Merge tag 'h8300-for-linus-20190617' of git://git.sourceforge.jp/gitroot/uclinux...
[linux-2.6-microblaze.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500ULL
120
121 struct cppc_attr {
122         struct attribute attr;
123         ssize_t (*show)(struct kobject *kobj,
124                         struct attribute *attr, char *buf);
125         ssize_t (*store)(struct kobject *kobj,
126                         struct attribute *attr, const char *c, ssize_t count);
127 };
128
129 #define define_one_cppc_ro(_name)               \
130 static struct cppc_attr _name =                 \
131 __ATTR(_name, 0444, show_##_name, NULL)
132
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135 #define show_cppc_data(access_fn, struct_name, member_name)             \
136         static ssize_t show_##member_name(struct kobject *kobj,         \
137                                         struct attribute *attr, char *buf) \
138         {                                                               \
139                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
140                 struct struct_name st_name = {0};                       \
141                 int ret;                                                \
142                                                                         \
143                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
144                 if (ret)                                                \
145                         return ret;                                     \
146                                                                         \
147                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
148                                 (u64)st_name.member_name);              \
149         }                                                               \
150         define_one_cppc_ro(member_name)
151
152 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
158
159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
161
162 static ssize_t show_feedback_ctrs(struct kobject *kobj,
163                 struct attribute *attr, char *buf)
164 {
165         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166         struct cppc_perf_fb_ctrs fb_ctrs = {0};
167         int ret;
168
169         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170         if (ret)
171                 return ret;
172
173         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174                         fb_ctrs.reference, fb_ctrs.delivered);
175 }
176 define_one_cppc_ro(feedback_ctrs);
177
178 static struct attribute *cppc_attrs[] = {
179         &feedback_ctrs.attr,
180         &reference_perf.attr,
181         &wraparound_time.attr,
182         &highest_perf.attr,
183         &lowest_perf.attr,
184         &lowest_nonlinear_perf.attr,
185         &nominal_perf.attr,
186         &nominal_freq.attr,
187         &lowest_freq.attr,
188         NULL
189 };
190
191 static struct kobj_type cppc_ktype = {
192         .sysfs_ops = &kobj_sysfs_ops,
193         .default_attrs = cppc_attrs,
194 };
195
196 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
197 {
198         int ret, status;
199         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
200         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
201                 pcc_ss_data->pcc_comm_addr;
202
203         if (!pcc_ss_data->platform_owns_pcc)
204                 return 0;
205
206         /*
207          * Poll PCC status register every 3us(delay_us) for maximum of
208          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
209          */
210         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
211                                         status & PCC_CMD_COMPLETE_MASK, 3,
212                                         pcc_ss_data->deadline_us);
213
214         if (likely(!ret)) {
215                 pcc_ss_data->platform_owns_pcc = false;
216                 if (chk_err_bit && (status & PCC_ERROR_MASK))
217                         ret = -EIO;
218         }
219
220         if (unlikely(ret))
221                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
222                        pcc_ss_id, ret);
223
224         return ret;
225 }
226
227 /*
228  * This function transfers the ownership of the PCC to the platform
229  * So it must be called while holding write_lock(pcc_lock)
230  */
231 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
232 {
233         int ret = -EIO, i;
234         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
235         struct acpi_pcct_shared_memory *generic_comm_base =
236                 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
237         unsigned int time_delta;
238
239         /*
240          * For CMD_WRITE we know for a fact the caller should have checked
241          * the channel before writing to PCC space
242          */
243         if (cmd == CMD_READ) {
244                 /*
245                  * If there are pending cpc_writes, then we stole the channel
246                  * before write completion, so first send a WRITE command to
247                  * platform
248                  */
249                 if (pcc_ss_data->pending_pcc_write_cmd)
250                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
251
252                 ret = check_pcc_chan(pcc_ss_id, false);
253                 if (ret)
254                         goto end;
255         } else /* CMD_WRITE */
256                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
257
258         /*
259          * Handle the Minimum Request Turnaround Time(MRTT)
260          * "The minimum amount of time that OSPM must wait after the completion
261          * of a command before issuing the next command, in microseconds"
262          */
263         if (pcc_ss_data->pcc_mrtt) {
264                 time_delta = ktime_us_delta(ktime_get(),
265                                             pcc_ss_data->last_cmd_cmpl_time);
266                 if (pcc_ss_data->pcc_mrtt > time_delta)
267                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
268         }
269
270         /*
271          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
272          * "The maximum number of periodic requests that the subspace channel can
273          * support, reported in commands per minute. 0 indicates no limitation."
