Merge tag 'perf_urgent_for_v5.19_rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         struct acpi_device *adev = pdata->adev;
171
172         /* Only call pwm_add_table for the first PWM controller */
173         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
174                 return;
175
176         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         const char *uid_str = acpi_device_uid(pdata->adev);
184         acpi_handle handle = pdata->adev->handle;
185         unsigned long long shared_host = 0;
186         acpi_status status;
187         long uid = 0;
188
189         /* Expected to always be true, but better safe then sorry */
190         if (uid_str && !kstrtol(uid_str, 10, &uid) && uid) {
191                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
192                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
193                 if (ACPI_SUCCESS(status) && shared_host)
194                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
195         }
196
197         lpss_deassert_reset(pdata);
198
199         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200                 pdata->fixed_clk_rate = 133000000;
201
202         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
203 }
204
205 /* BSW PWM used for backlight control by the i915 driver */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209                                "pwm-lpss-platform"),
210 };
211
212 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 {
214         struct acpi_device *adev = pdata->adev;
215
216         /* Only call pwm_add_table for the first PWM controller */
217         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218                 return;
219
220         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
221 }
222
223 static const struct property_entry lpt_spi_properties[] = {
224         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
225         { }
226 };
227
228 static const struct lpss_device_desc lpt_spi_dev_desc = {
229         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
230                         | LPSS_SAVE_CTX,
231         .prv_offset = 0x800,
232         .properties = lpt_spi_properties,
233 };
234
235 static const struct lpss_device_desc lpt_i2c_dev_desc = {
236         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
237         .prv_offset = 0x800,
238 };
239
240 static struct property_entry uart_properties[] = {
241         PROPERTY_ENTRY_U32("reg-io-width", 4),
242         PROPERTY_ENTRY_U32("reg-shift", 2),
243         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
244         { },
245 };
246
247 static const struct lpss_device_desc lpt_uart_dev_desc = {
248         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
249                         | LPSS_SAVE_CTX,
250         .clk_con_id = "baudclk",
251         .prv_offset = 0x800,
252         .setup = lpss_uart_setup,
253         .properties = uart_properties,
254 };
255
256 static const struct lpss_device_desc lpt_sdio_dev_desc = {
257         .flags = LPSS_LTR,
258         .prv_offset = 0x1000,
259         .prv_size_override = 0x1018,
260 };
261
262 static const struct lpss_device_desc byt_pwm_dev_desc = {
263         .flags = LPSS_SAVE_CTX,
264         .prv_offset = 0x800,
265         .setup = byt_pwm_setup,
266 };
267
268 static const struct lpss_device_desc bsw_pwm_dev_desc = {
269         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
270         .prv_offset = 0x800,
271         .setup = bsw_pwm_setup,
272         .resume_from_noirq = true,
273 };
274
275 static const struct lpss_device_desc byt_uart_dev_desc = {
276         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
277         .clk_con_id = "baudclk",
278         .prv_offset = 0x800,
279         .setup = lpss_uart_setup,
280         .properties = uart_properties,
281 };
282
283 static const struct lpss_device_desc bsw_uart_dev_desc = {
284         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
285                         | LPSS_NO_D3_DELAY,
286         .clk_con_id = "baudclk",
287         .prv_offset = 0x800,
288         .setup = lpss_uart_setup,
289         .properties = uart_properties,
290 };
291
292 static const struct property_entry byt_spi_properties[] = {
293         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
294         { }
295 };
296
297 static const struct lpss_device_desc byt_spi_dev_desc = {
298         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
299         .prv_offset = 0x400,
300         .properties = byt_spi_properties,
301 };
302
303 static const struct lpss_device_desc byt_sdio_dev_desc = {
304         .flags = LPSS_CLK,
305 };
306
307 static const struct lpss_device_desc byt_i2c_dev_desc = {
308         .flags = LPSS_CLK | LPSS_SAVE_CTX,
309         .prv_offset = 0x800,
310         .setup = byt_i2c_setup,
311         .resume_from_noirq = true,
312 };
313
314 static const struct lpss_device_desc bsw_i2c_dev_desc = {
315         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
316         .prv_offset = 0x800,
317         .setup = byt_i2c_setup,
318         .resume_from_noirq = true,
319 };
320
321 static const struct property_entry bsw_spi_properties[] = {
322         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
323         { }
324 };
325
326 static const struct lpss_device_desc bsw_spi_dev_desc = {
327         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
328                         | LPSS_NO_D3_DELAY,
329         .prv_offset = 0x400,
330         .setup = lpss_deassert_reset,
331         .properties = bsw_spi_properties,
332 };
333
334 static const struct x86_cpu_id lpss_cpu_ids[] = {
335         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
336         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
337         {}
338 };
339
340 #else
341
342 #define LPSS_ADDR(desc) (0UL)
343
344 #endif /* CONFIG_X86_INTEL_LPSS */
345
346 static const struct acpi_device_id acpi_lpss_device_ids[] = {
347         /* Generic LPSS devices */
348         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
349
350         /* Lynxpoint LPSS devices */
351         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
352         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
