Merge tag 'kconfig-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / drivers / acpi / numa / hmat.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019, Intel Corporation.
4  *
5  * Heterogeneous Memory Attributes Table (HMAT) representation
6  *
7  * This program parses and reports the platform's HMAT tables, and registers
8  * the applicable attributes with the node's interfaces.
9  */
10
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12 #define dev_fmt(fmt) "acpi/hmat: " fmt
13
14 #include <linux/acpi.h>
15 #include <linux/bitops.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/list.h>
19 #include <linux/mm.h>
20 #include <linux/platform_device.h>
21 #include <linux/list_sort.h>
22 #include <linux/memregion.h>
23 #include <linux/memory.h>
24 #include <linux/mutex.h>
25 #include <linux/node.h>
26 #include <linux/sysfs.h>
27 #include <linux/dax.h>
28
29 static u8 hmat_revision;
30 static int hmat_disable __initdata;
31
32 void __init disable_hmat(void)
33 {
34         hmat_disable = 1;
35 }
36
37 static LIST_HEAD(targets);
38 static LIST_HEAD(initiators);
39 static LIST_HEAD(localities);
40
41 static DEFINE_MUTEX(target_lock);
42
43 /*
44  * The defined enum order is used to prioritize attributes to break ties when
45  * selecting the best performing node.
46  */
47 enum locality_types {
48         WRITE_LATENCY,
49         READ_LATENCY,
50         WRITE_BANDWIDTH,
51         READ_BANDWIDTH,
52 };
53
54 static struct memory_locality *localities_types[4];
55
56 struct target_cache {
57         struct list_head node;
58         struct node_cache_attrs cache_attrs;
59 };
60
61 struct memory_target {
62         struct list_head node;
63         unsigned int memory_pxm;
64         unsigned int processor_pxm;
65         struct resource memregions;
66         struct node_hmem_attrs hmem_attrs[2];
67         struct list_head caches;
68         struct node_cache_attrs cache_attrs;
69         bool registered;
70 };
71
72 struct memory_initiator {
73         struct list_head node;
74         unsigned int processor_pxm;
75         bool has_cpu;
76 };
77
78 struct memory_locality {
79         struct list_head node;
80         struct acpi_hmat_locality *hmat_loc;
81 };
82
83 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
84 {
85         struct memory_initiator *initiator;
86
87         list_for_each_entry(initiator, &initiators, node)
88                 if (initiator->processor_pxm == cpu_pxm)
89                         return initiator;
90         return NULL;
91 }
92
93 static struct memory_target *find_mem_target(unsigned int mem_pxm)
94 {
95         struct memory_target *target;
96
97         list_for_each_entry(target, &targets, node)
98                 if (target->memory_pxm == mem_pxm)
99                         return target;
100         return NULL;
101 }
102
103 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
104 {
105         struct memory_initiator *initiator;
106
107         if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
108                 return;
109
110         initiator = find_mem_initiator(cpu_pxm);
111         if (initiator)
112                 return;
113
114         initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
115         if (!initiator)
116                 return;
117
118         initiator->processor_pxm = cpu_pxm;
119         initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
120         list_add_tail(&initiator->node, &initiators);
121 }
122
123 static __init void alloc_memory_target(unsigned int mem_pxm,
124                 resource_size_t start, resource_size_t len)
125 {
126         struct memory_target *target;
127
128         target = find_mem_target(mem_pxm);
129         if (!target) {
130                 target = kzalloc(sizeof(*target), GFP_KERNEL);
131                 if (!target)
132                         return;
133                 target->memory_pxm = mem_pxm;
134                 target->processor_pxm = PXM_INVAL;
135                 target->memregions = (struct resource) {
136                         .name   = "ACPI mem",
137                         .start  = 0,
138                         .end    = -1,
139                         .flags  = IORESOURCE_MEM,
140                 };
141                 list_add_tail(&target->node, &targets);
142                 INIT_LIST_HEAD(&target->caches);
143         }
144
145         /*
146          * There are potentially multiple ranges per PXM, so record each
147          * in the per-target memregions resource tree.
