1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
43 #include <acpi/cppc_acpi.h>
45 struct cppc_pcc_data {
46 struct mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
57 * Lock to provide controlled access to the PCC channel.
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
70 struct rw_semaphore pcc_lock;
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500ULL
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
129 #define define_one_cppc_ro(_name) \
130 static struct cppc_attr _name = \
131 __ATTR(_name, 0444, show_##_name, NULL)
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 #define show_cppc_data(access_fn, struct_name, member_name) \
136 static ssize_t show_##member_name(struct kobject *kobj, \
137 struct attribute *attr, char *buf) \
139 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
140 struct struct_name st_name = {0}; \
143 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
147 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
148 (u64)st_name.member_name); \
150 define_one_cppc_ro(member_name)
152 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
162 static ssize_t show_feedback_ctrs(struct kobject *kobj,
163 struct attribute *attr, char *buf)
165 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166 struct cppc_perf_fb_ctrs fb_ctrs = {0};
169 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
173 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174 fb_ctrs.reference, fb_ctrs.delivered);
176 define_one_cppc_ro(feedback_ctrs);
178 static struct attribute *cppc_attrs[] = {
180 &reference_perf.attr,
181 &wraparound_time.attr,
184 &lowest_nonlinear_perf.attr,
191 static struct kobj_type cppc_ktype = {
192 .sysfs_ops = &kobj_sysfs_ops,
193 .default_attrs = cppc_attrs,
196 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
199 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
200 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
201 pcc_ss_data->pcc_comm_addr;
203 if (!pcc_ss_data->platform_owns_pcc)
207 * Poll PCC status register every 3us(delay_us) for maximum of
208 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
210 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
211 status & PCC_CMD_COMPLETE_MASK, 3,
212 pcc_ss_data->deadline_us);
215 pcc_ss_data->platform_owns_pcc = false;
216 if (chk_err_bit && (status & PCC_ERROR_MASK))
221 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
228 * This function transfers the ownership of the PCC to the platform
229 * So it must be called while holding write_lock(pcc_lock)
231 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
234 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
235 struct acpi_pcct_shared_memory *generic_comm_base =
236 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
237 unsigned int time_delta;
240 * For CMD_WRITE we know for a fact the caller should have checked
241 * the channel before writing to PCC space
243 if (cmd == CMD_READ) {
245 * If there are pending cpc_writes, then we stole the channel
246 * before write completion, so first send a WRITE command to
249 if (pcc_ss_data->pending_pcc_write_cmd)
250 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
252 ret = check_pcc_chan(pcc_ss_id, false);
255 } else /* CMD_WRITE */
256 pcc_ss_data->pending_pcc_write_cmd = FALSE;
259 * Handle the Minimum Request Turnaround Time(MRTT)
260 * "The minimum amount of time that OSPM must wait after the completion
261 * of a command before issuing the next command, in microseconds"
263 if (pcc_ss_data->pcc_mrtt) {
264 time_delta = ktime_us_delta(ktime_get(),
265 pcc_ss_data->last_cmd_cmpl_time);
266 if (pcc_ss_data->pcc_mrtt > time_delta)
267 udelay(pcc_ss_data->pcc_mrtt - time_delta);
271 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
272 * "The maximum number of periodic requests that the subspace channel can
273 * support, reported in commands per minute. 0 indicates no limitation."
