                           handle, units, timeout));
1260
1261         if (timeout == ACPI_WAIT_FOREVER)
1262                 jiffies = MAX_SCHEDULE_TIMEOUT;
1263         else
1264                 jiffies = msecs_to_jiffies(timeout);
1265
1266         ret = down_timeout(sem, jiffies);
1267         if (ret)
1268                 status = AE_TIME;
1269
1270         if (ACPI_FAILURE(status)) {
1271                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1273                                   handle, units, timeout,
1274                                   acpi_format_exception(status)));
1275         } else {
1276                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277                                   "Acquired semaphore[%p|%d|%d]", handle,
1278                                   units, timeout));
1279         }
1280
1281         return status;
1282 }
1283
1284 /*
1285  * TODO: Support for units > 1?
1286  */
1287 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288 {
1289         struct semaphore *sem = (struct semaphore *)handle;
1290
1291         if (!acpi_os_initialized)
1292                 return AE_OK;
1293
1294         if (!sem || (units < 1))
1295                 return AE_BAD_PARAMETER;
1296
1297         if (units > 1)
1298                 return AE_SUPPORT;
1299
1300         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301                           units));
1302
1303         up(sem);
1304
1305         return AE_OK;
1306 }
1307
1308 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1309 {
1310 #ifdef ENABLE_DEBUGGER
1311         if (acpi_in_debugger) {
1312                 u32 chars;
1313
1314                 kdb_read(buffer, buffer_length);
1315
1316                 /* remove the CR kdb includes */
1317                 chars = strlen(buffer) - 1;
1318                 buffer[chars] = '\0';
1319         }
1320 #else
1321         int ret;
1322
1323         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324         if (ret < 0)
1325                 return AE_ERROR;
1326         if (bytes_read)
1327                 *bytes_read = ret;
1328 #endif
1329
1330         return AE_OK;
1331 }
1332 EXPORT_SYMBOL(acpi_os_get_line);
1333
1334 acpi_status acpi_os_wait_command_ready(void)
1335 {
1336         int ret;
1337
1338         ret = acpi_debugger_wait_command_ready();
1339         if (ret < 0)
1340                 return AE_ERROR;
1341         return AE_OK;
1342 }
1343
1344 acpi_status acpi_os_notify_command_complete(void)
1345 {
1346         int ret;
1347
1348         ret = acpi_debugger_notify_command_complete();
1349         if (ret < 0)
1350                 return AE_ERROR;
1351         return AE_OK;
1352 }
1353
1354 acpi_status acpi_os_signal(u32 function, void *info)
1355 {
1356         switch (function) {
1357         case ACPI_SIGNAL_FATAL:
1358                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1359                 break;
1360         case ACPI_SIGNAL_BREAKPOINT:
1361                 /*
1362                  * AML Breakpoint
1363                  * ACPI spec. says to treat it as a NOP unless
1364                  * you are debugging.  So if/when we integrate
1365                  * AML debugger into the kernel debugger its
1366                  * hook will go here.  But until then it is
1367                  * not useful to print anything on breakpoints.
1368                  */
1369                 break;
1370         default:
1371                 break;
1372         }
1373
1374         return AE_OK;
1375 }
1376
1377 static int __init acpi_os_name_setup(char *str)
1378 {
1379         char *p = acpi_os_name;
1380         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381
1382         if (!str || !*str)
1383                 return 0;
1384
1385         for (; count-- && *str; str++) {
1386                 if (isalnum(*str) || *str == ' ' || *str == ':')
1387                         *p++ = *str;
1388                 else if (*str == '\'' || *str == '"')
1389                         continue;
1390                 else
1391                         break;
1392         }
1393         *p = 0;
1394
1395         return 1;
1396
1397 }
1398
1399 __setup("acpi_os_name=", acpi_os_name_setup);
1400
1401 /*
1402  * Disable the auto-serialization of named objects creation methods.
1403  *
1404  * This feature is enabled by default.  It marks the AML control methods
1405  * that contain the opcodes to create named objects as "Serialized".
1406  */
1407 static int __init acpi_no_auto_serialize_setup(char *str)
1408 {
1409         acpi_gbl_auto_serialize_methods = FALSE;
1410         pr_info("ACPI: auto-serialization disabled\n");
1411
1412         return 1;
1413 }
1414
1415 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416
1417 /* Check of resource interference between native drivers and ACPI
1418  * OperationRegions (SystemIO and System Memory only).
