x86/CPU/AMD: Update the Zenbleed microcode revisions
[linux-2.6-microblaze.git] / drivers / acpi / numa / hmat.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019, Intel Corporation.
4  *
5  * Heterogeneous Memory Attributes Table (HMAT) representation
6  *
7  * This program parses and reports the platform's HMAT tables, and registers
8  * the applicable attributes with the node's interfaces.
9  */
10
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12
13 #include <linux/acpi.h>
14 #include <linux/bitops.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/platform_device.h>
20 #include <linux/list_sort.h>
21 #include <linux/memregion.h>
22 #include <linux/memory.h>
23 #include <linux/mutex.h>
24 #include <linux/node.h>
25 #include <linux/sysfs.h>
26 #include <linux/dax.h>
27 #include <linux/memory-tiers.h>
28
29 static u8 hmat_revision;
30 static int hmat_disable __initdata;
31
32 void __init disable_hmat(void)
33 {
34         hmat_disable = 1;
35 }
36
37 static LIST_HEAD(targets);
38 static LIST_HEAD(initiators);
39 static LIST_HEAD(localities);
40
41 static DEFINE_MUTEX(target_lock);
42
43 /*
44  * The defined enum order is used to prioritize attributes to break ties when
45  * selecting the best performing node.
46  */
47 enum locality_types {
48         WRITE_LATENCY,
49         READ_LATENCY,
50         WRITE_BANDWIDTH,
51         READ_BANDWIDTH,
52 };
53
54 static struct memory_locality *localities_types[4];
55
56 struct target_cache {
57         struct list_head node;
58         struct node_cache_attrs cache_attrs;
59 };
60
61 enum {
62         NODE_ACCESS_CLASS_0 = 0,
63         NODE_ACCESS_CLASS_1,
64         NODE_ACCESS_CLASS_GENPORT_SINK,
65         NODE_ACCESS_CLASS_MAX,
66 };
67
68 struct memory_target {
69         struct list_head node;
70         unsigned int memory_pxm;
71         unsigned int processor_pxm;
72         struct resource memregions;
73         struct access_coordinate coord[NODE_ACCESS_CLASS_MAX];
74         struct list_head caches;
75         struct node_cache_attrs cache_attrs;
76         u8 gen_port_device_handle[ACPI_SRAT_DEVICE_HANDLE_SIZE];
77         bool registered;
78 };
79
80 struct memory_initiator {
81         struct list_head node;
82         unsigned int processor_pxm;
83         bool has_cpu;
84 };
85
86 struct memory_locality {
87         struct list_head node;
88         struct acpi_hmat_locality *hmat_loc;
89 };
90
91 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
92 {
93         struct memory_initiator *initiator;
94
95         list_for_each_entry(initiator, &initiators, node)
96                 if (initiator->processor_pxm == cpu_pxm)
97                         return initiator;
98         return NULL;
99 }
100
101 static struct memory_target *find_mem_target(unsigned int mem_pxm)
102 {
103         struct memory_target *target;
104
105         list_for_each_entry(target, &targets, node)
106                 if (target->memory_pxm == mem_pxm)
107                         return target;
108         return NULL;
109 }
110
111 static struct memory_target *acpi_find_genport_target(u32 uid)
112 {
113         struct memory_target *target;
114         u32 target_uid;
115         u8 *uid_ptr;
116
117         list_for_each_entry(target, &targets, node) {
118                 uid_ptr = target->gen_port_device_handle + 8;
119                 target_uid = *(u32 *)uid_ptr;
120                 if (uid == target_uid)
121                         return target;
122         }
123
124         return NULL;
125 }
126
127 /**
128  * acpi_get_genport_coordinates - Retrieve the access coordinates for a generic port
129  * @uid: ACPI unique id
130  * @coord: The access coordinates written back out for the generic port
131  *
132  * Return: 0 on success. Errno on failure.
133  *
134  * Only supports device handles that are ACPI. Assume ACPI0016 HID for CXL.
