Merge tag 'm68k-for-v5.20-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct pcc_mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Check if a CPC register is in SystemMemory */
104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&   \
105                                 (cpc)->cpc_entry.reg.space_id ==        \
106                                 ACPI_ADR_SPACE_SYSTEM_MEMORY)
107
108 /* Check if a CPC register is in SystemIo */
109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&       \
110                                 (cpc)->cpc_entry.reg.space_id ==        \
111                                 ACPI_ADR_SPACE_SYSTEM_IO)
112
113 /* Evaluates to True if reg is a NULL register descriptor */
114 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115                                 (reg)->address == 0 &&                  \
116                                 (reg)->bit_width == 0 &&                \
117                                 (reg)->bit_offset == 0 &&               \
118                                 (reg)->access_width == 0)
119
120 /* Evaluates to True if an optional cpc field is supported */
121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
122                                 !!(cpc)->cpc_entry.int_value :          \
123                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
124 /*
125  * Arbitrary Retries in case the remote processor is slow to respond
126  * to PCC commands. Keeping it high enough to cover emulators where
127  * the processors run painfully slow.
128  */
129 #define NUM_RETRIES 500ULL
130
131 #define OVER_16BTS_MASK ~0xFFFFULL
132
133 #define define_one_cppc_ro(_name)               \
134 static struct kobj_attribute _name =            \
135 __ATTR(_name, 0444, show_##_name, NULL)
136
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139 #define show_cppc_data(access_fn, struct_name, member_name)             \
140         static ssize_t show_##member_name(struct kobject *kobj,         \
141                                 struct kobj_attribute *attr, char *buf) \
142         {                                                               \
143                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
144                 struct struct_name st_name = {0};                       \
145                 int ret;                                                \
146                                                                         \
147                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
148                 if (ret)                                                \
149                         return ret;                                     \
150                                                                         \
151                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
152                                 (u64)st_name.member_name);              \
153         }                                                               \
154         define_one_cppc_ro(member_name)
155
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165
166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
167                 struct kobj_attribute *attr, char *buf)
168 {
169         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170         struct cppc_perf_fb_ctrs fb_ctrs = {0};
171         int ret;
172
173         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174         if (ret)
175                 return ret;
176
177         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178                         fb_ctrs.reference, fb_ctrs.delivered);
179 }
180 define_one_cppc_ro(feedback_ctrs);
181
182 static struct attribute *cppc_attrs[] = {
183         &feedback_ctrs.attr,
184         &reference_perf.attr,
185         &wraparound_time.attr,
186         &highest_perf.attr,
187         &lowest_perf.attr,
188         &lowest_nonlinear_perf.attr,
189         &nominal_perf.attr,
190         &nominal_freq.attr,
191         &lowest_freq.attr,
192         NULL
193 };
194 ATTRIBUTE_GROUPS(cppc);
195
196 static struct kobj_type cppc_ktype = {
197         .sysfs_ops = &kobj_sysfs_ops,
198         .default_groups = cppc_groups,
199 };
200
201 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
202 {
203         int ret, status;
204         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
205         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
206                 pcc_ss_data->pcc_comm_addr;
207
208         if (!pcc_ss_data->platform_owns_pcc)
209                 return 0;
210
211         /*
212          * Poll PCC status register every 3us(delay_us) for maximum of
213          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
214          */
215         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
216                                         status & PCC_CMD_COMPLETE_MASK, 3,
217                                         pcc_ss_data->deadline_us);
218
219         if (likely(!ret)) {
220                 pcc_ss_data->platform_owns_pcc = false;
221                 if (chk_err_bit && (status & PCC_ERROR_MASK))
222                         ret = -EIO;
223         }
224
225         if (unlikely(ret))
226                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
227                        pcc_ss_id, ret);
228
229         return ret;
230 }
231
232 /*
233  * This function transfers the ownership of the PCC to the platform
234  * So it must be called while holding write_lock(pcc_lock)
235  */
236 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
237 {
238         int ret = -EIO, i;
239         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
240         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
241                 pcc_ss_data->pcc_comm_addr;
242         unsigned int time_delta;
243
244         /*
245          * For CMD_WRITE we know for a fact the caller should have checked
246          * the channel before writing to PCC space
247          */
248         if (cmd == CMD_READ) {
249                 /*
250                  * If there are pending cpc_writes, then we stole the channel
251                  * before write completion, so first send a WRITE command to
252                  * platform
253                  */
254                 if (pcc_ss_data->pending_pcc_write_cmd)
255                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
256
257                 ret = check_pcc_chan(pcc_ss_id, false);
258                 if (ret)
259                         goto end;
260         } else /* CMD_WRITE */
261                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
262
263         /*
264          * Handle the Minimum Request Turnaround Time(MRTT)
265          * "The minimum amount of time that OSPM must wait after the completion
266          * of a command before issuing the next command, in microseconds"
267          */
268         if (pcc_ss_data->pcc_mrtt) {
269                 time_delta = ktime_us_delta(ktime_get(),
270                                             pcc_ss_data->last_cmd_cmpl_time);
271                 if (pcc_ss_data->pcc_mrtt > time_delta)
272                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
273         }
274
275         /*
276          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
277          * "The maximum number of periodic requests that the subspace channel can
278          * support, reported in commands per minute. 0 indicates no limitation."