1419  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420  * in arbitrary AML code and can interfere with legacy drivers.
1421  * acpi_enforce_resources= can be set to:
1422  *
1423  *   - strict (default) (2)
1424  *     -> further driver trying to access the resources will not load
1425  *   - lax              (1)
1426  *     -> further driver trying to access the resources will load, but you
1427  *     get a system message that something might go wrong...
1428  *
1429  *   - no               (0)
1430  *     -> ACPI Operation Region resources will not be registered
1431  *
1432  */
1433 #define ENFORCE_RESOURCES_STRICT 2
1434 #define ENFORCE_RESOURCES_LAX    1
1435 #define ENFORCE_RESOURCES_NO     0
1436
1437 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438
1439 static int __init acpi_enforce_resources_setup(char *str)
1440 {
1441         if (str == NULL || *str == '\0')
1442                 return 0;
1443
1444         if (!strcmp("strict", str))
1445                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446         else if (!strcmp("lax", str))
1447                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448         else if (!strcmp("no", str))
1449                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450
1451         return 1;
1452 }
1453
1454 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455
1456 /* Check for resource conflicts between ACPI OperationRegions and native
1457  * drivers */
1458 int acpi_check_resource_conflict(const struct resource *res)
1459 {
1460         acpi_adr_space_type space_id;
1461         acpi_size length;
1462         u8 warn = 0;
1463         int clash = 0;
1464
1465         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1466                 return 0;
1467         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1468                 return 0;
1469
1470         if (res->flags & IORESOURCE_IO)
1471                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1472         else
1473                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1474
1475         length = resource_size(res);
1476         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1477                 warn = 1;
1478         clash = acpi_check_address_range(space_id, res->start, length, warn);
1479
1480         if (clash) {
1481                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1482                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1483                                 printk(KERN_NOTICE "ACPI: This conflict may"
1484                                        " cause random problems and system"
1485                                        " instability\n");
1486                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1487                                " for this device, you should use it instead of"
1488                                " the native driver\n");
1489                 }
1490                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1491                         return -EBUSY;
1492         }
1493         return 0;
1494 }
1495 EXPORT_SYMBOL(acpi_check_resource_conflict);
1496
1497 int acpi_check_region(resource_size_t start, resource_size_t n,
1498                       const char *name)
1499 {
1500         struct resource res = {
1501                 .start = start,
1502                 .end   = start + n - 1,
1503                 .name  = name,
1504                 .flags = IORESOURCE_IO,
1505         };
1506
1507         return acpi_check_resource_conflict(&res);
1508 }
1509 EXPORT_SYMBOL(acpi_check_region);
1510
1511 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1512                                               void *_res, void **return_value)
1513 {
1514         struct acpi_mem_space_context **mem_ctx;
1515         union acpi_operand_object *handler_obj;
1516         union acpi_operand_object *region_obj2;
1517         union acpi_operand_object *region_obj;
1518         struct resource *res = _res;
1519         acpi_status status;
1520
1521         region_obj = acpi_ns_get_attached_object(handle);
1522         if (!region_obj)
1523                 return AE_OK;
1524
1525         handler_obj = region_obj->region.handler;
1526         if (!handler_obj)
1527                 return AE_OK;
1528
1529         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1530                 return AE_OK;
1531
1532         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1533                 return AE_OK;
1534
1535         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1536         if (!region_obj2)
1537                 return AE_OK;
1538
1539         mem_ctx = (void *)&region_obj2->extra.region_context;
1540
1541         if (!(mem_ctx[0]->address >= res->start &&
1542               mem_ctx[0]->address < res->end))
1543                 return AE_OK;
1544
1545         status = handler_obj->address_space.setup(region_obj,
1546                                                   ACPI_REGION_DEACTIVATE,
1547                                                   NULL, (void **)mem_ctx);
1548         if (ACPI_SUCCESS(status))
1549                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1550
1551         return status;
1552 }
1553
1554 /**
1555  * acpi_release_memory - Release any mappings done to a memory region
1556  * @handle: Handle to namespace node
1557  * @res: Memory resource
1558  * @level: A level that terminates the search
1559  *
1560  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1561  * overlap with @res and that have already been activated (mapped).