135  */
136 int acpi_get_genport_coordinates(u32 uid,
137                                  struct access_coordinate *coord)
138 {
139         struct memory_target *target;
140
141         guard(mutex)(&target_lock);
142         target = acpi_find_genport_target(uid);
143         if (!target)
144                 return -ENOENT;
145
146         *coord = target->coord[NODE_ACCESS_CLASS_GENPORT_SINK];
147
148         return 0;
149 }
150 EXPORT_SYMBOL_NS_GPL(acpi_get_genport_coordinates, CXL);
151
152 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
153 {
154         struct memory_initiator *initiator;
155
156         if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
157                 return;
158
159         initiator = find_mem_initiator(cpu_pxm);
160         if (initiator)
161                 return;
162
163         initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
164         if (!initiator)
165                 return;
166
167         initiator->processor_pxm = cpu_pxm;
168         initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
169         list_add_tail(&initiator->node, &initiators);
170 }
171
172 static __init struct memory_target *alloc_target(unsigned int mem_pxm)
173 {
174         struct memory_target *target;
175
176         target = find_mem_target(mem_pxm);
177         if (!target) {
178                 target = kzalloc(sizeof(*target), GFP_KERNEL);
179                 if (!target)
180                         return NULL;
181                 target->memory_pxm = mem_pxm;
182                 target->processor_pxm = PXM_INVAL;
183                 target->memregions = (struct resource) {
184                         .name   = "ACPI mem",
185                         .start  = 0,
186                         .end    = -1,
187                         .flags  = IORESOURCE_MEM,
188                 };
189                 list_add_tail(&target->node, &targets);
190                 INIT_LIST_HEAD(&target->caches);
191         }
192
193         return target;
194 }
195
196 static __init void alloc_memory_target(unsigned int mem_pxm,
197                                        resource_size_t start,
198                                        resource_size_t len)
199 {
200         struct memory_target *target;
201
202         target = alloc_target(mem_pxm);
203         if (!target)
204                 return;
205
206         /*
207          * There are potentially multiple ranges per PXM, so record each
208          * in the per-target memregions resource tree.
209          */
210         if (!__request_region(&target->memregions, start, len, "memory target",
211                                 IORESOURCE_MEM))
212                 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
213                                 start, start + len, mem_pxm);
214 }
215
216 static __init void alloc_genport_target(unsigned int mem_pxm, u8 *handle)
217 {
218         struct memory_target *target;
219
220         target = alloc_target(mem_pxm);
221         if (!target)
222                 return;
223
224         memcpy(target->gen_port_device_handle, handle,
225                ACPI_SRAT_DEVICE_HANDLE_SIZE);
226 }
227
228 static __init const char *hmat_data_type(u8 type)
229 {
230         switch (type) {
231         case ACPI_HMAT_ACCESS_LATENCY:
232                 return "Access Latency";
233         case ACPI_HMAT_READ_LATENCY:
234                 return "Read Latency";
235         case ACPI_HMAT_WRITE_LATENCY:
236                 return "Write Latency";
237         case ACPI_HMAT_ACCESS_BANDWIDTH:
238                 return "Access Bandwidth";
239         case ACPI_HMAT_READ_BANDWIDTH:
240                 return "Read Bandwidth";
241         case ACPI_HMAT_WRITE_BANDWIDTH:
242                 return "Write Bandwidth";
243         default:
244                 return "Reserved";
245         }
246 }
247
248 static __init const char *hmat_data_type_suffix(u8 type)
249 {
250         switch (type) {
251         case ACPI_HMAT_ACCESS_LATENCY:
252         case ACPI_HMAT_READ_LATENCY:
253         case ACPI_HMAT_WRITE_LATENCY:
254                 return " nsec";
255         case ACPI_HMAT_ACCESS_BANDWIDTH:
256         case ACPI_HMAT_READ_BANDWIDTH:
257         case ACPI_HMAT_WRITE_BANDWIDTH:
258                 return " MB/s";
259         default:
260                 return "";
261         }
262 }
263
264 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
265 {
266         u32 value;
267
268         /*
269          * Check for invalid and overflow values
270          */
271         if (entry == 0xffff || !entry)
272                 return 0;
273         else if (base > (UINT_MAX / (entry)))
274                 return 0;
275
276         /*
277          * Divide by the base unit for version 1, convert latency from
278          * picosenonds to nanoseconds if revision 2.
