Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
42 #include <linux/topology.h>
43
44 #include <acpi/cppc_acpi.h>
45
46 struct cppc_pcc_data {
47         struct mbox_chan *pcc_channel;
48         void __iomem *pcc_comm_addr;
49         bool pcc_channel_acquired;
50         unsigned int deadline_us;
51         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
52
53         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
54         bool platform_owns_pcc;         /* Ownership of PCC subspace */
55         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
56
57         /*
58          * Lock to provide controlled access to the PCC channel.
59          *
60          * For performance critical usecases(currently cppc_set_perf)
61          *      We need to take read_lock and check if channel belongs to OSPM
62          * before reading or writing to PCC subspace
63          *      We need to take write_lock before transferring the channel
64          * ownership to the platform via a Doorbell
65          *      This allows us to batch a number of CPPC requests if they happen
66          * to originate in about the same time
67          *
68          * For non-performance critical usecases(init)
69          *      Take write_lock for all purposes which gives exclusive access
70          */
71         struct rw_semaphore pcc_lock;
72
73         /* Wait queue for CPUs whose requests were batched */
74         wait_queue_head_t pcc_write_wait_q;
75         ktime_t last_cmd_cmpl_time;
76         ktime_t last_mpar_reset;
77         int mpar_count;
78         int refcount;
79 };
80
81 /* Array to represent the PCC channel per subspace ID */
82 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
83 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
84 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
85
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
97                                                 0x8 + (offs))
98
99 /* Check if a CPC register is in PCC */
100 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
101                                 (cpc)->cpc_entry.reg.space_id ==        \
102                                 ACPI_ADR_SPACE_PLATFORM_COMM)
103
104 /* Evalutes to True if reg is a NULL register descriptor */
105 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
106                                 (reg)->address == 0 &&                  \
107                                 (reg)->bit_width == 0 &&                \
108                                 (reg)->bit_offset == 0 &&               \
109                                 (reg)->access_width == 0)
110
111 /* Evalutes to True if an optional cpc field is supported */
112 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
113                                 !!(cpc)->cpc_entry.int_value :          \
114                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 /*
116  * Arbitrary Retries in case the remote processor is slow to respond
117  * to PCC commands. Keeping it high enough to cover emulators where
118  * the processors run painfully slow.
119  */
120 #define NUM_RETRIES 500ULL
121
122 struct cppc_attr {
123         struct attribute attr;
124         ssize_t (*show)(struct kobject *kobj,
125                         struct attribute *attr, char *buf);
126         ssize_t (*store)(struct kobject *kobj,
127                         struct attribute *attr, const char *c, ssize_t count);
128 };
129
130 #define define_one_cppc_ro(_name)               \
131 static struct cppc_attr _name =                 \
132 __ATTR(_name, 0444, show_##_name, NULL)
133
134 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135
136 #define show_cppc_data(access_fn, struct_name, member_name)             \
137         static ssize_t show_##member_name(struct kobject *kobj,         \
138                                         struct attribute *attr, char *buf) \
139         {                                                               \
140                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
141                 struct struct_name st_name = {0};                       \
142                 int ret;                                                \
143                                                                         \
144                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
145                 if (ret)                                                \
146                         return ret;                                     \
147                                                                         \
148                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
149                                 (u64)st_name.member_name);              \
150         }                                                               \
151         define_one_cppc_ro(member_name)
152
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
159
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
161 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
162
163 static ssize_t show_feedback_ctrs(struct kobject *kobj,
164                 struct attribute *attr, char *buf)
165 {
166         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
167         struct cppc_perf_fb_ctrs fb_ctrs = {0};
168         int ret;
169
170         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
171         if (ret)
172                 return ret;
173
174         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
175                         fb_ctrs.reference, fb_ctrs.delivered);
176 }
177 define_one_cppc_ro(feedback_ctrs);
178
179 static struct attribute *cppc_attrs[] = {
180         &feedback_ctrs.attr,
181         &reference_perf.attr,
182         &wraparound_time.attr,
183         &highest_perf.attr,
184         &lowest_perf.attr,
185         &lowest_nonlinear_perf.attr,
186         &nominal_perf.attr,
187         &nominal_freq.attr,
188         &lowest_freq.attr,
189         NULL
190 };
191
192 static struct kobj_type cppc_ktype = {
193         .sysfs_ops = &kobj_sysfs_ops,
194         .default_attrs = cppc_attrs,
195 };
196
197 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
198 {
199         int ret, status;
200         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
201         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
202                 pcc_ss_data->pcc_comm_addr;
203
204         if (!pcc_ss_data->platform_owns_pcc)
205                 return 0;
206
207         /*
208          * Poll PCC status register every 3us(delay_us) for maximum of
209          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
210          */
211         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
212                                         status & PCC_CMD_COMPLETE_MASK, 3,
213                                         pcc_ss_data->deadline_us);
214
215         if (likely(!ret)) {
216                 pcc_ss_data->platform_owns_pcc = false;
217                 if (chk_err_bit && (status & PCC_ERROR_MASK))
218                         ret = -EIO;
219         }
220
221         if (unlikely(ret))
222                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
223                        pcc_ss_id, ret);
224
225         return ret;
226 }
227
228 /*
229  * This function transfers the ownership of the PCC to the platform
230  * So it must be called while holding write_lock(pcc_lock)
231  */
232 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
233 {
234         int ret = -EIO, i;
235         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
236         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
237                 pcc_ss_data->pcc_comm_addr;
238         unsigned int time_delta;
239
240         /*