1562  *
1563  * This is a helper that allows drivers to place special requirements on memory
1564  * region that may overlap with operation regions, primarily allowing them to
1565  * safely map the region as non-cached memory.
1566  *
1567  * The unmapped Operation Regions will be automatically remapped next time they
1568  * are called, so the drivers do not need to do anything else.
1569  */
1570 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1571                                 u32 level)
1572 {
1573         acpi_status status;
1574
1575         if (!(res->flags & IORESOURCE_MEM))
1576                 return AE_TYPE;
1577
1578         status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1579                                      acpi_deactivate_mem_region, NULL,
1580                                      res, NULL);
1581         if (ACPI_FAILURE(status))
1582                 return status;
1583
1584         /*
1585          * Wait for all of the mappings queued up for removal by
1586          * acpi_deactivate_mem_region() to actually go away.
1587          */
1588         synchronize_rcu();
1589         rcu_barrier();
1590         flush_scheduled_work();
1591
1592         return AE_OK;
1593 }
1594 EXPORT_SYMBOL_GPL(acpi_release_memory);
1595
1596 /*
1597  * Let drivers know whether the resource checks are effective
1598  */
1599 int acpi_resources_are_enforced(void)
1600 {
1601         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1602 }
1603 EXPORT_SYMBOL(acpi_resources_are_enforced);
1604
1605 /*
1606  * Deallocate the memory for a spinlock.
1607  */
1608 void acpi_os_delete_lock(acpi_spinlock handle)
1609 {
1610         ACPI_FREE(handle);
1611 }
1612
1613 /*
1614  * Acquire a spinlock.
1615  *
1616  * handle is a pointer to the spinlock_t.
1617  */
1618
1619 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1620         __acquires(lockp)
1621 {
1622         acpi_cpu_flags flags;
1623         spin_lock_irqsave(lockp, flags);
1624         return flags;
1625 }
1626
1627 /*
1628  * Release a spinlock. See above.
1629  */
1630
1631 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1632         __releases(lockp)
1633 {
1634         spin_unlock_irqrestore(lockp, flags);
1635 }
1636
1637 #ifndef ACPI_USE_LOCAL_CACHE
1638
1639 /*******************************************************************************
1640  *
1641  * FUNCTION:    acpi_os_create_cache
1642  *
1643  * PARAMETERS:  name      - Ascii name for the cache
1644  *              size      - Size of each cached object
1645  *              depth     - Maximum depth of the cache (in objects) <ignored>
1646  *              cache     - Where the new cache object is returned
1647  *
1648  * RETURN:      status
1649  *
1650  * DESCRIPTION: Create a cache object
1651  *
1652  ******************************************************************************/
1653
1654 acpi_status
1655 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1656 {
1657         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1658         if (*cache == NULL)
1659                 return AE_ERROR;
1660         else
1661                 return AE_OK;
1662 }
1663
1664 /*******************************************************************************
1665  *
1666  * FUNCTION:    acpi_os_purge_cache
1667  *
1668  * PARAMETERS:  Cache           - Handle to cache object
1669  *
1670  * RETURN:      Status
1671  *
1672  * DESCRIPTION: Free all objects within the requested cache.
1673  *
1674  ******************************************************************************/
1675
1676 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1677 {
1678         kmem_cache_shrink(cache);
1679         return (AE_OK);
1680 }
1681
1682 /*******************************************************************************
1683  *
1684  * FUNCTION:    acpi_os_delete_cache
1685  *
1686  * PARAMETERS:  Cache           - Handle to cache object
1687  *
1688  * RETURN:      Status
1689  *
1690  * DESCRIPTION: Free all objects within the requested cache and delete the
1691  *              cache object.
1692  *
1693  ******************************************************************************/
1694
1695 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1696 {
1697         kmem_cache_destroy(cache);
1698         return (AE_OK);
1699 }
1700
1701 /*******************************************************************************
1702  *
1703  * FUNCTION:    acpi_os_release_object
1704  *
1705  * PARAMETERS:  Cache       - Handle to cache object
1706  *              Object      - The object to be released
1707  *
1708  * RETURN:      None
1709  *
1710  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1711  *              the object is deleted.