148          */
149         if (!__request_region(&target->memregions, start, len, "memory target",
150                                 IORESOURCE_MEM))
151                 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
152                                 start, start + len, mem_pxm);
153 }
154
155 static __init const char *hmat_data_type(u8 type)
156 {
157         switch (type) {
158         case ACPI_HMAT_ACCESS_LATENCY:
159                 return "Access Latency";
160         case ACPI_HMAT_READ_LATENCY:
161                 return "Read Latency";
162         case ACPI_HMAT_WRITE_LATENCY:
163                 return "Write Latency";
164         case ACPI_HMAT_ACCESS_BANDWIDTH:
165                 return "Access Bandwidth";
166         case ACPI_HMAT_READ_BANDWIDTH:
167                 return "Read Bandwidth";
168         case ACPI_HMAT_WRITE_BANDWIDTH:
169                 return "Write Bandwidth";
170         default:
171                 return "Reserved";
172         }
173 }
174
175 static __init const char *hmat_data_type_suffix(u8 type)
176 {
177         switch (type) {
178         case ACPI_HMAT_ACCESS_LATENCY:
179         case ACPI_HMAT_READ_LATENCY:
180         case ACPI_HMAT_WRITE_LATENCY:
181                 return " nsec";
182         case ACPI_HMAT_ACCESS_BANDWIDTH:
183         case ACPI_HMAT_READ_BANDWIDTH:
184         case ACPI_HMAT_WRITE_BANDWIDTH:
185                 return " MB/s";
186         default:
187                 return "";
188         }
189 }
190
191 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
192 {
193         u32 value;
194
195         /*
196          * Check for invalid and overflow values
197          */
198         if (entry == 0xffff || !entry)
199                 return 0;
200         else if (base > (UINT_MAX / (entry)))
201                 return 0;
202
203         /*
204          * Divide by the base unit for version 1, convert latency from
205          * picosenonds to nanoseconds if revision 2.
206          */
207         value = entry * base;
208         if (hmat_revision == 1) {
209                 if (value < 10)
210                         return 0;
211                 value = DIV_ROUND_UP(value, 10);
212         } else if (hmat_revision == 2) {
213                 switch (type) {
214                 case ACPI_HMAT_ACCESS_LATENCY:
215                 case ACPI_HMAT_READ_LATENCY:
216                 case ACPI_HMAT_WRITE_LATENCY:
217                         value = DIV_ROUND_UP(value, 1000);
218                         break;
219                 default:
220                         break;
221                 }
222         }
223         return value;
224 }
225
226 static void hmat_update_target_access(struct memory_target *target,
227                                       u8 type, u32 value, int access)
228 {
229         switch (type) {
230         case ACPI_HMAT_ACCESS_LATENCY:
231                 target->hmem_attrs[access].read_latency = value;
232                 target->hmem_attrs[access].write_latency = value;
233                 break;
234         case ACPI_HMAT_READ_LATENCY:
235                 target->hmem_attrs[access].read_latency = value;
236                 break;
237         case ACPI_HMAT_WRITE_LATENCY:
238                 target->hmem_attrs[access].write_latency = value;
239                 break;
240         case ACPI_HMAT_ACCESS_BANDWIDTH:
241                 target->hmem_attrs[access].read_bandwidth = value;
242                 target->hmem_attrs[access].write_bandwidth = value;
243                 break;
244         case ACPI_HMAT_READ_BANDWIDTH:
245                 target->hmem_attrs[access].read_bandwidth = value;
246                 break;
247         case ACPI_HMAT_WRITE_BANDWIDTH:
248                 target->hmem_attrs[access].write_bandwidth = value;
249                 break;
250         default:
251                 break;
252         }
253 }
254
255 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
256 {
257         struct memory_locality *loc;
258
259         loc = kzalloc(sizeof(*loc), GFP_KERNEL);
260         if (!loc) {
261                 pr_notice_once("Failed to allocate HMAT locality\n");
262                 return;
263         }
264
265         loc->hmat_loc = hmat_loc;
266         list_add_tail(&loc->node, &localities);
267
268         switch (hmat_loc->data_type) {
269         case ACPI_HMAT_ACCESS_LATENCY:
270                 localities_types[READ_LATENCY] = loc;
271                 localities_types[WRITE_LATENCY] = loc;
272                 break;
273         case ACPI_HMAT_READ_LATENCY:
274                 localities_types[READ_LATENCY] = loc;
275                 break;
276         case ACPI_HMAT_WRITE_LATENCY:
277                 localities_types[WRITE_LATENCY] = loc;
278                 break;
279         case ACPI_HMAT_ACCESS_BANDWIDTH:
280                 localities_types[READ_BANDWIDTH] = loc;
281                 localities_types[WRITE_BANDWIDTH] = loc;
282                 break;
283         case ACPI_HMAT_READ_BANDWIDTH:
284                 localities_types[READ_BANDWIDTH] = loc;
285                 break;
286         case ACPI_HMAT_WRITE_BANDWIDTH:
287                 localities_types[WRITE_BANDWIDTH] = loc;
288                 break;
289         default:
290                 break;
291         }
292 }
293
294 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
295                                       const unsigned long end)
296 {
297         struct acpi_hmat_locality *hmat_loc = (void *)header;
298         struct memory_target *target;
299         unsigned int init, targ, total_size, ipds, tpds;
300         u32 *inits, *targs, value;