241          * For CMD_WRITE we know for a fact the caller should have checked
242          * the channel before writing to PCC space
243          */
244         if (cmd == CMD_READ) {
245                 /*
246                  * If there are pending cpc_writes, then we stole the channel
247                  * before write completion, so first send a WRITE command to
248                  * platform
249                  */
250                 if (pcc_ss_data->pending_pcc_write_cmd)
251                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
252
253                 ret = check_pcc_chan(pcc_ss_id, false);
254                 if (ret)
255                         goto end;
256         } else /* CMD_WRITE */
257                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
258
259         /*
260          * Handle the Minimum Request Turnaround Time(MRTT)
261          * "The minimum amount of time that OSPM must wait after the completion
262          * of a command before issuing the next command, in microseconds"
263          */
264         if (pcc_ss_data->pcc_mrtt) {
265                 time_delta = ktime_us_delta(ktime_get(),
266                                             pcc_ss_data->last_cmd_cmpl_time);
267                 if (pcc_ss_data->pcc_mrtt > time_delta)
268                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
269         }
270
271         /*
272          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
273          * "The maximum number of periodic requests that the subspace channel can
274          * support, reported in commands per minute. 0 indicates no limitation."
275          *
276          * This parameter should be ideally zero or large enough so that it can
277          * handle maximum number of requests that all the cores in the system can
278          * collectively generate. If it is not, we will follow the spec and just
279          * not send the request to the platform after hitting the MPAR limit in
280          * any 60s window
281          */
282         if (pcc_ss_data->pcc_mpar) {
283                 if (pcc_ss_data->mpar_count == 0) {
284                         time_delta = ktime_ms_delta(ktime_get(),
285                                                     pcc_ss_data->last_mpar_reset);
286                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
287                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
288                                          pcc_ss_id);
289                                 ret = -EIO;
290                                 goto end;
291                         }
292                         pcc_ss_data->last_mpar_reset = ktime_get();
293                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
294                 }
295                 pcc_ss_data->mpar_count--;
296         }
297
298         /* Write to the shared comm region. */
299         writew_relaxed(cmd, &generic_comm_base->command);
300
301         /* Flip CMD COMPLETE bit */
302         writew_relaxed(0, &generic_comm_base->status);
303
304         pcc_ss_data->platform_owns_pcc = true;
305
306         /* Ring doorbell */
307         ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
308         if (ret < 0) {
309                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
310                        pcc_ss_id, cmd, ret);
311                 goto end;
312         }
313
314         /* wait for completion and check for PCC errro bit */
315         ret = check_pcc_chan(pcc_ss_id, true);
316
317         if (pcc_ss_data->pcc_mrtt)
318                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
319
320         if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
321                 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
322         else
323                 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
324
325 end:
326         if (cmd == CMD_WRITE) {
327                 if (unlikely(ret)) {
328                         for_each_possible_cpu(i) {
329                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
330                                 if (!desc)
331                                         continue;
332
333                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
334                                         desc->write_cmd_status = ret;
335                         }
336                 }
337                 pcc_ss_data->pcc_write_cnt++;
338                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
339         }
340
341         return ret;
342 }
343
344 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
345 {
346         if (ret < 0)
347                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
348                                 *(u16 *)msg, ret);
349         else
350                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
351                                 *(u16 *)msg, ret);
352 }
353
354 static struct mbox_client cppc_mbox_cl = {
355         .tx_done = cppc_chan_tx_done,
356         .knows_txdone = true,
357 };
358
359 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
360 {
361         int result = -EFAULT;
362         acpi_status status = AE_OK;
363         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
364         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
365         struct acpi_buffer state = {0, NULL};
366         union acpi_object  *psd = NULL;
367         struct acpi_psd_package *pdomain;
368
369         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
370                                             &buffer, ACPI_TYPE_PACKAGE);
371         if (status == AE_NOT_FOUND)     /* _PSD is optional */
372                 return 0;
373         if (ACPI_FAILURE(status))
374                 return -ENODEV;
375
376         psd = buffer.pointer;
377         if (!psd || psd->package.count != 1) {
378                 pr_debug("Invalid _PSD data\n");
379                 goto end;
380         }
381
382         pdomain = &(cpc_ptr->domain_info);
383
384         state.length = sizeof(struct acpi_psd_package);
385         state.pointer = pdomain;
386
387         status = acpi_extract_package(&(psd->package.elements[0]),
388                 &format, &state);
389         if (ACPI_FAILURE(status)) {
390                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
391                 goto end;
392         }
393
394         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
395                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
396                 goto end;
397         }
398
399         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
400                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
401                 goto end;
402         }
403
404         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
405             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
406             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
407                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
408                 goto end;
409         }
410
411         result = 0;
412 end:
413         kfree(buffer.pointer);
414         return result;
415 }
416
417 bool acpi_cpc_valid(void)
418 {
419         struct cpc_desc *cpc_ptr;
420         int cpu;
421
422         for_each_possible_cpu(cpu) {
423                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
424                 if (!cpc_ptr)
425                         return false;
426         }
427
428         return true;
429 }
430 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
431
432 /**
433  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
434  * @cpu: Find all CPUs that share a domain with cpu.