275 * This parameter should be ideally zero or large enough so that it can
276 * handle maximum number of requests that all the cores in the system can
277 * collectively generate. If it is not, we will follow the spec and just
278 * not send the request to the platform after hitting the MPAR limit in
281 if (pcc_ss_data->pcc_mpar) {
282 if (pcc_ss_data->mpar_count == 0) {
283 time_delta = ktime_ms_delta(ktime_get(),
284 pcc_ss_data->last_mpar_reset);
285 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
286 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
291 pcc_ss_data->last_mpar_reset = ktime_get();
292 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
294 pcc_ss_data->mpar_count--;
297 /* Write to the shared comm region. */
298 writew_relaxed(cmd, &generic_comm_base->command);
300 /* Flip CMD COMPLETE bit */
301 writew_relaxed(0, &generic_comm_base->status);
303 pcc_ss_data->platform_owns_pcc = true;
306 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
308 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
309 pcc_ss_id, cmd, ret);
313 /* wait for completion and check for PCC errro bit */
314 ret = check_pcc_chan(pcc_ss_id, true);
316 if (pcc_ss_data->pcc_mrtt)
317 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
319 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
320 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
322 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
325 if (cmd == CMD_WRITE) {
327 for_each_possible_cpu(i) {
328 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
332 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
333 desc->write_cmd_status = ret;
336 pcc_ss_data->pcc_write_cnt++;
337 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
343 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
346 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
349 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
353 static struct mbox_client cppc_mbox_cl = {
354 .tx_done = cppc_chan_tx_done,
355 .knows_txdone = true,
358 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
360 int result = -EFAULT;
361 acpi_status status = AE_OK;
362 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364 struct acpi_buffer state = {0, NULL};
365 union acpi_object *psd = NULL;
366 struct acpi_psd_package *pdomain;
368 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
369 &buffer, ACPI_TYPE_PACKAGE);
370 if (status == AE_NOT_FOUND) /* _PSD is optional */
372 if (ACPI_FAILURE(status))
375 psd = buffer.pointer;
376 if (!psd || psd->package.count != 1) {
377 pr_debug("Invalid _PSD data\n");
381 pdomain = &(cpc_ptr->domain_info);
383 state.length = sizeof(struct acpi_psd_package);
384 state.pointer = pdomain;
386 status = acpi_extract_package(&(psd->package.elements[0]),
388 if (ACPI_FAILURE(status)) {
389 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
393 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
394 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
398 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
399 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
403 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
404 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
405 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
406 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
412 kfree(buffer.pointer);
417 * acpi_get_psd_map - Map the CPUs in a common freq domain.
418 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
420 * Return: 0 for success or negative value for err.
422 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
427 cpumask_var_t covered_cpus;
428 struct cppc_cpudata *pr, *match_pr;
429 struct acpi_psd_package *pdomain;
430 struct acpi_psd_package *match_pdomain;
431 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
433 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
437 * Now that we have _PSD data from all CPUs, let's setup P-state
440 for_each_possible_cpu(i) {
441 if (cpumask_test_cpu(i, covered_cpus))
444 pr = all_cpu_data[i];
445 cpc_ptr = per_cpu(cpc_desc_ptr, i);
451 pdomain = &(cpc_ptr->domain_info);
452 cpumask_set_cpu(i, pr->shared_cpu_map);
453 cpumask_set_cpu(i, covered_cpus);
454 if (pdomain->num_processors <= 1)
457 /* Validate the Domain info */
458 count_target = pdomain->num_processors;
459 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
460 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
461 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
462 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
463 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
464 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
466 for_each_possible_cpu(j) {
470 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
471 if (!match_cpc_ptr) {
476 match_pdomain = &(match_cpc_ptr->domain_info);
477 if (match_pdomain->domain != pdomain->domain)
480 /* Here i and j are in the same domain */
481 if (match_pdomain->num_processors != count_target) {
486 if (pdomain->coord_type != match_pdomain->coord_type) {
491 cpumask_set_cpu(j, covered_cpus);
492 cpumask_set_cpu(j, pr->shared_cpu_map);
495 for_each_cpu(j, pr->shared_cpu_map) {
499 match_pr = all_cpu_data[j];
500 match_pr->shared_type = pr->shared_type;
501 cpumask_copy(match_pr->shared_cpu_map,
508 for_each_possible_cpu(i) {
509 pr = all_cpu_data[i];
511 /* Assume no coordination on any error parsing domain info */
512 cpumask_clear(pr->shared_cpu_map);
513 cpumask_set_cpu(i, pr->shared_cpu_map);
514 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
517 free_cpumask_var(covered_cpus);
520 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
522 static int register_pcc_channel(int pcc_ss_idx)
524 struct acpi_pcct_hw_reduced *cppc_ss;
527 if (pcc_ss_idx >= 0) {
528 pcc_data[pcc_ss_idx]->pcc_channel =
529 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
531 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
532 pr_err("Failed to find PCC channel for subspace %d\n",
538 * The PCC mailbox controller driver should
539 * have parsed the PCCT (global table of all
540 * PCC channels) and stored pointers to the
541 * subspace communication region in con_priv.
