Merge branches 'clk-x86', 'clk-stm', 'clk-amlogic' and 'clk-allwinner' into clk-next
[linux-2.6-microblaze.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct pcc_mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evaluates to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evaluates to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500ULL
120
121 #define define_one_cppc_ro(_name)               \
122 static struct kobj_attribute _name =            \
123 __ATTR(_name, 0444, show_##_name, NULL)
124
125 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
126
127 #define show_cppc_data(access_fn, struct_name, member_name)             \
128         static ssize_t show_##member_name(struct kobject *kobj,         \
129                                 struct kobj_attribute *attr, char *buf) \
130         {                                                               \
131                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
132                 struct struct_name st_name = {0};                       \
133                 int ret;                                                \
134                                                                         \
135                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
136                 if (ret)                                                \
137                         return ret;                                     \
138                                                                         \
139                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
140                                 (u64)st_name.member_name);              \
141         }                                                               \
142         define_one_cppc_ro(member_name)
143
144 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
150
151 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
152 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
153
154 static ssize_t show_feedback_ctrs(struct kobject *kobj,
155                 struct kobj_attribute *attr, char *buf)
156 {
157         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
158         struct cppc_perf_fb_ctrs fb_ctrs = {0};
159         int ret;
160
161         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
162         if (ret)
163                 return ret;
164
165         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
166                         fb_ctrs.reference, fb_ctrs.delivered);
167 }
168 define_one_cppc_ro(feedback_ctrs);
169
170 static struct attribute *cppc_attrs[] = {
171         &feedback_ctrs.attr,
172         &reference_perf.attr,
173         &wraparound_time.attr,
174         &highest_perf.attr,
175         &lowest_perf.attr,
176         &lowest_nonlinear_perf.attr,
177         &nominal_perf.attr,
178         &nominal_freq.attr,
179         &lowest_freq.attr,
180         NULL
181 };
182
183 static struct kobj_type cppc_ktype = {
184         .sysfs_ops = &kobj_sysfs_ops,
185         .default_attrs = cppc_attrs,
186 };
187
188 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
189 {
190         int ret, status;
191         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
192         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
193                 pcc_ss_data->pcc_comm_addr;
194
195         if (!pcc_ss_data->platform_owns_pcc)
196                 return 0;
197
198         /*
199          * Poll PCC status register every 3us(delay_us) for maximum of
200          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
201          */
202         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
203                                         status & PCC_CMD_COMPLETE_MASK, 3,
204                                         pcc_ss_data->deadline_us);
205
206         if (likely(!ret)) {
207                 pcc_ss_data->platform_owns_pcc = false;
208                 if (chk_err_bit && (status & PCC_ERROR_MASK))
209                         ret = -EIO;
210         }
211
212         if (unlikely(ret))
213                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
214                        pcc_ss_id, ret);
215
216         return ret;
217 }
218
219 /*
220  * This function transfers the ownership of the PCC to the platform
221  * So it must be called while holding write_lock(pcc_lock)
222  */
223 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
224 {
225         int ret = -EIO, i;
226         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
227         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
228                 pcc_ss_data->pcc_comm_addr;
229         unsigned int time_delta;
230
231         /*
232          * For CMD_WRITE we know for a fact the caller should have checked
233          * the channel before writing to PCC space
234          */
235         if (cmd == CMD_READ) {
236                 /*
237                  * If there are pending cpc_writes, then we stole the channel
238                  * before write completion, so first send a WRITE command to
239                  * platform
240                  */
241                 if (pcc_ss_data->pending_pcc_write_cmd)
242                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
243
244                 ret = check_pcc_chan(pcc_ss_id, false);
245                 if (ret)
246                         goto end;
247         } else /* CMD_WRITE */
248                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
249
250         /*
251          * Handle the Minimum Request Turnaround Time(MRTT)
252          * "The minimum amount of time that OSPM must wait after the completion
253          * of a command before issuing the next command, in microseconds"
254          */
255         if (pcc_ss_data->pcc_mrtt) {
256                 time_delta = ktime_us_delta(ktime_get(),
257                                             pcc_ss_data->last_cmd_cmpl_time);
258                 if (pcc_ss_data->pcc_mrtt > time_delta)
259                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
260         }
261
262         /*
263          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
264          * "The maximum number of periodic requests that the subspace channel can
265          * support, reported in commands per minute. 0 indicates no limitation."