279          *
280          * This parameter should be ideally zero or large enough so that it can
281          * handle maximum number of requests that all the cores in the system can
282          * collectively generate. If it is not, we will follow the spec and just
283          * not send the request to the platform after hitting the MPAR limit in
284          * any 60s window
285          */
286         if (pcc_ss_data->pcc_mpar) {
287                 if (pcc_ss_data->mpar_count == 0) {
288                         time_delta = ktime_ms_delta(ktime_get(),
289                                                     pcc_ss_data->last_mpar_reset);
290                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
291                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
292                                          pcc_ss_id);
293                                 ret = -EIO;
294                                 goto end;
295                         }
296                         pcc_ss_data->last_mpar_reset = ktime_get();
297                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
298                 }
299                 pcc_ss_data->mpar_count--;
300         }
301
302         /* Write to the shared comm region. */
303         writew_relaxed(cmd, &generic_comm_base->command);
304
305         /* Flip CMD COMPLETE bit */
306         writew_relaxed(0, &generic_comm_base->status);
307
308         pcc_ss_data->platform_owns_pcc = true;
309
310         /* Ring doorbell */
311         ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
312         if (ret < 0) {
313                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
314                        pcc_ss_id, cmd, ret);
315                 goto end;
316         }
317
318         /* wait for completion and check for PCC error bit */
319         ret = check_pcc_chan(pcc_ss_id, true);
320
321         if (pcc_ss_data->pcc_mrtt)
322                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
323
324         if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
325                 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
326         else
327                 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
328
329 end:
330         if (cmd == CMD_WRITE) {
331                 if (unlikely(ret)) {
332                         for_each_possible_cpu(i) {
333                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
334
335                                 if (!desc)
336                                         continue;
337
338                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
339                                         desc->write_cmd_status = ret;
340                         }
341                 }
342                 pcc_ss_data->pcc_write_cnt++;
343                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
344         }
345
346         return ret;
347 }
348
349 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
350 {
351         if (ret < 0)
352                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
353                                 *(u16 *)msg, ret);
354         else
355                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
356                                 *(u16 *)msg, ret);
357 }
358
359 static struct mbox_client cppc_mbox_cl = {
360         .tx_done = cppc_chan_tx_done,
361         .knows_txdone = true,
362 };
363
364 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
365 {
366         int result = -EFAULT;
367         acpi_status status = AE_OK;
368         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
370         struct acpi_buffer state = {0, NULL};
371         union acpi_object  *psd = NULL;
372         struct acpi_psd_package *pdomain;
373
374         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
375                                             &buffer, ACPI_TYPE_PACKAGE);
376         if (status == AE_NOT_FOUND)     /* _PSD is optional */
377                 return 0;
378         if (ACPI_FAILURE(status))
379                 return -ENODEV;
380
381         psd = buffer.pointer;
382         if (!psd || psd->package.count != 1) {
383                 pr_debug("Invalid _PSD data\n");
384                 goto end;
385         }
386
387         pdomain = &(cpc_ptr->domain_info);
388
389         state.length = sizeof(struct acpi_psd_package);
390         state.pointer = pdomain;
391
392         status = acpi_extract_package(&(psd->package.elements[0]),
393                 &format, &state);
394         if (ACPI_FAILURE(status)) {
395                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
396                 goto end;
397         }
398
399         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
400                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
401                 goto end;
402         }
403
404         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
405                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
406                 goto end;
407         }
408
409         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
410             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
411             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
412                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
413                 goto end;
414         }
415
416         result = 0;
417 end:
418         kfree(buffer.pointer);
419         return result;
420 }
421
422 bool acpi_cpc_valid(void)
423 {
424         struct cpc_desc *cpc_ptr;
425         int cpu;
426
427         for_each_present_cpu(cpu) {
428                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
429                 if (!cpc_ptr)
430                         return false;
431         }
432
433         return true;
434 }
435 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
436
437 bool cppc_allow_fast_switch(void)
438 {
439         struct cpc_register_resource *desired_reg;
440         struct cpc_desc *cpc_ptr;
441         int cpu;
442
443         for_each_possible_cpu(cpu) {
444                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
445                 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
446                 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
447                                 !CPC_IN_SYSTEM_IO(desired_reg))
448                         return false;
449         }
450
451         return true;
452 }
453 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
454
455 /**
456  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
457  * @cpu: Find all CPUs that share a domain with cpu.
458  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
459  *
460  *      Return: 0 for success or negative value for err.
461  */
462 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
463 {
464         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
465         struct acpi_psd_package *match_pdomain;
466         struct acpi_psd_package *pdomain;
467         int count_target, i;
468
469         /*
470          * Now that we have _PSD data from all CPUs, let's setup P-state
471          * domain info.