543 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
546 pr_err("No PCC subspace found for %d CPPC\n",
552 * cppc_ss->latency is just a Nominal value. In reality
553 * the remote processor could be much slower to reply.
554 * So add an arbitrary amount of wait on top of Nominal.
556 usecs_lat = NUM_RETRIES * cppc_ss->latency;
557 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
558 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
559 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
560 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
562 pcc_data[pcc_ss_idx]->pcc_comm_addr =
563 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
564 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
565 pr_err("Failed to ioremap PCC comm region mem for %d\n",
570 /* Set flag so that we don't come here for each CPU. */
571 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
578 * cpc_ffh_supported() - check if FFH reading supported
580 * Check if the architecture has support for functional fixed hardware
581 * read/write capability.
583 * Return: true for supported, false for not supported
585 bool __weak cpc_ffh_supported(void)
591 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
593 * Check and allocate the cppc_pcc_data memory.
594 * In some processor configurations it is possible that same subspace
595 * is shared between multiple CPUs. This is seen especially in CPUs
596 * with hardware multi-threading support.
598 * Return: 0 for success, errno for failure
600 static int pcc_data_alloc(int pcc_ss_id)
602 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
605 if (pcc_data[pcc_ss_id]) {
606 pcc_data[pcc_ss_id]->refcount++;
608 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
610 if (!pcc_data[pcc_ss_id])
612 pcc_data[pcc_ss_id]->refcount++;
618 /* Check if CPPC revision + num_ent combination is supported */
619 static bool is_cppc_supported(int revision, int num_ent)
621 int expected_num_ent;
625 expected_num_ent = CPPC_V2_NUM_ENT;
628 expected_num_ent = CPPC_V3_NUM_ENT;
631 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
636 if (expected_num_ent != num_ent) {
637 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
638 num_ent, expected_num_ent, revision);
646 * An example CPC table looks like the following.
648 * Name(_CPC, Package()
654 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
655 * // Highest Performance
656 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
657 * // Nominal Performance
658 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
659 * // Lowest Nonlinear Performance
660 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
661 * // Lowest Performance
662 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
663 * // Guaranteed Performance Register
664 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
665 * // Desired Performance Register
666 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
672 * Each Register() encodes how to access that specific register.
673 * e.g. a sample PCC entry has the following encoding:
677 * AddressSpaceKeyword
681 * //RegisterBitOffset
685 * //AccessSize (subspace ID)
692 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
693 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
695 * Return: 0 for success or negative value for err.
