alpha: Replace sg++ with sg = sg_next(sg)
[linux-2.6-microblaze.git] / drivers / acpi / acpi_pad.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <asm/mwait.h>
21 #include <xen/xen.h>
22
23 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
24 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
25 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
26 static DEFINE_MUTEX(isolated_cpus_lock);
27 static DEFINE_MUTEX(round_robin_lock);
28
29 static unsigned long power_saving_mwait_eax;
30
31 static unsigned char tsc_detected_unstable;
32 static unsigned char tsc_marked_unstable;
33
34 static void power_saving_mwait_init(void)
35 {
36         unsigned int eax, ebx, ecx, edx;
37         unsigned int highest_cstate = 0;
38         unsigned int highest_subcstate = 0;
39         int i;
40
41         if (!boot_cpu_has(X86_FEATURE_MWAIT))
42                 return;
43         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
44                 return;
45
46         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
47
48         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
49             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
50                 return;
51
52         edx >>= MWAIT_SUBSTATE_SIZE;
53         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
54                 if (edx & MWAIT_SUBSTATE_MASK) {
55                         highest_cstate = i;
56                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
57                 }
58         }
59         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
60                 (highest_subcstate - 1);
61
62 #if defined(CONFIG_X86)
63         switch (boot_cpu_data.x86_vendor) {
64         case X86_VENDOR_HYGON:
65         case X86_VENDOR_AMD:
66         case X86_VENDOR_INTEL:
67         case X86_VENDOR_ZHAOXIN:
68                 /*
69                  * AMD Fam10h TSC will tick in all
70                  * C/P/S0/S1 states when this bit is set.
71                  */
72                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
73                         tsc_detected_unstable = 1;
74                 break;
75         default:
76                 /* TSC could halt in idle */
77                 tsc_detected_unstable = 1;
78         }
79 #endif
80 }
81
82 static unsigned long cpu_weight[NR_CPUS];
83 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
84 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
85 static void round_robin_cpu(unsigned int tsk_index)
86 {
87         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
88         cpumask_var_t tmp;
89         int cpu;
90         unsigned long min_weight = -1;
91         unsigned long uninitialized_var(preferred_cpu);
92
93         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
94                 return;
95
96         mutex_lock(&round_robin_lock);
97         cpumask_clear(tmp);
98         for_each_cpu(cpu, pad_busy_cpus)
99                 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100         cpumask_andnot(tmp, cpu_online_mask, tmp);
101         /* avoid HT sibilings if possible */
102         if (cpumask_empty(tmp))
103                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104         if (cpumask_empty(tmp)) {
105                 mutex_unlock(&round_robin_lock);
106                 free_cpumask_var(tmp);
107                 return;
108         }
109         for_each_cpu(cpu, tmp) {
110                 if (cpu_weight[cpu] < min_weight) {
111                         min_weight = cpu_weight[cpu];
112                         preferred_cpu = cpu;
113                 }
114         }
115
116         if (tsk_in_cpu[tsk_index] != -1)
117                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118         tsk_in_cpu[tsk_index] = preferred_cpu;
119         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120         cpu_weight[preferred_cpu]++;
121         mutex_unlock(&round_robin_lock);
122
123         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124
125         free_cpumask_var(tmp);
126 }
127
128 static void exit_round_robin(unsigned int tsk_index)
129 {
130         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
131         cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132         tsk_in_cpu[tsk_index] = -1;
133 }
134
135 static unsigned int idle_pct = 5; /* percentage */
136 static unsigned int round_robin_time = 1; /* second */
137 static int power_saving_thread(void *data)
138 {
139         struct sched_param param = {.sched_priority = 1};
140         int do_sleep;
141         unsigned int tsk_index = (unsigned long)data;
142         u64 last_jiffies = 0;
143
144         sched_setscheduler(current, SCHED_RR, &param);
145
146         while (!kthread_should_stop()) {
147                 unsigned long expire_time;
148
149                 /* round robin to cpus */
150                 expire_time = last_jiffies + round_robin_time * HZ;
151                 if (time_before(expire_time, jiffies)) {
152                         last_jiffies = jiffies;
153                         round_robin_cpu(tsk_index);
154                 }
155
156                 do_sleep = 0;
157
158                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
159
160                 while (!need_resched()) {
161                         if (tsc_detected_unstable && !tsc_marked_unstable) {
162                                 /* TSC could halt in idle, so notify users */
163                                 mark_tsc_unstable("TSC halts in idle");
164                                 tsc_marked_unstable = 1;
165                         }
166                         local_irq_disable();
167                         tick_broadcast_enable();
168                         tick_broadcast_enter();
169                         stop_critical_timings();
170
171                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
172
173                         start_critical_timings();
174                         tick_broadcast_exit();
175                         local_irq_enable();
176
177                         if (time_before(expire_time, jiffies)) {
178                                 do_sleep = 1;
179                                 break;
180                         }
181                 }
182
183                 /*
184                  * current sched_rt has threshold for rt task running time.