266          *
267          * This parameter should be ideally zero or large enough so that it can
268          * handle maximum number of requests that all the cores in the system can
269          * collectively generate. If it is not, we will follow the spec and just
270          * not send the request to the platform after hitting the MPAR limit in
271          * any 60s window
272          */
273         if (pcc_ss_data->pcc_mpar) {
274                 if (pcc_ss_data->mpar_count == 0) {
275                         time_delta = ktime_ms_delta(ktime_get(),
276                                                     pcc_ss_data->last_mpar_reset);
277                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
278                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
279                                          pcc_ss_id);
280                                 ret = -EIO;
281                                 goto end;
282                         }
283                         pcc_ss_data->last_mpar_reset = ktime_get();
284                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
285                 }
286                 pcc_ss_data->mpar_count--;
287         }
288
289         /* Write to the shared comm region. */
290         writew_relaxed(cmd, &generic_comm_base->command);
291
292         /* Flip CMD COMPLETE bit */
293         writew_relaxed(0, &generic_comm_base->status);
294
295         pcc_ss_data->platform_owns_pcc = true;
296
297         /* Ring doorbell */
298         ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
299         if (ret < 0) {
300                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
301                        pcc_ss_id, cmd, ret);
302                 goto end;
303         }
304
305         /* wait for completion and check for PCC errro bit */
306         ret = check_pcc_chan(pcc_ss_id, true);
307
308         if (pcc_ss_data->pcc_mrtt)
309                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
310
311         if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
312                 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
313         else
314                 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
315
316 end:
317         if (cmd == CMD_WRITE) {
318                 if (unlikely(ret)) {
319                         for_each_possible_cpu(i) {
320                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321
322                                 if (!desc)
323                                         continue;
324
325                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
326                                         desc->write_cmd_status = ret;
327                         }
328                 }
329                 pcc_ss_data->pcc_write_cnt++;
330                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
331         }
332
333         return ret;
334 }
335
336 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
337 {
338         if (ret < 0)
339                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
340                                 *(u16 *)msg, ret);
341         else
342                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
343                                 *(u16 *)msg, ret);
344 }
345
346 static struct mbox_client cppc_mbox_cl = {
347         .tx_done = cppc_chan_tx_done,
348         .knows_txdone = true,
349 };
350
351 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
352 {
353         int result = -EFAULT;
354         acpi_status status = AE_OK;
355         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
356         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
357         struct acpi_buffer state = {0, NULL};
358         union acpi_object  *psd = NULL;
359         struct acpi_psd_package *pdomain;
360
361         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
362                                             &buffer, ACPI_TYPE_PACKAGE);
363         if (status == AE_NOT_FOUND)     /* _PSD is optional */
364                 return 0;
365         if (ACPI_FAILURE(status))
366                 return -ENODEV;
367
368         psd = buffer.pointer;
369         if (!psd || psd->package.count != 1) {
370                 pr_debug("Invalid _PSD data\n");
371                 goto end;
372         }
373
374         pdomain = &(cpc_ptr->domain_info);
375
376         state.length = sizeof(struct acpi_psd_package);
377         state.pointer = pdomain;
378
379         status = acpi_extract_package(&(psd->package.elements[0]),
380                 &format, &state);
381         if (ACPI_FAILURE(status)) {
382                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
383                 goto end;
384         }
385
386         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
388                 goto end;
389         }
390
391         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
393                 goto end;
394         }
395
396         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
400                 goto end;
401         }
402
403         result = 0;
404 end:
405         kfree(buffer.pointer);
406         return result;
407 }
408
409 bool acpi_cpc_valid(void)
410 {
411         struct cpc_desc *cpc_ptr;
412         int cpu;
413
414         for_each_possible_cpu(cpu) {
415                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
416                 if (!cpc_ptr)
417                         return false;
418         }
419
420         return true;
421 }
422 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
423
424 /**
425  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
426  * @cpu: Find all CPUs that share a domain with cpu.
427  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
428  *
429  *      Return: 0 for success or negative value for err.
430  */
431 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
432 {
433         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
434         struct acpi_psd_package *match_pdomain;
435         struct acpi_psd_package *pdomain;
436         int count_target, i;
437
438         /*
439          * Now that we have _PSD data from all CPUs, let's setup P-state
440          * domain info.