697 int acpi_cppc_processor_probe(struct acpi_processor *pr)
699 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
700 union acpi_object *out_obj, *cpc_obj;
701 struct cpc_desc *cpc_ptr;
702 struct cpc_reg *gas_t;
703 struct device *cpu_dev;
704 acpi_handle handle = pr->handle;
705 unsigned int num_ent, i, cpc_rev;
706 int pcc_subspace_id = -1;
710 /* Parse the ACPI _CPC table for this CPU. */
711 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
713 if (ACPI_FAILURE(status)) {
718 out_obj = (union acpi_object *) output.pointer;
720 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
726 /* First entry is NumEntries. */
727 cpc_obj = &out_obj->package.elements[0];
728 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
729 num_ent = cpc_obj->integer.value;
731 pr_debug("Unexpected entry type(%d) for NumEntries\n",
735 cpc_ptr->num_entries = num_ent;
737 /* Second entry should be revision. */
738 cpc_obj = &out_obj->package.elements[1];
739 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
740 cpc_rev = cpc_obj->integer.value;
742 pr_debug("Unexpected entry type(%d) for Revision\n",
746 cpc_ptr->version = cpc_rev;
748 if (!is_cppc_supported(cpc_rev, num_ent))
751 /* Iterate through remaining entries in _CPC */
752 for (i = 2; i < num_ent; i++) {
753 cpc_obj = &out_obj->package.elements[i];
755 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
756 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
757 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
758 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
759 gas_t = (struct cpc_reg *)
760 cpc_obj->buffer.pointer;
763 * The PCC Subspace index is encoded inside
764 * the CPC table entries. The same PCC index
765 * will be used for all the PCC entries,
766 * so extract it only once.
768 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
769 if (pcc_subspace_id < 0) {
770 pcc_subspace_id = gas_t->access_width;
771 if (pcc_data_alloc(pcc_subspace_id))
773 } else if (pcc_subspace_id != gas_t->access_width) {
774 pr_debug("Mismatched PCC ids.\n");
777 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
778 if (gas_t->address) {
781 addr = ioremap(gas_t->address, gas_t->bit_width/8);
784 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
787 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
788 /* Support only PCC ,SYS MEM and FFH type regs */
789 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
794 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
795 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
797 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
801 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
804 * Initialize the remaining cpc_regs as unsupported.
805 * Example: In case FW exposes CPPC v2, the below loop will initialize
806 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
808 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
809 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
810 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
814 /* Store CPU Logical ID */
815 cpc_ptr->cpu_id = pr->id;
817 /* Parse PSD data for this CPU */
818 ret = acpi_get_psd(cpc_ptr, handle);
822 /* Register PCC channel once for all PCC subspace ID. */
823 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
824 ret = register_pcc_channel(pcc_subspace_id);
828 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
829 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
832 /* Everything looks okay */
833 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
835 /* Add per logical CPU nodes for reading its feedback counters. */
836 cpu_dev = get_cpu_device(pr->id);
842 /* Plug PSD data into this CPU's CPC descriptor. */
843 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
845 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
848 per_cpu(cpc_desc_ptr, pr->id) = NULL;
849 kobject_put(&cpc_ptr->kobj);
853 kfree(output.pointer);
857 /* Free all the mapped sys mem areas for this CPU */
858 for (i = 2; i < cpc_ptr->num_entries; i++) {
859 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
867 kfree(output.pointer);
870 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
873 * acpi_cppc_processor_exit - Cleanup CPC structs.
874 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
878 void acpi_cppc_processor_exit(struct acpi_processor *pr)
880 struct cpc_desc *cpc_ptr;
883 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
885 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
886 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
887 pcc_data[pcc_ss_id]->refcount--;
888 if (!pcc_data[pcc_ss_id]->refcount) {
889 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
890 kfree(pcc_data[pcc_ss_id]);
891 pcc_data[pcc_ss_id] = NULL;
896 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
900 /* Free all the mapped sys mem areas for this CPU */
901 for (i = 2; i < cpc_ptr->num_entries; i++) {
902 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
907 kobject_put(&cpc_ptr->kobj);
910 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
913 * cpc_read_ffh() - Read FFH register
914 * @cpunum: CPU number to read
915 * @reg: cppc register information
916 * @val: place holder for return value
918 * Read bit_width bits from a specified address and bit_offset
920 * Return: 0 for success and error code
922 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
928 * cpc_write_ffh() - Write FFH register
929 * @cpunum: CPU number to write
930 * @reg: cppc register information
931 * @val: value to write
933 * Write value of bit_width bits to a specified address and bit_offset
935 * Return: 0 for success and error code
937 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
943 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
944 * as fast as possible. We have already mapped the PCC subspace during init, so
945 * we can directly write to it.