472          */
473         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
474         if (!cpc_ptr)
475                 return -EFAULT;
476
477         pdomain = &(cpc_ptr->domain_info);
478         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
479         if (pdomain->num_processors <= 1)
480                 return 0;
481
482         /* Validate the Domain info */
483         count_target = pdomain->num_processors;
484         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
485                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
486         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
487                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
488         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
489                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
490
491         for_each_possible_cpu(i) {
492                 if (i == cpu)
493                         continue;
494
495                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
496                 if (!match_cpc_ptr)
497                         goto err_fault;
498
499                 match_pdomain = &(match_cpc_ptr->domain_info);
500                 if (match_pdomain->domain != pdomain->domain)
501                         continue;
502
503                 /* Here i and cpu are in the same domain */
504                 if (match_pdomain->num_processors != count_target)
505                         goto err_fault;
506
507                 if (pdomain->coord_type != match_pdomain->coord_type)
508                         goto err_fault;
509
510                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
511         }
512
513         return 0;
514
515 err_fault:
516         /* Assume no coordination on any error parsing domain info */
517         cpumask_clear(cpu_data->shared_cpu_map);
518         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
519         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
520
521         return -EFAULT;
522 }
523 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
524
525 static int register_pcc_channel(int pcc_ss_idx)
526 {
527         struct pcc_mbox_chan *pcc_chan;
528         u64 usecs_lat;
529
530         if (pcc_ss_idx >= 0) {
531                 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
532
533                 if (IS_ERR(pcc_chan)) {
534                         pr_err("Failed to find PCC channel for subspace %d\n",
535                                pcc_ss_idx);
536                         return -ENODEV;
537                 }
538
539                 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
540                 /*
541                  * cppc_ss->latency is just a Nominal value. In reality
542                  * the remote processor could be much slower to reply.
543                  * So add an arbitrary amount of wait on top of Nominal.
544                  */
545                 usecs_lat = NUM_RETRIES * pcc_chan->latency;
546                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
547                 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
548                 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
549                 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
550
551                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
552                         acpi_os_ioremap(pcc_chan->shmem_base_addr,
553                                         pcc_chan->shmem_size);
554                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
555                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
556                                pcc_ss_idx);
557                         return -ENOMEM;
558                 }
559
560                 /* Set flag so that we don't come here for each CPU. */
561                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
562         }
563
564         return 0;
565 }
566
567 /**
568  * cpc_ffh_supported() - check if FFH reading supported
569  *
570  * Check if the architecture has support for functional fixed hardware
571  * read/write capability.
572  *
573  * Return: true for supported, false for not supported
574  */
575 bool __weak cpc_ffh_supported(void)
576 {
577         return false;
578 }
579
580 /**
581  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
582  *
583  * Check if the architectural support for CPPC is present even
584  * if the _OSC hasn't prescribed it
585  *
586  * Return: true for supported, false for not supported
587  */
588 bool __weak cpc_supported_by_cpu(void)
589 {
590         return false;
591 }
592
593 /**
594  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
595  *
596  * Check and allocate the cppc_pcc_data memory.
597  * In some processor configurations it is possible that same subspace
598  * is shared between multiple CPUs. This is seen especially in CPUs
599  * with hardware multi-threading support.
600  *
601  * Return: 0 for success, errno for failure
602  */
603 static int pcc_data_alloc(int pcc_ss_id)
604 {
605         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
606                 return -EINVAL;
607
608         if (pcc_data[pcc_ss_id]) {
609                 pcc_data[pcc_ss_id]->refcount++;
610         } else {
611                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
612                                               GFP_KERNEL);
613                 if (!pcc_data[pcc_ss_id])
614                         return -ENOMEM;
615                 pcc_data[pcc_ss_id]->refcount++;
616         }
617
618         return 0;
619 }
620
621 /* Check if CPPC revision + num_ent combination is supported */
622 static bool is_cppc_supported(int revision, int num_ent)
623 {
624         int expected_num_ent;
625
626         switch (revision) {
627         case CPPC_V2_REV:
628                 expected_num_ent = CPPC_V2_NUM_ENT;
629                 break;
630         case CPPC_V3_REV:
631                 expected_num_ent = CPPC_V3_NUM_ENT;
632                 break;
633         default:
634                 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
635                         revision);
636                 return false;
637         }
638
639         if (expected_num_ent != num_ent) {
640                 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
641                         num_ent, expected_num_ent, revision);
642                 return false;
643         }
644
645         return true;
646 }
647
648 /*
649  * An example CPC table looks like the following.
650  *
651  *  Name (_CPC, Package() {
652  *      17,                                                     // NumEntries
653  *      1,                                                      // Revision
654  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},    // Highest Performance
655  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},    // Nominal Performance
656  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},    // Lowest Nonlinear Performance
657  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},    // Lowest Performance
658  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},    // Guaranteed Performance Register
659  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},    // Desired Performance Register
660  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
661  *      ...
662  *      ...
663  *      ...
664  *  }
665  * Each Register() encodes how to access that specific register.
666  * e.g. a sample PCC entry has the following encoding:
667  *
668  *  Register (
669  *      PCC,    // AddressSpaceKeyword
670  *      8,      // RegisterBitWidth
671  *      8,      // RegisterBitOffset
672  *      0x30,   // RegisterAddress
673  *      9,      // AccessSize (subspace ID)
674  *  )
675  */
676
677 #ifndef arch_init_invariance_cppc
678 static inline void arch_init_invariance_cppc(void) { }
679 #endif
680
681 /**
682  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
683  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
684  *
685  *      Return: 0 for success or negative value for err.