441          */
442         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
443         if (!cpc_ptr)
444                 return -EFAULT;
445
446         pdomain = &(cpc_ptr->domain_info);
447         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
448         if (pdomain->num_processors <= 1)
449                 return 0;
450
451         /* Validate the Domain info */
452         count_target = pdomain->num_processors;
453         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
454                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
455         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
456                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
457         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
458                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
459
460         for_each_possible_cpu(i) {
461                 if (i == cpu)
462                         continue;
463
464                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
465                 if (!match_cpc_ptr)
466                         goto err_fault;
467
468                 match_pdomain = &(match_cpc_ptr->domain_info);
469                 if (match_pdomain->domain != pdomain->domain)
470                         continue;
471
472                 /* Here i and cpu are in the same domain */
473                 if (match_pdomain->num_processors != count_target)
474                         goto err_fault;
475
476                 if (pdomain->coord_type != match_pdomain->coord_type)
477                         goto err_fault;
478
479                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
480         }
481
482         return 0;
483
484 err_fault:
485         /* Assume no coordination on any error parsing domain info */
486         cpumask_clear(cpu_data->shared_cpu_map);
487         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
488         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
489
490         return -EFAULT;
491 }
492 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
493
494 static int register_pcc_channel(int pcc_ss_idx)
495 {
496         struct pcc_mbox_chan *pcc_chan;
497         u64 usecs_lat;
498
499         if (pcc_ss_idx >= 0) {
500                 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
501
502                 if (IS_ERR(pcc_chan)) {
503                         pr_err("Failed to find PCC channel for subspace %d\n",
504                                pcc_ss_idx);
505                         return -ENODEV;
506                 }
507
508                 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
509                 /*
510                  * cppc_ss->latency is just a Nominal value. In reality
511                  * the remote processor could be much slower to reply.
512                  * So add an arbitrary amount of wait on top of Nominal.
513                  */
514                 usecs_lat = NUM_RETRIES * pcc_chan->latency;
515                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
516                 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
517                 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
518                 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
519
520                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
521                         acpi_os_ioremap(pcc_chan->shmem_base_addr,
522                                         pcc_chan->shmem_size);
523                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
524                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
525                                pcc_ss_idx);
526                         return -ENOMEM;
527                 }
528
529                 /* Set flag so that we don't come here for each CPU. */
530                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
531         }
532
533         return 0;
534 }
535
536 /**
537  * cpc_ffh_supported() - check if FFH reading supported
538  *
539  * Check if the architecture has support for functional fixed hardware
540  * read/write capability.
541  *
542  * Return: true for supported, false for not supported
543  */
544 bool __weak cpc_ffh_supported(void)
545 {
546         return false;
547 }
548
549 /**
550  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
551  *
552  * Check and allocate the cppc_pcc_data memory.
553  * In some processor configurations it is possible that same subspace
554  * is shared between multiple CPUs. This is seen especially in CPUs
555  * with hardware multi-threading support.
556  *
557  * Return: 0 for success, errno for failure
558  */
559 static int pcc_data_alloc(int pcc_ss_id)
560 {
561         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
562                 return -EINVAL;
563
564         if (pcc_data[pcc_ss_id]) {
565                 pcc_data[pcc_ss_id]->refcount++;
566         } else {
567                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
568                                               GFP_KERNEL);
569                 if (!pcc_data[pcc_ss_id])
570                         return -ENOMEM;
571                 pcc_data[pcc_ss_id]->refcount++;
572         }
573
574         return 0;
575 }
576
577 /* Check if CPPC revision + num_ent combination is supported */
578 static bool is_cppc_supported(int revision, int num_ent)
579 {
580         int expected_num_ent;
581
582         switch (revision) {
583         case CPPC_V2_REV:
584                 expected_num_ent = CPPC_V2_NUM_ENT;
585                 break;
586         case CPPC_V3_REV:
587                 expected_num_ent = CPPC_V3_NUM_ENT;
588                 break;
589         default:
590                 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
591                         revision);
592                 return false;
593         }
594
595         if (expected_num_ent != num_ent) {
596                 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
597                         num_ent, expected_num_ent, revision);
598                 return false;
599         }
600
601         return true;
602 }
603
604 /*
605  * An example CPC table looks like the following.
606  *
607  *      Name(_CPC, Package()
608  *                      {
609  *                      17,
610  *                      NumEntries
611  *                      1,
612  *                      // Revision
613  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
614  *                      // Highest Performance
615  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
616  *                      // Nominal Performance
617  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
618  *                      // Lowest Nonlinear Performance
619  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
620  *                      // Lowest Performance
621  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
622  *                      // Guaranteed Performance Register
623  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
624  *                      // Desired Performance Register
625  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
626  *                      ..
627  *                      ..
628  *                      ..