435  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
436  *
437  *      Return: 0 for success or negative value for err.
438  */
439 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
440 {
441         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
442         struct acpi_psd_package *match_pdomain;
443         struct acpi_psd_package *pdomain;
444         int count_target, i;
445
446         /*
447          * Now that we have _PSD data from all CPUs, let's setup P-state
448          * domain info.
449          */
450         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
451         if (!cpc_ptr)
452                 return -EFAULT;
453
454         pdomain = &(cpc_ptr->domain_info);
455         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
456         if (pdomain->num_processors <= 1)
457                 return 0;
458
459         /* Validate the Domain info */
460         count_target = pdomain->num_processors;
461         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
462                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
463         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
464                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
465         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
466                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
467
468         for_each_possible_cpu(i) {
469                 if (i == cpu)
470                         continue;
471
472                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
473                 if (!match_cpc_ptr)
474                         goto err_fault;
475
476                 match_pdomain = &(match_cpc_ptr->domain_info);
477                 if (match_pdomain->domain != pdomain->domain)
478                         continue;
479
480                 /* Here i and cpu are in the same domain */
481                 if (match_pdomain->num_processors != count_target)
482                         goto err_fault;
483
484                 if (pdomain->coord_type != match_pdomain->coord_type)
485                         goto err_fault;
486
487                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
488         }
489
490         return 0;
491
492 err_fault:
493         /* Assume no coordination on any error parsing domain info */
494         cpumask_clear(cpu_data->shared_cpu_map);
495         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
496         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
497
498         return -EFAULT;
499 }
500 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
501
502 static int register_pcc_channel(int pcc_ss_idx)
503 {
504         struct acpi_pcct_hw_reduced *cppc_ss;
505         u64 usecs_lat;
506
507         if (pcc_ss_idx >= 0) {
508                 pcc_data[pcc_ss_idx]->pcc_channel =
509                         pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
510
511                 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
512                         pr_err("Failed to find PCC channel for subspace %d\n",
513                                pcc_ss_idx);
514                         return -ENODEV;
515                 }
516
517                 /*
518                  * The PCC mailbox controller driver should
519                  * have parsed the PCCT (global table of all
520                  * PCC channels) and stored pointers to the
521                  * subspace communication region in con_priv.
522                  */
523                 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
524
525                 if (!cppc_ss) {
526                         pr_err("No PCC subspace found for %d CPPC\n",
527                                pcc_ss_idx);
528                         return -ENODEV;
529                 }
530
531                 /*
532                  * cppc_ss->latency is just a Nominal value. In reality
533                  * the remote processor could be much slower to reply.
534                  * So add an arbitrary amount of wait on top of Nominal.
535                  */
536                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
537                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
538                 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
539                 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
540                 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
541
542                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
543                         acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
544                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
545                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
546                                pcc_ss_idx);
547                         return -ENOMEM;
548                 }
549
550                 /* Set flag so that we don't come here for each CPU. */
551                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
552         }
553
554         return 0;
555 }
556
557 /**
558  * cpc_ffh_supported() - check if FFH reading supported
559  *
560  * Check if the architecture has support for functional fixed hardware
561  * read/write capability.
562  *
563  * Return: true for supported, false for not supported
564  */
565 bool __weak cpc_ffh_supported(void)
566 {
567         return false;
568 }
569
570 /**
571  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
572  *
573  * Check and allocate the cppc_pcc_data memory.
574  * In some processor configurations it is possible that same subspace
575  * is shared between multiple CPUs. This is seen especially in CPUs
576  * with hardware multi-threading support.