948 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
951 void __iomem *vaddr = 0;
952 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
953 struct cpc_reg *reg = ®_res->cpc_entry.reg;
955 if (reg_res->type == ACPI_TYPE_INTEGER) {
956 *val = reg_res->cpc_entry.int_value;
961 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
962 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
963 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
964 vaddr = reg_res->sys_mem_vaddr;
965 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
966 return cpc_read_ffh(cpu, reg, val);
968 return acpi_os_read_memory((acpi_physical_address)reg->address,
969 val, reg->bit_width);
971 switch (reg->bit_width) {
973 *val = readb_relaxed(vaddr);
976 *val = readw_relaxed(vaddr);
979 *val = readl_relaxed(vaddr);
982 *val = readq_relaxed(vaddr);
985 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
986 reg->bit_width, pcc_ss_id);
993 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
996 void __iomem *vaddr = 0;
997 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
998 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1000 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1001 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1002 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1003 vaddr = reg_res->sys_mem_vaddr;
1004 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1005 return cpc_write_ffh(cpu, reg, val);
1007 return acpi_os_write_memory((acpi_physical_address)reg->address,
1008 val, reg->bit_width);
1010 switch (reg->bit_width) {
1012 writeb_relaxed(val, vaddr);
1015 writew_relaxed(val, vaddr);
1018 writel_relaxed(val, vaddr);
1021 writeq_relaxed(val, vaddr);
1024 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1025 reg->bit_width, pcc_ss_id);
1034 * cppc_get_desired_perf - Get the value of desired performance register.
1035 * @cpunum: CPU from which to get desired performance.
1036 * @desired_perf: address of a variable to store the returned desired performance
1038 * Return: 0 for success, -EIO otherwise.
1040 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1042 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1043 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1044 struct cpc_register_resource *desired_reg;
1045 struct cppc_pcc_data *pcc_ss_data = NULL;
1047 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1049 if (CPC_IN_PCC(desired_reg)) {
1055 pcc_ss_data = pcc_data[pcc_ss_id];
1057 down_write(&pcc_ss_data->pcc_lock);
1059 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1060 cpc_read(cpunum, desired_reg, desired_perf);
1064 up_write(&pcc_ss_data->pcc_lock);
1069 cpc_read(cpunum, desired_reg, desired_perf);
1073 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1076 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1077 * @cpunum: CPU from which to get capabilities info.
1078 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1080 * Return: 0 for success with perf_caps populated else -ERRNO.
1082 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1084 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1085 struct cpc_register_resource *highest_reg, *lowest_reg,
1086 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1087 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1088 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1089 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1090 struct cppc_pcc_data *pcc_ss_data = NULL;
1091 int ret = 0, regs_in_pcc = 0;
1094 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1098 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1099 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1100 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1101 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1102 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1103 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1104 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1106 /* Are any of the regs PCC ?*/
1107 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1108 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1109 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1110 if (pcc_ss_id < 0) {
1111 pr_debug("Invalid pcc_ss_id\n");
1114 pcc_ss_data = pcc_data[pcc_ss_id];
1116 down_write(&pcc_ss_data->pcc_lock);
1117 /* Ring doorbell once to update PCC subspace */
1118 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1124 cpc_read(cpunum, highest_reg, &high);
1125 perf_caps->highest_perf = high;
1127 cpc_read(cpunum, lowest_reg, &low);
1128 perf_caps->lowest_perf = low;
1130 cpc_read(cpunum, nominal_reg, &nom);
1131 perf_caps->nominal_perf = nom;
1133 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1134 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1135 perf_caps->guaranteed_perf = 0;
1137 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1138 perf_caps->guaranteed_perf = guaranteed;
1141 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1142 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1144 if (!high || !low || !nom || !min_nonlinear)
1147 /* Read optional lowest and nominal frequencies if present */
1148 if (CPC_SUPPORTED(low_freq_reg))
1149 cpc_read(cpunum, low_freq_reg, &low_f);
1151 if (CPC_SUPPORTED(nom_freq_reg))
1152 cpc_read(cpunum, nom_freq_reg, &nom_f);
1154 perf_caps->lowest_freq = low_f;
1155 perf_caps->nominal_freq = nom_f;
1160 up_write(&pcc_ss_data->pcc_lock);
1163 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1166 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1167 * @cpunum: CPU from which to read counters.