629  *
630  *              }
631  * Each Register() encodes how to access that specific register.
632  * e.g. a sample PCC entry has the following encoding:
633  *
634  *      Register (
635  *              PCC,
636  *              AddressSpaceKeyword
637  *              8,
638  *              //RegisterBitWidth
639  *              8,
640  *              //RegisterBitOffset
641  *              0x30,
642  *              //RegisterAddress
643  *              9
644  *              //AccessSize (subspace ID)
645  *              0
646  *              )
647  *      }
648  */
649
650 #ifndef init_freq_invariance_cppc
651 static inline void init_freq_invariance_cppc(void) { }
652 #endif
653
654 /**
655  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
656  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
657  *
658  *      Return: 0 for success or negative value for err.
659  */
660 int acpi_cppc_processor_probe(struct acpi_processor *pr)
661 {
662         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
663         union acpi_object *out_obj, *cpc_obj;
664         struct cpc_desc *cpc_ptr;
665         struct cpc_reg *gas_t;
666         struct device *cpu_dev;
667         acpi_handle handle = pr->handle;
668         unsigned int num_ent, i, cpc_rev;
669         int pcc_subspace_id = -1;
670         acpi_status status;
671         int ret = -EFAULT;
672
673         /* Parse the ACPI _CPC table for this CPU. */
674         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
675                         ACPI_TYPE_PACKAGE);
676         if (ACPI_FAILURE(status)) {
677                 ret = -ENODEV;
678                 goto out_buf_free;
679         }
680
681         out_obj = (union acpi_object *) output.pointer;
682
683         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
684         if (!cpc_ptr) {
685                 ret = -ENOMEM;
686                 goto out_buf_free;
687         }
688
689         /* First entry is NumEntries. */
690         cpc_obj = &out_obj->package.elements[0];
691         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
692                 num_ent = cpc_obj->integer.value;
693         } else {
694                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
695                                 cpc_obj->type);
696                 goto out_free;
697         }
698         cpc_ptr->num_entries = num_ent;
699
700         /* Second entry should be revision. */
701         cpc_obj = &out_obj->package.elements[1];
702         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
703                 cpc_rev = cpc_obj->integer.value;
704         } else {
705                 pr_debug("Unexpected entry type(%d) for Revision\n",
706                                 cpc_obj->type);
707                 goto out_free;
708         }
709         cpc_ptr->version = cpc_rev;
710
711         if (!is_cppc_supported(cpc_rev, num_ent))
712                 goto out_free;
713
714         /* Iterate through remaining entries in _CPC */
715         for (i = 2; i < num_ent; i++) {
716                 cpc_obj = &out_obj->package.elements[i];
717
718                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
719                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
720                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
721                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
722                         gas_t = (struct cpc_reg *)
723                                 cpc_obj->buffer.pointer;
724
725                         /*
726                          * The PCC Subspace index is encoded inside
727                          * the CPC table entries. The same PCC index
728                          * will be used for all the PCC entries,
729                          * so extract it only once.
730                          */
731                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
732                                 if (pcc_subspace_id < 0) {
733                                         pcc_subspace_id = gas_t->access_width;
734                                         if (pcc_data_alloc(pcc_subspace_id))
735                                                 goto out_free;
736                                 } else if (pcc_subspace_id != gas_t->access_width) {
737                                         pr_debug("Mismatched PCC ids.\n");
738                                         goto out_free;
739                                 }
740                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
741                                 if (gas_t->address) {
742                                         void __iomem *addr;
743
744                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
745                                         if (!addr)
746                                                 goto out_free;
747                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
748                                 }
749                         } else {
750                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
751                                         /* Support only PCC ,SYS MEM and FFH type regs */
752                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
753                                         goto out_free;
754                                 }
755                         }
756
757                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
758                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
759                 } else {
760                         pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
761                         goto out_free;
762                 }
763         }
764         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
765
766         /*
767          * Initialize the remaining cpc_regs as unsupported.