301         u16 *entries;
302         u8 type, mem_hier;
303
304         if (hmat_loc->header.length < sizeof(*hmat_loc)) {
305                 pr_notice("HMAT: Unexpected locality header length: %u\n",
306                          hmat_loc->header.length);
307                 return -EINVAL;
308         }
309
310         type = hmat_loc->data_type;
311         mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
312         ipds = hmat_loc->number_of_initiator_Pds;
313         tpds = hmat_loc->number_of_target_Pds;
314         total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
315                      sizeof(*inits) * ipds + sizeof(*targs) * tpds;
316         if (hmat_loc->header.length < total_size) {
317                 pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n",
318                          hmat_loc->header.length, total_size);
319                 return -EINVAL;
320         }
321
322         pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
323                 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
324                 hmat_loc->entry_base_unit);
325
326         inits = (u32 *)(hmat_loc + 1);
327         targs = inits + ipds;
328         entries = (u16 *)(targs + tpds);
329         for (init = 0; init < ipds; init++) {
330                 alloc_memory_initiator(inits[init]);
331                 for (targ = 0; targ < tpds; targ++) {
332                         value = hmat_normalize(entries[init * tpds + targ],
333                                                hmat_loc->entry_base_unit,
334                                                type);
335                         pr_info("  Initiator-Target[%u-%u]:%u%s\n",
336                                 inits[init], targs[targ], value,
337                                 hmat_data_type_suffix(type));
338
339                         if (mem_hier == ACPI_HMAT_MEMORY) {
340                                 target = find_mem_target(targs[targ]);
341                                 if (target && target->processor_pxm == inits[init]) {
342                                         hmat_update_target_access(target, type, value, 0);
343                                         /* If the node has a CPU, update access 1 */
344                                         if (node_state(pxm_to_node(inits[init]), N_CPU))
345                                                 hmat_update_target_access(target, type, value, 1);
346                                 }
347                         }
348                 }
349         }
350
351         if (mem_hier == ACPI_HMAT_MEMORY)
352                 hmat_add_locality(hmat_loc);
353
354         return 0;
355 }
356
357 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
358                                    const unsigned long end)
359 {
360         struct acpi_hmat_cache *cache = (void *)header;
361         struct memory_target *target;
362         struct target_cache *tcache;
363         u32 attrs;
364
365         if (cache->header.length < sizeof(*cache)) {
366                 pr_notice("HMAT: Unexpected cache header length: %u\n",
367                          cache->header.length);
368                 return -EINVAL;
369         }
370
371         attrs = cache->cache_attributes;
372         pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
373                 cache->memory_PD, cache->cache_size, attrs,
374                 cache->number_of_SMBIOShandles);
375
376         target = find_mem_target(cache->memory_PD);
377         if (!target)
378                 return 0;
379
380         tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
381         if (!tcache) {
382                 pr_notice_once("Failed to allocate HMAT cache info\n");
383                 return 0;
384         }
385
386         tcache->cache_attrs.size = cache->cache_size;
387         tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
388         tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
389
390         switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
391         case ACPI_HMAT_CA_DIRECT_MAPPED:
392                 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
393                 break;
394         case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
395                 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
396                 break;
397         case ACPI_HMAT_CA_NONE:
398         default:
399                 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
400                 break;
401         }
402
403         switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
404         case ACPI_HMAT_CP_WB:
405                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
406                 break;
407         case ACPI_HMAT_CP_WT:
408                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
409                 break;
410         case ACPI_HMAT_CP_NONE:
411         default:
412                 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
413                 break;
414         }
415         list_add_tail(&tcache->node, &target->caches);
416
417         return 0;
418 }
419
420 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
421                                               const unsigned long end)
422 {
423         struct acpi_hmat_proximity_domain *p = (void *)header;
424         struct memory_target *target = NULL;
425
426         if (p->header.length != sizeof(*p)) {
427                 pr_notice("HMAT: Unexpected address range header length: %u\n",
428                          p->header.length);
429                 return -EINVAL;
430         }
431
432         if (hmat_revision == 1)