274          *
275          * This parameter should be ideally zero or large enough so that it can
276          * handle maximum number of requests that all the cores in the system can
277          * collectively generate. If it is not, we will follow the spec and just
278          * not send the request to the platform after hitting the MPAR limit in
279          * any 60s window
280          */
281         if (pcc_ss_data->pcc_mpar) {
282                 if (pcc_ss_data->mpar_count == 0) {
283                         time_delta = ktime_ms_delta(ktime_get(),
284                                                     pcc_ss_data->last_mpar_reset);
285                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
286                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
287                                          pcc_ss_id);
288                                 ret = -EIO;
289                                 goto end;
290                         }
291                         pcc_ss_data->last_mpar_reset = ktime_get();
292                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
293                 }
294                 pcc_ss_data->mpar_count--;
295         }
296
297         /* Write to the shared comm region. */
298         writew_relaxed(cmd, &generic_comm_base->command);
299
300         /* Flip CMD COMPLETE bit */
301         writew_relaxed(0, &generic_comm_base->status);
302
303         pcc_ss_data->platform_owns_pcc = true;
304
305         /* Ring doorbell */
306         ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
307         if (ret < 0) {
308                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
309                        pcc_ss_id, cmd, ret);
310                 goto end;
311         }
312
313         /* wait for completion and check for PCC errro bit */
314         ret = check_pcc_chan(pcc_ss_id, true);
315
316         if (pcc_ss_data->pcc_mrtt)
317                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
318
319         if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
320                 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
321         else
322                 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
323
324 end:
325         if (cmd == CMD_WRITE) {
326                 if (unlikely(ret)) {
327                         for_each_possible_cpu(i) {
328                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
329                                 if (!desc)
330                                         continue;
331
332                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
333                                         desc->write_cmd_status = ret;
334                         }
335                 }
336                 pcc_ss_data->pcc_write_cnt++;
337                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
338         }
339
340         return ret;
341 }
342
343 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
344 {
345         if (ret < 0)
346                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
347                                 *(u16 *)msg, ret);
348         else
349                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
350                                 *(u16 *)msg, ret);
351 }
352
353 struct mbox_client cppc_mbox_cl = {
354         .tx_done = cppc_chan_tx_done,
355         .knows_txdone = true,
356 };
357
358 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
359 {
360         int result = -EFAULT;
361         acpi_status status = AE_OK;
362         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364         struct acpi_buffer state = {0, NULL};
365         union acpi_object  *psd = NULL;
366         struct acpi_psd_package *pdomain;
367
368         status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
369                         ACPI_TYPE_PACKAGE);
370         if (ACPI_FAILURE(status))
371                 return -ENODEV;
372
373         psd = buffer.pointer;
374         if (!psd || psd->package.count != 1) {
375                 pr_debug("Invalid _PSD data\n");
376                 goto end;
377         }
378
379         pdomain = &(cpc_ptr->domain_info);
380
381         state.length = sizeof(struct acpi_psd_package);
382         state.pointer = pdomain;
383
384         status = acpi_extract_package(&(psd->package.elements[0]),
385                 &format, &state);
386         if (ACPI_FAILURE(status)) {
387                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
388                 goto end;
389         }
390
391         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
392                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
393                 goto end;
394         }
395
396         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
397                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
398                 goto end;
399         }
400
401         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
402             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
403             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
404                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
405                 goto end;
406         }
407
408         result = 0;
409 end:
410         kfree(buffer.pointer);
411         return result;
412 }
413
414 /**
415  * acpi_get_psd_map - Map the CPUs in a common freq domain.
416  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
417  *
418  *      Return: 0 for success or negative value for err.
419  */
420 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
421 {
422         int count_target;
423         int retval = 0;
424         unsigned int i, j;
425         cpumask_var_t covered_cpus;
426         struct cppc_cpudata *pr, *match_pr;
427         struct acpi_psd_package *pdomain;
428         struct acpi_psd_package *match_pdomain;
429         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
430
431         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
432                 return -ENOMEM;
433
434         /*
435          * Now that we have _PSD data from all CPUs, let's setup P-state
436          * domain info.