353         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
354         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
355         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
356         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
357         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
358         { "INT33C7", },
359
360         /* BayTrail LPSS devices */
361         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
362         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
363         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
364         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
365         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
366         { "INT33B2", },
367         { "INT33FC", },
368
369         /* Braswell LPSS devices */
370         { "80862286", LPSS_ADDR(lpss_dma_desc) },
371         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
372         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
373         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
374         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
375         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
376
377         /* Broadwell LPSS devices */
378         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
379         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
380         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
381         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
382         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
383         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
384         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
385         { "INT3437", },
386
387         /* Wildcat Point LPSS devices */
388         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
389
390         { }
391 };
392
393 #ifdef CONFIG_X86_INTEL_LPSS
394
395 static int is_memory(struct acpi_resource *res, void *not_used)
396 {
397         struct resource r;
398
399         return !acpi_dev_resource_memory(res, &r);
400 }
401
402 /* LPSS main clock device. */
403 static struct platform_device *lpss_clk_dev;
404
405 static inline void lpt_register_clock_device(void)
406 {
407         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
408                                                        PLATFORM_DEVID_NONE,
409                                                        NULL, 0);
410 }
411
412 static int register_device_clock(struct acpi_device *adev,
413                                  struct lpss_private_data *pdata)
414 {
415         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
416         const char *devname = dev_name(&adev->dev);
417         struct clk *clk;
418         struct lpss_clk_data *clk_data;
419         const char *parent, *clk_name;
420         void __iomem *prv_base;
421
422         if (!lpss_clk_dev)
423                 lpt_register_clock_device();
424
425         clk_data = platform_get_drvdata(lpss_clk_dev);
426         if (!clk_data)
427                 return -ENODEV;
428         clk = clk_data->clk;
429
430         if (!pdata->mmio_base
431             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
432                 return -ENODATA;
433
434         parent = clk_data->name;
435         prv_base = pdata->mmio_base + dev_desc->prv_offset;
436
437         if (pdata->fixed_clk_rate) {
438                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
439                                               pdata->fixed_clk_rate);
440                 goto out;
441         }
442
443         if (dev_desc->flags & LPSS_CLK_GATE) {
444                 clk = clk_register_gate(NULL, devname, parent, 0,
445                                         prv_base, 0, 0, NULL);
446                 parent = devname;
447         }
448
449         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
450                 /* Prevent division by zero */
451                 if (!readl(prv_base))
452                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
453
454                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
455                 if (!clk_name)
456                         return -ENOMEM;
457                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
458                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
459                                                       prv_base, 1, 15, 16, 15, 0, NULL);
460                 parent = clk_name;
461
462                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
463                 if (!clk_name) {
464                         kfree(parent);
465                         return -ENOMEM;
466                 }
467                 clk = clk_register_gate(NULL, clk_name, parent,
468                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
469                                         prv_base, 31, 0, NULL);
470                 kfree(parent);
471                 kfree(clk_name);
472         }
473 out:
474         if (IS_ERR(clk))
475                 return PTR_ERR(clk);
476
477         pdata->clk = clk;
478         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
479         return 0;
480 }
481
482 struct lpss_device_links {
483         const char *supplier_hid;
484         const char *supplier_uid;
485         const char *consumer_hid;
486         const char *consumer_uid;
487         u32 flags;
488         const struct dmi_system_id *dep_missing_ids;
489 };
490
491 /* Please keep this list sorted alphabetically by vendor and model */
492 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
493         {
494                 .matches = {
495                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
496                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
497                 },
498         },
499         {}
500 };
501
502 /*
503  * The _DEP method is used to identify dependencies but instead of creating
504  * device links for every handle in _DEP, only links in the following list are
505  * created. That is necessary because, in the general case, _DEP can refer to
506  * devices that might not have drivers, or that are on different buses, or where
507  * the supplier is not enumerated until after the consumer is probed.