686  */
687 int acpi_cppc_processor_probe(struct acpi_processor *pr)
688 {
689         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
690         union acpi_object *out_obj, *cpc_obj;
691         struct cpc_desc *cpc_ptr;
692         struct cpc_reg *gas_t;
693         struct device *cpu_dev;
694         acpi_handle handle = pr->handle;
695         unsigned int num_ent, i, cpc_rev;
696         int pcc_subspace_id = -1;
697         acpi_status status;
698         int ret = -ENODATA;
699
700         if (!osc_sb_cppc2_support_acked) {
701                 pr_debug("CPPC v2 _OSC not acked\n");
702                 if (!cpc_supported_by_cpu())
703                         return -ENODEV;
704         }
705
706         /* Parse the ACPI _CPC table for this CPU. */
707         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
708                         ACPI_TYPE_PACKAGE);
709         if (ACPI_FAILURE(status)) {
710                 ret = -ENODEV;
711                 goto out_buf_free;
712         }
713
714         out_obj = (union acpi_object *) output.pointer;
715
716         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
717         if (!cpc_ptr) {
718                 ret = -ENOMEM;
719                 goto out_buf_free;
720         }
721
722         /* First entry is NumEntries. */
723         cpc_obj = &out_obj->package.elements[0];
724         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
725                 num_ent = cpc_obj->integer.value;
726                 if (num_ent <= 1) {
727                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
728                                  num_ent, pr->id);
729                         goto out_free;
730                 }
731         } else {
732                 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
733                          cpc_obj->type, pr->id);
734                 goto out_free;
735         }
736         cpc_ptr->num_entries = num_ent;
737
738         /* Second entry should be revision. */
739         cpc_obj = &out_obj->package.elements[1];
740         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
741                 cpc_rev = cpc_obj->integer.value;
742         } else {
743                 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
744                          cpc_obj->type, pr->id);
745                 goto out_free;
746         }
747         cpc_ptr->version = cpc_rev;
748
749         if (!is_cppc_supported(cpc_rev, num_ent))
750                 goto out_free;
751
752         /* Iterate through remaining entries in _CPC */
753         for (i = 2; i < num_ent; i++) {
754                 cpc_obj = &out_obj->package.elements[i];
755
756                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
757                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
758                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
759                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
760                         gas_t = (struct cpc_reg *)
761                                 cpc_obj->buffer.pointer;
762
763                         /*
764                          * The PCC Subspace index is encoded inside
765                          * the CPC table entries. The same PCC index
766                          * will be used for all the PCC entries,
767                          * so extract it only once.
768                          */
769                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
770                                 if (pcc_subspace_id < 0) {
771                                         pcc_subspace_id = gas_t->access_width;
772                                         if (pcc_data_alloc(pcc_subspace_id))
773                                                 goto out_free;
774                                 } else if (pcc_subspace_id != gas_t->access_width) {
775                                         pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
776                                                  pr->id);
777                                         goto out_free;
778                                 }
779                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
780                                 if (gas_t->address) {
781                                         void __iomem *addr;
782
783                                         if (!osc_cpc_flexible_adr_space_confirmed) {
784                                                 pr_debug("Flexible address space capability not supported\n");
785                                                 if (!cpc_supported_by_cpu())
786                                                         goto out_free;
787                                         }
788
789                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
790                                         if (!addr)
791                                                 goto out_free;
792                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
793                                 }
794                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
795                                 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
796                                         /*
797                                          * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
798                                          * SystemIO doesn't implement 64-bit
799                                          * registers.
800                                          */
801                                         pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
802                                                  gas_t->access_width);
803                                         goto out_free;
804                                 }
805                                 if (gas_t->address & OVER_16BTS_MASK) {
806                                         /* SystemIO registers use 16-bit integer addresses */
807                                         pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
808                                                  gas_t->address);
809                                         goto out_free;
810                                 }
811                                 if (!osc_cpc_flexible_adr_space_confirmed) {
812                                         pr_debug("Flexible address space capability not supported\n");
813                                         if (!cpc_supported_by_cpu())
814                                                 goto out_free;
815                                 }
816                         } else {
817                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
818                                         /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
819                                         pr_debug("Unsupported register type (%d) in _CPC\n",
820                                                  gas_t->space_id);
821                                         goto out_free;
822                                 }
823                         }
824
825                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
826                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
827                 } else {
828                         pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
829                                  i, pr->id);
830                         goto out_free;
831                 }
832         }
833         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
834
835         /*
836          * Initialize the remaining cpc_regs as unsupported.