279          */
280         value = entry * base;
281         if (hmat_revision == 1) {
282                 if (value < 10)
283                         return 0;
284                 value = DIV_ROUND_UP(value, 10);
285         } else if (hmat_revision == 2) {
286                 switch (type) {
287                 case ACPI_HMAT_ACCESS_LATENCY:
288                 case ACPI_HMAT_READ_LATENCY:
289                 case ACPI_HMAT_WRITE_LATENCY:
290                         value = DIV_ROUND_UP(value, 1000);
291                         break;
292                 default:
293                         break;
294                 }
295         }
296         return value;
297 }
298
299 static void hmat_update_target_access(struct memory_target *target,
300                                       u8 type, u32 value, int access)
301 {
302         switch (type) {
303         case ACPI_HMAT_ACCESS_LATENCY:
304                 target->coord[access].read_latency = value;
305                 target->coord[access].write_latency = value;
306                 break;
307         case ACPI_HMAT_READ_LATENCY:
308                 target->coord[access].read_latency = value;
309                 break;
310         case ACPI_HMAT_WRITE_LATENCY:
311                 target->coord[access].write_latency = value;
312                 break;
313         case ACPI_HMAT_ACCESS_BANDWIDTH:
314                 target->coord[access].read_bandwidth = value;
315                 target->coord[access].write_bandwidth = value;
316                 break;
317         case ACPI_HMAT_READ_BANDWIDTH:
318                 target->coord[access].read_bandwidth = value;
319                 break;
320         case ACPI_HMAT_WRITE_BANDWIDTH:
321                 target->coord[access].write_bandwidth = value;
322                 break;
323         default:
324                 break;
325         }
326 }
327
328 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
329 {
330         struct memory_locality *loc;
331
332         loc = kzalloc(sizeof(*loc), GFP_KERNEL);
333         if (!loc) {
334                 pr_notice_once("Failed to allocate HMAT locality\n");
335                 return;
336         }
337
338         loc->hmat_loc = hmat_loc;
339         list_add_tail(&loc->node, &localities);
340
341         switch (hmat_loc->data_type) {
342         case ACPI_HMAT_ACCESS_LATENCY:
343                 localities_types[READ_LATENCY] = loc;
344                 localities_types[WRITE_LATENCY] = loc;
345                 break;
346         case ACPI_HMAT_READ_LATENCY:
347                 localities_types[READ_LATENCY] = loc;
348                 break;
349         case ACPI_HMAT_WRITE_LATENCY:
350                 localities_types[WRITE_LATENCY] = loc;
351                 break;
352         case ACPI_HMAT_ACCESS_BANDWIDTH:
353                 localities_types[READ_BANDWIDTH] = loc;
354                 localities_types[WRITE_BANDWIDTH] = loc;
355                 break;
356         case ACPI_HMAT_READ_BANDWIDTH:
357                 localities_types[READ_BANDWIDTH] = loc;
358                 break;
359         case ACPI_HMAT_WRITE_BANDWIDTH:
360                 localities_types[WRITE_BANDWIDTH] = loc;
361                 break;
362         default:
363                 break;
364         }
365 }
366
367 static __init void hmat_update_target(unsigned int tgt_pxm, unsigned int init_pxm,
368                                       u8 mem_hier, u8 type, u32 value)
369 {
370         struct memory_target *target = find_mem_target(tgt_pxm);
371
372         if (mem_hier != ACPI_HMAT_MEMORY)
373                 return;
374
375         if (target && target->processor_pxm == init_pxm) {
376                 hmat_update_target_access(target, type, value,
377                                           NODE_ACCESS_CLASS_0);
378                 /* If the node has a CPU, update access 1 */
379                 if (node_state(pxm_to_node(init_pxm), N_CPU))
380                         hmat_update_target_access(target, type, value,
381                                                   NODE_ACCESS_CLASS_1);
382         }
383 }
384
385 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
386                                       const unsigned long end)
387 {
388         struct acpi_hmat_locality *hmat_loc = (void *)header;
389         unsigned int init, targ, total_size, ipds, tpds;
390         u32 *inits, *targs, value;
391         u16 *entries;
392         u8 type, mem_hier;
393
394         if (hmat_loc->header.length < sizeof(*hmat_loc)) {
395                 pr_notice("Unexpected locality header length: %u\n",
396                          hmat_loc->header.length);
397                 return -EINVAL;
398         }
399
400         type = hmat_loc->data_type;
401         mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
402         ipds = hmat_loc->number_of_initiator_Pds;
403         tpds = hmat_loc->number_of_target_Pds;
404         total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
405                      sizeof(*inits) * ipds + sizeof(*targs) * tpds;
406         if (hmat_loc->header.length < total_size) {