508  */
509 static const struct lpss_device_links lpss_device_links[] = {
510         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
511         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
512         /* CHT iGPU depends on PMIC I2C controller */
513         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
514         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
515         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
516          i2c1_dep_missing_dmi_ids},
517         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
518         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
519         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
520         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
521 };
522
523 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
524                                   const struct lpss_device_links *link)
525 {
526         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
527 }
528
529 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
530                                   const struct lpss_device_links *link)
531 {
532         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
533 }
534
535 struct hid_uid {
536         const char *hid;
537         const char *uid;
538 };
539
540 static int match_hid_uid(struct device *dev, const void *data)
541 {
542         struct acpi_device *adev = ACPI_COMPANION(dev);
543         const struct hid_uid *id = data;
544
545         if (!adev)
546                 return 0;
547
548         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
549 }
550
551 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
552 {
553         struct device *dev;
554
555         struct hid_uid data = {
556                 .hid = hid,
557                 .uid = uid,
558         };
559
560         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
561         if (dev)
562                 return dev;
563
564         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
565 }
566
567 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
568 {
569         struct acpi_handle_list dep_devices;
570         acpi_status status;
571         int i;
572
573         if (!acpi_has_method(adev->handle, "_DEP"))
574                 return false;
575
576         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
577                                          &dep_devices);
578         if (ACPI_FAILURE(status)) {
579                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
580                 return false;
581         }
582
583         for (i = 0; i < dep_devices.count; i++) {
584                 if (dep_devices.handles[i] == handle)
585                         return true;
586         }
587
588         return false;
589 }
590
591 static void acpi_lpss_link_consumer(struct device *dev1,
592                                     const struct lpss_device_links *link)
593 {
594         struct device *dev2;
595
596         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
597         if (!dev2)
598                 return;
599
600         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
601             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
602                 device_link_add(dev2, dev1, link->flags);
603
604         put_device(dev2);
605 }
606
607 static void acpi_lpss_link_supplier(struct device *dev1,
608                                     const struct lpss_device_links *link)
609 {
610         struct device *dev2;
611
612         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
613         if (!dev2)
614                 return;
615
616         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
617             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
618                 device_link_add(dev1, dev2, link->flags);
619
620         put_device(dev2);
621 }
622
623 static void acpi_lpss_create_device_links(struct acpi_device *adev,
624                                           struct platform_device *pdev)
625 {
626         int i;
627
628         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
629                 const struct lpss_device_links *link = &lpss_device_links[i];
630
631                 if (acpi_lpss_is_supplier(adev, link))
632                         acpi_lpss_link_consumer(&pdev->dev, link);
633
634                 if (acpi_lpss_is_consumer(adev, link))
635                         acpi_lpss_link_supplier(&pdev->dev, link);
636         }
637 }
638
639 static int acpi_lpss_create_device(struct acpi_device *adev,
640                                    const struct acpi_device_id *id)
641 {
642         const struct lpss_device_desc *dev_desc;
643         struct lpss_private_data *pdata;
644         struct resource_entry *rentry;
645         struct list_head resource_list;
646         struct platform_device *pdev;
647         int ret;
648
649         dev_desc = (const struct lpss_device_desc *)id->driver_data;
650         if (!dev_desc) {
651                 pdev = acpi_create_platform_device(adev, NULL);
652                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
653         }
654         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
655         if (!pdata)
656                 return -ENOMEM;
657
658         INIT_LIST_HEAD(&resource_list);
659         ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
660         if (ret < 0)
661                 goto err_out;
662
663         list_for_each_entry(rentry, &resource_list, node)
664                 if (resource_type(rentry->res) == IORESOURCE_MEM) {
665                         if (dev_desc->prv_size_override)
666                                 pdata->mmio_size = dev_desc->prv_size_override;
667                         else
668                                 pdata->mmio_size = resource_size(rentry->res);
669                         pdata->mmio_base = ioremap(rentry->res->start,
670                                                    pdata->mmio_size);