577  *
578  * Return: 0 for success, errno for failure
579  */
580 static int pcc_data_alloc(int pcc_ss_id)
581 {
582         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
583                 return -EINVAL;
584
585         if (pcc_data[pcc_ss_id]) {
586                 pcc_data[pcc_ss_id]->refcount++;
587         } else {
588                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
589                                               GFP_KERNEL);
590                 if (!pcc_data[pcc_ss_id])
591                         return -ENOMEM;
592                 pcc_data[pcc_ss_id]->refcount++;
593         }
594
595         return 0;
596 }
597
598 /* Check if CPPC revision + num_ent combination is supported */
599 static bool is_cppc_supported(int revision, int num_ent)
600 {
601         int expected_num_ent;
602
603         switch (revision) {
604         case CPPC_V2_REV:
605                 expected_num_ent = CPPC_V2_NUM_ENT;
606                 break;
607         case CPPC_V3_REV:
608                 expected_num_ent = CPPC_V3_NUM_ENT;
609                 break;
610         default:
611                 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
612                         revision);
613                 return false;
614         }
615
616         if (expected_num_ent != num_ent) {
617                 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
618                         num_ent, expected_num_ent, revision);
619                 return false;
620         }
621
622         return true;
623 }
624
625 /*
626  * An example CPC table looks like the following.
627  *
628  *      Name(_CPC, Package()
629  *                      {
630  *                      17,
631  *                      NumEntries
632  *                      1,
633  *                      // Revision
634  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
635  *                      // Highest Performance
636  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
637  *                      // Nominal Performance
638  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
639  *                      // Lowest Nonlinear Performance
640  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
641  *                      // Lowest Performance
642  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
643  *                      // Guaranteed Performance Register
644  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
645  *                      // Desired Performance Register
646  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
647  *                      ..
648  *                      ..
649  *                      ..
650  *
651  *              }
652  * Each Register() encodes how to access that specific register.
653  * e.g. a sample PCC entry has the following encoding:
654  *
655  *      Register (
656  *              PCC,
657  *              AddressSpaceKeyword
658  *              8,
659  *              //RegisterBitWidth
660  *              8,
661  *              //RegisterBitOffset
662  *              0x30,
663  *              //RegisterAddress
664  *              9
665  *              //AccessSize (subspace ID)
666  *              0
667  *              )
668  *      }
669  */
670
671 #ifndef init_freq_invariance_cppc
672 static inline void init_freq_invariance_cppc(void) { }
673 #endif
674
675 /**
676  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
677  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
678  *
679  *      Return: 0 for success or negative value for err.
680  */
681 int acpi_cppc_processor_probe(struct acpi_processor *pr)
682 {
683         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
684         union acpi_object *out_obj, *cpc_obj;
685         struct cpc_desc *cpc_ptr;
686         struct cpc_reg *gas_t;
687         struct device *cpu_dev;
688         acpi_handle handle = pr->handle;
689         unsigned int num_ent, i, cpc_rev;
690         int pcc_subspace_id = -1;
691         acpi_status status;
692         int ret = -EFAULT;
693
694         /* Parse the ACPI _CPC table for this CPU. */
695         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
696                         ACPI_TYPE_PACKAGE);
697         if (ACPI_FAILURE(status)) {
698                 ret = -ENODEV;
699                 goto out_buf_free;
700         }
701
702         out_obj = (union acpi_object *) output.pointer;
703
704         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
705         if (!cpc_ptr) {
706                 ret = -ENOMEM;
707                 goto out_buf_free;
708         }
709
710         /* First entry is NumEntries. */
711         cpc_obj = &out_obj->package.elements[0];
712         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
713                 num_ent = cpc_obj->integer.value;
714         } else {
715                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
716                                 cpc_obj->type);
717                 goto out_free;
718         }
719         cpc_ptr->num_entries = num_ent;
720
721         /* Second entry should be revision. */
722         cpc_obj = &out_obj->package.elements[1];
723         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
724                 cpc_rev = cpc_obj->integer.value;
725         } else {
726                 pr_debug("Unexpected entry type(%d) for Revision\n",
727                                 cpc_obj->type);
728                 goto out_free;
729         }
730         cpc_ptr->version = cpc_rev;
731
732         if (!is_cppc_supported(cpc_rev, num_ent))
733                 goto out_free;
734
735         /* Iterate through remaining entries in _CPC */
736         for (i = 2; i < num_ent; i++) {
737                 cpc_obj = &out_obj->package.elements[i];
738
739                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
740                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
741                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
742                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
743                         gas_t = (struct cpc_reg *)
744                                 cpc_obj->buffer.pointer;
745
746                         /*
747                          * The PCC Subspace index is encoded inside
748                          * the CPC table entries. The same PCC index
749                          * will be used for all the PCC entries,
750                          * so extract it only once.