407                 pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
408                          hmat_loc->header.length, total_size);
409                 return -EINVAL;
410         }
411
412         pr_info("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
413                 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
414                 hmat_loc->entry_base_unit);
415
416         inits = (u32 *)(hmat_loc + 1);
417         targs = inits + ipds;
418         entries = (u16 *)(targs + tpds);
419         for (init = 0; init < ipds; init++) {
420                 alloc_memory_initiator(inits[init]);
421                 for (targ = 0; targ < tpds; targ++) {
422                         value = hmat_normalize(entries[init * tpds + targ],
423                                                hmat_loc->entry_base_unit,
424                                                type);
425                         pr_info("  Initiator-Target[%u-%u]:%u%s\n",
426                                 inits[init], targs[targ], value,
427                                 hmat_data_type_suffix(type));
428
429                         hmat_update_target(targs[targ], inits[init],
430                                            mem_hier, type, value);
431                 }
432         }
433
434         if (mem_hier == ACPI_HMAT_MEMORY)
435                 hmat_add_locality(hmat_loc);
436
437         return 0;
438 }
439
440 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
441                                    const unsigned long end)
442 {
443         struct acpi_hmat_cache *cache = (void *)header;
444         struct memory_target *target;
445         struct target_cache *tcache;
446         u32 attrs;
447
448         if (cache->header.length < sizeof(*cache)) {
449                 pr_notice("Unexpected cache header length: %u\n",
450                          cache->header.length);
451                 return -EINVAL;
452         }
453
454         attrs = cache->cache_attributes;
455         pr_info("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
456                 cache->memory_PD, cache->cache_size, attrs,
457                 cache->number_of_SMBIOShandles);
458
459         target = find_mem_target(cache->memory_PD);
460         if (!target)
461                 return 0;
462
463         tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
464         if (!tcache) {
465                 pr_notice_once("Failed to allocate HMAT cache info\n");
466                 return 0;
467         }
468
469         tcache->cache_attrs.size = cache->cache_size;
470         tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
471         tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
472
473         switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
474         case ACPI_HMAT_CA_DIRECT_MAPPED:
475                 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
476                 break;
477         case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
478                 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
479                 break;
480         case ACPI_HMAT_CA_NONE:
481         default:
482                 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
483                 break;
484         }
485
486         switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
487         case ACPI_HMAT_CP_WB:
488                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
489                 break;
490         case ACPI_HMAT_CP_WT:
491                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
492                 break;
493         case ACPI_HMAT_CP_NONE:
494         default:
495                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
496                 break;
497         }
498         list_add_tail(&tcache->node, &target->caches);
499
500         return 0;
501 }
502
503 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
504                                               const unsigned long end)
505 {
506         struct acpi_hmat_proximity_domain *p = (void *)header;
507         struct memory_target *target = NULL;
508
509         if (p->header.length != sizeof(*p)) {
510                 pr_notice("Unexpected address range header length: %u\n",
511                          p->header.length);
512                 return -EINVAL;
513         }
514
515         if (hmat_revision == 1)
516                 pr_info("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
517                         p->reserved3, p->reserved4, p->flags, p->processor_PD,
518                         p->memory_PD);
519         else
520                 pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
521                         p->flags, p->processor_PD, p->memory_PD);
522
523         if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
524             hmat_revision > 1) {
525                 target = find_mem_target(p->memory_PD);
526                 if (!target) {
527                         pr_debug("Memory Domain missing from SRAT\n");
528                         return -EINVAL;
529                 }