671                         break;
672                 }
673
674         acpi_dev_free_resource_list(&resource_list);
675
676         if (!pdata->mmio_base) {
677                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
678                 adev->pnp.type.platform_id = 0;
679                 /* Skip the device, but continue the namespace scan. */
680                 ret = 0;
681                 goto err_out;
682         }
683
684         pdata->adev = adev;
685         pdata->dev_desc = dev_desc;
686
687         if (dev_desc->setup)
688                 dev_desc->setup(pdata);
689
690         if (dev_desc->flags & LPSS_CLK) {
691                 ret = register_device_clock(adev, pdata);
692                 if (ret) {
693                         /* Skip the device, but continue the namespace scan. */
694                         ret = 0;
695                         goto err_out;
696                 }
697         }
698
699         /*
700          * This works around a known issue in ACPI tables where LPSS devices
701          * have _PS0 and _PS3 without _PSC (and no power resources), so
702          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
703          */
704         acpi_device_fix_up_power(adev);
705
706         adev->driver_data = pdata;
707         pdev = acpi_create_platform_device(adev, dev_desc->properties);
708         if (!IS_ERR_OR_NULL(pdev)) {
709                 acpi_lpss_create_device_links(adev, pdev);
710                 return 1;
711         }
712
713         ret = PTR_ERR(pdev);
714         adev->driver_data = NULL;
715
716  err_out:
717         kfree(pdata);
718         return ret;
719 }
720
721 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
722 {
723         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
724 }
725
726 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
727                              unsigned int reg)
728 {
729         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
730 }
731
732 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
733 {
734         struct acpi_device *adev = ACPI_COMPANION(dev);
735         struct lpss_private_data *pdata;
736         unsigned long flags;
737         int ret;
738
739         if (WARN_ON(!adev))
740                 return -ENODEV;
741
742         spin_lock_irqsave(&dev->power.lock, flags);
743         if (pm_runtime_suspended(dev)) {
744                 ret = -EAGAIN;
745                 goto out;
746         }
747         pdata = acpi_driver_data(adev);
748         if (WARN_ON(!pdata || !pdata->mmio_base)) {
749                 ret = -ENODEV;
750                 goto out;
751         }
752         *val = __lpss_reg_read(pdata, reg);
753         ret = 0;
754
755  out:
756         spin_unlock_irqrestore(&dev->power.lock, flags);
757         return ret;
758 }
759
760 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
761                              char *buf)
762 {
763         u32 ltr_value = 0;
764         unsigned int reg;
765         int ret;
766
767         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
768         ret = lpss_reg_read(dev, reg, &ltr_value);
769         if (ret)
770                 return ret;
771
772         return sysfs_emit(buf, "%08x\n", ltr_value);
773 }
774
775 static ssize_t lpss_ltr_mode_show(struct device *dev,
776                                   struct device_attribute *attr, char *buf)
777 {
778         u32 ltr_mode = 0;
779         char *outstr;
780         int ret;
781
782         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
783         if (ret)
784                 return ret;
785
786         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
787         return sprintf(buf, "%s\n", outstr);
788 }
789
790 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
791 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
792 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
793
794 static struct attribute *lpss_attrs[] = {
795         &dev_attr_auto_ltr.attr,
796         &dev_attr_sw_ltr.attr,
797         &dev_attr_ltr_mode.attr,
798         NULL,
799 };
800
801 static const struct attribute_group lpss_attr_group = {
802         .attrs = lpss_attrs,
803         .name = "lpss_ltr",
804 };
805
806 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
807 {
808         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
809         u32 ltr_mode, ltr_val;
810
811         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
812         if (val < 0) {
813                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
814                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
815                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
816                 }
817                 return;
818         }
819         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
820         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
821                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
822                 val = LPSS_LTR_MAX_VAL;
823         } else if (val > LPSS_LTR_MAX_VAL) {
824                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
825                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
826         } else {
827                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
828         }
829         ltr_val |= val;
830         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
831         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
832                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
833                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
834         }
835 }
836
837 #ifdef CONFIG_PM
838 /**
839  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
840  * @dev: LPSS device
841  * @pdata: pointer to the private data of the LPSS device
842  *
843  * Most LPSS devices have private registers which may loose their context when
844  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
845  * prv_reg_ctx array.