437          */
438         for_each_possible_cpu(i) {
439                 pr = all_cpu_data[i];
440                 if (!pr)
441                         continue;
442
443                 if (cpumask_test_cpu(i, covered_cpus))
444                         continue;
445
446                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
447                 if (!cpc_ptr) {
448                         retval = -EFAULT;
449                         goto err_ret;
450                 }
451
452                 pdomain = &(cpc_ptr->domain_info);
453                 cpumask_set_cpu(i, pr->shared_cpu_map);
454                 cpumask_set_cpu(i, covered_cpus);
455                 if (pdomain->num_processors <= 1)
456                         continue;
457
458                 /* Validate the Domain info */
459                 count_target = pdomain->num_processors;
460                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
461                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
462                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
463                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
464                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
465                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
466
467                 for_each_possible_cpu(j) {
468                         if (i == j)
469                                 continue;
470
471                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
472                         if (!match_cpc_ptr) {
473                                 retval = -EFAULT;
474                                 goto err_ret;
475                         }
476
477                         match_pdomain = &(match_cpc_ptr->domain_info);
478                         if (match_pdomain->domain != pdomain->domain)
479                                 continue;
480
481                         /* Here i and j are in the same domain */
482                         if (match_pdomain->num_processors != count_target) {
483                                 retval = -EFAULT;
484                                 goto err_ret;
485                         }
486
487                         if (pdomain->coord_type != match_pdomain->coord_type) {
488                                 retval = -EFAULT;
489                                 goto err_ret;
490                         }
491
492                         cpumask_set_cpu(j, covered_cpus);
493                         cpumask_set_cpu(j, pr->shared_cpu_map);
494                 }
495
496                 for_each_possible_cpu(j) {
497                         if (i == j)
498                                 continue;
499
500                         match_pr = all_cpu_data[j];
501                         if (!match_pr)
502                                 continue;
503
504                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
505                         if (!match_cpc_ptr) {
506                                 retval = -EFAULT;
507                                 goto err_ret;
508                         }
509
510                         match_pdomain = &(match_cpc_ptr->domain_info);
511                         if (match_pdomain->domain != pdomain->domain)
512                                 continue;
513
514                         match_pr->shared_type = pr->shared_type;
515                         cpumask_copy(match_pr->shared_cpu_map,
516                                      pr->shared_cpu_map);
517                 }
518         }
519
520 err_ret:
521         for_each_possible_cpu(i) {
522                 pr = all_cpu_data[i];
523                 if (!pr)
524                         continue;
525
526                 /* Assume no coordination on any error parsing domain info */
527                 if (retval) {
528                         cpumask_clear(pr->shared_cpu_map);
529                         cpumask_set_cpu(i, pr->shared_cpu_map);
530                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
531                 }
532         }
533
534         free_cpumask_var(covered_cpus);
535         return retval;
536 }
537 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
538
539 static int register_pcc_channel(int pcc_ss_idx)
540 {
541         struct acpi_pcct_hw_reduced *cppc_ss;
542         u64 usecs_lat;
543
544         if (pcc_ss_idx >= 0) {
545                 pcc_data[pcc_ss_idx]->pcc_channel =
546                         pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
547
548                 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
549                         pr_err("Failed to find PCC channel for subspace %d\n",
550                                pcc_ss_idx);
551                         return -ENODEV;
552                 }
553
554                 /*
555                  * The PCC mailbox controller driver should
556                  * have parsed the PCCT (global table of all
557                  * PCC channels) and stored pointers to the
558                  * subspace communication region in con_priv.
559                  */
560                 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
561
562                 if (!cppc_ss) {
563                         pr_err("No PCC subspace found for %d CPPC\n",
564                                pcc_ss_idx);
565                         return -ENODEV;
566                 }
567
568                 /*
569                  * cppc_ss->latency is just a Nominal value. In reality
570                  * the remote processor could be much slower to reply.
571                  * So add an arbitrary amount of wait on top of Nominal.
572                  */
573                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
574                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
575                 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
576                 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
577                 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
578
579                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
580                         acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
581                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
582                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
583                                pcc_ss_idx);
584                         return -ENOMEM;
585                 }
586
587                 /* Set flag so that we don't come here for each CPU. */
588                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
589         }
590
591         return 0;
592 }
593
594 /**
595  * cpc_ffh_supported() - check if FFH reading supported
596  *
597  * Check if the architecture has support for functional fixed hardware
598  * read/write capability.
599  *
600  * Return: true for supported, false for not supported
601  */
602 bool __weak cpc_ffh_supported(void)
603 {
604         return false;
605 }
606
607 /**
608  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
609  *
610  * Check and allocate the cppc_pcc_data memory.
611  * In some processor configurations it is possible that same subspace
612  * is shared between multiple CPUs. This is seen especially in CPUs
613  * with hardware multi-threading support.