530         }
531         if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
532                 int p_node = pxm_to_node(p->processor_PD);
533
534                 if (p_node == NUMA_NO_NODE) {
535                         pr_debug("Invalid Processor Domain\n");
536                         return -EINVAL;
537                 }
538                 target->processor_pxm = p->processor_PD;
539         }
540
541         return 0;
542 }
543
544 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
545                                       const unsigned long end)
546 {
547         struct acpi_hmat_structure *hdr = (void *)header;
548
549         if (!hdr)
550                 return -EINVAL;
551
552         switch (hdr->type) {
553         case ACPI_HMAT_TYPE_PROXIMITY:
554                 return hmat_parse_proximity_domain(header, end);
555         case ACPI_HMAT_TYPE_LOCALITY:
556                 return hmat_parse_locality(header, end);
557         case ACPI_HMAT_TYPE_CACHE:
558                 return hmat_parse_cache(header, end);
559         default:
560                 return -EINVAL;
561         }
562 }
563
564 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
565                                           const unsigned long end)
566 {
567         struct acpi_srat_mem_affinity *ma = (void *)header;
568
569         if (!ma)
570                 return -EINVAL;
571         if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
572                 return 0;
573         alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
574         return 0;
575 }
576
577 static __init int srat_parse_genport_affinity(union acpi_subtable_headers *header,
578                                               const unsigned long end)
579 {
580         struct acpi_srat_generic_affinity *ga = (void *)header;
581
582         if (!ga)
583                 return -EINVAL;
584
585         if (!(ga->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED))
586                 return 0;
587
588         /* Skip PCI device_handle for now */
589         if (ga->device_handle_type != 0)
590                 return 0;
591
592         alloc_genport_target(ga->proximity_domain,
593                              (u8 *)ga->device_handle);
594
595         return 0;
596 }
597
598 static u32 hmat_initiator_perf(struct memory_target *target,
599                                struct memory_initiator *initiator,
600                                struct acpi_hmat_locality *hmat_loc)
601 {
602         unsigned int ipds, tpds, i, idx = 0, tdx = 0;
603         u32 *inits, *targs;
604         u16 *entries;
605
606         ipds = hmat_loc->number_of_initiator_Pds;
607         tpds = hmat_loc->number_of_target_Pds;
608         inits = (u32 *)(hmat_loc + 1);
609         targs = inits + ipds;
610         entries = (u16 *)(targs + tpds);
611
612         for (i = 0; i < ipds; i++) {
613                 if (inits[i] == initiator->processor_pxm) {
614                         idx = i;
615                         break;
616                 }
617         }
618
619         if (i == ipds)
620                 return 0;
621
622         for (i = 0; i < tpds; i++) {
623                 if (targs[i] == target->memory_pxm) {
624                         tdx = i;
625                         break;
626                 }
627         }
628         if (i == tpds)
629                 return 0;
630
631         return hmat_normalize(entries[idx * tpds + tdx],
632                               hmat_loc->entry_base_unit,
633                               hmat_loc->data_type);
634 }
635
636 static bool hmat_update_best(u8 type, u32 value, u32 *best)
637 {
638         bool updated = false;
639
640         if (!value)
641                 return false;
642
643         switch (type) {
644         case ACPI_HMAT_ACCESS_LATENCY:
645         case ACPI_HMAT_READ_LATENCY:
646         case ACPI_HMAT_WRITE_LATENCY:
647                 if (!*best || *best > value) {
648                         *best = value;
649                         updated = true;
650                 }
651                 break;
652         case ACPI_HMAT_ACCESS_BANDWIDTH:
653         case ACPI_HMAT_READ_BANDWIDTH:
654         case ACPI_HMAT_WRITE_BANDWIDTH:
655                 if (!*best || *best < value) {
656                         *best = value;
657                         updated = true;
658                 }
659                 break;
660         }
661
662         return updated;
663 }
664
665 static int initiator_cmp(void *priv, const struct list_head *a,
666                          const struct list_head *b)
667 {
668         struct memory_initiator *ia;
669         struct memory_initiator *ib;
670
671         ia = list_entry(a, struct memory_initiator, node);
672         ib = list_entry(b, struct memory_initiator, node);
673
674         return ia->processor_pxm - ib->processor_pxm;
675 }
676
677 static int initiators_to_nodemask(unsigned long *p_nodes)
678 {
679         struct memory_initiator *initiator;
680
681         if (list_empty(&initiators))
682                 return -ENXIO;
683
684         list_for_each_entry(initiator, &initiators, node)