846  */
847 static void acpi_lpss_save_ctx(struct device *dev,
848                                struct lpss_private_data *pdata)
849 {
850         unsigned int i;
851
852         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
853                 unsigned long offset = i * sizeof(u32);
854
855                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
856                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
857                         pdata->prv_reg_ctx[i], offset);
858         }
859 }
860
861 /**
862  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
863  * @dev: LPSS device
864  * @pdata: pointer to the private data of the LPSS device
865  *
866  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
867  */
868 static void acpi_lpss_restore_ctx(struct device *dev,
869                                   struct lpss_private_data *pdata)
870 {
871         unsigned int i;
872
873         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
874                 unsigned long offset = i * sizeof(u32);
875
876                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
877                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
878                         pdata->prv_reg_ctx[i], offset);
879         }
880 }
881
882 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
883 {
884         /*
885          * The following delay is needed or the subsequent write operations may
886          * fail. The LPSS devices are actually PCI devices and the PCI spec
887          * expects 10ms delay before the device can be accessed after D3 to D0
888          * transition. However some platforms like BSW does not need this delay.
889          */
890         unsigned int delay = 10;        /* default 10ms delay */
891
892         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
893                 delay = 0;
894
895         msleep(delay);
896 }
897
898 static int acpi_lpss_activate(struct device *dev)
899 {
900         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
901         int ret;
902
903         ret = acpi_dev_resume(dev);
904         if (ret)
905                 return ret;
906
907         acpi_lpss_d3_to_d0_delay(pdata);
908
909         /*
910          * This is called only on ->probe() stage where a device is either in
911          * known state defined by BIOS or most likely powered off. Due to this
912          * we have to deassert reset line to be sure that ->probe() will
913          * recognize the device.
914          */
915         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
916                 lpss_deassert_reset(pdata);
917
918 #ifdef CONFIG_PM
919         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
920                 acpi_lpss_save_ctx(dev, pdata);
921 #endif
922
923         return 0;
924 }
925
926 static void acpi_lpss_dismiss(struct device *dev)
927 {
928         acpi_dev_suspend(dev, false);
929 }
930
931 /* IOSF SB for LPSS island */
932 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
933 #define LPSS_IOSF_UNIT_LPIO1            0xAB
934 #define LPSS_IOSF_UNIT_LPIO2            0xAC
935
936 #define LPSS_IOSF_PMCSR                 0x84
937 #define LPSS_PMCSR_D0                   0
938 #define LPSS_PMCSR_D3hot                3
939 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
940
941 #define LPSS_IOSF_GPIODEF0              0x154
942 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
943 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
944 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
945 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
946
947 static DEFINE_MUTEX(lpss_iosf_mutex);
948 static bool lpss_iosf_d3_entered = true;
949
950 static void lpss_iosf_enter_d3_state(void)
951 {
952         u32 value1 = 0;
953         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
954         u32 value2 = LPSS_PMCSR_D3hot;
955         u32 mask2 = LPSS_PMCSR_Dx_MASK;
956         /*
957          * PMC provides an information about actual status of the LPSS devices.
958          * Here we read the values related to LPSS power island, i.e. LPSS
959          * devices, excluding both LPSS DMA controllers, along with SCC domain.
960          */
961         u32 func_dis, d3_sts_0, pmc_status;
962         int ret;
963
964         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
965         if (ret)
966                 return;
967
968         mutex_lock(&lpss_iosf_mutex);
969
970         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
971         if (ret)
972                 goto exit;
973
974         /*
975          * Get the status of entire LPSS power island per device basis.