614  *
615  * Return: 0 for success, errno for failure
616  */
617 int pcc_data_alloc(int pcc_ss_id)
618 {
619         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
620                 return -EINVAL;
621
622         if (pcc_data[pcc_ss_id]) {
623                 pcc_data[pcc_ss_id]->refcount++;
624         } else {
625                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
626                                               GFP_KERNEL);
627                 if (!pcc_data[pcc_ss_id])
628                         return -ENOMEM;
629                 pcc_data[pcc_ss_id]->refcount++;
630         }
631
632         return 0;
633 }
634
635 /* Check if CPPC revision + num_ent combination is supported */
636 static bool is_cppc_supported(int revision, int num_ent)
637 {
638         int expected_num_ent;
639
640         switch (revision) {
641         case CPPC_V2_REV:
642                 expected_num_ent = CPPC_V2_NUM_ENT;
643                 break;
644         case CPPC_V3_REV:
645                 expected_num_ent = CPPC_V3_NUM_ENT;
646                 break;
647         default:
648                 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
649                         revision);
650                 return false;
651         }
652
653         if (expected_num_ent != num_ent) {
654                 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
655                         num_ent, expected_num_ent, revision);
656                 return false;
657         }
658
659         return true;
660 }
661
662 /*
663  * An example CPC table looks like the following.
664  *
665  *      Name(_CPC, Package()
666  *                      {
667  *                      17,
668  *                      NumEntries
669  *                      1,
670  *                      // Revision
671  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
672  *                      // Highest Performance
673  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
674  *                      // Nominal Performance
675  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
676  *                      // Lowest Nonlinear Performance
677  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
678  *                      // Lowest Performance
679  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
680  *                      // Guaranteed Performance Register
681  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
682  *                      // Desired Performance Register
683  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
684  *                      ..
685  *                      ..
686  *                      ..
687  *
688  *              }
689  * Each Register() encodes how to access that specific register.
690  * e.g. a sample PCC entry has the following encoding:
691  *
692  *      Register (
693  *              PCC,
694  *              AddressSpaceKeyword
695  *              8,
696  *              //RegisterBitWidth
697  *              8,
698  *              //RegisterBitOffset
699  *              0x30,
700  *              //RegisterAddress
701  *              9
702  *              //AccessSize (subspace ID)
703  *              0
704  *              )
705  *      }
706  */
707
708 /**
709  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
710  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
711  *
712  *      Return: 0 for success or negative value for err.
713  */
714 int acpi_cppc_processor_probe(struct acpi_processor *pr)
715 {
716         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
717         union acpi_object *out_obj, *cpc_obj;
718         struct cpc_desc *cpc_ptr;
719         struct cpc_reg *gas_t;
720         struct device *cpu_dev;
721         acpi_handle handle = pr->handle;
722         unsigned int num_ent, i, cpc_rev;
723         int pcc_subspace_id = -1;
724         acpi_status status;
725         int ret = -EFAULT;
726
727         /* Parse the ACPI _CPC table for this CPU. */
728         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
729                         ACPI_TYPE_PACKAGE);
730         if (ACPI_FAILURE(status)) {
731                 ret = -ENODEV;
732                 goto out_buf_free;
733         }
734
735         out_obj = (union acpi_object *) output.pointer;
736
737         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
738         if (!cpc_ptr) {
739                 ret = -ENOMEM;
740                 goto out_buf_free;
741         }
742
743         /* First entry is NumEntries. */
744         cpc_obj = &out_obj->package.elements[0];
745         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
746                 num_ent = cpc_obj->integer.value;
747         } else {
748                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
749                                 cpc_obj->type);
750                 goto out_free;
751         }
752         cpc_ptr->num_entries = num_ent;
753
754         /* Second entry should be revision. */
755         cpc_obj = &out_obj->package.elements[1];
756         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
757                 cpc_rev = cpc_obj->integer.value;
758         } else {
759                 pr_debug("Unexpected entry type(%d) for Revision\n",
760                                 cpc_obj->type);
761                 goto out_free;
762         }
763         cpc_ptr->version = cpc_rev;
764
765         if (!is_cppc_supported(cpc_rev, num_ent))
766                 goto out_free;
767
768         /* Iterate through remaining entries in _CPC */
769         for (i = 2; i < num_ent; i++) {
770                 cpc_obj = &out_obj->package.elements[i];
771
772                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
773                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
774                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
775                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
776                         gas_t = (struct cpc_reg *)
777                                 cpc_obj->buffer.pointer;
778
779                         /*
780                          * The PCC Subspace index is encoded inside
781                          * the CPC table entries. The same PCC index
782                          * will be used for all the PCC entries,
783                          * so extract it only once.