837          * Example: In case FW exposes CPPC v2, the below loop will initialize
838          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
839          */
840         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
841                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
842                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
843         }
844
845
846         /* Store CPU Logical ID */
847         cpc_ptr->cpu_id = pr->id;
848
849         /* Parse PSD data for this CPU */
850         ret = acpi_get_psd(cpc_ptr, handle);
851         if (ret)
852                 goto out_free;
853
854         /* Register PCC channel once for all PCC subspace ID. */
855         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
856                 ret = register_pcc_channel(pcc_subspace_id);
857                 if (ret)
858                         goto out_free;
859
860                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
861                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
862         }
863
864         /* Everything looks okay */
865         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
866
867         /* Add per logical CPU nodes for reading its feedback counters. */
868         cpu_dev = get_cpu_device(pr->id);
869         if (!cpu_dev) {
870                 ret = -EINVAL;
871                 goto out_free;
872         }
873
874         /* Plug PSD data into this CPU's CPC descriptor. */
875         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
876
877         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
878                         "acpi_cppc");
879         if (ret) {
880                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
881                 kobject_put(&cpc_ptr->kobj);
882                 goto out_free;
883         }
884
885         arch_init_invariance_cppc();
886
887         kfree(output.pointer);
888         return 0;
889
890 out_free:
891         /* Free all the mapped sys mem areas for this CPU */
892         for (i = 2; i < cpc_ptr->num_entries; i++) {
893                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
894
895                 if (addr)
896                         iounmap(addr);
897         }
898         kfree(cpc_ptr);
899
900 out_buf_free:
901         kfree(output.pointer);
902         return ret;
903 }
904 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
905
906 /**
907  * acpi_cppc_processor_exit - Cleanup CPC structs.
908  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
909  *
910  * Return: Void
911  */
912 void acpi_cppc_processor_exit(struct acpi_processor *pr)
913 {
914         struct cpc_desc *cpc_ptr;
915         unsigned int i;
916         void __iomem *addr;
917         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
918
919         if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
920                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
921                         pcc_data[pcc_ss_id]->refcount--;
922                         if (!pcc_data[pcc_ss_id]->refcount) {
923                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
924                                 kfree(pcc_data[pcc_ss_id]);
925                                 pcc_data[pcc_ss_id] = NULL;
926                         }
927                 }
928         }
929
930         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
931         if (!cpc_ptr)
932                 return;
933
934         /* Free all the mapped sys mem areas for this CPU */
935         for (i = 2; i < cpc_ptr->num_entries; i++) {
936                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
937                 if (addr)
938                         iounmap(addr);
939         }
940
941         kobject_put(&cpc_ptr->kobj);
942         kfree(cpc_ptr);
943 }
944 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
945
946 /**
947  * cpc_read_ffh() - Read FFH register
948  * @cpunum:     CPU number to read
949  * @reg:        cppc register information
950  * @val:        place holder for return value
951  *
952  * Read bit_width bits from a specified address and bit_offset
953  *
954  * Return: 0 for success and error code
955  */
956 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
957 {
958         return -ENOTSUPP;
959 }
960
961 /**
962  * cpc_write_ffh() - Write FFH register
963  * @cpunum:     CPU number to write
964  * @reg:        cppc register information
965  * @val:        value to write
966  *
967  * Write value of bit_width bits to a specified address and bit_offset
968  *
969  * Return: 0 for success and error code
970  */
971 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
972 {
973         return -ENOTSUPP;
974 }
975
976 /*
977  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
978  * as fast as possible. We have already mapped the PCC subspace during init, so
979  * we can directly write to it.
980  */
981
982 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
983 {
984         void __iomem *vaddr = NULL;
985         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
986         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
987
988         if (reg_res->type == ACPI_TYPE_INTEGER) {
989                 *val = reg_res->cpc_entry.int_value;
990                 return 0;
991         }
992
993         *val = 0;
994
995         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
996                 u32 width = 8 << (reg->access_width - 1);
997                 u32 val_u32;
998                 acpi_status status;
999
1000                 status = acpi_os_read_port((acpi_io_address)reg->address,
1001                                            &val_u32, width);
1002                 if (ACPI_FAILURE(status)) {
1003                         pr_debug("Error: Failed to read SystemIO port %llx\n",
1004                                  reg->address);
1005                         return -EFAULT;
1006                 }
1007
1008                 *val = val_u32;
1009                 return 0;
1010         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1011                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1012         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1013                 vaddr = reg_res->sys_mem_vaddr;
1014         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1015                 return cpc_read_ffh(cpu, reg, val);
1016         else
1017                 return acpi_os_read_memory((acpi_physical_address)reg->address,
1018                                 val, reg->bit_width);
1019
1020         switch (reg->bit_width) {
1021         case 8:
1022                 *val = readb_relaxed(vaddr);
1023                 break;
1024         case 16:
1025                 *val = readw_relaxed(vaddr);
1026                 break;
1027         case 32:
1028                 *val = readl_relaxed(vaddr);
1029                 break;
1030         case 64:
1031                 *val = readq_relaxed(vaddr);
1032                 break;
1033         default:
1034                 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1035                          reg->bit_width, pcc_ss_id);
1036                 return -EFAULT;
1037         }
1038
1039         return 0;
1040 }
1041
1042 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1043 {
1044         int ret_val = 0;
1045         void __iomem *vaddr = NULL;
1046         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1047         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1048
1049         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1050                 u32 width = 8 << (reg->access_width - 1);
1051                 acpi_status status;