1712  *
1713  ******************************************************************************/
1714
1715 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1716 {
1717         kmem_cache_free(cache, object);
1718         return (AE_OK);
1719 }
1720 #endif
1721
1722 static int __init acpi_no_static_ssdt_setup(char *s)
1723 {
1724         acpi_gbl_disable_ssdt_table_install = TRUE;
1725         pr_info("ACPI: static SSDT installation disabled\n");
1726
1727         return 0;
1728 }
1729
1730 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1731
1732 static int __init acpi_disable_return_repair(char *s)
1733 {
1734         printk(KERN_NOTICE PREFIX
1735                "ACPI: Predefined validation mechanism disabled\n");
1736         acpi_gbl_disable_auto_repair = TRUE;
1737
1738         return 1;
1739 }
1740
1741 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1742
1743 acpi_status __init acpi_os_initialize(void)
1744 {
1745         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1746         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1747
1748         acpi_gbl_xgpe0_block_logical_address =
1749                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1750         acpi_gbl_xgpe1_block_logical_address =
1751                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1752
1753         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1754                 /*
1755                  * Use acpi_os_map_generic_address to pre-map the reset
1756                  * register if it's in system memory.
1757                  */
1758                 void *rv;
1759
1760                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1761                 pr_debug(PREFIX "%s: map reset_reg %s\n", __func__,
1762                          rv ? "successful" : "failed");
1763         }
1764         acpi_os_initialized = true;
1765
1766         return AE_OK;
1767 }
1768
1769 acpi_status __init acpi_os_initialize1(void)
1770 {
1771         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774         BUG_ON(!kacpid_wq);
1775         BUG_ON(!kacpi_notify_wq);
1776         BUG_ON(!kacpi_hotplug_wq);
1777         acpi_osi_init();
1778         return AE_OK;
1779 }
1780
1781 acpi_status acpi_os_terminate(void)
1782 {
1783         if (acpi_irq_handler) {
1784                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785                                                  acpi_irq_handler);
1786         }
1787
1788         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790         acpi_gbl_xgpe0_block_logical_address = 0UL;
1791         acpi_gbl_xgpe1_block_logical_address = 0UL;
1792
1793         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1794         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1795
1796         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1797                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1798
1799         destroy_workqueue(kacpid_wq);
1800         destroy_workqueue(kacpi_notify_wq);
1801         destroy_workqueue(kacpi_hotplug_wq);
1802
1803         return AE_OK;
1804 }
1805
1806 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1807                                   u32 pm1b_control)
1808 {
1809         int rc = 0;
1810         if (__acpi_os_prepare_sleep)
1811                 rc = __acpi_os_prepare_sleep(sleep_state,
1812                                              pm1a_control, pm1b_control);
1813         if (rc < 0)
1814                 return AE_ERROR;
1815         else if (rc > 0)
1816                 return AE_CTRL_TERMINATE;
1817
1818         return AE_OK;
1819 }
1820
1821 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1822                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1823 {
1824         __acpi_os_prepare_sleep = func;
1825 }
1826
1827 #if (ACPI_REDUCED_HARDWARE)
1828 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1829                                   u32 val_b)
1830 {
1831         int rc = 0;
1832         if (__acpi_os_prepare_extended_sleep)
1833                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1834                                              val_a, val_b);
1835         if (rc < 0)
1836                 return AE_ERROR;
1837         else if (rc > 0)
1838                 return AE_CTRL_TERMINATE;
1839
1840         return AE_OK;
1841 }
1842 #else
1843 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1844                                   u32 val_b)
1845 {
1846         return AE_OK;
1847 }
1848 #endif
1849
1850 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1851                                u32 val_a, u32 val_b))
1852 {
1853         __acpi_os_prepare_extended_sleep = func;
1854 }
1855
1856 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1857                                 u32 reg_a_value, u32 reg_b_value)
1858 {
1859         acpi_status status;
1860
1861         if (acpi_gbl_reduced_hardware)
1862                 status = acpi_os_prepare_extended_sleep(sleep_state,
1863                                                         reg_a_value,
1864                                                         reg_b_value);
1865         else
1866                 status = acpi_os_prepare_sleep(sleep_state,
1867                                                reg_a_value, reg_b_value);
1868         return status;
1869 }