784                          */
785                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
786                                 if (pcc_subspace_id < 0) {
787                                         pcc_subspace_id = gas_t->access_width;
788                                         if (pcc_data_alloc(pcc_subspace_id))
789                                                 goto out_free;
790                                 } else if (pcc_subspace_id != gas_t->access_width) {
791                                         pr_debug("Mismatched PCC ids.\n");
792                                         goto out_free;
793                                 }
794                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
795                                 if (gas_t->address) {
796                                         void __iomem *addr;
797
798                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
799                                         if (!addr)
800                                                 goto out_free;
801                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
802                                 }
803                         } else {
804                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
805                                         /* Support only PCC ,SYS MEM and FFH type regs */
806                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
807                                         goto out_free;
808                                 }
809                         }
810
811                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
812                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
813                 } else {
814                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
815                         goto out_free;
816                 }
817         }
818         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
819
820         /*
821          * Initialize the remaining cpc_regs as unsupported.
822          * Example: In case FW exposes CPPC v2, the below loop will initialize
823          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
824          */
825         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
826                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
827                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
828         }
829
830
831         /* Store CPU Logical ID */
832         cpc_ptr->cpu_id = pr->id;
833
834         /* Parse PSD data for this CPU */
835         ret = acpi_get_psd(cpc_ptr, handle);
836         if (ret)
837                 goto out_free;
838
839         /* Register PCC channel once for all PCC subspace ID. */
840         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
841                 ret = register_pcc_channel(pcc_subspace_id);
842                 if (ret)
843                         goto out_free;
844
845                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
846                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
847         }
848
849         /* Everything looks okay */
850         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
851
852         /* Add per logical CPU nodes for reading its feedback counters. */
853         cpu_dev = get_cpu_device(pr->id);
854         if (!cpu_dev) {
855                 ret = -EINVAL;
856                 goto out_free;
857         }
858
859         /* Plug PSD data into this CPU's CPC descriptor. */
860         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
861
862         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
863                         "acpi_cppc");
864         if (ret) {
865                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
866                 goto out_free;
867         }
868
869         kfree(output.pointer);
870         return 0;
871
872 out_free:
873         /* Free all the mapped sys mem areas for this CPU */
874         for (i = 2; i < cpc_ptr->num_entries; i++) {
875                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
876
877                 if (addr)
878                         iounmap(addr);
879         }
880         kfree(cpc_ptr);
881
882 out_buf_free:
883         kfree(output.pointer);
884         return ret;
885 }
886 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
887
888 /**
889  * acpi_cppc_processor_exit - Cleanup CPC structs.
890  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
891  *
892  * Return: Void
893  */
894 void acpi_cppc_processor_exit(struct acpi_processor *pr)
895 {
896         struct cpc_desc *cpc_ptr;
897         unsigned int i;
898         void __iomem *addr;
899         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
900
901         if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
902                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
903                         pcc_data[pcc_ss_id]->refcount--;
904                         if (!pcc_data[pcc_ss_id]->refcount) {
905                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
906                                 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
907                                 kfree(pcc_data[pcc_ss_id]);
908                         }
909                 }
910         }
911
912         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
913         if (!cpc_ptr)
914                 return;
915
916         /* Free all the mapped sys mem areas for this CPU */
917         for (i = 2; i < cpc_ptr->num_entries; i++) {
918                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
919                 if (addr)
920                         iounmap(addr);
921         }
922
923         kobject_put(&cpc_ptr->kobj);
924         kfree(cpc_ptr);
925 }
926 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
927
928 /**
929  * cpc_read_ffh() - Read FFH register
930  * @cpunum:     CPU number to read
931  * @reg:        cppc register information
932  * @val:        place holder for return value
933  *
934  * Read bit_width bits from a specified address and bit_offset
935  *
936  * Return: 0 for success and error code
937  */
938 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
939 {
940         return -ENOTSUPP;
941 }
942
943 /**
944  * cpc_write_ffh() - Write FFH register
945  * @cpunum:     CPU number to write
946  * @reg:        cppc register information
947  * @val:        value to write
948  *
949  * Write value of bit_width bits to a specified address and bit_offset
950  *
951  * Return: 0 for success and error code
952  */
953 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
954 {
955         return -ENOTSUPP;
956 }
957
958 /*
959  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
960  * as fast as possible. We have already mapped the PCC subspace during init, so
961  * we can directly write to it.