185                  * When a rt task uses 95% CPU time, the rt thread will be
186                  * scheduled out for 5% CPU time to not starve other tasks. But
187                  * the mechanism only works when all CPUs have RT task running,
188                  * as if one CPU hasn't RT task, RT task from other CPUs will
189                  * borrow CPU time from this CPU and cause RT task use > 95%
190                  * CPU time. To make 'avoid starvation' work, takes a nap here.
191                  */
192                 if (unlikely(do_sleep))
193                         schedule_timeout_killable(HZ * idle_pct / 100);
194
195                 /* If an external event has set the need_resched flag, then
196                  * we need to deal with it, or this loop will continue to
197                  * spin without calling __mwait().
198                  */
199                 if (unlikely(need_resched()))
200                         schedule();
201         }
202
203         exit_round_robin(tsk_index);
204         return 0;
205 }
206
207 static struct task_struct *ps_tsks[NR_CPUS];
208 static unsigned int ps_tsk_num;
209 static int create_power_saving_task(void)
210 {
211         int rc;
212
213         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
214                 (void *)(unsigned long)ps_tsk_num,
215                 "acpi_pad/%d", ps_tsk_num);
216
217         if (IS_ERR(ps_tsks[ps_tsk_num])) {
218                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
219                 ps_tsks[ps_tsk_num] = NULL;
220         } else {
221                 rc = 0;
222                 ps_tsk_num++;
223         }
224
225         return rc;
226 }
227
228 static void destroy_power_saving_task(void)
229 {
230         if (ps_tsk_num > 0) {
231                 ps_tsk_num--;
232                 kthread_stop(ps_tsks[ps_tsk_num]);
233                 ps_tsks[ps_tsk_num] = NULL;
234         }
235 }
236
237 static void set_power_saving_task_num(unsigned int num)
238 {
239         if (num > ps_tsk_num) {
240                 while (ps_tsk_num < num) {
241                         if (create_power_saving_task())
242                                 return;
243                 }
244         } else if (num < ps_tsk_num) {
245                 while (ps_tsk_num > num)
246                         destroy_power_saving_task();
247         }
248 }
249
250 static void acpi_pad_idle_cpus(unsigned int num_cpus)
251 {
252         get_online_cpus();
253
254         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
255         set_power_saving_task_num(num_cpus);
256
257         put_online_cpus();
258 }
259
260 static uint32_t acpi_pad_idle_cpus_num(void)
261 {
262         return ps_tsk_num;
263 }
264
265 static ssize_t acpi_pad_rrtime_store(struct device *dev,
266         struct device_attribute *attr, const char *buf, size_t count)
267 {
268         unsigned long num;
269         if (kstrtoul(buf, 0, &num))
270                 return -EINVAL;
271         if (num < 1 || num >= 100)
272                 return -EINVAL;
273         mutex_lock(&isolated_cpus_lock);
274         round_robin_time = num;
275         mutex_unlock(&isolated_cpus_lock);
276         return count;
277 }
278
279 static ssize_t acpi_pad_rrtime_show(struct device *dev,
280         struct device_attribute *attr, char *buf)
281 {
282         return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
283 }
284 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
285         acpi_pad_rrtime_show,
286         acpi_pad_rrtime_store);
287
288 static ssize_t acpi_pad_idlepct_store(struct device *dev,
289         struct device_attribute *attr, const char *buf, size_t count)
290 {
291         unsigned long num;
292         if (kstrtoul(buf, 0, &num))
293                 return -EINVAL;
294         if (num < 1 || num >= 100)
295                 return -EINVAL;
296         mutex_lock(&isolated_cpus_lock);
297         idle_pct = num;
298         mutex_unlock(&isolated_cpus_lock);
299         return count;
300 }
301
302 static ssize_t acpi_pad_idlepct_show(struct device *dev,
303         struct device_attribute *attr, char *buf)
304 {
305         return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
306 }
307 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
308         acpi_pad_idlepct_show,
309         acpi_pad_idlepct_store);
310
311 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
312         struct device_attribute *attr, const char *buf, size_t count)
313 {
314         unsigned long num;
315         if (kstrtoul(buf, 0, &num))
316                 return -EINVAL;
317         mutex_lock(&isolated_cpus_lock);
318         acpi_pad_idle_cpus(num);
319         mutex_unlock(&isolated_cpus_lock);
320         return count;
321 }
322
323 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
324         struct device_attribute *attr, char *buf)
325 {
326         return cpumap_print_to_pagebuf(false, buf,
327                                        to_cpumask(pad_busy_cpus_bits));
328 }
329
330 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
331         acpi_pad_idlecpus_show,
332         acpi_pad_idlecpus_store);
333
334 static int acpi_pad_add_sysfs(struct acpi_device *device)
335 {
336         int result;
337
338         result = device_create_file(&device->dev, &dev_attr_idlecpus);