976          * Shutdown both LPSS DMA controllers if and only if all other devices
977          * are already in D3hot.
978          */
979         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
980         if (pmc_status)
981                 goto exit;
982
983         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
984                         LPSS_IOSF_PMCSR, value2, mask2);
985
986         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
987                         LPSS_IOSF_PMCSR, value2, mask2);
988
989         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
990                         LPSS_IOSF_GPIODEF0, value1, mask1);
991
992         lpss_iosf_d3_entered = true;
993
994 exit:
995         mutex_unlock(&lpss_iosf_mutex);
996 }
997
998 static void lpss_iosf_exit_d3_state(void)
999 {
1000         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
1001                      LPSS_GPIODEF0_DMA_LLP;
1002         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
1003         u32 value2 = LPSS_PMCSR_D0;
1004         u32 mask2 = LPSS_PMCSR_Dx_MASK;
1005
1006         mutex_lock(&lpss_iosf_mutex);
1007
1008         if (!lpss_iosf_d3_entered)
1009                 goto exit;
1010
1011         lpss_iosf_d3_entered = false;
1012
1013         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1014                         LPSS_IOSF_GPIODEF0, value1, mask1);
1015
1016         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1017                         LPSS_IOSF_PMCSR, value2, mask2);
1018
1019         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1020                         LPSS_IOSF_PMCSR, value2, mask2);
1021
1022 exit:
1023         mutex_unlock(&lpss_iosf_mutex);
1024 }
1025
1026 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1027 {
1028         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1029         int ret;
1030
1031         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1032                 acpi_lpss_save_ctx(dev, pdata);
1033
1034         ret = acpi_dev_suspend(dev, wakeup);
1035
1036         /*
1037          * This call must be last in the sequence, otherwise PMC will return
1038          * wrong status for devices being about to be powered off. See
1039          * lpss_iosf_enter_d3_state() for further information.
1040          */
1041         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1042             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1043                 lpss_iosf_enter_d3_state();
1044
1045         return ret;
1046 }
1047
1048 static int acpi_lpss_resume(struct device *dev)
1049 {
1050         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1051         int ret;
1052
1053         /*
1054          * This call is kept first to be in symmetry with
1055          * acpi_lpss_runtime_suspend() one.
1056          */
1057         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1058                 lpss_iosf_exit_d3_state();
1059
1060         ret = acpi_dev_resume(dev);
1061         if (ret)
1062                 return ret;
1063
1064         acpi_lpss_d3_to_d0_delay(pdata);
1065
1066         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1067                 acpi_lpss_restore_ctx(dev, pdata);
1068
1069         return 0;
1070 }
1071
1072 #ifdef CONFIG_PM_SLEEP
1073 static int acpi_lpss_do_suspend_late(struct device *dev)
1074 {
1075         int ret;
1076
1077         if (dev_pm_skip_suspend(dev))
1078                 return 0;
1079
1080         ret = pm_generic_suspend_late(dev);
1081         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1082 }
1083
1084 static int acpi_lpss_suspend_late(struct device *dev)
1085 {
1086         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1087
1088         if (pdata->dev_desc->resume_from_noirq)
1089                 return 0;
1090
1091         return acpi_lpss_do_suspend_late(dev);
1092 }
1093
1094 static int acpi_lpss_suspend_noirq(struct device *dev)
1095 {
1096         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1097         int ret;
1098
1099         if (pdata->dev_desc->resume_from_noirq) {
1100                 /*
1101                  * The driver's ->suspend_late callback will be invoked by
1102                  * acpi_lpss_do_suspend_late(), with the assumption that the
1103                  * driver really wanted to run that code in ->suspend_noirq, but
1104                  * it could not run after acpi_dev_suspend() and the driver
1105                  * expected the latter to be called in the "late" phase.