685                 set_bit(initiator->processor_pxm, p_nodes);
686
687         return 0;
688 }
689
690 static void hmat_update_target_attrs(struct memory_target *target,
691                                      unsigned long *p_nodes, int access)
692 {
693         struct memory_initiator *initiator;
694         unsigned int cpu_nid;
695         struct memory_locality *loc = NULL;
696         u32 best = 0;
697         int i;
698
699         /* Don't update for generic port if there's no device handle */
700         if (access == NODE_ACCESS_CLASS_GENPORT_SINK &&
701             !(*(u16 *)target->gen_port_device_handle))
702                 return;
703
704         bitmap_zero(p_nodes, MAX_NUMNODES);
705         /*
706          * If the Address Range Structure provides a local processor pxm, set
707          * only that one. Otherwise, find the best performance attributes and
708          * collect all initiators that match.
709          */
710         if (target->processor_pxm != PXM_INVAL) {
711                 cpu_nid = pxm_to_node(target->processor_pxm);
712                 if (access == 0 || node_state(cpu_nid, N_CPU)) {
713                         set_bit(target->processor_pxm, p_nodes);
714                         return;
715                 }
716         }
717
718         if (list_empty(&localities))
719                 return;
720
721         /*
722          * We need the initiator list sorted so we can use bitmap_clear for
723          * previously set initiators when we find a better memory accessor.
724          * We'll also use the sorting to prime the candidate nodes with known
725          * initiators.
726          */
727         list_sort(NULL, &initiators, initiator_cmp);
728         if (initiators_to_nodemask(p_nodes) < 0)
729                 return;
730
731         for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
732                 loc = localities_types[i];
733                 if (!loc)
734                         continue;
735
736                 best = 0;
737                 list_for_each_entry(initiator, &initiators, node) {
738                         u32 value;
739
740                         if (access == 1 && !initiator->has_cpu) {
741                                 clear_bit(initiator->processor_pxm, p_nodes);
742                                 continue;
743                         }
744                         if (!test_bit(initiator->processor_pxm, p_nodes))
745                                 continue;
746
747                         value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
748                         if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
749                                 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
750                         if (value != best)
751                                 clear_bit(initiator->processor_pxm, p_nodes);
752                 }
753                 if (best)
754                         hmat_update_target_access(target, loc->hmat_loc->data_type, best, access);
755         }
756 }
757
758 static void __hmat_register_target_initiators(struct memory_target *target,
759                                               unsigned long *p_nodes,
760                                               int access)
761 {
762         unsigned int mem_nid, cpu_nid;
763         int i;
764
765         mem_nid = pxm_to_node(target->memory_pxm);
766         hmat_update_target_attrs(target, p_nodes, access);
767         for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
768                 cpu_nid = pxm_to_node(i);
769                 register_memory_node_under_compute_node(mem_nid, cpu_nid, access);
770         }
771 }
772
773 static void hmat_register_generic_target_initiators(struct memory_target *target)
774 {
775         static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
776
777         __hmat_register_target_initiators(target, p_nodes,
778                                           NODE_ACCESS_CLASS_GENPORT_SINK);
779 }
780
781 static void hmat_register_target_initiators(struct memory_target *target)
782 {
783         static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
784
785         __hmat_register_target_initiators(target, p_nodes, 0);
786         __hmat_register_target_initiators(target, p_nodes, 1);
787 }
788
789 static void hmat_register_target_cache(struct memory_target *target)
790 {
791         unsigned mem_nid = pxm_to_node(target->memory_pxm);
792         struct target_cache *tcache;
793
794         list_for_each_entry(tcache, &target->caches, node)
795                 node_add_cache(mem_nid, &tcache->cache_attrs);
796 }
797
798 static void hmat_register_target_perf(struct memory_target *target, int access)
799 {
800         unsigned mem_nid = pxm_to_node(target->memory_pxm);
801         node_set_perf_attrs(mem_nid, &target->coord[access], access);
802 }
803
804 static void hmat_register_target_devices(struct memory_target *target)
805 {
806         struct resource *res;
807
808         /*
809          * Do not bother creating devices if no driver is available to
810          * consume them.