433                 pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
434                         p->reserved3, p->reserved4, p->flags, p->processor_PD,
435                         p->memory_PD);
436         else
437                 pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
438                         p->flags, p->processor_PD, p->memory_PD);
439
440         if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
441             hmat_revision > 1) {
442                 target = find_mem_target(p->memory_PD);
443                 if (!target) {
444                         pr_debug("HMAT: Memory Domain missing from SRAT\n");
445                         return -EINVAL;
446                 }
447         }
448         if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
449                 int p_node = pxm_to_node(p->processor_PD);
450
451                 if (p_node == NUMA_NO_NODE) {
452                         pr_debug("HMAT: Invalid Processor Domain\n");
453                         return -EINVAL;
454                 }
455                 target->processor_pxm = p->processor_PD;
456         }
457
458         return 0;
459 }
460
461 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
462                                       const unsigned long end)
463 {
464         struct acpi_hmat_structure *hdr = (void *)header;
465
466         if (!hdr)
467                 return -EINVAL;
468
469         switch (hdr->type) {
470         case ACPI_HMAT_TYPE_PROXIMITY:
471                 return hmat_parse_proximity_domain(header, end);
472         case ACPI_HMAT_TYPE_LOCALITY:
473                 return hmat_parse_locality(header, end);
474         case ACPI_HMAT_TYPE_CACHE:
475                 return hmat_parse_cache(header, end);
476         default:
477                 return -EINVAL;
478         }
479 }
480
481 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
482                                           const unsigned long end)
483 {
484         struct acpi_srat_mem_affinity *ma = (void *)header;
485
486         if (!ma)
487                 return -EINVAL;
488         if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
489                 return 0;
490         alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
491         return 0;
492 }
493
494 static u32 hmat_initiator_perf(struct memory_target *target,
495                                struct memory_initiator *initiator,
496                                struct acpi_hmat_locality *hmat_loc)
497 {
498         unsigned int ipds, tpds, i, idx = 0, tdx = 0;
499         u32 *inits, *targs;
500         u16 *entries;
501
502         ipds = hmat_loc->number_of_initiator_Pds;
503         tpds = hmat_loc->number_of_target_Pds;
504         inits = (u32 *)(hmat_loc + 1);
505         targs = inits + ipds;
506         entries = (u16 *)(targs + tpds);
507
508         for (i = 0; i < ipds; i++) {
509                 if (inits[i] == initiator->processor_pxm) {
510                         idx = i;
511                         break;
512                 }
513         }
514
515         if (i == ipds)
516                 return 0;
517
518         for (i = 0; i < tpds; i++) {
519                 if (targs[i] == target->memory_pxm) {
520                         tdx = i;
521                         break;
522                 }
523         }
524         if (i == tpds)
525                 return 0;
526
527         return hmat_normalize(entries[idx * tpds + tdx],
528                               hmat_loc->entry_base_unit,
529                               hmat_loc->data_type);
530 }
531
532 static bool hmat_update_best(u8 type, u32 value, u32 *best)
533 {
534         bool updated = false;
535
536         if (!value)
537                 return false;
538
539         switch (type) {
540         case ACPI_HMAT_ACCESS_LATENCY:
541         case ACPI_HMAT_READ_LATENCY:
542         case ACPI_HMAT_WRITE_LATENCY:
543                 if (!*best || *best > value) {
544                         *best = value;
545                         updated = true;
546                 }
547                 break;
548         case ACPI_HMAT_ACCESS_BANDWIDTH:
549         case ACPI_HMAT_READ_BANDWIDTH:
550         case ACPI_HMAT_WRITE_BANDWIDTH:
551                 if (!*best || *best < value) {
552                         *best = value;
553                         updated = true;
554                 }
555                 break;
556         }
557
558         return updated;
559 }
560
561 static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b)
562 {
563         struct memory_initiator *ia;
564         struct memory_initiator *ib;
565         unsigned long *p_nodes = priv;
566
567         ia = list_entry(a, struct memory_initiator, node);
568         ib = list_entry(b, struct memory_initiator, node);
569
570         set_bit(ia->processor_pxm, p_nodes);
571         set_bit(ib->processor_pxm, p_nodes);
572
573         return ia->processor_pxm - ib->processor_pxm;
574 }
575
576 static void hmat_register_target_initiators(struct memory_target *target)
577 {
578         static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
579         struct memory_initiator *initiator;
580         unsigned int mem_nid, cpu_nid;
581         struct memory_locality *loc = NULL;
582         u32 best = 0;
583         bool access0done = false;
584         int i;
585
586         mem_nid = pxm_to_node(target->memory_pxm);
587         /*
588          * If the Address Range Structure provides a local processor pxm, link
589          * only that one. Otherwise, find the best performance attributes and
590          * register all initiators that match.