1052
1053                 status = acpi_os_write_port((acpi_io_address)reg->address,
1054                                             (u32)val, width);
1055                 if (ACPI_FAILURE(status)) {
1056                         pr_debug("Error: Failed to write SystemIO port %llx\n",
1057                                  reg->address);
1058                         return -EFAULT;
1059                 }
1060
1061                 return 0;
1062         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1063                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1064         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1065                 vaddr = reg_res->sys_mem_vaddr;
1066         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1067                 return cpc_write_ffh(cpu, reg, val);
1068         else
1069                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1070                                 val, reg->bit_width);
1071
1072         switch (reg->bit_width) {
1073         case 8:
1074                 writeb_relaxed(val, vaddr);
1075                 break;
1076         case 16:
1077                 writew_relaxed(val, vaddr);
1078                 break;
1079         case 32:
1080                 writel_relaxed(val, vaddr);
1081                 break;
1082         case 64:
1083                 writeq_relaxed(val, vaddr);
1084                 break;
1085         default:
1086                 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1087                          reg->bit_width, pcc_ss_id);
1088                 ret_val = -EFAULT;
1089                 break;
1090         }
1091
1092         return ret_val;
1093 }
1094
1095 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1096 {
1097         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1098         struct cpc_register_resource *reg;
1099
1100         if (!cpc_desc) {
1101                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1102                 return -ENODEV;
1103         }
1104
1105         reg = &cpc_desc->cpc_regs[reg_idx];
1106
1107         if (CPC_IN_PCC(reg)) {
1108                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1109                 struct cppc_pcc_data *pcc_ss_data = NULL;
1110                 int ret = 0;
1111
1112                 if (pcc_ss_id < 0)
1113                         return -EIO;
1114
1115                 pcc_ss_data = pcc_data[pcc_ss_id];
1116
1117                 down_write(&pcc_ss_data->pcc_lock);
1118
1119                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1120                         cpc_read(cpunum, reg, perf);
1121                 else
1122                         ret = -EIO;
1123
1124                 up_write(&pcc_ss_data->pcc_lock);
1125
1126                 return ret;
1127         }
1128
1129         cpc_read(cpunum, reg, perf);
1130
1131         return 0;
1132 }
1133
1134 /**
1135  * cppc_get_desired_perf - Get the desired performance register value.
1136  * @cpunum: CPU from which to get desired performance.
1137  * @desired_perf: Return address.
1138  *
1139  * Return: 0 for success, -EIO otherwise.
1140  */
1141 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1142 {
1143         return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1144 }
1145 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1146
1147 /**
1148  * cppc_get_nominal_perf - Get the nominal performance register value.
1149  * @cpunum: CPU from which to get nominal performance.
1150  * @nominal_perf: Return address.
1151  *
1152  * Return: 0 for success, -EIO otherwise.
1153  */
1154 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1155 {
1156         return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1157 }
1158
1159 /**
1160  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1161  * @cpunum: CPU from which to get capabilities info.
1162  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1163  *
1164  * Return: 0 for success with perf_caps populated else -ERRNO.
1165  */
1166 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1167 {
1168         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1169         struct cpc_register_resource *highest_reg, *lowest_reg,
1170                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1171                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1172         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1173         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1174         struct cppc_pcc_data *pcc_ss_data = NULL;
1175         int ret = 0, regs_in_pcc = 0;
1176
1177         if (!cpc_desc) {
1178                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1179                 return -ENODEV;
1180         }
1181
1182         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1183         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1184         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1185         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1186         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1187         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1188         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1189
1190         /* Are any of the regs PCC ?*/
1191         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1192                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1193                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1194                 if (pcc_ss_id < 0) {
1195                         pr_debug("Invalid pcc_ss_id\n");
1196                         return -ENODEV;
1197                 }
1198                 pcc_ss_data = pcc_data[pcc_ss_id];
1199                 regs_in_pcc = 1;
1200                 down_write(&pcc_ss_data->pcc_lock);
1201                 /* Ring doorbell once to update PCC subspace */
1202                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1203                         ret = -EIO;
1204                         goto out_err;
1205                 }
1206         }
1207
1208         cpc_read(cpunum, highest_reg, &high);
1209         perf_caps->highest_perf = high;
1210
1211         cpc_read(cpunum, lowest_reg, &low);
1212         perf_caps->lowest_perf = low;
1213
1214         cpc_read(cpunum, nominal_reg, &nom);
1215         perf_caps->nominal_perf = nom;
1216
1217         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1218             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1219                 perf_caps->guaranteed_perf = 0;
1220         } else {
1221                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1222                 perf_caps->guaranteed_perf = guaranteed;
1223         }
1224
1225         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1226         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1227
1228         if (!high || !low || !nom || !min_nonlinear)
1229                 ret = -EFAULT;
1230
1231         /* Read optional lowest and nominal frequencies if present */
1232         if (CPC_SUPPORTED(low_freq_reg))
1233                 cpc_read(cpunum, low_freq_reg, &low_f);
1234
1235         if (CPC_SUPPORTED(nom_freq_reg))
1236                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1237
1238         perf_caps->lowest_freq = low_f;
1239         perf_caps->nominal_freq = nom_f;
1240
1241
1242 out_err:
1243         if (regs_in_pcc)
1244                 up_write(&pcc_ss_data->pcc_lock);
1245         return ret;
1246 }
1247 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1248
1249 /**
1250  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1251  * @cpunum: CPU from which to read counters.