811          */
812         if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
813                 return;
814
815         for (res = target->memregions.child; res; res = res->sibling) {
816                 int target_nid = pxm_to_node(target->memory_pxm);
817
818                 hmem_register_resource(target_nid, res);
819         }
820 }
821
822 static void hmat_register_target(struct memory_target *target)
823 {
824         int nid = pxm_to_node(target->memory_pxm);
825
826         /*
827          * Devices may belong to either an offline or online
828          * node, so unconditionally add them.
829          */
830         hmat_register_target_devices(target);
831
832         /*
833          * Register generic port perf numbers. The nid may not be
834          * initialized and is still NUMA_NO_NODE.
835          */
836         mutex_lock(&target_lock);
837         if (*(u16 *)target->gen_port_device_handle) {
838                 hmat_register_generic_target_initiators(target);
839                 target->registered = true;
840         }
841         mutex_unlock(&target_lock);
842
843         /*
844          * Skip offline nodes. This can happen when memory
845          * marked EFI_MEMORY_SP, "specific purpose", is applied
846          * to all the memory in a proximity domain leading to
847          * the node being marked offline / unplugged, or if
848          * memory-only "hotplug" node is offline.
849          */
850         if (nid == NUMA_NO_NODE || !node_online(nid))
851                 return;
852
853         mutex_lock(&target_lock);
854         if (!target->registered) {
855                 hmat_register_target_initiators(target);
856                 hmat_register_target_cache(target);
857                 hmat_register_target_perf(target, NODE_ACCESS_CLASS_0);
858                 hmat_register_target_perf(target, NODE_ACCESS_CLASS_1);
859                 target->registered = true;
860         }
861         mutex_unlock(&target_lock);
862 }
863
864 static void hmat_register_targets(void)
865 {
866         struct memory_target *target;
867
868         list_for_each_entry(target, &targets, node)
869                 hmat_register_target(target);
870 }
871
872 static int hmat_callback(struct notifier_block *self,
873                          unsigned long action, void *arg)
874 {
875         struct memory_target *target;
876         struct memory_notify *mnb = arg;
877         int pxm, nid = mnb->status_change_nid;
878
879         if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
880                 return NOTIFY_OK;
881
882         pxm = node_to_pxm(nid);
883         target = find_mem_target(pxm);
884         if (!target)
885                 return NOTIFY_OK;
886
887         hmat_register_target(target);
888         return NOTIFY_OK;
889 }
890
891 static int hmat_set_default_dram_perf(void)
892 {
893         int rc;
894         int nid, pxm;
895         struct memory_target *target;
896         struct access_coordinate *attrs;
897
898         if (!default_dram_type)
899                 return -EIO;
900
901         for_each_node_mask(nid, default_dram_type->nodes) {
902                 pxm = node_to_pxm(nid);
903                 target = find_mem_target(pxm);
904                 if (!target)
905                         continue;
906                 attrs = &target->coord[1];
907                 rc = mt_set_default_dram_perf(nid, attrs, "ACPI HMAT");
908                 if (rc)
909                         return rc;
910         }
911
912         return 0;
913 }
914
915 static int hmat_calculate_adistance(struct notifier_block *self,
916                                     unsigned long nid, void *data)
917 {
918         static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
919         struct memory_target *target;
920         struct access_coordinate *perf;
921         int *adist = data;
922         int pxm;
923
924         pxm = node_to_pxm(nid);
925         target = find_mem_target(pxm);
926         if (!target)
927                 return NOTIFY_OK;
928
929         mutex_lock(&target_lock);
930         hmat_update_target_attrs(target, p_nodes, 1);
931         mutex_unlock(&target_lock);
932
933         perf = &target->coord[1];