339         if (result)
340                 return -ENODEV;
341         result = device_create_file(&device->dev, &dev_attr_idlepct);
342         if (result) {
343                 device_remove_file(&device->dev, &dev_attr_idlecpus);
344                 return -ENODEV;
345         }
346         result = device_create_file(&device->dev, &dev_attr_rrtime);
347         if (result) {
348                 device_remove_file(&device->dev, &dev_attr_idlecpus);
349                 device_remove_file(&device->dev, &dev_attr_idlepct);
350                 return -ENODEV;
351         }
352         return 0;
353 }
354
355 static void acpi_pad_remove_sysfs(struct acpi_device *device)
356 {
357         device_remove_file(&device->dev, &dev_attr_idlecpus);
358         device_remove_file(&device->dev, &dev_attr_idlepct);
359         device_remove_file(&device->dev, &dev_attr_rrtime);
360 }
361
362 /*
363  * Query firmware how many CPUs should be idle
364  * return -1 on failure
365  */
366 static int acpi_pad_pur(acpi_handle handle)
367 {
368         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369         union acpi_object *package;
370         int num = -1;
371
372         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
373                 return num;
374
375         if (!buffer.length || !buffer.pointer)
376                 return num;
377
378         package = buffer.pointer;
379
380         if (package->type == ACPI_TYPE_PACKAGE &&
381                 package->package.count == 2 &&
382                 package->package.elements[0].integer.value == 1) /* rev 1 */
383
384                 num = package->package.elements[1].integer.value;
385
386         kfree(buffer.pointer);
387         return num;
388 }
389
390 static void acpi_pad_handle_notify(acpi_handle handle)
391 {
392         int num_cpus;
393         uint32_t idle_cpus;
394         struct acpi_buffer param = {
395                 .length = 4,
396                 .pointer = (void *)&idle_cpus,
397         };
398
399         mutex_lock(&isolated_cpus_lock);
400         num_cpus = acpi_pad_pur(handle);
401         if (num_cpus < 0) {
402                 mutex_unlock(&isolated_cpus_lock);
403                 return;
404         }
405         acpi_pad_idle_cpus(num_cpus);
406         idle_cpus = acpi_pad_idle_cpus_num();
407         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
408         mutex_unlock(&isolated_cpus_lock);
409 }
410
411 static void acpi_pad_notify(acpi_handle handle, u32 event,
412         void *data)
413 {
414         struct acpi_device *device = data;
415
416         switch (event) {
417         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
418                 acpi_pad_handle_notify(handle);
419                 acpi_bus_generate_netlink_event(device->pnp.device_class,
420                         dev_name(&device->dev), event, 0);
421                 break;
422         default:
423                 pr_warn("Unsupported event [0x%x]\n", event);
424                 break;
425         }
426 }
427
428 static int acpi_pad_add(struct acpi_device *device)
429 {
430         acpi_status status;
431
432         strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
433         strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
434
435         if (acpi_pad_add_sysfs(device))
436                 return -ENODEV;
437
438         status = acpi_install_notify_handler(device->handle,
439                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
440         if (ACPI_FAILURE(status)) {
441                 acpi_pad_remove_sysfs(device);
442                 return -ENODEV;
443         }
444
445         return 0;
446 }
447
448 static int acpi_pad_remove(struct acpi_device *device)
449 {
450         mutex_lock(&isolated_cpus_lock);
451         acpi_pad_idle_cpus(0);
452         mutex_unlock(&isolated_cpus_lock);
453
454         acpi_remove_notify_handler(device->handle,
455                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
456         acpi_pad_remove_sysfs(device);
457         return 0;
458 }
459
460 static const struct acpi_device_id pad_device_ids[] = {
461         {"ACPI000C", 0},
462         {"", 0},
463 };
464 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
465
466 static struct acpi_driver acpi_pad_driver = {
467         .name = "processor_aggregator",
468         .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
469         .ids = pad_device_ids,
470         .ops = {
471                 .add = acpi_pad_add,
472                 .remove = acpi_pad_remove,
473         },
474 };
475
476 static int __init acpi_pad_init(void)
477 {
478         /* Xen ACPI PAD is used when running as Xen Dom0. */
479         if (xen_initial_domain())
480                 return -ENODEV;
481
482         power_saving_mwait_init();
483         if (power_saving_mwait_eax == 0)
484                 return -EINVAL;
485
486         return acpi_bus_register_driver(&acpi_pad_driver);
487 }
488
489 static void __exit acpi_pad_exit(void)
490 {
491         acpi_bus_unregister_driver(&acpi_pad_driver);
492 }
493
494 module_init(acpi_pad_init);
495 module_exit(acpi_pad_exit);
496 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
497 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
498 MODULE_LICENSE("GPL");