962  */
963
964 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
965 {
966         int ret_val = 0;
967         void __iomem *vaddr = 0;
968         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
969         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
970
971         if (reg_res->type == ACPI_TYPE_INTEGER) {
972                 *val = reg_res->cpc_entry.int_value;
973                 return ret_val;
974         }
975
976         *val = 0;
977         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
978                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
979         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
980                 vaddr = reg_res->sys_mem_vaddr;
981         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
982                 return cpc_read_ffh(cpu, reg, val);
983         else
984                 return acpi_os_read_memory((acpi_physical_address)reg->address,
985                                 val, reg->bit_width);
986
987         switch (reg->bit_width) {
988                 case 8:
989                         *val = readb_relaxed(vaddr);
990                         break;
991                 case 16:
992                         *val = readw_relaxed(vaddr);
993                         break;
994                 case 32:
995                         *val = readl_relaxed(vaddr);
996                         break;
997                 case 64:
998                         *val = readq_relaxed(vaddr);
999                         break;
1000                 default:
1001                         pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1002                                  reg->bit_width, pcc_ss_id);
1003                         ret_val = -EFAULT;
1004         }
1005
1006         return ret_val;
1007 }
1008
1009 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1010 {
1011         int ret_val = 0;
1012         void __iomem *vaddr = 0;
1013         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1014         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1015
1016         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1017                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1018         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1019                 vaddr = reg_res->sys_mem_vaddr;
1020         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1021                 return cpc_write_ffh(cpu, reg, val);
1022         else
1023                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1024                                 val, reg->bit_width);
1025
1026         switch (reg->bit_width) {
1027                 case 8:
1028                         writeb_relaxed(val, vaddr);
1029                         break;
1030                 case 16:
1031                         writew_relaxed(val, vaddr);
1032                         break;
1033                 case 32:
1034                         writel_relaxed(val, vaddr);
1035                         break;
1036                 case 64:
1037                         writeq_relaxed(val, vaddr);
1038                         break;
1039                 default:
1040                         pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1041                                  reg->bit_width, pcc_ss_id);
1042                         ret_val = -EFAULT;
1043                         break;
1044         }
1045
1046         return ret_val;
1047 }
1048
1049 /**
1050  * cppc_get_desired_perf - Get the value of desired performance register.
1051  * @cpunum: CPU from which to get desired performance.
1052  * @desired_perf: address of a variable to store the returned desired performance
1053  *
1054  * Return: 0 for success, -EIO otherwise.
1055  */
1056 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1057 {
1058         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1059         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1060         struct cpc_register_resource *desired_reg;
1061         struct cppc_pcc_data *pcc_ss_data = NULL;
1062
1063         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1064
1065         if (CPC_IN_PCC(desired_reg)) {
1066                 int ret = 0;
1067
1068                 if (pcc_ss_id < 0)
1069                         return -EIO;
1070
1071                 pcc_ss_data = pcc_data[pcc_ss_id];
1072
1073                 down_write(&pcc_ss_data->pcc_lock);
1074
1075                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1076                         cpc_read(cpunum, desired_reg, desired_perf);
1077                 else
1078                         ret = -EIO;
1079
1080                 up_write(&pcc_ss_data->pcc_lock);
1081
1082                 return ret;
1083         }
1084
1085         cpc_read(cpunum, desired_reg, desired_perf);
1086
1087         return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1090
1091 /**
1092  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1093  * @cpunum: CPU from which to get capabilities info.
1094  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1095  *
1096  * Return: 0 for success with perf_caps populated else -ERRNO.
1097  */
1098 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1099 {
1100         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1101         struct cpc_register_resource *highest_reg, *lowest_reg,
1102                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1103                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1104         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1105         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1106         struct cppc_pcc_data *pcc_ss_data = NULL;
1107         int ret = 0, regs_in_pcc = 0;
1108
1109         if (!cpc_desc) {
1110                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1111                 return -ENODEV;
1112         }
1113
1114         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1115         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1116         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1117         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1118         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1119         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1120         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1121
1122         /* Are any of the regs PCC ?*/
1123         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1124                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1125                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1126                 if (pcc_ss_id < 0) {
1127                         pr_debug("Invalid pcc_ss_id\n");
1128                         return -ENODEV;
1129                 }
1130                 pcc_ss_data = pcc_data[pcc_ss_id];
1131                 regs_in_pcc = 1;
1132                 down_write(&pcc_ss_data->pcc_lock);
1133                 /* Ring doorbell once to update PCC subspace */
1134                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1135                         ret = -EIO;
1136                         goto out_err;
1137                 }
1138         }
1139
1140         cpc_read(cpunum, highest_reg, &high);
1141         perf_caps->highest_perf = high;
1142
1143         cpc_read(cpunum, lowest_reg, &low);
1144         perf_caps->lowest_perf = low;
1145
1146         cpc_read(cpunum, nominal_reg, &nom);
1147         perf_caps->nominal_perf = nom;
1148
1149         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1150             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1151                 perf_caps->guaranteed_perf = 0;
1152         } else {
1153                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1154                 perf_caps->guaranteed_perf = guaranteed;
1155         }
1156
1157         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1158         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1159
1160         if (!high || !low || !nom || !min_nonlinear)
1161                 ret = -EFAULT;
1162
1163         /* Read optional lowest and nominal frequencies if present */
1164         if (CPC_SUPPORTED(low_freq_reg))
1165                 cpc_read(cpunum, low_freq_reg, &low_f);
1166
1167         if (CPC_SUPPORTED(nom_freq_reg))
1168                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1169
1170         perf_caps->lowest_freq = low_f;
1171         perf_caps->nominal_freq = nom_f;
1172
1173
1174 out_err:
1175         if (regs_in_pcc)
1176                 up_write(&pcc_ss_data->pcc_lock);
1177         return ret;
1178 }
1179 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1180
1181 /**
1182  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1183  * @cpunum: CPU from which to read counters.