1106                  */
1107                 ret = acpi_lpss_do_suspend_late(dev);
1108                 if (ret)
1109                         return ret;
1110         }
1111
1112         return acpi_subsys_suspend_noirq(dev);
1113 }
1114
1115 static int acpi_lpss_do_resume_early(struct device *dev)
1116 {
1117         int ret = acpi_lpss_resume(dev);
1118
1119         return ret ? ret : pm_generic_resume_early(dev);
1120 }
1121
1122 static int acpi_lpss_resume_early(struct device *dev)
1123 {
1124         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1125
1126         if (pdata->dev_desc->resume_from_noirq)
1127                 return 0;
1128
1129         if (dev_pm_skip_resume(dev))
1130                 return 0;
1131
1132         return acpi_lpss_do_resume_early(dev);
1133 }
1134
1135 static int acpi_lpss_resume_noirq(struct device *dev)
1136 {
1137         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1138         int ret;
1139
1140         /* Follow acpi_subsys_resume_noirq(). */
1141         if (dev_pm_skip_resume(dev))
1142                 return 0;
1143
1144         ret = pm_generic_resume_noirq(dev);
1145         if (ret)
1146                 return ret;
1147
1148         if (!pdata->dev_desc->resume_from_noirq)
1149                 return 0;
1150
1151         /*
1152          * The driver's ->resume_early callback will be invoked by
1153          * acpi_lpss_do_resume_early(), with the assumption that the driver
1154          * really wanted to run that code in ->resume_noirq, but it could not
1155          * run before acpi_dev_resume() and the driver expected the latter to be
1156          * called in the "early" phase.
1157          */
1158         return acpi_lpss_do_resume_early(dev);
1159 }
1160
1161 static int acpi_lpss_do_restore_early(struct device *dev)
1162 {
1163         int ret = acpi_lpss_resume(dev);
1164
1165         return ret ? ret : pm_generic_restore_early(dev);
1166 }
1167
1168 static int acpi_lpss_restore_early(struct device *dev)
1169 {
1170         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1171
1172         if (pdata->dev_desc->resume_from_noirq)
1173                 return 0;
1174
1175         return acpi_lpss_do_restore_early(dev);
1176 }
1177
1178 static int acpi_lpss_restore_noirq(struct device *dev)
1179 {
1180         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1181         int ret;
1182
1183         ret = pm_generic_restore_noirq(dev);
1184         if (ret)
1185                 return ret;
1186
1187         if (!pdata->dev_desc->resume_from_noirq)
1188                 return 0;
1189
1190         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1191         return acpi_lpss_do_restore_early(dev);
1192 }
1193
1194 static int acpi_lpss_do_poweroff_late(struct device *dev)
1195 {
1196         int ret = pm_generic_poweroff_late(dev);
1197
1198         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1199 }
1200
1201 static int acpi_lpss_poweroff_late(struct device *dev)
1202 {
1203         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1204
1205         if (dev_pm_skip_suspend(dev))
1206                 return 0;
1207
1208         if (pdata->dev_desc->resume_from_noirq)
1209                 return 0;
1210
1211         return acpi_lpss_do_poweroff_late(dev);
1212 }
1213
1214 static int acpi_lpss_poweroff_noirq(struct device *dev)
1215 {
1216         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1217
1218         if (dev_pm_skip_suspend(dev))
1219                 return 0;
1220
1221         if (pdata->dev_desc->resume_from_noirq) {
1222                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1223                 int ret = acpi_lpss_do_poweroff_late(dev);
1224
1225                 if (ret)
1226                         return ret;
1227         }
1228
1229         return pm_generic_poweroff_noirq(dev);
1230 }
1231 #endif /* CONFIG_PM_SLEEP */
1232
1233 static int acpi_lpss_runtime_suspend(struct device *dev)
1234 {
1235         int ret = pm_generic_runtime_suspend(dev);
1236
1237         return ret ? ret : acpi_lpss_suspend(dev, true);
1238 }
1239
1240 static int acpi_lpss_runtime_resume(struct device *dev)
1241 {
1242         int ret = acpi_lpss_resume(dev);
1243
1244         return ret ? ret : pm_generic_runtime_resume(dev);
1245 }
1246 #endif /* CONFIG_PM */
1247
1248 static struct dev_pm_domain acpi_lpss_pm_domain = {
1249 #ifdef CONFIG_PM
1250         .activate = acpi_lpss_activate,
1251         .dismiss = acpi_lpss_dismiss,
1252 #endif
1253         .ops = {
1254 #ifdef CONFIG_PM
1255 #ifdef CONFIG_PM_SLEEP
1256                 .prepare = acpi_subsys_prepare,