751                          */
752                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
753                                 if (pcc_subspace_id < 0) {
754                                         pcc_subspace_id = gas_t->access_width;
755                                         if (pcc_data_alloc(pcc_subspace_id))
756                                                 goto out_free;
757                                 } else if (pcc_subspace_id != gas_t->access_width) {
758                                         pr_debug("Mismatched PCC ids.\n");
759                                         goto out_free;
760                                 }
761                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
762                                 if (gas_t->address) {
763                                         void __iomem *addr;
764
765                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
766                                         if (!addr)
767                                                 goto out_free;
768                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
769                                 }
770                         } else {
771                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
772                                         /* Support only PCC ,SYS MEM and FFH type regs */
773                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
774                                         goto out_free;
775                                 }
776                         }
777
778                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
779                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
780                 } else {
781                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
782                         goto out_free;
783                 }
784         }
785         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
786
787         /*
788          * Initialize the remaining cpc_regs as unsupported.
789          * Example: In case FW exposes CPPC v2, the below loop will initialize
790          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
791          */
792         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
793                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
794                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
795         }
796
797
798         /* Store CPU Logical ID */
799         cpc_ptr->cpu_id = pr->id;
800
801         /* Parse PSD data for this CPU */
802         ret = acpi_get_psd(cpc_ptr, handle);
803         if (ret)
804                 goto out_free;
805
806         /* Register PCC channel once for all PCC subspace ID. */
807         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
808                 ret = register_pcc_channel(pcc_subspace_id);
809                 if (ret)
810                         goto out_free;
811
812                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
813                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
814         }
815
816         /* Everything looks okay */
817         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
818
819         /* Add per logical CPU nodes for reading its feedback counters. */
820         cpu_dev = get_cpu_device(pr->id);
821         if (!cpu_dev) {
822                 ret = -EINVAL;
823                 goto out_free;
824         }
825
826         /* Plug PSD data into this CPU's CPC descriptor. */
827         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
828
829         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
830                         "acpi_cppc");
831         if (ret) {
832                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
833                 kobject_put(&cpc_ptr->kobj);
834                 goto out_free;
835         }
836
837         init_freq_invariance_cppc();
838
839         kfree(output.pointer);
840         return 0;
841
842 out_free:
843         /* Free all the mapped sys mem areas for this CPU */
844         for (i = 2; i < cpc_ptr->num_entries; i++) {
845                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
846
847                 if (addr)
848                         iounmap(addr);
849         }
850         kfree(cpc_ptr);
851
852 out_buf_free:
853         kfree(output.pointer);
854         return ret;
855 }
856 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
857
858 /**
859  * acpi_cppc_processor_exit - Cleanup CPC structs.
860  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
861  *
862  * Return: Void
863  */
864 void acpi_cppc_processor_exit(struct acpi_processor *pr)
865 {
866         struct cpc_desc *cpc_ptr;
867         unsigned int i;
868         void __iomem *addr;
869         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
870
871         if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
872                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
873                         pcc_data[pcc_ss_id]->refcount--;
874                         if (!pcc_data[pcc_ss_id]->refcount) {
875                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
876                                 kfree(pcc_data[pcc_ss_id]);
877                                 pcc_data[pcc_ss_id] = NULL;
878                         }
879                 }
880         }
881
882         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
883         if (!cpc_ptr)
884                 return;
885
886         /* Free all the mapped sys mem areas for this CPU */
887         for (i = 2; i < cpc_ptr->num_entries; i++) {
888                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
889                 if (addr)
890                         iounmap(addr);
891         }
892
893         kobject_put(&cpc_ptr->kobj);
894         kfree(cpc_ptr);
895 }
896 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
897
898 /**
899  * cpc_read_ffh() - Read FFH register
900  * @cpunum:     CPU number to read
901  * @reg:        cppc register information
902  * @val:        place holder for return value
903  *
904  * Read bit_width bits from a specified address and bit_offset
905  *
906  * Return: 0 for success and error code
907  */
908 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
909 {
910         return -ENOTSUPP;
911 }
912
913 /**
914  * cpc_write_ffh() - Write FFH register
915  * @cpunum:     CPU number to write
916  * @reg:        cppc register information
917  * @val:        value to write
918  *
919  * Write value of bit_width bits to a specified address and bit_offset
920  *
921  * Return: 0 for success and error code
922  */
923 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
924 {
925         return -ENOTSUPP;
926 }
927
928 /*
929  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
930  * as fast as possible. We have already mapped the PCC subspace during init, so
931  * we can directly write to it.