1184  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1185  *
1186  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1187  */
1188 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1189 {
1190         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1191         struct cpc_register_resource *delivered_reg, *reference_reg,
1192                 *ref_perf_reg, *ctr_wrap_reg;
1193         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1194         struct cppc_pcc_data *pcc_ss_data = NULL;
1195         u64 delivered, reference, ref_perf, ctr_wrap_time;
1196         int ret = 0, regs_in_pcc = 0;
1197
1198         if (!cpc_desc) {
1199                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1200                 return -ENODEV;
1201         }
1202
1203         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1204         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1205         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1206         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1207
1208         /*
1209          * If reference perf register is not supported then we should
1210          * use the nominal perf value
1211          */
1212         if (!CPC_SUPPORTED(ref_perf_reg))
1213                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1214
1215         /* Are any of the regs PCC ?*/
1216         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1217                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1218                 if (pcc_ss_id < 0) {
1219                         pr_debug("Invalid pcc_ss_id\n");
1220                         return -ENODEV;
1221                 }
1222                 pcc_ss_data = pcc_data[pcc_ss_id];
1223                 down_write(&pcc_ss_data->pcc_lock);
1224                 regs_in_pcc = 1;
1225                 /* Ring doorbell once to update PCC subspace */
1226                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1227                         ret = -EIO;
1228                         goto out_err;
1229                 }
1230         }
1231
1232         cpc_read(cpunum, delivered_reg, &delivered);
1233         cpc_read(cpunum, reference_reg, &reference);
1234         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1235
1236         /*
1237          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1238          * performance counters are assumed to never wrap during the lifetime of
1239          * platform
1240          */
1241         ctr_wrap_time = (u64)(~((u64)0));
1242         if (CPC_SUPPORTED(ctr_wrap_reg))
1243                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1244
1245         if (!delivered || !reference || !ref_perf) {
1246                 ret = -EFAULT;
1247                 goto out_err;
1248         }
1249
1250         perf_fb_ctrs->delivered = delivered;
1251         perf_fb_ctrs->reference = reference;
1252         perf_fb_ctrs->reference_perf = ref_perf;
1253         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1254 out_err:
1255         if (regs_in_pcc)
1256                 up_write(&pcc_ss_data->pcc_lock);
1257         return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1260
1261 /**
1262  * cppc_set_perf - Set a CPU's performance controls.
1263  * @cpu: CPU for which to set performance controls.
1264  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1265  *
1266  * Return: 0 for success, -ERRNO otherwise.
1267  */
1268 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1269 {
1270         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1271         struct cpc_register_resource *desired_reg;
1272         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1273         struct cppc_pcc_data *pcc_ss_data = NULL;
1274         int ret = 0;
1275
1276         if (!cpc_desc) {
1277                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1278                 return -ENODEV;
1279         }
1280
1281         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1282
1283         /*
1284          * This is Phase-I where we want to write to CPC registers
1285          * -> We want all CPUs to be able to execute this phase in parallel
1286          *
1287          * Since read_lock can be acquired by multiple CPUs simultaneously we
1288          * achieve that goal here
1289          */
1290         if (CPC_IN_PCC(desired_reg)) {
1291                 if (pcc_ss_id < 0) {
1292                         pr_debug("Invalid pcc_ss_id\n");
1293                         return -ENODEV;
1294                 }
1295                 pcc_ss_data = pcc_data[pcc_ss_id];
1296                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1297                 if (pcc_ss_data->platform_owns_pcc) {
1298                         ret = check_pcc_chan(pcc_ss_id, false);
1299                         if (ret) {
1300                                 up_read(&pcc_ss_data->pcc_lock);
1301                                 return ret;
1302                         }
1303                 }
1304                 /*
1305                  * Update the pending_write to make sure a PCC CMD_READ will not
1306                  * arrive and steal the channel during the switch to write lock
1307                  */
1308                 pcc_ss_data->pending_pcc_write_cmd = true;
1309                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1310                 cpc_desc->write_cmd_status = 0;
1311         }
1312
1313         /*
1314          * Skip writing MIN/MAX until Linux knows how to come up with
1315          * useful values.