1252  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1253  *
1254  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1255  */
1256 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1257 {
1258         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1259         struct cpc_register_resource *delivered_reg, *reference_reg,
1260                 *ref_perf_reg, *ctr_wrap_reg;
1261         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1262         struct cppc_pcc_data *pcc_ss_data = NULL;
1263         u64 delivered, reference, ref_perf, ctr_wrap_time;
1264         int ret = 0, regs_in_pcc = 0;
1265
1266         if (!cpc_desc) {
1267                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1268                 return -ENODEV;
1269         }
1270
1271         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1272         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1273         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1274         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1275
1276         /*
1277          * If reference perf register is not supported then we should
1278          * use the nominal perf value
1279          */
1280         if (!CPC_SUPPORTED(ref_perf_reg))
1281                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1282
1283         /* Are any of the regs PCC ?*/
1284         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1285                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1286                 if (pcc_ss_id < 0) {
1287                         pr_debug("Invalid pcc_ss_id\n");
1288                         return -ENODEV;
1289                 }
1290                 pcc_ss_data = pcc_data[pcc_ss_id];
1291                 down_write(&pcc_ss_data->pcc_lock);
1292                 regs_in_pcc = 1;
1293                 /* Ring doorbell once to update PCC subspace */
1294                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1295                         ret = -EIO;
1296                         goto out_err;
1297                 }
1298         }
1299
1300         cpc_read(cpunum, delivered_reg, &delivered);
1301         cpc_read(cpunum, reference_reg, &reference);
1302         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1303
1304         /*
1305          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1306          * performance counters are assumed to never wrap during the lifetime of
1307          * platform
1308          */
1309         ctr_wrap_time = (u64)(~((u64)0));
1310         if (CPC_SUPPORTED(ctr_wrap_reg))
1311                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1312
1313         if (!delivered || !reference || !ref_perf) {
1314                 ret = -EFAULT;
1315                 goto out_err;
1316         }
1317
1318         perf_fb_ctrs->delivered = delivered;
1319         perf_fb_ctrs->reference = reference;
1320         perf_fb_ctrs->reference_perf = ref_perf;
1321         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1322 out_err:
1323         if (regs_in_pcc)
1324                 up_write(&pcc_ss_data->pcc_lock);
1325         return ret;
1326 }
1327 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1328
1329 /**
1330  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1331  * Continuous Performance Control package EnableRegister field.
1332  * @cpu: CPU for which to enable CPPC register.
1333  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1334  *
1335  * Return: 0 for success, -ERRNO or -EIO otherwise.
1336  */
1337 int cppc_set_enable(int cpu, bool enable)
1338 {
1339         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1340         struct cpc_register_resource *enable_reg;
1341         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1342         struct cppc_pcc_data *pcc_ss_data = NULL;
1343         int ret = -EINVAL;
1344
1345         if (!cpc_desc) {
1346                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1347                 return -EINVAL;
1348         }
1349
1350         enable_reg = &cpc_desc->cpc_regs[ENABLE];
1351
1352         if (CPC_IN_PCC(enable_reg)) {
1353
1354                 if (pcc_ss_id < 0)
1355                         return -EIO;
1356
1357                 ret = cpc_write(cpu, enable_reg, enable);
1358                 if (ret)
1359                         return ret;
1360
1361                 pcc_ss_data = pcc_data[pcc_ss_id];
1362
1363                 down_write(&pcc_ss_data->pcc_lock);
1364                 /* after writing CPC, transfer the ownership of PCC to platfrom */
1365                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1366                 up_write(&pcc_ss_data->pcc_lock);
1367                 return ret;
1368         }
1369
1370         return cpc_write(cpu, enable_reg, enable);
1371 }
1372 EXPORT_SYMBOL_GPL(cppc_set_enable);
1373
1374 /**
1375  * cppc_set_perf - Set a CPU's performance controls.
1376  * @cpu: CPU for which to set performance controls.
1377  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1378  *
1379  * Return: 0 for success, -ERRNO otherwise.
1380  */
1381 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1382 {
1383         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1384         struct cpc_register_resource *desired_reg;
1385         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1386         struct cppc_pcc_data *pcc_ss_data = NULL;
1387         int ret = 0;
1388
1389         if (!cpc_desc) {
1390                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1391                 return -ENODEV;
1392         }
1393
1394         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1395
1396         /*
1397          * This is Phase-I where we want to write to CPC registers
1398          * -> We want all CPUs to be able to execute this phase in parallel
1399          *
1400          * Since read_lock can be acquired by multiple CPUs simultaneously we
1401          * achieve that goal here
1402          */
1403         if (CPC_IN_PCC(desired_reg)) {
1404                 if (pcc_ss_id < 0) {
1405                         pr_debug("Invalid pcc_ss_id\n");
1406                         return -ENODEV;
1407                 }
1408                 pcc_ss_data = pcc_data[pcc_ss_id];
1409                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1410                 if (pcc_ss_data->platform_owns_pcc) {
1411                         ret = check_pcc_chan(pcc_ss_id, false);
1412                         if (ret) {
1413                                 up_read(&pcc_ss_data->pcc_lock);
1414                                 return ret;
1415                         }
1416                 }
1417                 /*
1418                  * Update the pending_write to make sure a PCC CMD_READ will not
1419                  * arrive and steal the channel during the switch to write lock
1420                  */
1421                 pcc_ss_data->pending_pcc_write_cmd = true;
1422                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1423                 cpc_desc->write_cmd_status = 0;
1424         }
1425
1426         /*
1427          * Skip writing MIN/MAX until Linux knows how to come up with
1428          * useful values.