591          */
592         if (target->processor_pxm != PXM_INVAL) {
593                 cpu_nid = pxm_to_node(target->processor_pxm);
594                 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
595                 access0done = true;
596                 if (node_state(cpu_nid, N_CPU)) {
597                         register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
598                         return;
599                 }
600         }
601
602         if (list_empty(&localities))
603                 return;
604
605         /*
606          * We need the initiator list sorted so we can use bitmap_clear for
607          * previously set initiators when we find a better memory accessor.
608          * We'll also use the sorting to prime the candidate nodes with known
609          * initiators.
610          */
611         bitmap_zero(p_nodes, MAX_NUMNODES);
612         list_sort(p_nodes, &initiators, initiator_cmp);
613         if (!access0done) {
614                 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
615                         loc = localities_types[i];
616                         if (!loc)
617                                 continue;
618
619                         best = 0;
620                         list_for_each_entry(initiator, &initiators, node) {
621                                 u32 value;
622
623                                 if (!test_bit(initiator->processor_pxm, p_nodes))
624                                         continue;
625
626                                 value = hmat_initiator_perf(target, initiator,
627                                                             loc->hmat_loc);
628                                 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
629                                         bitmap_clear(p_nodes, 0, initiator->processor_pxm);
630                                 if (value != best)
631                                         clear_bit(initiator->processor_pxm, p_nodes);
632                         }
633                         if (best)
634                                 hmat_update_target_access(target, loc->hmat_loc->data_type,
635                                                           best, 0);
636                 }
637
638                 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
639                         cpu_nid = pxm_to_node(i);
640                         register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
641                 }
642         }
643
644         /* Access 1 ignores Generic Initiators */
645         bitmap_zero(p_nodes, MAX_NUMNODES);
646         list_sort(p_nodes, &initiators, initiator_cmp);
647         best = 0;
648         for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
649                 loc = localities_types[i];
650                 if (!loc)
651                         continue;
652
653                 best = 0;
654                 list_for_each_entry(initiator, &initiators, node) {
655                         u32 value;
656
657                         if (!initiator->has_cpu) {
658                                 clear_bit(initiator->processor_pxm, p_nodes);
659                                 continue;
660                         }
661                         if (!test_bit(initiator->processor_pxm, p_nodes))
662                                 continue;
663
664                         value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
665                         if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
666                                 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
667                         if (value != best)
668                                 clear_bit(initiator->processor_pxm, p_nodes);
669                 }
670                 if (best)
671                         hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
672         }
673         for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
674                 cpu_nid = pxm_to_node(i);
675                 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
676         }
677 }
678
679 static void hmat_register_target_cache(struct memory_target *target)
680 {
681         unsigned mem_nid = pxm_to_node(target->memory_pxm);
682         struct target_cache *tcache;
683
684         list_for_each_entry(tcache, &target->caches, node)
685                 node_add_cache(mem_nid, &tcache->cache_attrs);
686 }
687
688 static void hmat_register_target_perf(struct memory_target *target, int access)
689 {
690         unsigned mem_nid = pxm_to_node(target->memory_pxm);
691         node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
692 }
693
694 static void hmat_register_target_devices(struct memory_target *target)
695 {
696         struct resource *res;
697
698         /*
699          * Do not bother creating devices if no driver is available to
700          * consume them.
701          */
702         if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
703                 return;
704
705         for (res = target->memregions.child; res; res = res->sibling) {
706                 int target_nid = pxm_to_node(target->memory_pxm);
707
708                 hmem_register_device(target_nid, res);
709         }
710 }
711
712 static void hmat_register_target(struct memory_target *target)
713 {
714         int nid = pxm_to_node(target->memory_pxm);
715
716         /*
717          * Devices may belong to either an offline or online
718          * node, so unconditionally add them.