934
935         if (mt_perf_to_adistance(perf, adist))
936                 return NOTIFY_OK;
937
938         return NOTIFY_STOP;
939 }
940
941 static struct notifier_block hmat_adist_nb __meminitdata = {
942         .notifier_call = hmat_calculate_adistance,
943         .priority = 100,
944 };
945
946 static __init void hmat_free_structures(void)
947 {
948         struct memory_target *target, *tnext;
949         struct memory_locality *loc, *lnext;
950         struct memory_initiator *initiator, *inext;
951         struct target_cache *tcache, *cnext;
952
953         list_for_each_entry_safe(target, tnext, &targets, node) {
954                 struct resource *res, *res_next;
955
956                 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
957                         list_del(&tcache->node);
958                         kfree(tcache);
959                 }
960
961                 list_del(&target->node);
962                 res = target->memregions.child;
963                 while (res) {
964                         res_next = res->sibling;
965                         __release_region(&target->memregions, res->start,
966                                         resource_size(res));
967                         res = res_next;
968                 }
969                 kfree(target);
970         }
971
972         list_for_each_entry_safe(initiator, inext, &initiators, node) {
973                 list_del(&initiator->node);
974                 kfree(initiator);
975         }
976
977         list_for_each_entry_safe(loc, lnext, &localities, node) {
978                 list_del(&loc->node);
979                 kfree(loc);
980         }
981 }
982
983 static __init int hmat_init(void)
984 {
985         struct acpi_table_header *tbl;
986         enum acpi_hmat_type i;
987         acpi_status status;
988
989         if (srat_disabled() || hmat_disable)
990                 return 0;
991
992         status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
993         if (ACPI_FAILURE(status))
994                 return 0;
995
996         if (acpi_table_parse_entries(ACPI_SIG_SRAT,
997                                 sizeof(struct acpi_table_srat),
998                                 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
999                                 srat_parse_mem_affinity, 0) < 0)
1000                 goto out_put;
1001
1002         if (acpi_table_parse_entries(ACPI_SIG_SRAT,
1003                                      sizeof(struct acpi_table_srat),
1004                                      ACPI_SRAT_TYPE_GENERIC_PORT_AFFINITY,
1005                                      srat_parse_genport_affinity, 0) < 0)
1006                 goto out_put;
1007
1008         acpi_put_table(tbl);
1009
1010         status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
1011         if (ACPI_FAILURE(status))
1012                 goto out_put;
1013
1014         hmat_revision = tbl->revision;
1015         switch (hmat_revision) {
1016         case 1:
1017         case 2:
1018                 break;
1019         default:
1020                 pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
1021                 goto out_put;
1022         }
1023
1024         for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
1025                 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
1026                                              sizeof(struct acpi_table_hmat), i,
1027                                              hmat_parse_subtable, 0) < 0) {
1028                         pr_notice("Ignoring: Invalid table");
1029                         goto out_put;
1030                 }
1031         }
1032         hmat_register_targets();
1033
1034         /* Keep the table and structures if the notifier may use them */
1035         if (hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI))
1036                 goto out_put;
1037
1038         if (!hmat_set_default_dram_perf())
1039                 register_mt_adistance_algorithm(&hmat_adist_nb);
1040
1041         return 0;
1042 out_put:
1043         hmat_free_structures();
1044         acpi_put_table(tbl);
1045         return 0;
1046 }
1047 subsys_initcall(hmat_init);