768          * Example: In case FW exposes CPPC v2, the below loop will initialize
769          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
770          */
771         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
772                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
773                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
774         }
775
776
777         /* Store CPU Logical ID */
778         cpc_ptr->cpu_id = pr->id;
779
780         /* Parse PSD data for this CPU */
781         ret = acpi_get_psd(cpc_ptr, handle);
782         if (ret)
783                 goto out_free;
784
785         /* Register PCC channel once for all PCC subspace ID. */
786         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
787                 ret = register_pcc_channel(pcc_subspace_id);
788                 if (ret)
789                         goto out_free;
790
791                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
792                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
793         }
794
795         /* Everything looks okay */
796         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
797
798         /* Add per logical CPU nodes for reading its feedback counters. */
799         cpu_dev = get_cpu_device(pr->id);
800         if (!cpu_dev) {
801                 ret = -EINVAL;
802                 goto out_free;
803         }
804
805         /* Plug PSD data into this CPU's CPC descriptor. */
806         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
807
808         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
809                         "acpi_cppc");
810         if (ret) {
811                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
812                 kobject_put(&cpc_ptr->kobj);
813                 goto out_free;
814         }
815
816         init_freq_invariance_cppc();
817
818         kfree(output.pointer);
819         return 0;
820
821 out_free:
822         /* Free all the mapped sys mem areas for this CPU */
823         for (i = 2; i < cpc_ptr->num_entries; i++) {
824                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
825
826                 if (addr)
827                         iounmap(addr);
828         }
829         kfree(cpc_ptr);
830
831 out_buf_free:
832         kfree(output.pointer);
833         return ret;
834 }
835 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
836
837 /**
838  * acpi_cppc_processor_exit - Cleanup CPC structs.
839  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
840  *
841  * Return: Void
842  */
843 void acpi_cppc_processor_exit(struct acpi_processor *pr)
844 {
845         struct cpc_desc *cpc_ptr;
846         unsigned int i;
847         void __iomem *addr;
848         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
849
850         if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
851                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
852                         pcc_data[pcc_ss_id]->refcount--;
853                         if (!pcc_data[pcc_ss_id]->refcount) {
854                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
855                                 kfree(pcc_data[pcc_ss_id]);
856                                 pcc_data[pcc_ss_id] = NULL;
857                         }
858                 }
859         }
860
861         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
862         if (!cpc_ptr)
863                 return;
864
865         /* Free all the mapped sys mem areas for this CPU */
866         for (i = 2; i < cpc_ptr->num_entries; i++) {
867                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
868                 if (addr)
869                         iounmap(addr);
870         }
871
872         kobject_put(&cpc_ptr->kobj);
873         kfree(cpc_ptr);
874 }
875 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
876
877 /**
878  * cpc_read_ffh() - Read FFH register
879  * @cpunum:     CPU number to read
880  * @reg:        cppc register information
881  * @val:        place holder for return value
882  *
883  * Read bit_width bits from a specified address and bit_offset
884  *
885  * Return: 0 for success and error code
886  */
887 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
888 {
889         return -ENOTSUPP;
890 }
891
892 /**
893  * cpc_write_ffh() - Write FFH register
894  * @cpunum:     CPU number to write
895  * @reg:        cppc register information
896  * @val:        value to write
897  *
898  * Write value of bit_width bits to a specified address and bit_offset
899  *
900  * Return: 0 for success and error code
901  */
902 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
903 {
904         return -ENOTSUPP;
905 }
906
907 /*
908  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
909  * as fast as possible. We have already mapped the PCC subspace during init, so
910  * we can directly write to it.
911  */
912
913 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
914 {
915         int ret_val = 0;
916         void __iomem *vaddr = NULL;
917         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
918         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
919
920         if (reg_res->type == ACPI_TYPE_INTEGER) {
921                 *val = reg_res->cpc_entry.int_value;
922                 return ret_val;
923         }
924
925         *val = 0;
926         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
927                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
928         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
929                 vaddr = reg_res->sys_mem_vaddr;
930         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
931                 return cpc_read_ffh(cpu, reg, val);
932         else
933                 return acpi_os_read_memory((acpi_physical_address)reg->address,
934                                 val, reg->bit_width);
935
936         switch (reg->bit_width) {
937         case 8:
938                 *val = readb_relaxed(vaddr);
939                 break;
940         case 16:
941                 *val = readw_relaxed(vaddr);
942                 break;
943         case 32:
944                 *val = readl_relaxed(vaddr);
945                 break;
946         case 64:
947                 *val = readq_relaxed(vaddr);
948                 break;
949         default:
950                 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
951                          reg->bit_width, pcc_ss_id);
952                 ret_val = -EFAULT;
953         }
954
955         return ret_val;
956 }
957
958 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
959 {
960         int ret_val = 0;
961         void __iomem *vaddr = NULL;
962         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
963         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
964
965         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