719          */
720         hmat_register_target_devices(target);
721
722         /*
723          * Skip offline nodes. This can happen when memory
724          * marked EFI_MEMORY_SP, "specific purpose", is applied
725          * to all the memory in a promixity domain leading to
726          * the node being marked offline / unplugged, or if
727          * memory-only "hotplug" node is offline.
728          */
729         if (nid == NUMA_NO_NODE || !node_online(nid))
730                 return;
731
732         mutex_lock(&target_lock);
733         if (!target->registered) {
734                 hmat_register_target_initiators(target);
735                 hmat_register_target_cache(target);
736                 hmat_register_target_perf(target, 0);
737                 hmat_register_target_perf(target, 1);
738                 target->registered = true;
739         }
740         mutex_unlock(&target_lock);
741 }
742
743 static void hmat_register_targets(void)
744 {
745         struct memory_target *target;
746
747         list_for_each_entry(target, &targets, node)
748                 hmat_register_target(target);
749 }
750
751 static int hmat_callback(struct notifier_block *self,
752                          unsigned long action, void *arg)
753 {
754         struct memory_target *target;
755         struct memory_notify *mnb = arg;
756         int pxm, nid = mnb->status_change_nid;
757
758         if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
759                 return NOTIFY_OK;
760
761         pxm = node_to_pxm(nid);
762         target = find_mem_target(pxm);
763         if (!target)
764                 return NOTIFY_OK;
765
766         hmat_register_target(target);
767         return NOTIFY_OK;
768 }
769
770 static struct notifier_block hmat_callback_nb = {
771         .notifier_call = hmat_callback,
772         .priority = 2,
773 };
774
775 static __init void hmat_free_structures(void)
776 {
777         struct memory_target *target, *tnext;
778         struct memory_locality *loc, *lnext;
779         struct memory_initiator *initiator, *inext;
780         struct target_cache *tcache, *cnext;
781
782         list_for_each_entry_safe(target, tnext, &targets, node) {
783                 struct resource *res, *res_next;
784
785                 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
786                         list_del(&tcache->node);
787                         kfree(tcache);
788                 }
789
790                 list_del(&target->node);
791                 res = target->memregions.child;
792                 while (res) {
793                         res_next = res->sibling;
794                         __release_region(&target->memregions, res->start,
795                                         resource_size(res));
796                         res = res_next;
797                 }
798                 kfree(target);
799         }
800
801         list_for_each_entry_safe(initiator, inext, &initiators, node) {
802                 list_del(&initiator->node);
803                 kfree(initiator);
804         }
805
806         list_for_each_entry_safe(loc, lnext, &localities, node) {
807                 list_del(&loc->node);
808                 kfree(loc);
809         }
810 }
811
812 static __init int hmat_init(void)
813 {
814         struct acpi_table_header *tbl;
815         enum acpi_hmat_type i;
816         acpi_status status;
817
818         if (srat_disabled() || hmat_disable)
819                 return 0;
820
821         status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
822         if (ACPI_FAILURE(status))
823                 return 0;
824
825         if (acpi_table_parse_entries(ACPI_SIG_SRAT,
826                                 sizeof(struct acpi_table_srat),
827                                 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
828                                 srat_parse_mem_affinity, 0) < 0)
829                 goto out_put;
830         acpi_put_table(tbl);
831
832         status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
833         if (ACPI_FAILURE(status))
834                 goto out_put;
835
836         hmat_revision = tbl->revision;
837         switch (hmat_revision) {
838         case 1:
839         case 2:
840                 break;
841         default:
842                 pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
843                 goto out_put;
844         }
845
846         for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
847                 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
848                                              sizeof(struct acpi_table_hmat), i,
849                                              hmat_parse_subtable, 0) < 0) {
850                         pr_notice("Ignoring HMAT: Invalid table");
851                         goto out_put;
852                 }
853         }
854         hmat_register_targets();
855
856         /* Keep the table and structures if the notifier may use them */
857         if (!register_hotmemory_notifier(&hmat_callback_nb))
858                 return 0;
859 out_put:
860         hmat_free_structures();
861         acpi_put_table(tbl);
862         return 0;
863 }
864 device_initcall(hmat_init);