932  */
933
934 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
935 {
936         int ret_val = 0;
937         void __iomem *vaddr = NULL;
938         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
939         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
940
941         if (reg_res->type == ACPI_TYPE_INTEGER) {
942                 *val = reg_res->cpc_entry.int_value;
943                 return ret_val;
944         }
945
946         *val = 0;
947         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
948                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
949         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
950                 vaddr = reg_res->sys_mem_vaddr;
951         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
952                 return cpc_read_ffh(cpu, reg, val);
953         else
954                 return acpi_os_read_memory((acpi_physical_address)reg->address,
955                                 val, reg->bit_width);
956
957         switch (reg->bit_width) {
958                 case 8:
959                         *val = readb_relaxed(vaddr);
960                         break;
961                 case 16:
962                         *val = readw_relaxed(vaddr);
963                         break;
964                 case 32:
965                         *val = readl_relaxed(vaddr);
966                         break;
967                 case 64:
968                         *val = readq_relaxed(vaddr);
969                         break;
970                 default:
971                         pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
972                                  reg->bit_width, pcc_ss_id);
973                         ret_val = -EFAULT;
974         }
975
976         return ret_val;
977 }
978
979 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
980 {
981         int ret_val = 0;
982         void __iomem *vaddr = NULL;
983         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
984         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
985
986         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
987                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
988         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
989                 vaddr = reg_res->sys_mem_vaddr;
990         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
991                 return cpc_write_ffh(cpu, reg, val);
992         else
993                 return acpi_os_write_memory((acpi_physical_address)reg->address,
994                                 val, reg->bit_width);
995
996         switch (reg->bit_width) {
997                 case 8:
998                         writeb_relaxed(val, vaddr);
999                         break;
1000                 case 16:
1001                         writew_relaxed(val, vaddr);
1002                         break;
1003                 case 32:
1004                         writel_relaxed(val, vaddr);
1005                         break;
1006                 case 64:
1007                         writeq_relaxed(val, vaddr);
1008                         break;
1009                 default:
1010                         pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1011                                  reg->bit_width, pcc_ss_id);
1012                         ret_val = -EFAULT;
1013                         break;
1014         }
1015
1016         return ret_val;
1017 }
1018
1019 /**
1020  * cppc_get_desired_perf - Get the value of desired performance register.
1021  * @cpunum: CPU from which to get desired performance.
1022  * @desired_perf: address of a variable to store the returned desired performance
1023  *
1024  * Return: 0 for success, -EIO otherwise.
1025  */
1026 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1027 {
1028         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1029         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1030         struct cpc_register_resource *desired_reg;
1031         struct cppc_pcc_data *pcc_ss_data = NULL;
1032
1033         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1034
1035         if (CPC_IN_PCC(desired_reg)) {
1036                 int ret = 0;
1037
1038                 if (pcc_ss_id < 0)
1039                         return -EIO;
1040
1041                 pcc_ss_data = pcc_data[pcc_ss_id];
1042
1043                 down_write(&pcc_ss_data->pcc_lock);
1044
1045                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1046                         cpc_read(cpunum, desired_reg, desired_perf);
1047                 else
1048                         ret = -EIO;
1049
1050                 up_write(&pcc_ss_data->pcc_lock);
1051
1052                 return ret;
1053         }
1054
1055         cpc_read(cpunum, desired_reg, desired_perf);
1056
1057         return 0;
1058 }
1059 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1060
1061 /**
1062  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1063  * @cpunum: CPU from which to get capabilities info.
1064  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1065  *
1066  * Return: 0 for success with perf_caps populated else -ERRNO.
1067  */
1068 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1069 {
1070         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1071         struct cpc_register_resource *highest_reg, *lowest_reg,
1072                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1073                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1074         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1075         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1076         struct cppc_pcc_data *pcc_ss_data = NULL;
1077         int ret = 0, regs_in_pcc = 0;
1078
1079         if (!cpc_desc) {
1080                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1081                 return -ENODEV;
1082         }
1083
1084         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1085         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1086         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1087         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1088         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1089         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1090         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1091
1092         /* Are any of the regs PCC ?*/
1093         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1094                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1095                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1096                 if (pcc_ss_id < 0) {
1097                         pr_debug("Invalid pcc_ss_id\n");
1098                         return -ENODEV;
1099                 }
1100                 pcc_ss_data = pcc_data[pcc_ss_id];
1101                 regs_in_pcc = 1;
1102                 down_write(&pcc_ss_data->pcc_lock);
1103                 /* Ring doorbell once to update PCC subspace */
1104                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1105                         ret = -EIO;
1106                         goto out_err;
1107                 }
1108         }
1109
1110         cpc_read(cpunum, highest_reg, &high);
1111         perf_caps->highest_perf = high;
1112
1113         cpc_read(cpunum, lowest_reg, &low);
1114         perf_caps->lowest_perf = low;
1115
1116         cpc_read(cpunum, nominal_reg, &nom);
1117         perf_caps->nominal_perf = nom;
1118
1119         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1120             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1121                 perf_caps->guaranteed_perf = 0;
1122         } else {
1123                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1124                 perf_caps->guaranteed_perf = guaranteed;
1125         }
1126
1127         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1128         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1129
1130         if (!high || !low || !nom || !min_nonlinear)
1131                 ret = -EFAULT;
1132
1133         /* Read optional lowest and nominal frequencies if present */
1134         if (CPC_SUPPORTED(low_freq_reg))
1135                 cpc_read(cpunum, low_freq_reg, &low_f);
1136
1137         if (CPC_SUPPORTED(nom_freq_reg))
1138                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1139
1140         perf_caps->lowest_freq = low_f;
1141         perf_caps->nominal_freq = nom_f;
1142
1143
1144 out_err:
1145         if (regs_in_pcc)
1146                 up_write(&pcc_ss_data->pcc_lock);
1147         return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1150
1151 /**
1152  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1153  * @cpunum: CPU from which to read counters.