966                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
967         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
968                 vaddr = reg_res->sys_mem_vaddr;
969         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
970                 return cpc_write_ffh(cpu, reg, val);
971         else
972                 return acpi_os_write_memory((acpi_physical_address)reg->address,
973                                 val, reg->bit_width);
974
975         switch (reg->bit_width) {
976         case 8:
977                 writeb_relaxed(val, vaddr);
978                 break;
979         case 16:
980                 writew_relaxed(val, vaddr);
981                 break;
982         case 32:
983                 writel_relaxed(val, vaddr);
984                 break;
985         case 64:
986                 writeq_relaxed(val, vaddr);
987                 break;
988         default:
989                 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
990                          reg->bit_width, pcc_ss_id);
991                 ret_val = -EFAULT;
992                 break;
993         }
994
995         return ret_val;
996 }
997
998 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
999 {
1000         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1001         struct cpc_register_resource *reg = &cpc_desc->cpc_regs[reg_idx];
1002
1003         if (CPC_IN_PCC(reg)) {
1004                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1005                 struct cppc_pcc_data *pcc_ss_data = NULL;
1006                 int ret = 0;
1007
1008                 if (pcc_ss_id < 0)
1009                         return -EIO;
1010
1011                 pcc_ss_data = pcc_data[pcc_ss_id];
1012
1013                 down_write(&pcc_ss_data->pcc_lock);
1014
1015                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1016                         cpc_read(cpunum, reg, perf);
1017                 else
1018                         ret = -EIO;
1019
1020                 up_write(&pcc_ss_data->pcc_lock);
1021
1022                 return ret;
1023         }
1024
1025         cpc_read(cpunum, reg, perf);
1026
1027         return 0;
1028 }
1029
1030 /**
1031  * cppc_get_desired_perf - Get the desired performance register value.
1032  * @cpunum: CPU from which to get desired performance.
1033  * @desired_perf: Return address.
1034  *
1035  * Return: 0 for success, -EIO otherwise.
1036  */
1037 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1038 {
1039         return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1040 }
1041 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1042
1043 /**
1044  * cppc_get_nominal_perf - Get the nominal performance register value.
1045  * @cpunum: CPU from which to get nominal performance.
1046  * @nominal_perf: Return address.
1047  *
1048  * Return: 0 for success, -EIO otherwise.
1049  */
1050 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1051 {
1052         return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1053 }
1054
1055 /**
1056  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1057  * @cpunum: CPU from which to get capabilities info.
1058  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1059  *
1060  * Return: 0 for success with perf_caps populated else -ERRNO.
1061  */
1062 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1063 {
1064         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1065         struct cpc_register_resource *highest_reg, *lowest_reg,
1066                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1067                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1068         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1069         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1070         struct cppc_pcc_data *pcc_ss_data = NULL;
1071         int ret = 0, regs_in_pcc = 0;
1072
1073         if (!cpc_desc) {
1074                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1075                 return -ENODEV;
1076         }
1077
1078         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1079         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1080         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1081         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1082         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1083         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1084         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1085
1086         /* Are any of the regs PCC ?*/
1087         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1088                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1089                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1090                 if (pcc_ss_id < 0) {
1091                         pr_debug("Invalid pcc_ss_id\n");
1092                         return -ENODEV;
1093                 }
1094                 pcc_ss_data = pcc_data[pcc_ss_id];
1095                 regs_in_pcc = 1;
1096                 down_write(&pcc_ss_data->pcc_lock);
1097                 /* Ring doorbell once to update PCC subspace */
1098                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1099                         ret = -EIO;
1100                         goto out_err;
1101                 }
1102         }
1103
1104         cpc_read(cpunum, highest_reg, &high);
1105         perf_caps->highest_perf = high;
1106
1107         cpc_read(cpunum, lowest_reg, &low);
1108         perf_caps->lowest_perf = low;
1109
1110         cpc_read(cpunum, nominal_reg, &nom);
1111         perf_caps->nominal_perf = nom;
1112
1113         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1114             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1115                 perf_caps->guaranteed_perf = 0;
1116         } else {
1117                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1118                 perf_caps->guaranteed_perf = guaranteed;
1119         }
1120
1121         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1122         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1123
1124         if (!high || !low || !nom || !min_nonlinear)
1125                 ret = -EFAULT;
1126
1127         /* Read optional lowest and nominal frequencies if present */
1128         if (CPC_SUPPORTED(low_freq_reg))
1129                 cpc_read(cpunum, low_freq_reg, &low_f);
1130
1131         if (CPC_SUPPORTED(nom_freq_reg))
1132                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1133
1134         perf_caps->lowest_freq = low_f;
1135         perf_caps->nominal_freq = nom_f;
1136
1137
1138 out_err:
1139         if (regs_in_pcc)
1140                 up_write(&pcc_ss_data->pcc_lock);
1141         return ret;
1142 }
1143 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1144
1145 /**
1146  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1147  * @cpunum: CPU from which to read counters.