1429          */
1430         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1431
1432         if (CPC_IN_PCC(desired_reg))
1433                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1434         /*
1435          * This is Phase-II where we transfer the ownership of PCC to Platform
1436          *
1437          * Short Summary: Basically if we think of a group of cppc_set_perf
1438          * requests that happened in short overlapping interval. The last CPU to
1439          * come out of Phase-I will enter Phase-II and ring the doorbell.
1440          *
1441          * We have the following requirements for Phase-II:
1442          *     1. We want to execute Phase-II only when there are no CPUs
1443          * currently executing in Phase-I
1444          *     2. Once we start Phase-II we want to avoid all other CPUs from
1445          * entering Phase-I.
1446          *     3. We want only one CPU among all those who went through Phase-I
1447          * to run phase-II
1448          *
1449          * If write_trylock fails to get the lock and doesn't transfer the
1450          * PCC ownership to the platform, then one of the following will be TRUE
1451          *     1. There is at-least one CPU in Phase-I which will later execute
1452          * write_trylock, so the CPUs in Phase-I will be responsible for
1453          * executing the Phase-II.
1454          *     2. Some other CPU has beaten this CPU to successfully execute the
1455          * write_trylock and has already acquired the write_lock. We know for a
1456          * fact it (other CPU acquiring the write_lock) couldn't have happened
1457          * before this CPU's Phase-I as we held the read_lock.
1458          *     3. Some other CPU executing pcc CMD_READ has stolen the
1459          * down_write, in which case, send_pcc_cmd will check for pending
1460          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1461          * So this CPU can be certain that its request will be delivered
1462          *    So in all cases, this CPU knows that its request will be delivered
1463          * by another CPU and can return
1464          *
1465          * After getting the down_write we still need to check for
1466          * pending_pcc_write_cmd to take care of the following scenario
1467          *    The thread running this code could be scheduled out between
1468          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1469          * could have delivered the request to Platform by triggering the
1470          * doorbell and transferred the ownership of PCC to platform. So this
1471          * avoids triggering an unnecessary doorbell and more importantly before
1472          * triggering the doorbell it makes sure that the PCC channel ownership
1473          * is still with OSPM.
1474          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1475          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1476          * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1477          * case during a CMD_READ and if there are pending writes it delivers
1478          * the write command before servicing the read command
1479          */
1480         if (CPC_IN_PCC(desired_reg)) {
1481                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1482                         /* Update only if there are pending write commands */
1483                         if (pcc_ss_data->pending_pcc_write_cmd)
1484                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1485                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1486                 } else
1487                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1488                         wait_event(pcc_ss_data->pcc_write_wait_q,
1489                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1490
1491                 /* send_pcc_cmd updates the status in case of failure */
1492                 ret = cpc_desc->write_cmd_status;
1493         }
1494         return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(cppc_set_perf);
1497
1498 /**
1499  * cppc_get_transition_latency - returns frequency transition latency in ns
1500  *
1501  * ACPI CPPC does not explicitly specify how a platform can specify the
1502  * transition latency for performance change requests. The closest we have
1503  * is the timing information from the PCCT tables which provides the info
1504  * on the number and frequency of PCC commands the platform can handle.
1505  *
1506  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1507  * then assume there is no latency.
1508  */
1509 unsigned int cppc_get_transition_latency(int cpu_num)
1510 {
1511         /*
1512          * Expected transition latency is based on the PCCT timing values
1513          * Below are definition from ACPI spec:
1514          * pcc_nominal- Expected latency to process a command, in microseconds
1515          * pcc_mpar   - The maximum number of periodic requests that the subspace
1516          *              channel can support, reported in commands per minute. 0
1517          *              indicates no limitation.
1518          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1519          *              completion of a command before issuing the next command,
1520          *              in microseconds.
1521          */
1522         unsigned int latency_ns = 0;
1523         struct cpc_desc *cpc_desc;
1524         struct cpc_register_resource *desired_reg;
1525         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1526         struct cppc_pcc_data *pcc_ss_data;
1527
1528         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1529         if (!cpc_desc)
1530                 return CPUFREQ_ETERNAL;
1531
1532         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1533         if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1534                 return 0;
1535         else if (!CPC_IN_PCC(desired_reg))
1536                 return CPUFREQ_ETERNAL;
1537
1538         if (pcc_ss_id < 0)
1539                 return CPUFREQ_ETERNAL;
1540
1541         pcc_ss_data = pcc_data[pcc_ss_id];
1542         if (pcc_ss_data->pcc_mpar)
1543                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1544
1545         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1546         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1547
1548         return latency_ns;
1549 }
1550 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);