1154  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1155  *
1156  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1157  */
1158 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1159 {
1160         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1161         struct cpc_register_resource *delivered_reg, *reference_reg,
1162                 *ref_perf_reg, *ctr_wrap_reg;
1163         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1164         struct cppc_pcc_data *pcc_ss_data = NULL;
1165         u64 delivered, reference, ref_perf, ctr_wrap_time;
1166         int ret = 0, regs_in_pcc = 0;
1167
1168         if (!cpc_desc) {
1169                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1170                 return -ENODEV;
1171         }
1172
1173         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1174         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1175         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1176         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1177
1178         /*
1179          * If reference perf register is not supported then we should
1180          * use the nominal perf value
1181          */
1182         if (!CPC_SUPPORTED(ref_perf_reg))
1183                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1184
1185         /* Are any of the regs PCC ?*/
1186         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1187                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1188                 if (pcc_ss_id < 0) {
1189                         pr_debug("Invalid pcc_ss_id\n");
1190                         return -ENODEV;
1191                 }
1192                 pcc_ss_data = pcc_data[pcc_ss_id];
1193                 down_write(&pcc_ss_data->pcc_lock);
1194                 regs_in_pcc = 1;
1195                 /* Ring doorbell once to update PCC subspace */
1196                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1197                         ret = -EIO;
1198                         goto out_err;
1199                 }
1200         }
1201
1202         cpc_read(cpunum, delivered_reg, &delivered);
1203         cpc_read(cpunum, reference_reg, &reference);
1204         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1205
1206         /*
1207          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1208          * performance counters are assumed to never wrap during the lifetime of
1209          * platform
1210          */
1211         ctr_wrap_time = (u64)(~((u64)0));
1212         if (CPC_SUPPORTED(ctr_wrap_reg))
1213                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1214
1215         if (!delivered || !reference || !ref_perf) {
1216                 ret = -EFAULT;
1217                 goto out_err;
1218         }
1219
1220         perf_fb_ctrs->delivered = delivered;
1221         perf_fb_ctrs->reference = reference;
1222         perf_fb_ctrs->reference_perf = ref_perf;
1223         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1224 out_err:
1225         if (regs_in_pcc)
1226                 up_write(&pcc_ss_data->pcc_lock);
1227         return ret;
1228 }
1229 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1230
1231 /**
1232  * cppc_set_perf - Set a CPU's performance controls.
1233  * @cpu: CPU for which to set performance controls.
1234  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1235  *
1236  * Return: 0 for success, -ERRNO otherwise.
1237  */
1238 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1239 {
1240         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1241         struct cpc_register_resource *desired_reg;
1242         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1243         struct cppc_pcc_data *pcc_ss_data = NULL;
1244         int ret = 0;
1245
1246         if (!cpc_desc) {
1247                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1248                 return -ENODEV;
1249         }
1250
1251         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1252
1253         /*
1254          * This is Phase-I where we want to write to CPC registers
1255          * -> We want all CPUs to be able to execute this phase in parallel
1256          *
1257          * Since read_lock can be acquired by multiple CPUs simultaneously we
1258          * achieve that goal here
1259          */
1260         if (CPC_IN_PCC(desired_reg)) {
1261                 if (pcc_ss_id < 0) {
1262                         pr_debug("Invalid pcc_ss_id\n");
1263                         return -ENODEV;
1264                 }
1265                 pcc_ss_data = pcc_data[pcc_ss_id];
1266                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1267                 if (pcc_ss_data->platform_owns_pcc) {
1268                         ret = check_pcc_chan(pcc_ss_id, false);
1269                         if (ret) {
1270                                 up_read(&pcc_ss_data->pcc_lock);
1271                                 return ret;
1272                         }
1273                 }
1274                 /*
1275                  * Update the pending_write to make sure a PCC CMD_READ will not
1276                  * arrive and steal the channel during the switch to write lock
1277                  */
1278                 pcc_ss_data->pending_pcc_write_cmd = true;
1279                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1280                 cpc_desc->write_cmd_status = 0;
1281         }
1282
1283         /*
1284          * Skip writing MIN/MAX until Linux knows how to come up with
1285          * useful values.