1148  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1149  *
1150  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1151  */
1152 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1153 {
1154         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1155         struct cpc_register_resource *delivered_reg, *reference_reg,
1156                 *ref_perf_reg, *ctr_wrap_reg;
1157         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1158         struct cppc_pcc_data *pcc_ss_data = NULL;
1159         u64 delivered, reference, ref_perf, ctr_wrap_time;
1160         int ret = 0, regs_in_pcc = 0;
1161
1162         if (!cpc_desc) {
1163                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1164                 return -ENODEV;
1165         }
1166
1167         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1168         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1169         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1170         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1171
1172         /*
1173          * If reference perf register is not supported then we should
1174          * use the nominal perf value
1175          */
1176         if (!CPC_SUPPORTED(ref_perf_reg))
1177                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1178
1179         /* Are any of the regs PCC ?*/
1180         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1181                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1182                 if (pcc_ss_id < 0) {
1183                         pr_debug("Invalid pcc_ss_id\n");
1184                         return -ENODEV;
1185                 }
1186                 pcc_ss_data = pcc_data[pcc_ss_id];
1187                 down_write(&pcc_ss_data->pcc_lock);
1188                 regs_in_pcc = 1;
1189                 /* Ring doorbell once to update PCC subspace */
1190                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1191                         ret = -EIO;
1192                         goto out_err;
1193                 }
1194         }
1195
1196         cpc_read(cpunum, delivered_reg, &delivered);
1197         cpc_read(cpunum, reference_reg, &reference);
1198         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1199
1200         /*
1201          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1202          * performance counters are assumed to never wrap during the lifetime of
1203          * platform
1204          */
1205         ctr_wrap_time = (u64)(~((u64)0));
1206         if (CPC_SUPPORTED(ctr_wrap_reg))
1207                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1208
1209         if (!delivered || !reference || !ref_perf) {
1210                 ret = -EFAULT;
1211                 goto out_err;
1212         }
1213
1214         perf_fb_ctrs->delivered = delivered;
1215         perf_fb_ctrs->reference = reference;
1216         perf_fb_ctrs->reference_perf = ref_perf;
1217         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1218 out_err:
1219         if (regs_in_pcc)
1220                 up_write(&pcc_ss_data->pcc_lock);
1221         return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1224
1225 /**
1226  * cppc_set_perf - Set a CPU's performance controls.
1227  * @cpu: CPU for which to set performance controls.
1228  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1229  *
1230  * Return: 0 for success, -ERRNO otherwise.
1231  */
1232 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1233 {
1234         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1235         struct cpc_register_resource *desired_reg;
1236         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1237         struct cppc_pcc_data *pcc_ss_data = NULL;
1238         int ret = 0;
1239
1240         if (!cpc_desc) {
1241                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1242                 return -ENODEV;
1243         }
1244
1245         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1246
1247         /*
1248          * This is Phase-I where we want to write to CPC registers
1249          * -> We want all CPUs to be able to execute this phase in parallel
1250          *
1251          * Since read_lock can be acquired by multiple CPUs simultaneously we
1252          * achieve that goal here
1253          */
1254         if (CPC_IN_PCC(desired_reg)) {
1255                 if (pcc_ss_id < 0) {
1256                         pr_debug("Invalid pcc_ss_id\n");
1257                         return -ENODEV;
1258                 }
1259                 pcc_ss_data = pcc_data[pcc_ss_id];
1260                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1261                 if (pcc_ss_data->platform_owns_pcc) {
1262                         ret = check_pcc_chan(pcc_ss_id, false);
1263                         if (ret) {
1264                                 up_read(&pcc_ss_data->pcc_lock);
1265                                 return ret;
1266                         }
1267                 }
1268                 /*
1269                  * Update the pending_write to make sure a PCC CMD_READ will not
1270                  * arrive and steal the channel during the switch to write lock
1271                  */
1272                 pcc_ss_data->pending_pcc_write_cmd = true;
1273                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1274                 cpc_desc->write_cmd_status = 0;
1275         }
1276
1277         /*
1278          * Skip writing MIN/MAX until Linux knows how to come up with
1279          * useful values.