1257                 .complete = acpi_subsys_complete,
1258                 .suspend = acpi_subsys_suspend,
1259                 .suspend_late = acpi_lpss_suspend_late,
1260                 .suspend_noirq = acpi_lpss_suspend_noirq,
1261                 .resume_noirq = acpi_lpss_resume_noirq,
1262                 .resume_early = acpi_lpss_resume_early,
1263                 .freeze = acpi_subsys_freeze,
1264                 .poweroff = acpi_subsys_poweroff,
1265                 .poweroff_late = acpi_lpss_poweroff_late,
1266                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1267                 .restore_noirq = acpi_lpss_restore_noirq,
1268                 .restore_early = acpi_lpss_restore_early,
1269 #endif
1270                 .runtime_suspend = acpi_lpss_runtime_suspend,
1271                 .runtime_resume = acpi_lpss_runtime_resume,
1272 #endif
1273         },
1274 };
1275
1276 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1277                                      unsigned long action, void *data)
1278 {
1279         struct platform_device *pdev = to_platform_device(data);
1280         struct lpss_private_data *pdata;
1281         struct acpi_device *adev;
1282         const struct acpi_device_id *id;
1283
1284         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1285         if (!id || !id->driver_data)
1286                 return 0;
1287
1288         adev = ACPI_COMPANION(&pdev->dev);
1289         if (!adev)
1290                 return 0;
1291
1292         pdata = acpi_driver_data(adev);
1293         if (!pdata)
1294                 return 0;
1295
1296         if (pdata->mmio_base &&
1297             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1298                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1299                 return 0;
1300         }
1301
1302         switch (action) {
1303         case BUS_NOTIFY_BIND_DRIVER:
1304                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1305                 break;
1306         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1307         case BUS_NOTIFY_UNBOUND_DRIVER:
1308                 dev_pm_domain_set(&pdev->dev, NULL);
1309                 break;
1310         case BUS_NOTIFY_ADD_DEVICE:
1311                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1312                 if (pdata->dev_desc->flags & LPSS_LTR)
1313                         return sysfs_create_group(&pdev->dev.kobj,
1314                                                   &lpss_attr_group);
1315                 break;
1316         case BUS_NOTIFY_DEL_DEVICE:
1317                 if (pdata->dev_desc->flags & LPSS_LTR)
1318                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1319                 dev_pm_domain_set(&pdev->dev, NULL);
1320                 break;
1321         default:
1322                 break;
1323         }
1324
1325         return 0;
1326 }
1327
1328 static struct notifier_block acpi_lpss_nb = {
1329         .notifier_call = acpi_lpss_platform_notify,
1330 };
1331
1332 static void acpi_lpss_bind(struct device *dev)
1333 {
1334         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1335
1336         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1337                 return;
1338
1339         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1340                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1341         else
1342                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1343 }
1344
1345 static void acpi_lpss_unbind(struct device *dev)
1346 {
1347         dev->power.set_latency_tolerance = NULL;
1348 }
1349
1350 static struct acpi_scan_handler lpss_handler = {
1351         .ids = acpi_lpss_device_ids,
1352         .attach = acpi_lpss_create_device,
1353         .bind = acpi_lpss_bind,
1354         .unbind = acpi_lpss_unbind,
1355 };
1356
1357 void __init acpi_lpss_init(void)
1358 {
1359         const struct x86_cpu_id *id;
1360         int ret;
1361
1362         ret = lpss_atom_clk_init();
1363         if (ret)
1364                 return;
1365
1366         id = x86_match_cpu(lpss_cpu_ids);
1367         if (id)
1368                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1369
1370         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1371         acpi_scan_add_handler(&lpss_handler);
1372 }
1373
1374 #else
1375
1376 static struct acpi_scan_handler lpss_handler = {
1377         .ids = acpi_lpss_device_ids,
1378 };
1379
1380 void __init acpi_lpss_init(void)
1381 {
1382         acpi_scan_add_handler(&lpss_handler);
1383 }
1384
1385 #endif /* CONFIG_X86_INTEL_LPSS */