1316          */
1317         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1318
1319         if (CPC_IN_PCC(desired_reg))
1320                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1321         /*
1322          * This is Phase-II where we transfer the ownership of PCC to Platform
1323          *
1324          * Short Summary: Basically if we think of a group of cppc_set_perf
1325          * requests that happened in short overlapping interval. The last CPU to
1326          * come out of Phase-I will enter Phase-II and ring the doorbell.
1327          *
1328          * We have the following requirements for Phase-II:
1329          *     1. We want to execute Phase-II only when there are no CPUs
1330          * currently executing in Phase-I
1331          *     2. Once we start Phase-II we want to avoid all other CPUs from
1332          * entering Phase-I.
1333          *     3. We want only one CPU among all those who went through Phase-I
1334          * to run phase-II
1335          *
1336          * If write_trylock fails to get the lock and doesn't transfer the
1337          * PCC ownership to the platform, then one of the following will be TRUE
1338          *     1. There is at-least one CPU in Phase-I which will later execute
1339          * write_trylock, so the CPUs in Phase-I will be responsible for
1340          * executing the Phase-II.
1341          *     2. Some other CPU has beaten this CPU to successfully execute the
1342          * write_trylock and has already acquired the write_lock. We know for a
1343          * fact it (other CPU acquiring the write_lock) couldn't have happened
1344          * before this CPU's Phase-I as we held the read_lock.
1345          *     3. Some other CPU executing pcc CMD_READ has stolen the
1346          * down_write, in which case, send_pcc_cmd will check for pending
1347          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1348          * So this CPU can be certain that its request will be delivered
1349          *    So in all cases, this CPU knows that its request will be delivered
1350          * by another CPU and can return
1351          *
1352          * After getting the down_write we still need to check for
1353          * pending_pcc_write_cmd to take care of the following scenario
1354          *    The thread running this code could be scheduled out between
1355          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1356          * could have delivered the request to Platform by triggering the
1357          * doorbell and transferred the ownership of PCC to platform. So this
1358          * avoids triggering an unnecessary doorbell and more importantly before
1359          * triggering the doorbell it makes sure that the PCC channel ownership
1360          * is still with OSPM.
1361          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1362          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1363          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1364          * case during a CMD_READ and if there are pending writes it delivers
1365          * the write command before servicing the read command
1366          */
1367         if (CPC_IN_PCC(desired_reg)) {
1368                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1369                         /* Update only if there are pending write commands */
1370                         if (pcc_ss_data->pending_pcc_write_cmd)
1371                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1372                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1373                 } else
1374                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1375                         wait_event(pcc_ss_data->pcc_write_wait_q,
1376                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1377
1378                 /* send_pcc_cmd updates the status in case of failure */
1379                 ret = cpc_desc->write_cmd_status;
1380         }
1381         return ret;
1382 }
1383 EXPORT_SYMBOL_GPL(cppc_set_perf);
1384
1385 /**
1386  * cppc_get_transition_latency - returns frequency transition latency in ns
1387  *
1388  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1389  * transition latency for perfromance change requests. The closest we have
1390  * is the timing information from the PCCT tables which provides the info
1391  * on the number and frequency of PCC commands the platform can handle.
1392  */
1393 unsigned int cppc_get_transition_latency(int cpu_num)
1394 {
1395         /*
1396          * Expected transition latency is based on the PCCT timing values
1397          * Below are definition from ACPI spec:
1398          * pcc_nominal- Expected latency to process a command, in microseconds
1399          * pcc_mpar   - The maximum number of periodic requests that the subspace
1400          *              channel can support, reported in commands per minute. 0
1401          *              indicates no limitation.
1402          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1403          *              completion of a command before issuing the next command,
1404          *              in microseconds.
1405          */
1406         unsigned int latency_ns = 0;
1407         struct cpc_desc *cpc_desc;
1408         struct cpc_register_resource *desired_reg;
1409         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1410         struct cppc_pcc_data *pcc_ss_data;
1411
1412         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1413         if (!cpc_desc)
1414                 return CPUFREQ_ETERNAL;
1415
1416         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1417         if (!CPC_IN_PCC(desired_reg))
1418                 return CPUFREQ_ETERNAL;
1419
1420         if (pcc_ss_id < 0)
1421                 return CPUFREQ_ETERNAL;
1422
1423         pcc_ss_data = pcc_data[pcc_ss_id];
1424         if (pcc_ss_data->pcc_mpar)
1425                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1426
1427         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1428         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1429
1430         return latency_ns;
1431 }
1432 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);