1286          */
1287         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1288
1289         if (CPC_IN_PCC(desired_reg))
1290                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1291         /*
1292          * This is Phase-II where we transfer the ownership of PCC to Platform
1293          *
1294          * Short Summary: Basically if we think of a group of cppc_set_perf
1295          * requests that happened in short overlapping interval. The last CPU to
1296          * come out of Phase-I will enter Phase-II and ring the doorbell.
1297          *
1298          * We have the following requirements for Phase-II:
1299          *     1. We want to execute Phase-II only when there are no CPUs
1300          * currently executing in Phase-I
1301          *     2. Once we start Phase-II we want to avoid all other CPUs from
1302          * entering Phase-I.
1303          *     3. We want only one CPU among all those who went through Phase-I
1304          * to run phase-II
1305          *
1306          * If write_trylock fails to get the lock and doesn't transfer the
1307          * PCC ownership to the platform, then one of the following will be TRUE
1308          *     1. There is at-least one CPU in Phase-I which will later execute
1309          * write_trylock, so the CPUs in Phase-I will be responsible for
1310          * executing the Phase-II.
1311          *     2. Some other CPU has beaten this CPU to successfully execute the
1312          * write_trylock and has already acquired the write_lock. We know for a
1313          * fact it (other CPU acquiring the write_lock) couldn't have happened
1314          * before this CPU's Phase-I as we held the read_lock.
1315          *     3. Some other CPU executing pcc CMD_READ has stolen the
1316          * down_write, in which case, send_pcc_cmd will check for pending
1317          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1318          * So this CPU can be certain that its request will be delivered
1319          *    So in all cases, this CPU knows that its request will be delivered
1320          * by another CPU and can return
1321          *
1322          * After getting the down_write we still need to check for
1323          * pending_pcc_write_cmd to take care of the following scenario
1324          *    The thread running this code could be scheduled out between
1325          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1326          * could have delivered the request to Platform by triggering the
1327          * doorbell and transferred the ownership of PCC to platform. So this
1328          * avoids triggering an unnecessary doorbell and more importantly before
1329          * triggering the doorbell it makes sure that the PCC channel ownership
1330          * is still with OSPM.
1331          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1332          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1333          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1334          * case during a CMD_READ and if there are pending writes it delivers
1335          * the write command before servicing the read command
1336          */
1337         if (CPC_IN_PCC(desired_reg)) {
1338                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1339                         /* Update only if there are pending write commands */
1340                         if (pcc_ss_data->pending_pcc_write_cmd)
1341                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1342                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1343                 } else
1344                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1345                         wait_event(pcc_ss_data->pcc_write_wait_q,
1346                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1347
1348                 /* send_pcc_cmd updates the status in case of failure */
1349                 ret = cpc_desc->write_cmd_status;
1350         }
1351         return ret;
1352 }
1353 EXPORT_SYMBOL_GPL(cppc_set_perf);
1354
1355 /**
1356  * cppc_get_transition_latency - returns frequency transition latency in ns
1357  *
1358  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1359  * transition latency for perfromance change requests. The closest we have
1360  * is the timing information from the PCCT tables which provides the info
1361  * on the number and frequency of PCC commands the platform can handle.
1362  */
1363 unsigned int cppc_get_transition_latency(int cpu_num)
1364 {
1365         /*
1366          * Expected transition latency is based on the PCCT timing values
1367          * Below are definition from ACPI spec:
1368          * pcc_nominal- Expected latency to process a command, in microseconds
1369          * pcc_mpar   - The maximum number of periodic requests that the subspace
1370          *              channel can support, reported in commands per minute. 0
1371          *              indicates no limitation.
1372          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1373          *              completion of a command before issuing the next command,
1374          *              in microseconds.
1375          */
1376         unsigned int latency_ns = 0;
1377         struct cpc_desc *cpc_desc;
1378         struct cpc_register_resource *desired_reg;
1379         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1380         struct cppc_pcc_data *pcc_ss_data;
1381
1382         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1383         if (!cpc_desc)
1384                 return CPUFREQ_ETERNAL;
1385
1386         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1387         if (!CPC_IN_PCC(desired_reg))
1388                 return CPUFREQ_ETERNAL;
1389
1390         if (pcc_ss_id < 0)
1391                 return CPUFREQ_ETERNAL;
1392
1393         pcc_ss_data = pcc_data[pcc_ss_id];
1394         if (pcc_ss_data->pcc_mpar)
1395                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1396
1397         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1398         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1399
1400         return latency_ns;
1401 }
1402 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);