1280          */
1281         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1282
1283         if (CPC_IN_PCC(desired_reg))
1284                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1285         /*
1286          * This is Phase-II where we transfer the ownership of PCC to Platform
1287          *
1288          * Short Summary: Basically if we think of a group of cppc_set_perf
1289          * requests that happened in short overlapping interval. The last CPU to
1290          * come out of Phase-I will enter Phase-II and ring the doorbell.
1291          *
1292          * We have the following requirements for Phase-II:
1293          *     1. We want to execute Phase-II only when there are no CPUs
1294          * currently executing in Phase-I
1295          *     2. Once we start Phase-II we want to avoid all other CPUs from
1296          * entering Phase-I.
1297          *     3. We want only one CPU among all those who went through Phase-I
1298          * to run phase-II
1299          *
1300          * If write_trylock fails to get the lock and doesn't transfer the
1301          * PCC ownership to the platform, then one of the following will be TRUE
1302          *     1. There is at-least one CPU in Phase-I which will later execute
1303          * write_trylock, so the CPUs in Phase-I will be responsible for
1304          * executing the Phase-II.
1305          *     2. Some other CPU has beaten this CPU to successfully execute the
1306          * write_trylock and has already acquired the write_lock. We know for a
1307          * fact it (other CPU acquiring the write_lock) couldn't have happened
1308          * before this CPU's Phase-I as we held the read_lock.
1309          *     3. Some other CPU executing pcc CMD_READ has stolen the
1310          * down_write, in which case, send_pcc_cmd will check for pending
1311          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1312          * So this CPU can be certain that its request will be delivered
1313          *    So in all cases, this CPU knows that its request will be delivered
1314          * by another CPU and can return
1315          *
1316          * After getting the down_write we still need to check for
1317          * pending_pcc_write_cmd to take care of the following scenario
1318          *    The thread running this code could be scheduled out between
1319          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1320          * could have delivered the request to Platform by triggering the
1321          * doorbell and transferred the ownership of PCC to platform. So this
1322          * avoids triggering an unnecessary doorbell and more importantly before
1323          * triggering the doorbell it makes sure that the PCC channel ownership
1324          * is still with OSPM.
1325          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1326          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1327          * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1328          * case during a CMD_READ and if there are pending writes it delivers
1329          * the write command before servicing the read command
1330          */
1331         if (CPC_IN_PCC(desired_reg)) {
1332                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1333                         /* Update only if there are pending write commands */
1334                         if (pcc_ss_data->pending_pcc_write_cmd)
1335                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1336                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1337                 } else
1338                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1339                         wait_event(pcc_ss_data->pcc_write_wait_q,
1340                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1341
1342                 /* send_pcc_cmd updates the status in case of failure */
1343                 ret = cpc_desc->write_cmd_status;
1344         }
1345         return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(cppc_set_perf);
1348
1349 /**
1350  * cppc_get_transition_latency - returns frequency transition latency in ns
1351  *
1352  * ACPI CPPC does not explicitly specify how a platform can specify the
1353  * transition latency for performance change requests. The closest we have
1354  * is the timing information from the PCCT tables which provides the info
1355  * on the number and frequency of PCC commands the platform can handle.
1356  */
1357 unsigned int cppc_get_transition_latency(int cpu_num)
1358 {
1359         /*
1360          * Expected transition latency is based on the PCCT timing values
1361          * Below are definition from ACPI spec:
1362          * pcc_nominal- Expected latency to process a command, in microseconds
1363          * pcc_mpar   - The maximum number of periodic requests that the subspace
1364          *              channel can support, reported in commands per minute. 0
1365          *              indicates no limitation.
1366          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1367          *              completion of a command before issuing the next command,
1368          *              in microseconds.
1369          */
1370         unsigned int latency_ns = 0;
1371         struct cpc_desc *cpc_desc;
1372         struct cpc_register_resource *desired_reg;
1373         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1374         struct cppc_pcc_data *pcc_ss_data;
1375
1376         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1377         if (!cpc_desc)
1378                 return CPUFREQ_ETERNAL;
1379
1380         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1381         if (!CPC_IN_PCC(desired_reg))
1382                 return CPUFREQ_ETERNAL;
1383
1384         if (pcc_ss_id < 0)
1385                 return CPUFREQ_ETERNAL;
1386
1387         pcc_ss_data = pcc_data[pcc_ss_id];
1388         if (pcc_ss_data->pcc_mpar)
1389                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1390
1391         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1392         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1393
1394         return latency_ns;
1395 }
1396 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);