1168 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1170 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1172 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1174 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1175 struct cpc_register_resource *delivered_reg, *reference_reg,
1176 *ref_perf_reg, *ctr_wrap_reg;
1177 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1178 struct cppc_pcc_data *pcc_ss_data = NULL;
1179 u64 delivered, reference, ref_perf, ctr_wrap_time;
1180 int ret = 0, regs_in_pcc = 0;
1183 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1187 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1188 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1189 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1190 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1193 * If reference perf register is not supported then we should
1194 * use the nominal perf value
1196 if (!CPC_SUPPORTED(ref_perf_reg))
1197 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1199 /* Are any of the regs PCC ?*/
1200 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1201 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1202 if (pcc_ss_id < 0) {
1203 pr_debug("Invalid pcc_ss_id\n");
1206 pcc_ss_data = pcc_data[pcc_ss_id];
1207 down_write(&pcc_ss_data->pcc_lock);
1209 /* Ring doorbell once to update PCC subspace */
1210 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1216 cpc_read(cpunum, delivered_reg, &delivered);
1217 cpc_read(cpunum, reference_reg, &reference);
1218 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1221 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1222 * performance counters are assumed to never wrap during the lifetime of
1225 ctr_wrap_time = (u64)(~((u64)0));
1226 if (CPC_SUPPORTED(ctr_wrap_reg))
1227 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1229 if (!delivered || !reference || !ref_perf) {
1234 perf_fb_ctrs->delivered = delivered;
1235 perf_fb_ctrs->reference = reference;
1236 perf_fb_ctrs->reference_perf = ref_perf;
1237 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1240 up_write(&pcc_ss_data->pcc_lock);
1243 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1246 * cppc_set_perf - Set a CPU's performance controls.
1247 * @cpu: CPU for which to set performance controls.
1248 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1250 * Return: 0 for success, -ERRNO otherwise.
1252 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1254 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1255 struct cpc_register_resource *desired_reg;
1256 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1257 struct cppc_pcc_data *pcc_ss_data = NULL;
1261 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1265 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1268 * This is Phase-I where we want to write to CPC registers
1269 * -> We want all CPUs to be able to execute this phase in parallel
1271 * Since read_lock can be acquired by multiple CPUs simultaneously we
1272 * achieve that goal here
1274 if (CPC_IN_PCC(desired_reg)) {
1275 if (pcc_ss_id < 0) {
1276 pr_debug("Invalid pcc_ss_id\n");
1279 pcc_ss_data = pcc_data[pcc_ss_id];
1280 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1281 if (pcc_ss_data->platform_owns_pcc) {
1282 ret = check_pcc_chan(pcc_ss_id, false);
1284 up_read(&pcc_ss_data->pcc_lock);
1289 * Update the pending_write to make sure a PCC CMD_READ will not
1290 * arrive and steal the channel during the switch to write lock
1292 pcc_ss_data->pending_pcc_write_cmd = true;
1293 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1294 cpc_desc->write_cmd_status = 0;
1298 * Skip writing MIN/MAX until Linux knows how to come up with
1301 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1303 if (CPC_IN_PCC(desired_reg))
1304 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1306 * This is Phase-II where we transfer the ownership of PCC to Platform
1308 * Short Summary: Basically if we think of a group of cppc_set_perf
1309 * requests that happened in short overlapping interval. The last CPU to
1310 * come out of Phase-I will enter Phase-II and ring the doorbell.
1312 * We have the following requirements for Phase-II:
1313 * 1. We want to execute Phase-II only when there are no CPUs
1314 * currently executing in Phase-I
1315 * 2. Once we start Phase-II we want to avoid all other CPUs from
1317 * 3. We want only one CPU among all those who went through Phase-I
1320 * If write_trylock fails to get the lock and doesn't transfer the
1321 * PCC ownership to the platform, then one of the following will be TRUE
1322 * 1. There is at-least one CPU in Phase-I which will later execute
1323 * write_trylock, so the CPUs in Phase-I will be responsible for
1324 * executing the Phase-II.
1325 * 2. Some other CPU has beaten this CPU to successfully execute the
1326 * write_trylock and has already acquired the write_lock. We know for a
1327 * fact it (other CPU acquiring the write_lock) couldn't have happened
1328 * before this CPU's Phase-I as we held the read_lock.
1329 * 3. Some other CPU executing pcc CMD_READ has stolen the
1330 * down_write, in which case, send_pcc_cmd will check for pending
1331 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1332 * So this CPU can be certain that its request will be delivered
1333 * So in all cases, this CPU knows that its request will be delivered
1334 * by another CPU and can return
1336 * After getting the down_write we still need to check for
1337 * pending_pcc_write_cmd to take care of the following scenario
1338 * The thread running this code could be scheduled out between
1339 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1340 * could have delivered the request to Platform by triggering the
1341 * doorbell and transferred the ownership of PCC to platform. So this
1342 * avoids triggering an unnecessary doorbell and more importantly before
1343 * triggering the doorbell it makes sure that the PCC channel ownership
1344 * is still with OSPM.
1345 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1346 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1347 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1348 * case during a CMD_READ and if there are pending writes it delivers
1349 * the write command before servicing the read command
1351 if (CPC_IN_PCC(desired_reg)) {
1352 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1353 /* Update only if there are pending write commands */
1354 if (pcc_ss_data->pending_pcc_write_cmd)
1355 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1356 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1358 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1359 wait_event(pcc_ss_data->pcc_write_wait_q,
1360 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1362 /* send_pcc_cmd updates the status in case of failure */
1363 ret = cpc_desc->write_cmd_status;
1367 EXPORT_SYMBOL_GPL(cppc_set_perf);
1370 * cppc_get_transition_latency - returns frequency transition latency in ns
1372 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1373 * transition latency for perfromance change requests. The closest we have
1374 * is the timing information from the PCCT tables which provides the info
1375 * on the number and frequency of PCC commands the platform can handle.
1377 unsigned int cppc_get_transition_latency(int cpu_num)
1380 * Expected transition latency is based on the PCCT timing values
1381 * Below are definition from ACPI spec:
1382 * pcc_nominal- Expected latency to process a command, in microseconds
1383 * pcc_mpar - The maximum number of periodic requests that the subspace
1384 * channel can support, reported in commands per minute. 0
1385 * indicates no limitation.
1386 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1387 * completion of a command before issuing the next command,
1390 unsigned int latency_ns = 0;
1391 struct cpc_desc *cpc_desc;
1392 struct cpc_register_resource *desired_reg;
1393 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1394 struct cppc_pcc_data *pcc_ss_data;
1396 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1398 return CPUFREQ_ETERNAL;
1400 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1401 if (!CPC_IN_PCC(desired_reg))
1402 return CPUFREQ_ETERNAL;
1405 return CPUFREQ_ETERNAL;
1407 pcc_ss_data = pcc_data[pcc_ss_id];
1408 if (pcc_ss_data->pcc_mpar)
1409 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1411 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1412 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1416 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);